
On Averaging and Extrapolation for Gradient Descent

Alan Luner∗ Benjamin Grimmer†

Abstract
This work considers the effect of averaging, and more generally extrapolation, of the iterates

of gradient descent in smooth convex optimization. After running the method, rather than
reporting the final iterate, one can report either a convex combination of the iterates (averaging)
or a generic combination of the iterates (extrapolation). For several common stepsize sequences,
including recently developed accelerated periodically long stepsize schemes, we show averaging
cannot improve gradient descent’s worst-case performance and is, in fact, strictly worse than
simply returning the last iterate. In contrast, we prove a conceptually simple and computationally
cheap extrapolation scheme strictly improves the worst-case convergence rate: when initialized at
the origin, reporting (1 + 1/

√
16N log(N))xN rather than xN improves the best possible worst-

case performance by the same amount as conducting O(
√
N/ log(N)) more gradient steps. Our

analysis and characterizations of the best-possible convergence guarantees are computer-aided,
using performance estimation problems. Numerically, we find similar (small) benefits from such
simple extrapolation for a range of gradient methods.

1 Introduction
There is a long history of using strategic weightings of iterates to produce better solutions in convex
optimization. In many nonsmooth optimization settings, returning the final iterate is known to
provide provably suboptimal worst-case guarantees [1]. A common and well-studied resolution to
this problem is to output instead an average (convex combination) of the iterates [2–5]. In smooth
optimization, on the other hand, averaging is not as commonplace; instead, one often simply returns
the final iterate. One intuitive justification for not averaging is that most theory ensures some
monotone decrease, ensuring the last iterate outperforms the rest, e.g., decreasing objective values
for gradient descent. Beyond the convex combinations underlying averaging, one could consider
extrapolations from the iterates, utilizing a not necessarily convex combination of them. Each
step of a momentum method, like Polyak’s heavy ball method, can be viewed as extrapolating
from recent steps to a (hopefully) better next iterate. The use of more sophisticated extrapolation
techniques, like Anderson acceleration [6, 7], have also proven useful in smooth optimization.

Basic questions remain about the importance (or lack thereof) of averaging and extrapolation
in smooth optimization. Our primary focus in this paper is on smooth optimization via gradient
descent. Extensions to other accelerated gradient methods will be considered afterward. For a
convex function f : Rm → R with L-Lipschitz gradient, gradient descent iterates

xk+1 = xk − hk

L
∇f(xk) , (1.1)

given initial point x0 and a pre-determined stepsize sequence h = (h0, . . . , hN−1). Existing conver-
gence rate theory can handle gradient descent with stepsizes hk constant in (0, 2), hk dynamically

∗Johns Hopkins University, Department of Applied Mathematics and Statistics, aluner1@jhu.edu
†Johns Hopkins University, Department of Applied Mathematics and Statistics, grimmer@jhu.edu

1

aluner1@jhu.edu
grimmer@jhu.edu

increasing up towards two [8], and hk as a special silver sequence of long stepsizes, frequently greatly
exceeding length two [9]. Existing worst-case convergence analysis for all of these stepsize patterns
applies to the final iterate, not utilizing any averaging. This motivates our first major question:

Can averaging improve the worst-case performance guarantees of gradient descent (in
objective gap or gradient size) for any common stepsizes choices (Constant, Dynamically
Increasing, or Silver)?

We prove it cannot. See the informal statement of this result in Theorem 1.1 and Section 3 where
this claim is formalized and proven.

The fact that averaging cannot help gradient descent motivates the consideration of reporting
an extrapolation. Rather than returning a convex combination of the iterates, one could return a
linear combination of gradient descent iterates. Our second major question is then:

Can extrapolating improve the worst-case performance guarantees of gradient descent?

We prove it can and show, in fact, a very simple, computationally cheap extrapolation approach
suffices. We consider the following intuitive extrapolation strategy. After N steps of gradient
descent, instead of returning xN , report

x0 + c(xN − x0)

for some fixed extrapolation factor c > 1. This amounts to extrapolating from xN away from
x0. This is natural as one may suspect the direction of progress from the initial iterate to the
terminal iterate to “roughly” point towards optimal. With x0 chosen as the origin, this simplifies to
reporting cxN , adding effectively no additional computational or memory storage costs. We exactly
characterize the resulting improvement in worst-case performance guarantee under proper selection
of the extrapolation factor c. See the informal statement of this result in Theorem 1.2 and Section 4
where this claim is formalized and proven.

To provide such exact descriptions of worst-case algorithm performance, we turn to performance
estimation. The Performance Estimation Problem (PEP), first proposed by Drori and Teboulle
in [10], established a new perspective framing a method’s worst-case performance as an optimization
problem. Building on this initial proposal, Taylor et al. [11] showed the PEP search for a worst-case
problem instance is equivalent to a Semidefinite Program (SDP). This approach to optimization
problems is a doubly important tool. First, PEP serves as a black box to numerically compute worst-
case convergence rates under varied algorithmic configurations. Observing these numerical results
can help identify patterns and shortcomings/slackness in current performance guarantees. Second,
observing the exact worst-case problem instances and corresponding dual optimality certificates
produced by PEP can often translate into proving new and improved convergence guarantees. For
readers unfamiliar with PEP, we refer to the library and resources of [12] and the foundational early
paper [13].

Particularly relevant to our investigation, the PEP framework has seen substantial use in the
design of stepsizes for gradient descent. In their paper introducing PEP, Drori and Teboulle proved
a tight O(1/N) convergence bound [10, Theorem 3.1] for gradient descent with constant stepsize
h ∈ (0, 1]. They also conjectured a similar bound [10, Conjecture 3.1] for h ∈ (1, 2) based on strong
numerical evidence from performance estimation. More recently, by solving a related nonconvex
problem via branch-and-bound, Das Gupta et al. [14] numerically identified “globally optimal”
stepsize patterns for fixed small N ≤ 25, which were often much larger than length two. Through
their general branch-and-bound method, one can optimize an algorithm’s hyperparameters, such
as the stepsize sequence or averaging weights, for any reasonably small fixed number of iterations;

2

this ability to answer questions of global optimality offers a useful comparison for our later results.
Motivated by these numerical results, Grimmer et al. [15,16] used the PEP framework to analyze
specific “straightforward” sequences with frequent long steps (hk > 2), eventually showing a slightly
accelerated convergence rate of O

(
1/N1.0564). Concurrently, Altschuler and Parrilo [9] following up

on the earlier Master’s thesis work [17] introduced the silver stepsize sequence for gradient descent,
which attains a stronger rate of O

(
1/N1.2716).

1.1 Our Contributions

Our two primary contributions show that averaging does not improve (and, in fact, strictly worsens)
the worst-case convergence guarantees for gradient descent under common stepsize sequences, while
a very simple extrapolation can strictly improve gradient descent performance. Our analysis in both
settings is tight, having exactly matching worst-case problem instances derived from associated
PEP solutions. We measure solution quality both by function value gap and gradient norm. These
two main results are informally stated below with ∆N denoting the standard simplex in RN and
FL,D denoting the set of all considered smooth convex problem instances: namely, all pairs (x0, f)
with f convex and L-smooth and x0 at most distance D from a minimizer of f .

Theorem 1.1 (Informal, The Optimal Averaging is to Not Average). Gradient descent has σ =
(0, . . . , 0, 1) uniquely minimize both worst-case performance measures below of

min
σ∈∆N+1

max
(x0,f)∈FL,D

f

 N∑
j=0

σjxj

− inf f = LD2

4
∑N−1

i=0 hi + 2
(3.6)

and

min
σ∈∆N+1

max
(x0,f)∈FL,D

∥∥∥∥∥∥∇f
 N∑

j=0
σjxj

∥∥∥∥∥∥ = LD∑N−1
i=0 hi + 1

. (3.7)

when the stepsizes hk are chosen as any of a constant h ∈ (0, 1], a constant h ∈ (1, 2) (assuming N
sufficiently large and [10, Conjecture 3.1] holds), dynamically increasing as proposed by Teboulle
and Vaisbourd [8], or as silver long steps as proposed by Altschuler and Parrilo [9] (assuming N is
one less than a power of two and our Conjecture 3.2 holds).

Theorem 1.2 (Informal, Strict Gain of
√
N/ log(N) from Simple Extrapolation). For any constant

stepsize h ∈ (0, 1] and simple extrapolation factor c up to size 1 +O
(

1√
N log N

)
, gradient descent has

max
(x0,f)∈FL,D

f(x0 + c(xN − x0)) − inf f = LD2

4Nhc+ 2 . (1.2)

For example, setting x0 = 0 without loss of generality,

max
(x0,f)∈FL,D

f

((
1 + 1

4
√
N log(N)

)
xN

)
− inf f = LD2

4Nh+
√

N
log(N)h+ 2

. (1.3)

Note that gradient descent is not optimal among all first-order methods for smooth convex
optimization as accelerated methods provide faster rates of O(1/N2) [18, 19]. As a result, our
theory should not be viewed as advancing the state-of-the-art in performance for this general class.
Instead, gradient descent provides a structured and fundamental smooth optimization setting where
we can provide exact proof that averaging offers no gains and quantify the provable gains simple

3

extrapolation can provide. This simple extrapolation may have practical relevance in settings where
memory is the dominant computational constraint (See Remark 2). It can be easily implemented at
the end of any first-order method, with no a priori knowledge of the number of steps to be taken.
To extend our main results beyond gradient descent, we provide numerical characterizations of the
worst-case performance of several common accelerated methods with extrapolation. We find nearly
universal improvements (small but nonzero) in the worst-case guarantees from simple extrapolations.
Extensions to projected and proximal gradient methods are also discussed when applicable.

Outline. First, Section 2 introduces our notation and the performance estimation problem
framework upon which our results are primarily built. Section 3 then proves our negative results
regarding the use of averaging in gradient descent (for any of a range of common stepsizes). Section 4
proves our positive result on the benefits of even very simple extrapolation on worst-case performance.
Finally, Section 5 presents numerical results strongly indicating the degree to which our insights
from gradient descent generalize. A few algebraic simplifications are deferred to the associated
Mathematica [20] notebook available at github.com/alanluner/GDAvgExtrap.

2 Preliminaries and Performance Estimation Problems

In this section, we introduce Performance Estimation Problems (PEP) and the specific problems
relevant to our analysis. Consider a smooth convex minimization problem of the form

min
x∈Rm

f(x) (2.1)

where f : Rm → R is L-smooth (i.e. ∇f is L-Lipschitz) and convex. We assume a minimizer x⋆ of
f exists and suppose a point x0 is known with ∥x0 − x⋆∥ ≤ D for some D ∈ R+. Throughout, we
denote the Euclidean inner product by ⟨·, ·⟩, and all norms are the associated two-norm. Note that
a differentiable function f is L-smooth and convex if and only if

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ + 1
2L∥∇f(x) − ∇f(y)∥2 ∀x, y ∈ Rm . (2.2)

One particularly useful smooth convex function is the “Huber” function, which often occurs as a worst-
case problem for smooth optimization, as highlighted in [11] and many related works [8, 10,13,19].
We denote this simple one-dimensional function by

ϕL,η(x) :=
{

L
2 x

2 if |x| ≤ η

Lη|x| − Lη2

2 if |x| > η .
(2.3)

We primarily consider applying gradient descent by iterating as in (1.1) using a pre-determined
stepsize sequence h = (h0, . . . , hN−1). Rather than simply reporting the terminal iterate xN , we
consider reporting an averaged/extrapolated point xσ, defined by

xσ =
N∑

j=0
σjxj (2.4)

given weights σ = (σ0, . . . , σN). Note no modification is made to the iterates of gradient descent;
the only change is to which point is ultimately reported and, hence, where performance (in the
objective gap or gradient norm) is measured.

4

https://github.com/alanluner/GDAvgExtrap

We broadly refer to this scheme as general extrapolation. As a specific case, we define iterate
averaging as any choice of σ such that σ ≥ 0 and

∑N
j=0 σj = 1. We will say that an averaging

scheme σ is nondegenerate provided that
∑N

j=0 σjxj ̸= xN (i.e. σ ≠ (0, . . . , 0, 1)). Observe that our
framing of xσ is equivalent to

xσ =
N∑

j=0
σjxj =

N∑
j=0

σj

x0 − 1
L

j−1∑
k=0

hk∇f(xk)

 (2.5)

= x0 − 1
L

N−1∑
k=0

hk

N∑
j=k+1

σj

∇f(xk) .

So a general extrapolation can be denoted by x0 + span{∇f(x0), . . . ,∇f(xN−1)}.

2.1 Performance Estimation Problems with Averaging/Extrapolation

When evaluating the convergence of an optimization method, there are several different performance
measures commonly considered. We will introduce the PEP framework using the objective gap
f(x) − f(x⋆) as the measure of algorithm performance. Although this is done to ease our initial
development, we will also present results on guaranteeing a small gradient norm, ∥∇f(x)∥. In
particular, our primary focus is to compare the worst-case performance of an averaged or extrapolated
point xσ with that of the last iterate xN .

One can frame deriving a convergence guarantee for an algorithm in terms of understanding
its performance on a worst-case problem instance. From this perspective, worst-case analysis is an
optimization problem: find the problem instance with the maximum final/reported objective gap,
gradient norm, etc. We define our worst-case performance pN,L,D(σ, h) by

pN,L,D(σ, h) :=



maxx0,x⋆,f f(xσ) − f(x⋆)
s.t. f(x) ≥ f(y) + ⟨∇f(y), x− y⟩ + 1

2L∥∇f(x) − ∇f(y)∥2 ∀x, y
∥x0 − x⋆∥ ≤ D

∇f(x⋆) = 0
xk+1 = xk − hk

L ∇f(xk) k = 0, . . . , N − 2
xσ = x0 − 1

L

∑N−1
k=0

(
hk
∑N

j=k+1 σj

)
∇f(xk)

(2.6)
where our first constraint comes from the standard identity for L-smooth, convex functions (2.2).
We use the alternate form (2.5) of xσ to remove its dependence on xN . Consequently, we can exclude
xN from our problem formulation. Equivalently, one could view xσ as a modified replacement of xN .

Finite dimensional relaxations of this formulation were first considered by Drori and Teboulle [10].
Subsequently and quite surprisingly, the Interpolation Theorem of Taylor et al. [11] established
an equivalent finite-dimensional problem one could consider. Rather than enforce our constraints
for all points in our domain, it is only necessary to enforce them along the points of interest in
our algorithm. Denoting fk = f(xk), gk = ∇f(xk), and I⋆

N = {⋆, 0, 1, . . . , N − 1, σ}, our problem
becomes

5

pN,L,D(σ, h) =



maxx0,x⋆,f f(xσ) − f(x⋆)
s.t. fi ≥ fj + ⟨gj , xi − xj⟩ + 1

2L∥gi − gj∥2 ∀i ̸= j ∈ I⋆
N

∥x0 − x⋆∥ ≤ D

g⋆ = 0
xk+1 = xk − hk

L gk k = 0, . . . , N − 2
xσ = x0 − 1

L

∑N−1
k=0

(
hk
∑N

j=k+1 σj

)
gk .

(2.7)

By translation, we can also fix x⋆ = 0 and f⋆ = 0 without loss of generality.
Finally, following the methods in many previous works [11, 13, 21], we slightly relax our discrete

problem (2.7) to form a solvable SDP. We adopt the notation used in [14] and introduce it here.
We define

F = [f0|f1| . . . |fN−1|fσ] ∈ R1×(N+1)

H = [x0|g0|g1| . . . |gN−1|gσ] ∈ Rd×(N+2)

G = HTH ∈ SN+2
+

where fσ = f(xσ) and gσ = ∇f(xσ). We define special vectors for selecting particular elements of
our matrices using standard basis vectors ei (the corresponding space for ei should be clear from
context if not specified):

g⋆ = 0 ∈ RN+2

gi = ei+2 ∈ RN+2 i = 0, . . . , N − 1
x0 = e1 ∈ RN+2

x⋆ = 0 ∈ RN+2

xi+1 = xi − hi

L
gi i = 0, . . . , N − 2

f⋆ = 0 ∈ RN+1

fi = ei+1 ∈ RN+1 i = 0, . . . , N − 1

and to account for xσ, we define

gσ = eN+2 ∈ RN+2

xσ = x0 − 1
L

N−1∑
k=0

hk

N∑
j=k+1

σj

gk

fσ = eN+1 ∈ RN+1 .

Through this construction, we have encoded the gradient steps of the algorithm into our matrices
F , G, and H; we have xi = Hxi, gi = Hgi, and fi = F fi (and similar for xσ and x⋆). Next, using
the symmetric outer product x⊙ y = 1

2(xyT + yxT), define

Ai,j(h) = gj ⊙ (xi − xj) ∈ SN+2

Bi,j(h) = (xi − xj) ⊙ (xi − xj) ∈ SN+2

Ci,j = (gi − gj) ⊙ (gi − gj) ∈ SN+2

ai,j = fj − fi ∈ RN+1

6

for all i, j ∈ I⋆
N , with i ̸= j. These matrices satisfy the useful identities

⟨gj , xi − xj⟩ = TrGAi,j(h)
∥xi − xj∥2 = TrGBi,j(h)
∥gi − gj∥2 = TrGCi,j .

These definitions enable a succinct SDP relaxation of the performance estimation problem:

pN,L,D(σ, h) ≤


maxF,G Fa⋆,σ

s.t. Fai,j + TrGAi,j(h) + 1
2LTrGCi,j ≤ 0 ∀i ̸= j ∈ I⋆

N

G ⪰ 0
TrGB0,⋆ ≤ D2 .

(2.8)

Since this SDP is a relaxation of our original problem, its solution is an upper bound for pN,L,D(σ, h).
The SDP can be made equivalent by applying an additional assumption that the problem dimension
m is at least N + 2 [11]. However, the inequality above will be sufficient for our analysis, so for
now, we omit this additional rank assumption. This completes our derivation of the PEP SDP
for the averaged/extrapolated performance measure f(xσ) − f(x⋆). Other common performance
measures would follow a very similar derivation. Going forward, we simplify our notation to
p(σ) := pN,L,D(σ, h), but note that our solution is a function of each of those now hidden parameters.
We especially emphasize the role of N as a known and fixed parameter in the optimization problem.

Finally, we define the dual SDP in preparation for our use of the dual certificate in our later
proofs. Introducing dual variables λi,j ∈ R, v ∈ R, and Z ∈ S(N+2)×(N+2), we let

d(σ) :=



minv,λ,Z vD2

s.t.
∑

i ̸=j λi,jai,j − a⋆,σ = 0 ∀i ̸= j ∈ I⋆
N

vB0,⋆ +
∑

i ̸=j λi,j(Ai,j(h) + 1
2LCi,j) = Z ∀i ̸= j ∈ I⋆

N

Z ⪰ 0
v ≥ 0, λi,j ≥ 0 ∀i ̸= j ∈ I⋆

N

(2.9)

with the role of σ implicit in the various vector and matrix definitions. This SDP (2.8) and its dual
(2.9) provide an incredibly useful framework for analyzing our worst-case problem instances [10, 11,
14–17]. This dual problem will play a central role in proving our new convergence guarantees.

3 Averaging is Strictly Worse than the Last Iterate
In this section, we address our first major question regarding the effect of iterate averaging on gradient
descent’s convergence guarantees. Our approach to establishing that averaging cannot benefit (and
in fact harms) worst-case convergence guarantees works by first observing a common structure in the
tight convergence bounds for many common stepsize selections (Section 3.1) and second, showing
any stepsize with this worst-case structure cannot benefit from averaging (Section 3.2).

3.1 Common Structure Among Tight Last Iterate Convergence Guarantees

The performance estimation framework has enabled the development of exactly tight convergence
rates for gradient descent. That is, convergence guarantees that are attained with equality by
some problem instance, establishing that no better guarantee is possible. Below, we summarize

7

the known (or conjectured) tight convergence rates for four different families of stepsizes hk. For
each considered stepsize policy on any L-smooth convex f with ∥x0 − x⋆∥ ≤ D, these tight rates for
gradient descent take the form

f(xN) − f(x⋆) ≤ LD2

4
∑N−1

i=0 hi + 2
(3.1)

and
∥∇f(xN)∥ ≤ LD∑N−1

i=0 hi + 1
. (3.2)

Before discussing particular stepsize selections, we first note that no stepsize sequence hk can
produce a rate faster than those above. This follows from considering simple Huber functions as
prior works [8, 10, 11, 13, 19] have identified as common worst-case problem instances. While we
do not focus on momentum methods in this section, we note that the prevalence of the Huber
function appears to be shared for momentum methods such as Nesterov acceleration and OGM, as
conjectured in [11].

Lemma 3.1. For any N,L,D > 0 and hk > 0, there exists a problem instance with L-smooth
convex f and ∥x0 − x⋆∥ ≤ D such that

f(xN) − f(x⋆) = LD2

4
∑N−1

i=0 hi + 2
.

There also exists an L-smooth convex f with

∥∇f(xN)∥ = LD∑N−1
i=0 hi + 1

.

Proof. In both cases, this problem instance takes the form of x0 = D and f = ϕL,η as a Huber
function. Note that provided η ≤ D/(

∑N−1
i=0 hi + 1), the first N iterates of gradient descent all

remain larger than η, being given by xk = D−η
∑k−1

i=0 hi and having constant gradient ∇f(xk) = ηL.
To bound objective gap convergence, selecting η = D/(2

∑N−1
i=0 hi + 1) has f(xN) − f(x⋆) =

LD2

4
∑N−1

i=0 hi+2
. To bound gradient norm convergence, selecting η = D/(

∑N−1
i=0 hi + 1) has ∥∇f(xN)∥ =

LD∑N−1
i=0 hi+1

.

As a result, guarantees of the form (3.1) and (3.2) holding imply more strongly that

max
(x0,f)∈FL,D

f(xN) − inf f = LD2

4
∑N−1

i=0 hi + 2
(C1)

and
max

(x0,f)∈FL,D

∥∇f(xN)∥ = LD∑N−1
i=0 hi + 1

(C2)

hold respectively. We show below in Theorems 3.1 and 3.2 that these two conditions imply averaging
is strictly worse than returning the last iterate in terms of worst-case guarantees.

Constant Stepsizes hk = h ∈ (0, 1] Perhaps the simplest setting of gradient descent is the use of
a constant stepsize hk = h ∈ (0, 1]. The seminal work [10] and subsequently [8] showed such stepsizes
have guarantees of the form (3.1) and (3.2), giving bounds of LD2/(4Nh+ 2) and LD/(Nh+ 1) on
objective gap and gradient norm convergence, respectively. Note tightness of these bounds is easily
verified by the examples in Lemma 3.1, and so the conditions (C1) and (C2) hold. For extensions of
these ideas to monotone operators, see [22, Remark 4.10].

8

Constant Stepsizes hk = h ∈ (1, 2) When using constant stepsizes hk = h ∈ (1, 2), the
conjectured tight convergence rates from [10, Conjecture 3.1] and [11, Conjecture 3], respectively,
are that

f(xN) − f(x⋆) ≤ LD2

2 max
{ 1

2Nh+ 1 , |1 − h|2N
}

(3.3)

and
∥f(xN)∥ ≤ LDmax

{ 1
Nh+ 1 , |1 − h|N

}
. (3.4)

Provided N is large enough relative to the fixed value of h, each first case above dominates, and
the (conjectured) convergence guarantees take the form (3.1) and (3.2). Again, tightness and the
conditions (C1) and (C2) follow from Lemma 3.1.

Dynamic Stepsizes hk → 2 Note convergence cannot be guaranteed for gradient descent with hk

constant and greater than or equal to two. A sequence of stepsizes hk approaching this boundary
was proposed and analyzed by [8]. They considered

hk =
−
∑k−1

i=0 hi +
√(∑k−1

i=0 hi

)2
+ 8

(∑k−1
i=0 hi + 1

)
2 (3.5)

with h0 =
√

2. Theorem 4 of [8] established tight convergence guarantees of the common form (3.1)
and (3.2), establishing conditions (C1) and (C2) hold.

Silver Stepsizes hk (often much greater than two) Going beyond the limitation of stepsizes
being at most length two, Altschuler and Parrilo [9] considered the “silver” stepsize pattern: Using
the silver ratio, ρ = 1 +

√
2, the sequence h(N) is defined recursively for any N = 2m − 1 by

concatenation h(2N+1) = (h(N), 1 + ρm−1, h(N)) and with h(1) =
√

2. Note this includes arbitrarily
large stepsizes, having h2k ≈ k1.2716 whenever k is a power of two. Theorem 1.1 of [9] showed silver
stepsizes have an accelerated convergence rate of f(xN) − f(x⋆) = O(LD2/N1.2716). Numerically
computing the worst-case performance of silver stepsizes via PEP, we find for every N one less than
a power of two, the convergence matches (3.1) and (3.2), see Table 1. This leads us to make the
following conjecture.

Conjecture 3.2. Consider a gradient descent algorithm of fixed length N = 2k − 1 and the
corresponding Silver step sequence h(N). Then any L-smooth convex f has

f(xN) − f(x⋆) ≤ LD2

4
∑N−1

i=0 hi + 2
= LD2

4ρ1+log2(N+1) − 2
,

∥f(xN)∥ ≤ LD∑N−1
i=0 hi + 1

= LD

ρ1+log2(N+1) .

If true, tightness of these bounds is immediate from Lemma 3.1, giving conditions (C1) and (C2).

3.2 Suboptimal Convergence from Averaging

The above tight characterizations (down to the constants) of the worst-case performance of gradient
descent’s final iterate provide a direct quantity to compare the performance of a proposed averaging
scheme against. We find that the conditions (C1) and (C2) imply every nondegenerate iterate
averaging σ provides a strictly worse final objective value. This is formalized for objective gap

9

N = 1 N = 3 N = 7 N = 15 N = 31 N = 63 N = 127
Silver Obj. Gap PEP 0.13060 0.04692 0.01842 0.00747 0.00307 0.00127 0.00058
Difference from (C1) -8.567e-10 1.581e-8 5.148e-11 -2.942e-9 -5.057e-12 -3.232e-8 -2.422e-8

Silver Grad. Norm PEP 0.41421 0.17157 0.07107 0.02944 0.01219 0.00505 0.00233
Difference from (C2) -3.669e-14 -1.976e-13 -6.178e-12 -5.630e-9 -1.204e-8 -3.685e-10 7.602e-13

Table 1: Numerical results from Mosek with feasibility tolerances set as 10−12 solving the PEP
SDP for the worst-case objective gap and gradient norm of xN after N steps of the silver stepsize
sequence. Differences from the value in Conjecture 3.2 are presented, which remain relatively small.

convergence in Theorem 3.1 and gradient norm convergence in Theorem 3.2. Similar to Lemma 3.1,
the proof of these results is based on considering related Huber functions.

As an immediate consequence of these theorems, averaging cannot benefit (and strictly worsens)
the convergence guarantees for gradient descent with hk constant less than one or as the dynamic
sequence in (3.5). Further, if N is sufficiently large and the numerically supported conjecture
of [10, Conjecture 3.1] holds, constant stepsizes between one and two cannot benefit from averaging.
Similarly, if N is one less than a power of two and the numerically supported Conjecture 3.2 holds,
the accelerated rate following from silver stepsizes cannot benefit from averaging. As an aside,
numerical PEP evaluations indicate the conditions (C1) and (C2) do not appear to hold for the
straightforward sequences studied by [15,16], indicating they may benefit from averaging.

Theorem 3.1. Consider gradient descent with stepsizes h = (h0, . . . , hN−1) > 0. For any L,D > 0,
if the worst final iterate objective gap is characterized by (C1), then

min
σ∈∆N+1

max
(x0,f)∈FL,D

f

 N∑
j=0

σjxj

− inf f = LD2

4
∑N−1

i=0 hi + 2
(3.6)

with σ = (0, . . . , 0, 1) as the unique minimizer.

Proof. To prove this result, it suffices to show that for any nondegenerate σ, there exists an L-smooth
convex function f and initialization ∥x0 − x⋆∥ ≤ D such that

f(xσ) − f(x⋆) > LD2

4
∑N−1

i=0 hi + 2
.

We consider the same Huber function establishing tightness of the last iterate convergence in
Lemma 3.1. Let x0 = D and f = ϕL,η with η = D/(2

∑N−1
i=0 hi + 1). Noting η ≤ D/(

∑N−1
i=0 hi + 1),

each k ≤ N has xk = D − η
∑k−1

i=0 hi ≥ η and ∇f(xk) = ηL. Observe that f is linear on the convex
hull of the iterates (since it is linear on x ≥ η) with

f(x0) = LD2

2
∑N−1

i=0 hi + 1
− LD2

2(2
∑N−1

i=0 hi + 1)2
,

f(xN) = LD2

2(2
∑N−1

i=0 hi + 1)
< f(x0) .

Hence f(xN) < f(xk) for all k < N . Then for any nondegenerate σ, this linearity ensures

f(xσ) − f(x⋆) = f(xσ) =
N∑

j=0
σjf(xj) > f(xN) = LD2

4
∑N−1

i=0 hi + 2

Therefore, the degenerate averaging σ = (0, . . . , 0, 1) minimizes max(x0,f) f(xσ) − inf f uniquely.

10

Theorem 3.2. Consider gradient descent with stepsizes h = (h0, . . . , hN−1) > 0. For any L,D > 0,
if the worst final iterate gradient norm is characterized by (C2), then

min
σ∈∆N+1

max
(x0,f)∈FL,D

∥∥∥∥∥∥∇f
 N∑

j=0
σjxj

∥∥∥∥∥∥ = LD∑N−1
i=0 hi + 1

(3.7)

with σ = (0, . . . , 0, 1) as the unique minimizer.

Proof. To prove this, we require a perturbation of the tight example for the last iterate gradient
norm convergence used Lemma 3.1. Consider x0 = D and the Huber function f = ϕL,η with

η = D∑N−1
i=0 hi + 1

+ δ

for some small δ > 0. Note any selection of δ < DhN−1

(
∑N−1

i=0 hi+1)(
∑N−2

i=0 hi+1)
has D− η

∑N−2
i=0 hi > η. As

a result, the first N iterates of gradient descent are still given by xk = D − η
∑k−1

i=0 hi. Thus, any
averaging σ produces an output point

xσ =
N∑

j=0
σjxj =

N∑
j=0

σj(D − η
j−1∑
i=0

hi) = D − η
N∑

j=0
σj

j−1∑
i=0

hi .

Additionally, suppose that δ is chosen small enough that N∑
j=0

σj

j−1∑
i=0

hi

 δ < D∑N−1
i=0 hi + 1

N−1∑
i=0

hi −
N∑

j=0
σj

j−1∑
i=0

hi

 .

Note that for any nondegenerate averaging,
∑N

j=0 σj
∑j−1

i=0 hi <
∑N−1

i=0 hi, so the right-hand side
above is strictly positive. Plugging this into our formula for xσ with η = D∑N−1

i=0 hi+1
+ δ yields

xσ = D −
(

D∑N−1
i=0 hi + 1

+ δ

)
N∑

j=0
σj

j−1∑
i=0

hi >
D∑N−1

i=0 hi + 1
.

By construction, the Huber objective function at xσ > η then has ∇f(xσ) > D∑N−1
i=0 hi+1

. Any choice
of δ > 0 less than our two needed upper bounds suffices. Since these bounds are positive for any
nondegenerate iterate averaging, we conclude the degenerate averaging σ = (0, . . . , 0, 1) uniquely
minimizes the worst-case gradient norm max(x0,f) ∥∇f(xσ)∥.

Remark 1 (Extension to Projected/Proximal Gradient Descent). Reasoning virtually identical
to the above can be applied to the proximal gradient method. Consider minimizing an additive
composite function ψ = f + r where f, r are both convex. Denote the proximal mapping by

proxtr(x) := argmin
{
r(u) + 1

2t∥u− x∥2 : u ∈ Rm
}
.

and then iterate according to xk+1 = proxhkr(xk − hk
L ∇f(xk)). We note that projected gradient

descent is a special case where we take r as the indicator function of a closed, convex set. In [8,

11

Theorem 7], Teboulle and Vaisbourd proved for any L-smooth f , the proximal gradient method
with constant stepsize h ∈ (0, 1] satisfies

ψ(xN) − ψ(x⋆) ≤ LD2

4Nh

and
∥ψh/L(xN−1)∥ ≤ LD

Nh

where
ψh/L(xN−1) =

(
(xN−1 − h

L
∇f(xN−1)) − (x+

N−1 − h

L
∇f(x+

N−1))
)
L/h

and x+ = prox(h/L)r

(
x− h

L∇f(x)
)
. Note that ψh/L(xN−1) ∈ ∂ψ(xN), so these results are clear

analogues of those in Theorems 3.1 and 3.2. The bounds above are shown to be tight by the
simple example of f(x) = ηx and r as the indicator function over R+, choosing η = D

2Nh and
η = D

Nh , respectively. The earliest occurrences of these tight lower bound examples to our knowledge
are [23, Appendix 2.8] and [11, Section 4]. Consequently, applying our above argument, averaging
cannot improve (and strictly worsens) convergence guarantees for proximal or projected gradient
descent with constant stepsize h ∈ (0, 1]. As a note, although PEP is not used for proximal settings
here, such natural extensions exist [13] and have seen much use [12,24–26].

4 Extrapolations are Strictly Better than the Last Iterate
Given averaging gradient descent’s iterates cannot improve its convergence bounds, we now remove
the restriction that σ provides a convex combination, allowing it to be freely chosen from RN+1. As
discussed in Section 2, this allows xσ to be anything in x0 + span{∇f(x0), . . . ,∇f(xN−1)}.

An initial problem to investigate in this larger parameter space is to determine the optimal
choice of σ for a fixed number of iterations N and fixed step sequence h. Given N,L,D > 0 and
stepsizes h, this amounts to solving the following nonconvex minimization problem

min
σ∈RN+1

p(σ) .

Note that expanding the definition of p(σ) gives a nonconvex minimax problem. Das Gupta et
al. [14] introduced a spatial branch-and-bound approach tailored to numerically globally solving such
problems. We apply their method to the new setting of optimizing extrapolation weights σ. Fixing
N = 10 and constant stepsize h = 1, Figure 1 shows the optimal σ for minimizing the objective gap
f(xσ) − f(x⋆) and for minimizing the gradient norm ∥∇f(xσ)∥. We observe that the components
of σ are dominated by the weights of the last two components. It is worth noting, however, that
approximating these final two weights and setting the remaining weights to zero significantly worsens
the performance. Thus, the subtle structure (highlighted in Figure 1) for components k < N − 1
appears to be integral to the optimal averaging’s success. The first four columns of Table 2 show
these best possible improvements to the worst-case performance as N varies.

While the optimal σ offers a noticeable improvement to the previous convergence bound, we
did not identify a clear pattern in the optimal values. Even given a construction for the optimal
extrapolation for each N , applying it would require prior knowledge of N when beginning the
method to construct xσ incrementally as a second vector in memory while running gradient
descent. To avoid these shortcomings, we restrict σ to a particularly convenient structure, namely

12

0 2 4 6 8 10
j

−4

−3

−2

−1

0

1

2

3

σ
j

Objective Gap

−0.10

−0.05

0.00

0.05

0.10

0 2 4 6 8 10
j

−4

−3

−2

−1

0

1

2

3

σ
j

Gradient Norm

−0.10

−0.05

0.00

0.05

0.10

Figure 1: Optimal extrapolation choice of σ for N = 10 under different performance measures.

Last Iterate/Averaging Optimal Extrapolation Optimal Simple Extrapolation
N Obj Gap Grad Norm Obj Gap Grad Norm Obj Gap Grad Norm
5 0.0455 0.1667 0.0365 0.1483 0.0390 0.1546
10 0.0238 0.0909 0.0200 0.0844 0.0213 0.0871
15 0.0161 0.0625 0.0139 0.0592 0.0147 0.0607
20 0.0122 0.0476 0.0107 0.0456 0.0113 0.0466
25 0.0098 0.0385 0.0087 0.0371 0.0091 0.0378

Table 2: Numerical comparison between gradient descent’s worst case objective gap and gradient
norm at its last iterate xN , at the best possible extrapolated point

∑
σjxj , and at the best possible

simple extrapolation point x0 + c(xN − x0), fixing L = D = h = 1.

13

σ = (−(c− 1), 0, . . . , 0, c) for any extrapolation factor c ≥ 1. This corresponds to

xσ = x0 + c(xN − x0) = x0 − c
N−1∑
k=0

hk

L
gk . (4.1)

Hence, one can interpret xσ as extrapolating along the vector from x0 to xN . We refer to this
particular method of extrapolation as simple extrapolation. Note when c = 1, this reverts back to
simply returning gradient descent’s last iterate xσ = xN .

This scheme’s simplicity offers a few advantages. To perform this extrapolation, one needs
only the initial point x0 and terminal point xN ; no auxiliary vectors or enlarged memory storage
are required. Then, whenever the gradient descent iteration is stopped, this extrapolation can be
computed without requiring a prior knowledge of N . The constant c can be selected on-the-fly once
the method stops. See Corollary 4.2 for several convenient, provably good formulas one could use,
setting c = 1 + Θ(

√
1/N log(N)).

In the remainder of this section, we focus on gradient descent with constant stepsize h ∈ (0, 1]
and demonstrate a provable benefit to simple extrapolation. As a result, we show that including
this simple rescaling at the final step provides a provably good improvement “for free”. In Table 2,
we include the optimal performance of simple extrapolation, though this will be discussed in more
detail in Section 5.1.

Remark 2 (Computational Considerations). In large-scale optimization settings where memory is
a severely limiting factor, the simplicity of this extrapolation becomes relevant. While accelerated
momentum methods achieve faster convergence, they require the simultaneous storage of two vectors
rather than just the current iterate xk. For such problem instances where memory usage is at
capacity from storing a single vector xk, doubling the memory storage is not an option, and hence
momentum methods cannot be used. When x0 is a structured point such as the origin, simple
extrapolations can improve convergence while incurring no added memory costs.

The increased memory costs of momentum methods are also avoided by the recently developed
gradient descent accelerations from longer stepsizes in the sequence, e.g., the Silver pattern’s
O(1/N1.2716) rate [9]. Such methods may be state-of-the-art in certain severely memory-constrained
settings. In Section 5, we show numerically that simple extrapolation also (slightly) improves the
worst-case performance using silver stepsizes, offering a computational benefit at nearly no cost.

4.1 Improved Convergence Guarantees from Simple Extrapolations

We are now prepared to present our main theorem quantifying the improvement in worst-case
performance derived from simple extrapolations. To first discuss the consequences of our theory, we
defer the proof of this result to Section 4.2. Our analytic results below focus on the objective gap as
the performance measure. In Section 5.1, we return to numerically consider the minimization of the
reported gradient norm, establishing similar improvements. However, our Conjecture 5.1 suggests
that simple extrapolation is less effective at improving the final gradient norm size, hence our focus
on the objective gap.

Theorem 4.1. For any convex L-smooth function f with minimizer x⋆, consider gradient descent
with constant stepsizes hk = h ∈ (0, 1]. For any N > 0, define the function

ψN (c) := 1 −
N−1∑
i=0

(c− 1)(2Nc− 2N + 1)(2Nc+ 1)
2Nc+ 4Nci− 2i2 + 1 > 0 (4.2)

14

N ccrit cu cℓ 1 + 1/(4
√

N log N)
1 1.5 1.672029 1.359869 -
10 1.121974 1.158494 1.104917 1.052099
100 1.034804 1.041404 1.028570 1.011650
104 1.002878 1.003171 1.002235 1.000824
106 1.000246 1.000263 1.000186 1.000067
108 1.000022 1.000023 1.000016 1.000006

Table 3: Approximate values of ccrit and the upper and lower bounds from Proposition 4.1.

and let ccrit be the largest root of ψN (c). For any c ∈ [1, ccrit], xσ = x0 + c(xN − x0) satisfies

f(xσ) − f(x⋆) ≤ LD2

4Nhc+ 2 (4.3)

where D = ∥x0 − x⋆∥. Moreover, for any L,D,N > 0, there exists a function f where equality holds.

In terms of PEP introduced in Section 2, this theorem provides an exact description of the
worst-case performance of small extrapolations: the extrapolation σ = (−(c− 1), 0, . . . , 0, c) has

p(σ) = LD2

4Nhc+ 2 ∀c ∈ [1, ccrit] .

Setting c as large as possible (within the theorem’s bounds) provides the strongest performance
guarantee. To quantify the level of resulting benefit, we next bound how large the root ccrit is for a
given value of N .

The definition of ccrit as the largest root of ψN (c) unfortunately yields no simple closed-form
expression. Considering the case of N = 2, our function is ψ2(c) = −64c3+112c2−36c−1

12c−1 , so ccrit is
the largest root of −64c3 + 112c2 − 36c − 1 = 0, approximately 1.312285. In general, given any
N , ccrit will be the largest root of a degree N + 1 polynomial. In Table 3, we include numerical
approximations of ccrit for various values of N . The following proposition shows ccrit shrinks at rate
1 + Θ

(
1√

N log N

)
.

Proposition 4.1. For N>1, the largest root ccrit of ψN (c) is bounded below by

ccrit > 1 − 1
4N +

√
1

16N2 + 1
(2N + 1)(logN + 1

2N + γ)︸ ︷︷ ︸
cℓ

> 1 + 1
4
√
N logN

(4.4)

where γ ≈ 0.5772 is the Euler-Mascheroni constant. Moreover, this bound is nearly tight as

ccrit < 1 − 1
4N +

√
1

16N2 + 3
(3N + 1)(logN + 4N−1

8N2 + γ)︸ ︷︷ ︸
cu

.

This proposition is easily proven by establishing upper and lower bounds on ψN (c) but involves
some in-depth calculations. We therefore defer the proof to Appendix A.3. Combining these simpler
lower bounds on ccrit with Theorem 4.1 yields the following explicit convergence bounds for gradient
descent with simple extrapolations.

15

Corollary 4.2. For any convex L-smooth function f with minimizer x⋆ and N > 1, gradient descent
with constant stepsizes hk = h ∈ (0, 1] and simple extrapolation by factor

c = 1 − 1
4N +

√
1

16N2 + 1
(2N + 1)(logN + 1

2N + γ)
(4.5)

has xσ = x0 + c(xN − x0) satisfy

f(xσ) − f(x⋆) ≤ LD2

4Nh+
(√

1 + 16N2

(2N+1)(log N+ 1
2N

+γ) − 1
)
h+ 2

(4.6)

where D = ∥x0 − x⋆∥. As a simpler, weaker bound, setting c = 1 + 1
4
√

N log N
ensures that

f(xσ) − f(x⋆) ≤ LD2

4Nh+
√

N
log N h+ 2

. (4.7)

This result shows that adding a simple extrapolation achieves the same worst-case convergence
improvement as taking an additional O(

√
N/ logN) gradient steps. Note this gain increases with

N while the cost of the extrapolation step remains fixed (a vector-scalar multiplication and a
vector sum). While this is still a lower-order improvement, this level of benefit from such a simple
modification is rather surprising.

Finally, given the benefits of simple extrapolation proven above, we next consider its limitations.
In the theorem below, we formalize the notion that too large of an extrapolation has a negative effect.
An extrapolation that is too large may “overshoot” the minimizer, leading to worse performance. In
particular, we show simple extrapolation factors any larger than 1 +O(1/

√
N) can perform strictly

worse than the known worst-case for gradient descent’s last iterate.

Proposition 4.3. There exists a convex L-smooth function f with minimizer x⋆ such that gradient
descent with constant stepsizes hk = h ∈ (0, 1] and any

c > ĉ :=
1 +

√
1

2Nh+1

1 − (1 − h)N

has xσ = x0 + c(xN − x0) satisfy

f(xσ) − f(x⋆) > LD2

4Nh+ 2 ≥ f(xN) − f(x⋆) .

Proof. Consider f(x) = L
2 x

2 and x0 = D. Then gradient descent (1.1) has iterates contract towards
zero with xN = (1 − h)ND. As a result, xσ = x0 + c(xN − x0) = D + c(D(1 − h)N − D) and so
f(xσ) = LD2

2 (1 + c((1 − h)N − 1))2. Plugging in the assumed lower bound on c, it immediately
follows that

f(xσ) > LD2

2

1 +
1 +

√
1

2Nh+1

1 − (1 − h)N
((1 − h)N − 1)

2

= LD2

4Nh+ 2 .

The second claim inequality follows from (C1).

From the results of Theorem 4.1 and Proposition 4.3, it is clear that there exists some optimal
extrapolation factor copt ∈ [ccrit, ĉ]. Hence the optimal extrapolation factor shrinks at a rate between
1 + Θ(1/

√
N log(N)) and 1 + Θ(1/

√
N). In Section 5, our results suggest that copt closely follows

the 1 + Θ(1/
√
N log(N)) behavior of ccrit, see Figure 2. Consequently, we expect the development

of more sophisticated worst-case functions than the quadratic above would close this gap.

16

4.2 Proof of Theorem 4.1

Performance estimation provides the foundation for our exact analysis of the impact of simple
extrapolation on worst-case guarantees. Recalling our previous notation for the associated PEP
problem (2.7), now parameterized by c instead of σ, we denote

p(c) :=



maxx0,x⋆,f f(xσ) − f(x⋆)
s.t. fi ≥ fj + ⟨gj , xi − xj⟩ + 1

2L∥gi − gj∥2 ∀i ̸= j ∈ I⋆
N

∥x0 − x⋆∥ ≤ D

g⋆ = 0
xk+1 = xk − h

Lgk k = 0, . . . , N − 2
xσ = x0 −

∑N−1
k=0

ch
L gk .

Then following the same SDP relaxation (2.8) and applying weak duality, let d(c) denote the upper
bounding SDP (2.9), now parameterized by c instead of σ. To prove our claimed upper bound on
f(xσ)−f(x⋆), it then suffices to show the same upper bound on d(c). This can be done by providing
any dual feasible solution with an objective value matching our claimed convergence guarantee.

In the special case of c = 1 (that is, just reporting the last iterate without extrapolation), [10]
proved a bound matching our claim precisely through this process of constructing a dual certificate.
Our derivation of a dual certificate can be viewed as a generalization of their original method to
simple extrapolations. Many of the steps are nearly identical; in such instances, we will simply refer
the reader to [10].

Our construction of candidate dual solutions utilizes the following parameters

ri = ic

2Nc− i+ 1 i = 1, . . . , N

t = L

2Nhc+ 1 .

(4.8)

Given these, we consider dual solutions to d(c) given by

v = 1
2 t (4.9)

λi,j =



r1 if i = −1, j = 0
rj+1 − rj if i = −1, 1 ≤ j ≤ N − 1
1 − rN if i = −1, j = N

rj if i = j − 1, 1 ≤ j ≤ N

0 otherwise

(4.10)

where for simplicity we let indices −1 and N correspond to ⋆ and σ, respectively. When c = 1 and
the considered extrapolation disappears, this construction exactly reduces to that of [10], in which
the authors use ri = i

2N−i+1 and t = L
2Nh+1 to prove the bound LD2/(4Nh+ 2).

We claim by construction these satisfy the first linear constraint
∑

i ̸=j λi,jai,j −a⋆,σ = 0. Further,
we claim that the second linear constraint is satisfied by setting Z = 1

2Sc(r, t) where Sc(r, t) is
defined as the following block matrix

Sc(r, t) =
(
t qT

c

qc
1−h

L Qc + h
LWc

)
(4.11)

17

with components given by qc = (−r1, r1 − r2, . . . , rN−1 − rN , rN − 1)T ,

Qc =



2r1 −r1
−r1 2r2 −r2

−r2 2r3 −r3
.

−rN−1 2rN −rN

−rN 1


, (4.12)

and

Wc =


2r1 r2 − r1 . . . rN − rN−1 c− rN

r2 − r1 2r2 . . . rN − rN−1 c− rN
...

rN − rN−1 rN − rN−1 . . . 2rN c− rN

c− rN c− rN . . . c− rN 1

 . (4.13)

For completeness, these two claimed identities are also verified in Appendix A.1. To complete our
proof, we verify nonnegativity of λ (Section 4.2.1) and positive semidefiniteness of Z (Section 4.2.2)
establishing dual feasibility, from which we can apply weak duality to prove our claimed rate
(Section 4.2.3). Lastly, we show a Huber function can again be used to show our resulting worst-case
bound is the best possible (Section 4.2.4).

4.2.1 Verification of Nonnegativity of λ We can easily confirm that λi,j ≥ 0 for all i, j ∈ I⋆
N .

Clearly ri > 0 for all i = 1, . . . , N , provided that c > N−1
2N . And similarly, for c > N−1

2N , we see
that ri+1 − ri = c(2Nc+1)

(2Nc−i)(2Nc−i+1) > 0. Lastly, we have 1 − rN = Nc−N+1
2Nc−N+1 > 0 for c > N−1

N . We
therefore have that λ ≥ 0 for c > N−1

N , and the remaining verification steps will hold for such c as
well. However, for the purposes of simple extrapolation, we only consider c ≥ 1.

4.2.2 Verification of Positive Semidefiniteness of Z Note it is equivalent to show Sc is
positive semidefinite since it is just a rescaling of Z. Our first lemma is a generalization of Drori
and Teboulle’s proof of [10, Lemma 3.3] that shows the matrix Wc is positive semidefinite for c = 1.

Lemma 4.4. Let Wc be defined as in (4.13) with entries set as in (4.8) and denote the k-th principal
submatrix of Wc by Mk(c). Then for k = 0, . . . , N − 1,

detMk(c) = ck+1
(

1 +
k∑

i=0

2Nc− 2k − 1
2Nc+ 4Nci− 2i2 + 1

)
k∏

i=0

2Nc+ 4Nci− 2i2 + 1
(2Nc− i)2 (4.14)

and

detMN (c) = cN

(
1 −

N−1∑
i=0

(c− 1)(2Nc− 2N + 1)(2Nc+ 1)
2Nc+ 4Nci− 2i2 + 1

)
N−1∏
i=0

2Nc+ 4Nci− 2i2 + 1
(2Nc− i)2 . (4.15)

The proof of this generalized result is deferred to Appendix A.2. This explicit formula for the
determinant yields the following result on the positive definiteness of Wc.

Lemma 4.5. Let Wc be defined as in (4.13) with entries set as in (4.8). Then Wc is positive definite
if and only if ψN (c) > 0, with ψN (c) defined as in (4.2)

18

Proof. Recall from Sylvester’s criterion that a symmetric matrix is positive definite if and only if all
leading principal submatrices of a matrix have positive determinant. We can easily see from (4.14)
that for k < N , detMk(c) is the product of all positive factors, so detMk(c) > 0. Therefore, by
Sylvester’s criterion, Wc is positive definite if and only if detMN (c). Finally, observe that in (4.15),
detMN (c) is the product of ψN (c) with a sequence of positive factors. We therefore conclude that
detMN (c) > 0 if and only if ψN (c) > 0 and the result follows.

We now examine the matrix Qc.

Lemma 4.6. Let Qc be defined as in (4.12) with entries set as in (4.8). Then Qc is positive definite.

Proof. Consider any y = (y0, . . . , yN)T ̸= 0. We calculate

yTQcy =
N−1∑
i=0

2ri+1y
2
i − 2

N−1∑
i=0

ri+1yiyi+1 + y2
N

=
N−1∑
i=0

ri+1(yi+1 − yi)2 + r1y
2
0 +

N−1∑
i=1

(ri+1 − ri)y2
i + (1 − rN)y2

N .

The positivity of the first and second terms is immediate, and it was shown in Section 4.2.1 that
ri+1 − ri > 0 and 1 − rN > 0. Therefore, we have yTQcy > 0.

Finally, we combine each of these results to prove the following claim

Lemma 4.7. If ψN (c) > 0 then Sc(r, t) is positive semidefinite.

Proof. For simplicity, we will denote Sc = Sc(r, t). Since ψN (c) > 0, by Lemmas 4.5 and 4.6, we
know that both Qc and Wc are positive definite. Observe that for h ∈ (0, 1], 1−h

L Qc + h
LWc must

be positive definite as it is a convex combination of positive definite matrices. We can therefore
consider the Schur complement of 1−h

L Qc + h
LWc in Sc. From a well-known result on the Schur

complement, we know that Sc is positive semidefinite if and only if t− qT
c

(
1−h

L Qc + h
LWc

)−1
qc ≥ 0.

However, we also have the standard identity

detSc =
(
t− qT

c

(1 − h

L
Qc + h

L
Wc

)−1
qc

)
det

(1 − h

L
Qc + h

L
Wc

)
(4.16)

Next define the vector uc = (2Nhc+1
L , 1, . . . , 1)T . It is easily verified that Scuc = 0 (see Mathematica

proof 4.2). Consequently, detSc = 0. But det
(

1−h
L Qc + h

LWc

)
> 0, so from (4.16) we must have

(
t− qT

c

(1 − h

L
Qc + h

L
Wc

)−1
qc

)
= 0.

Therefore, Sc is positive semidefinite.

All that remains is to show selecting c < ccrit ensures ψN (c) > 0. For c > 1, the denominator
2Nc+ 4Nci− 2i2 + 1 is always positive, so ψN (c) is a continuous rational polynomial. And note that
ψN (1) = 1 > 0. A quick calculation verifies that ψ′

N (c) < 0 for all c > 1 with limc→∞ ψN (c) = −∞.
From this, ψN (c) has exactly one root larger than 1, which must be ccrit. Moreover, by continuity,
ψN (c) ≥ 0 for c ∈ [1, ccrit] and ψN (c) < 0 for c > ccrit.

19

4.2.3 Deriving Claimed Extrapolation Guarantee from Weak Duality Since our proposed
dual certificate is feasible, using that v = 1

2 t = L
4Nhc+2 as in (4.9), we conclude that d(c) ≤ vD2 =

LD2

4Nhc+2 . Then, by applying weak duality, for any L-smooth convex f ,

f(xσ) − f(x⋆) ≤ p(c) ≤ d(c) ≤ LD2

4Nhc+ 2 .

4.2.4 Claimed Extrapolation Guarantee is Tight Finally, we demonstrate that our bound
(4.3) is tight. Our proof once again is an adjustment of the tight example in [10, Theorem 3.2] to
account for the extrapolation c. Consider x0 = D and f = ϕL,η with η = D/(2Nhc + 1). Then
gradient descent’s iterates are xk = D(1 − khη) for k = 1, . . . , N . Taking a simple extrapolation
yields

xσ = x0 + c(xN − x0) = D −Nhcη = (Nhc+ 1)η .

Since xσ > η, we can therefore evaluate

f(xσ) − f(x⋆) = f(xσ) − 0 = Lη2(Nhc+ 1) − Lη2

2 = LD2

4Nhc+ 2 .

4.2.5 Remarks on Assumptions of the Proof of Theorem 4.1 We briefly draw attention
to our claim in Section 4.2.2 above that ψN (c) < 0 for c > ccrit. This fact shows that our particular
certificate construction breaks down for c > ccrit. Indeed, our numerical experiments in Section 5
indicate that (4.3) is, in fact, false for c > ccrit. Similarly, our certificate construction breaks down
for constant stepsizes beyond the assumed h ≤ 1. If h > 1, then we can no longer guarantee that
1−h

L Qc + h
LWc is positive definite. A different family of dual certificates would be needed to provide

guarantees under extrapolation with stepsizes longer than one.

5 Numerical Extensions
Beyond enabling the preceding proofs, the associated performance estimation problems enable
numerically surveying the effects of averaging and extrapolation. Here, we address three extensions
of our theory, utilizing Mosek [27] via JuMP [28] for any numerical solves. First, Section 5.1 shows
results paralleling those of Section 4 appear to hold when considering the worst-case gradient
norm rather than the worst-case objective gap. For both of these settings, we compute the simple
extrapolation factor minimizing the worst-case performance in both the objective gap and gradient
norm, finding our theory nearly matches the optimal factor. Then, in contrast to the many prior
work finding one-dimensional functions characterize the worst-case behavior of gradient descent’s
last iterate, Section 5.2 computes its worst-case performance with and without a restriction to one-
dimensional problems, showing these are not sufficient to describe the performance of extrapolations.
Lastly, Section 5.3 surveys the effect of simple extrapolations across a range of (accelerated) gradient
methods, finding consistent, small benefits.

Recall the PEP problem (2.7) can be written equivalently as the SDP (2.8) provided the
dimension m of functions f considered is at least N + 2. Consequently, if no restriction is made
on the dimension of the considered problems (i.e., high-dimension examples are allowed), we can
numerically compute optimal solutions to the PEP problem via any commercial interior point
method solver. Here, we consider both the worst case measured in terms of the objective gap at xσ

as well as the gradient norm ∥gσ∥ = ∥∇f(xσ)∥. To distinguish these, we denote the performance

20

estimation problem maximizing the reported point’s objective gap (as was considered throughout
Section 4) by

pobj(c) =


maxF,G Fa⋆,σ

s.t. Fai,j + TrGAi,j(h) + 1
2LTrGCi,j ≤ 0 ∀i ̸= j ∈ I⋆

N

G ⪰ 0
TrGB0,⋆ ≤ D2 .

We denote the alternative performance estimation problem maximizing the reported point’s gradient
norm, formulated as an SDP, by

pgrad(c) =


maxF,G TrGC⋆,σ

s.t. Fai,j + TrGAi,j(h) + 1
2LTrGCi,j ≤ 0 ∀i ̸= j ∈ I⋆

N

G ⪰ 0
TrGB0,⋆ ≤ D2 .

In both cases, the equalities above hold by virtue of assuming m ≥ N + 2.

5.1 Optimal Extrapolations for Objective Gap and Gradient Norm

Numerically, we find much of our results on the benefits of extrapolation on the worst-case final
objective gap carry over to the worst-case final gradient norm. However, the exact dual certificates
v, λ, Z underlying our proof do not constitute proofs for the setting of gradient norms. We expect
dual certificates proving a benefit from small extrapolations exist but have not identified their
structure and hence leave proving such parallel results open. Theory similar to the H-duality theory
of [29] may facilitate doing so without repeating and re-engineering the proof.

In Figure 2, we plot both pobj and pgrad as the extrapolation factors varies for fixed N = 7,
h = 1, and L = D = 1. In overall structure, these two functions look very similar. For c in an
interval near one, Theorem 4.1 ensures pobj(c) = LD2/(4Nhc+ 2). We see similarly in the gradient
norm case that an interval near one has pgrad(c) = LD/(Nhc + 1), improving on its tight last
iterate bound [8] of ∥∇f(xN)∥ ≤ LD

Nh+1 . Reasoning mirroring the tightness of Huber functions in
Theorem 4.1 provides an example attaining this conjectured gradient norm rate under extrapolation.
Let x0 = D and again consider f = ϕL,η as in (2.3) with η = D

Nhc+1 . A simple calculation shows
that xN = D −Nhη and

xσ = x0 + c(xN − x0) = D − DNhc

Nhc+ 1 = D

Nhc+ 1 = η .

We then have ∥gσ∥ = ∥∇f(η)∥ = LD
Nhc+1 .

We consider two notable values of c for each performance measure, the critical point ccrit where
p(c) deviates from our simple formulas (which was discussed substanially in Section 4) and the point
copt minimizing p(c). We denote these by

ccrit,obj = sup
{
c ≥ 1 | pobj(c) = LD2

4Nhc+ 2

}
, copt,obj = argmin pobj(c) ,

ccrit,grad = sup
{
c ≥ 1 | pgrad(c) = LD

Nhc+ 1

}
, copt,grad = argmin pgrad(c) .

21

1.00 1.05 1.10 1.15 1.20
c

0.028

0.029

0.030

0.031

0.032

0.033

0.034

0.035

Objective Gap

1.1491.1501.151

0.02924

0.02928

0.02932

ccrit, obj
copt, obj

pobj(c)

1/(4Nhc+2)

1/(4Nh+2)

1.00 1.02 1.04 1.06 1.08 1.10
c

0.1150

0.1175

0.1200

0.1225

0.1250

0.1275

0.1300

0.1325

Gradient Norm

1.067 1.068 1.069

0.1179

0.1180

0.1181

0.1182

0.1183

ccrit, grad
copt, grad

pgrad(c)

1/(Nhc+1)

1/(Nh+1)

Figure 2: Near-optimality of ccrit for objective gap and gradient norm with N = 7, L = D = h = 1.

For both performance measures in Figure 2, we see the critical point characterized by our theory is
nearly but not quite optimal. Contrasting these measures, note that ccrit,grad ̸= ccrit,obj, with ccrit,grad
consistently less than ccrit,obj, as shown in Table 4. This indicates that extrapolations should be
more conservative when seeking a small gradient norm. Moreover, numerically, we observe a faster
rate of decay for ccrit,grad as compared to ccrit,obj; this is clearly illustrated in Figure 3. Specifically,
we see that ccrit,grad appears to be shrinking at rate 1 +O(1/N), motivating the following conjecture.

Conjecture 5.1. Consider a gradient descent algorithm of fixed length N , constant stepsize h ∈ (0, 1],
and with ∥x0 − x⋆∥ = D. There exists ccrit,grad = 1 + Θ(1/N) such that for any c ∈ [1, ccrit,grad],
simple extrapolation by factor c has a tight worst-case bound of ∥∇f(xσ)∥ ≤ LD

Nhc+1 .

If this conjecture is correct, simple extrapolations would be a provably less effective strategy for
reducing the reported gradient norm than for the objective gap. Whereas an extrapolation of size
1 + Θ(1/

√
N log(N)) gave the same improvement in objective value as Θ(

√
N/ log(N)) additional

gradient steps, a simple extrapolation of size 1 + Θ(1/N) would only improve the gradient norm
guarantee by the same amount as a constant number of additional gradient steps.

5.2 Limitations of One-Dimensional Worst-Case Functions

For c ≤ ccrit, we have shown in Theorem 4.1 that there exists a one-dimensional function that
attains our worst-case performance. Similarly, regarding averaging, in Section 3.2, we showed that
one-dimensional functions were sufficient to describe the worst-case behavior of any averaging scheme
σ. A natural question to ask in light of this is whether the same is true for simple extrapolation,
that is, whether one-dimensional functions are sufficient for attaining the worst-case behavior for all
simple extrapolations. To answer this, we can modify our original SDP (2.8) by adding an additional

22

N ccrit,obj copt,obj ccrit,grad copt,grad

1 1.5 1.5 1.4142 1.4142

5 1.1800 1.1821 1.0931 1.0950

10 1.1220 1.1238 1.0471 1.0481

25 1.0739 1.0752 1.0182 1.0187

50 1.0507 1.0516 1.0086 1.0090

Table 4: The critical and optimal extrapolation
factors for objective gap and gradient norm.

5 10 15 20 25
N

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0
log(ccrit, obj − 1)

log(copt, obj − 1)

log(ccrit, grad − 1)

log(copt, grad − 1)

Figure 3: Similarity of critical and optimal
factors and divergence between objective and
gradient.

constraint that G = wwT for some vector w ∈ RN+2. This yields the problem

pobj,1D(c) :=



maxF,w Fa⋆,σ

s.t. Fai,j + TrGAi,j(h) + 1
2LTrGCi,j ≤ 0, ∀i ̸= j ∈ I⋆

N

G ⪰ 0
TrGB0,⋆ ≤ D2

G = wwT .

Due to the rank-one constraint, this problem becomes nonconvex, so we must now perform
global rather than local optimization. However, for small N , this is still computationally feasible. In
Figure 4, we plot our results for various N with h = 1. For c < ccrit, we already know the worst-case
function is ϕL,η from Theorem 4.1. Figure 4 shows that for c > ccrit, the worst-case performance,
in general, deviates from the worst-case performance on one-dimensional objectives. As a result,
our theory in Theorem 4.1 and Proposition 4.3 appears to capture the full range of extrapolations
characterized by one-dimensional worst-case problem instances. Hence, characterizing the optimal
factor copt and measuring the (small) gap between it and ccrit will fundamentally require the design
of worst-case problem instances beyond Huber functions and quadratics.

The dimension of problems required can be predicted by examining the rank of optimal primal
solutions G of (2.8). To see this, recall that the columns of the Cholesky decomposition, G = HTH,
gives the gradient vectors seen in that worst-case problem instance. Numerically, even for large c,
we find the optimal G is rank two, indicating the worst-case problem instances for c > ccrit only
require one additional dimension.

Our numerical results indicate that among one-dimensional functions, the worst-case is always
a Huber function or a quadratic function. This can be seen in Figure 4 as pobj,1D appears to be
piecewise smooth with two distinct pieces. The first piece, as discussed above, numerically equals
LD2/(4Nhc + 2), which is attained by considering ϕL,η. The second piece numerically matches
the curve LD2

2 (1 − c+ c(1 − h)N)2; this is the exact value achieved by simple extrapolation on the
quadratic function f(x) = L

2 x
2. The analogous result for gradient norm seems to hold numerically

as well. Therefore, in one dimension, the worst-case instances of simple extrapolation seem to
be easily described. Setting h = 1 and computing the minimum of these two functions, the best
extrapolation factor in one-dimension is c = 1 − 1

4N +
√

1
2N + 1

16N2 which attains a convergence rate
of LD2/(4N +

√
8N + 1 + 1). This provides a lower bound on the magnitude of rate improvement

that simple extrapolation that can achieve among problems of any dimension, which is within a log

23

1.00 1.05 1.10 1.15 1.20 1.25
c

0.0275

0.0300

0.0325

0.0350

0.0375

0.0400

0.0425

0.0450

Objective Gap

pobj, 1D(c)

pobj(c)

1.00 1.05 1.10 1.15 1.20 1.25
c

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

Gradient Norm

pgrad, 1D(c)

pgrad(c)

Figure 4: Comparison of PEP restricted to one-dimensional functions with N = 7, L = D = h = 1.

term of our Corollary 4.2.

5.3 Application of Simple Extrapolations to Other Algorithms

Our discussion of extrapolation up to this point has focused on gradient descent with constant
stepsizes hk = h ∈ (0, 1]. This simplifying assumption enabled Section 4’s exact characterization of
the impact of extrapolation on worst-case performance. As our final numerical extension, we relax
this restriction and consider the impact of simple extrapolation on a range of common first-order
methods. In particular, we consider the collection of gradient descent stepsize selections introduced
in Section 3.1, Nesterov’s classic accelerated method [18], Polyak’s heavy ball method [30], and
the Optimal Gradient Method [19]. The performance estimation SDP (2.8) was previously defined
explicitly for gradient descent via the construction of our xi vectors, and consequently the matrices
Ai,j(h) and Bi,j(h). This restriction is not fundamental as PEP can apply to any gradient method
by adjusting the definition of xi to match the method’s update scheme.

Although PEP techniques can also naturally generalize to describe proximal or projected gradient
methods, extrapolations do not make sense in such settings. Reporting a point outside the convex
hull of the algorithm’s iterates may set xσ as an infeasible point. Consequently, we focus on
unconstrained problems.

The range of methods considered possesses a range of different orders of convergence guarantees
for their last iterate. The gradient descent schemes with stepsize bounded above by two and Polyak’s
heavy ball method [31] all have the last iterates objective gap converges at a rate of O(1/T) in the
worst case. Gradient descent with silver stepsizes [9] has the last iterate’s objective gap converge at
rate O(1/T 1.2716). The last iterate of Nesterov’s accelerated method [18] attains the optimal order
of convergence among all gradient methods of O(1/T 2). Even better, the Optimal Gradient Method
(OGM) [19] (discussed using PEP techniques) attains the best possible O(1/T 2) rate exactly among
all gradient methods, see [32] for the matching lower bound.

Figure 5 shows the worst-case objective gap for each considered algorithm as the simple ex-

24

1.000 1.025 1.050 1.075 1.100 1.125 1.150 1.175 1.200
c

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

p
o
b
j(
c)

GD h=1

GD h=1.5

Dynamic h→2

Silver

Heavy Ball h=1, β=0.1

Nesterov

OGM

Figure 5: Effect of Simple extrapolation on worst-case reported objective gap of various gradient
methods with N = 7, L = D = 1. The optimal choice of c for each algorithm is marked by a dot.

N GD GD Dynamic Silver Heavy Ball Nesterov OGM
h = 1 h = 1.5 h → 2 h = 1, β = 0.1

3 1.2447 1.1033 1.0884 1.1029 1.1855 1.1254 1.0
7 1.1508 1.0795 1.0703 1.0718 1.1279 1.0267 1.0
15 1.0991 1.0585 1.0519 1.0454 1.0868 1.0065 1.0
31 1.0667 1.0419 1.0372 1.0284 1.0596 1.0017 1.0
63 1.0454 1.0297 1.0275 1.0181 1.0407 1.0002 1.0

Table 5: Numerically computed optimal simple extrapolation factor copt for various methods and N .

trapolation factor varies with N = 7 and L = D = 1. We can see that every method except OGM
has a non-negligible convergence improvement from applying a simple extrapolation. This holds
even for Nesterov acceleration, which already has an optimal convergence order. Note that, as one
should expect, extrapolation cannot improve the convergence rate of OGM as the method is already
exactly optimal. While exact comparisons between the optimal amount of extrapolation for each
algorithm remain dependent on N , the general ordering of when each method stops benefiting from
extrapolation remains fairly consistent. To this end, Table 5 shows the numerically computed optimal
extrapolation factor for each method up to N = 63. This shows a widespread (small) benefit from
simple extrapolation and hints at the potential broad applicability of this as a simple, effectively-free
(in computation and memory costs) postprocessing step for smooth convex optimization.

Acknowledgements. This work was supported in part by the Air Force Office of Scientific
Research under award number FA9550-23-1-0531. We thank Adrien Taylor for providing kind and
direct feedback on this work’s positioning among the growing PEP literature.

References

[1] Moslem Zamani and François Glineur. Exact convergence rate of the last iterate in subgradient methods.
arXiv:2307.11134, 2023.

25

[2] Guanghui Lan. First-order and Stochastic Optimization Methods for Machine Learning. Springer, 2020.

[3] Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Conver-
gence results and optimal averaging schemes. In Proceedings of the 30th International Conference on
International Conference on Machine Learning - Volume 28, ICML’13, page I–71–I–79, 2013.

[4] E. Gustavsson, M. Patriksson, and AB Strömberg. Primal convergence from dual subgradient methods
for convex optimization. Mathematical Programming, 150:365–390, 2015.

[5] Benjamin Grimmer and Danlin Li. Some primal-dual theory for subgradient methods for strongly convex
optimization. arXiv:2305.17323, 2024.

[6] Donald G. Anderson. Iterative procedures for nonlinear integral equations. J. ACM, 12(4):547–560,
1965.

[7] Vien V. Mai and Mikael Johansson. Anderson acceleration of proximal gradient methods. In Proceedings
of the 37th International Conference on Machine Learning, ICML’20, 2020.

[8] Marc Teboulle and Yakov Vaisbourd. An elementary approach to tight worst case complexity analysis of
gradient based methods. Mathematical Programming, 2022.

[9] Jason M. Altschuler and Pablo A. Parrilo. Acceleration by stepsize hedging ii: Silver stepsize schedule
for smooth convex optimization. arXiv:2309.16530, 2023.

[10] Yoel Drori and Marc Teboulle. Performance of first-order methods for smooth convex minimization: A
novel approach. Mathematical Programming, 145(1–2):451–482, 2014.

[11] Adrien Taylor, Julien Hendrickx, and François Glineur. Smooth strongly convex interpolation and exact
worst-case performance of first-order methods. Mathematical Programming, 161:307–345, 2017.

[12] Baptiste Goujaud, Céline Moucer, François Glineur, Julien Hendrickx, Adrien Taylor, and Aymeric
Dieuleveut. PEPit: computer-assisted worst-case analyses of first-order optimization methods in Python.
arXiv preprint arXiv:2201.04040, 2022.

[13] Adrien B. Taylor, Julien M. Hendrickx, and François Glineur. Exact worst-case performance of first-order
methods for composite convex optimization. SIAM Journal on Optimization, 27(3):1283–1313, 2017.

[14] Shuvomoy Das Gupta, Bart P.G. Van Parys, and Ernest K. Ryu. Branch-and-bound performance estima-
tion programming: A unified methodology for constructing optimal optimization method. Mathematical
Programming, 2023.

[15] Benjamin Grimmer. Provably faster gradient descent via long steps. arXiv:2307.06324, 2023.

[16] Benjamin Grimmer, Kevin Shu, and Alex L. Wang. Accelerated gradient descent via long steps.
arXiv:2309.09961, 2023.

[17] Jason Altschuler. Greed, hedging, and acceleration in convex optimization. PhD thesis, Massachusetts
Institute of Technology, 2018.

[18] Yurii Nesterov. A method for solving the convex programming problem with convergence rate O(1/k2).
Proceedings of the USSR Academy of Sciences, 269:543–547, 1983.

[19] Donghwan Kim and Jeffrey A. Fessler. Optimized first-order methods for smooth convex minimization.
Mathematical Programming, 159(1–2):81–107, 2016.

[20] Wolfram Research, Inc. Mathematica, Version 14.0. Champaign, IL, 2024.

[21] Yoel Drori and Adrien B. Taylor. Efficient first-order methods for convex minimization: a constructive
approach. Mathematical Programming, 184(1–2):183–220, 2020.

[22] Felix Lieder. Projection Based Methods for Conic Linear Programming. PhD thesis, Heinrich-Heine-
Universität Düsseldorf, 2018.

[23] Yoel Drori. Contributions to the complexity analysis of optimization algorithms. PhD thesis, Tel-Aviv
University, 2014.

26

[24] Guoyong Gu and Junfeng Yang. Tight sublinear convergence rate of the proximal point algorithm for
maximal monotone inclusion problems. SIAM Journal on Optimization, 30(3):1905–1921, 2020.

[25] Donghwan Kim. Accelerated proximal point method for maximally monotone operators. Math. Program.,
190(1–2):57–87, nov 2021.

[26] Mathieu Barré, Adrien Taylor, and Francis Bach. Principled analyses and design of first-order methods
with inexact proximal operators. Mathematical Programming, 201:185–230, 2023.

[27] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 9.0., 2019.

[28] Iain Dunning, Joey Huchette, and Miles Lubin. Jump: A modeling language for mathematical optimiza-
tion. SIAM Review, 59(2):295–320, 2017.

[29] Jaeyeon Kim, Asuman Ozdaglar, Chanwoo Park, and Ernest K. Ryu. Time-reversed dissipation induces
duality between minimizing gradient norm and function value. arXiv:2305.06628, 2023.

[30] B.T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational
Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[31] Euhanna Ghadimi, Hamid Reza Feyzmahdavian, and Mikael Johansson. Global convergence of the
heavy-ball method for convex optimization. In 2015 European Control Conference (ECC), pages 310–315,
2015.

[32] Yoel Drori. The exact information-based complexity of smooth convex minimization. J. Complex.,
39:1–16, 2016.

A Deferred Proofs

A.1 Verifying Construction of Section 4.2

First we claim
∑

i ̸=j λi,jai,j − a⋆,σ = 0. This is equivalent to

N∑
j=−1

λj,k −
N∑

j=−1
λk,j =


−1 if k = −1
1 if k = N

0 otherwise .

One can easily verify this as

N∑
j=−1

λj,−1 −
N∑

j=−1
λ−1,j = 0 − (r1 + (r2 − r1) + · · · + (rN − rN−1) + (1 − rN)) = −1

N∑
j=−1

λj,0 −
N∑

j=−1
λ0,j = r1 − r1 = 0

N∑
j=−1

λj,k −
N∑

j=−1
λk,j = (rk+1 − rk + rk) − rk+1 = 0 ∀k = 1, . . . , N − 1

N∑
j=−1

λj,N −
N∑

j=−1
λN,j = (1 − rN + rN) − 0 = 1 .

27

Our second claim is that Z = 1
2Sc(r, t). By construction, we can rewrite Sc(r, t) as

Sc(r, t)i,j =



t if i = j = −1
−r1 if i = −1, j = 0 or i = 0, j = −1
rj − rj+1 if i = −1, 1 ≤ j ≤ N − 1 or 1 ≤ i ≤ N − 1, j = −1
rN − 1 if i = −1, j = N or i = N, j = −1
h
L(c− rN) if i = N, 0 ≤ j ≤ N − 2 or 0 ≤ i ≤ N − 2, j = N
2rj+1

L if 0 ≤ i = j ≤ N − 1
1
L if i = j = N
1
L(hrj+1 − rj) if i = j + 1 ≤ N − 1 or j = i+ 1 ≤ N − 1
1
L(hc− rN) if i = N, j = N − 1 or i = N − 1, j = N
h
L(rj+1 − rj) if j + 2 ≤ i ≤ N − 1 or i+ 2 ≤ j ≤ N − 1 .

(A.1)

Now using our selected dual variables (4.9), and expanding our special matrices, we can write

Z = vB0,⋆ + r1

(
A⋆,0 + 1

2LC⋆,0

)
+ (1 − rN)

(
A⋆,σ + 1

2LC⋆,σ

)
+

N−1∑
k=1

(rk+1 − rk)
(
A⋆,k + 1

2LC⋆,k

)

+
N−1∑
k=1

rk

(
Ak−1,k + 1

2LCk−1,k

)
+ rN

(
AN−1,σ + 1

2LCN−1,σ

)
= t

2x0x0
T + r1

2
(
g0g0

T − (x0g0
T + g0x0

T)
)

+ 1 − rN

2

(
1
L

gσgσ
T − (x0gσ

T + gσx0
T) + ch

L

N−1∑
l=0

(gσgl
T + glgσ

T)
)

+
N−1∑
k=0

rk+1 − rk

2

(
1
L

gkgk
T − (x0gk

T + gkx0
T) + h

L

k−1∑
l=0

(gkgl
T + glgk

T)
)

+
N−1∑
k=1

rk

2L
(
(h− 1)(gk−1gk

T + gkgk−1
T) + gk−1gk−1

T + gkgk
T
)

+ rN

2L

(
gN−1gN−1

T + gσgσ
T + (hc− 1)(gN−1gσ

T + gσgN−1
T) + h(c− 1)

N−2∑
l=0

(glgσ
T + gσgl

T)
)
.

It is now straightforward to check that Zi,j = 1
2Sc(r, t)i,j in each of the cases in (A.1).

A.2 Proof of Determinant Formula (Lemma 4.4)

For simplicity, we will follow the same notation used by [10, Lemma 3.3], but we will assign more
generalized values. However, note many of these variables overlap with other unrelated concepts in
this paper, so these definitions should be recognized only in the context of this proof.

First, observe that Wc has a very specific structure. Using this structure, we can write the k-th

28

principal submatrix for Mk as

Mk =



d0 a1 a2 . . . ak−1 ak

a1 d1 a2 ak−1 ak

a2 a2 d2 ak−1 ak
...

ak−1 ak−1 ak−1 dk−1 ak

ak ak ak . . . ak dk


and we consider its determinant. Drori and Teboulle derived the following recursion equation

detMk =
(
dk − 2a2

k

ak−1
+ a2

kdk−1
a2

k−1

)
detMk−1 − a2

k

(
1 − dk−1

ak−1

)2
detMk−2 (A.2)

with detM0 = d0 and detM1 = d0d1 − a2
1. We set

di = 2ri+1 = 2c(i+ 1)
2Nc− i

i = 0, . . . , N − 1

dN = 1

ai = ri+1 − ri = (i+ 1)c
2Nc− i

− ic

2Nc− i+ 1 i = 1, . . . , N − 1

aN = c− rN = c− Nc

2Nc−N + 1 .

Then denoting αk = dk − 2a2
k

ak−1
+ a2

kdk−1
a2

k−1
and βk = a2

k

(
1 − dk−1

ak−1

)2
, for k = 0, . . . , N − 1, we have

αk = 4c
(
(2Nc+ 1)k − k2 − 1

)
(2Nc− k)2 (A.3)

and

βk = c2 (4kNc− 2Nc− 2k2 + 4k − 1
)2

(2Nc− k)2(2Nc− k + 1)2 . (A.4)

The recursive equation (A.2) can then be expressed nicely as

detMk = αk detMk−1 − βk detMk−2 . (A.5)

We further define for i = 0, . . . , N − 1,

fi = ci+1

gi = 2Nc− 2i− 1

xi = 1
2Nc+ 4Nci− 2i2 + 1

yi = 2Nc+ 4Nci− 2i2 + 1
(2Nc− i)2 .

29

Next, we verify that (4.14) holds for the base cases, M0 and M1:

detM0 = c

(
1 + 2Nc− 1

2Nc+ 1

) 2Nc+ 1
(2Nc)2

= 1
N

= d0

detM1 = c2
(

1 + 2Nc− 3
2Nc+ 1 + 2Nc− 3

6Nc− 1

)(2Nc+ 1
(2Nc)2

6Nc− 1
(2Nc− 1)2

)
= 28N2c2 − 20Nc− 1

4N2(2Nc− 1)2 = d0d1 − a2
1 .

Now, we claim the recurrence (A.5) ensures that for k = 0, . . . , N − 1,

detMk = fk

(
1 + gk

k∑
i=0

xi

)
k∏

i=0
yi .

This result follows from the exact argument in [10, Lemma 3.3], using our updated values defined
above. This completes our proof for k < N .

Finally, we consider MN . Note that the formulas for dN and aN differ from their counterparts
for k < N . So to derive an equation for MN , we simply apply the recursion (A.5) to MN−1 and
MN−2 and simplify. We compute αN and βN as

αN = dN − 2a2
N

aN−1
+ a2

NdN−1
a2

N−1
= ζ(c)

(2Nc+ 1)2

βN = a2
N

(
1 − dN−1

aN−1

)2
= (2Nc− 2N + 1)2 c

2 (4N2c− 2Nc− 2N2 + 4N − 1
)2

(2Nc+ 1)2(2Nc−N + 1)2

where

ζ(c) = 16N3(N − 1)c4 − 8N2(5N2 − 9N + 4)c3 + 4N(8N3 − 22N2 + 20N − 5)c2

− 2(4N4 − 16N3 + 21N2 − 13N + 2)c+ 1 .

Applying our recursion (A.5), and after significant simplification (see Mathematica proof A.2 for
verification), we arrive at our desired formula

detMN (c) = detWc = cN

(
1 − (c− 1)(2Nc− 2N + 1)(2Nc+ 1)

N−1∑
i=0

xi

)
N−1∏
i=0

yi .

A.3 Proof of Proposition 4.1

Recall our definition of ψN (c):

ψN (c) = 1 −
N−1∑
i=0

(c− 1)(2Nc− 2N + 1)(2Nc+ 1)
2Nc+ 4Nci− 2i2 + 1 . (4.2)

Before going forward, we perform a simple change of variables with s, where c = 1 + s
2N . This will

significantly simplify our analysis to follow. So removing the N subscript, we define ψ as a function
of s:

ψN (c) = ψ(s) := 1 − 1
2N

N−1∑
i=0

s(s+ 1)(2N + s+ 1)
2N + 4Ni+ (2i+ 1)s− 2i2 + 1 . (A.6)

30

We now focus on approximating scrit, where scrit is the largest root of ψ(s), or equivalently,
scrit = 2N(ccrit − 1).

Our approach for approximating scrit will be to find upper and lower bounding functions for
ψ(s). We can then find a closed form expression for the roots of these bounding functions, which
will in turn act as bounds for scrit. Define

ψℓ(s) = 1 −
(

logN + 1
2N + γ

)
s(s+ 1)(2N + 1)

4N2 (A.7)

where γ ≈ 0.5772 is the Euler-Mascheroni constant. We claim below that ψℓ(s) is a valid lower
bound for ψ(s) and defer the calculations to the following section.

Lemma A.1. For all s > 0, ψℓ(s) < ψ(s).

So ψℓ(s) is a lower bound for ψ(s), with a much simpler form. Observe that ψℓ(s) is quadratic
with respect to s, it is concave, and ψℓ(0) = 1 > 0, so it must have a single positive root, which
we will call sℓ. And critically, this root sℓ is a lower bound for scrit. We can easily find sℓ by the
quadratic equation:

sℓ = −1
2 + 1

2

√
1 + 16N2

(2N + 1)(logN + 1
2N + γ)

.

And therefore, we can define cℓ < ccrit by

cℓ = 1 − 1
4N +

√
1

16N2 + 1
(2N + 1)(logN + 1

2N + γ)
.

This bound cℓ gives us the precise form we present in Proposition 4.1.
We now derive an upper bound cu through similar approach. Define

ψu(s) = 1 −
(

logN + 4N − 1
8N2 + γ

)
s(s+ 1)(3N + 1)

12N2 (A.8)

with γ again the Euler-Mascheroni constant. We again defer the calculations to the following section.

Lemma A.2. For all 0 < s ≤ N , ψu(s) < ψ(s).

By the same argument as for the lower bound, we know that the largest root su of ψu(s) is an
upper bound for scrit, provided that su ≤ N . Solving our quadratic equation we have

su = −1
2 + 1

2

√√√√1 + 48N2

(3N + 1)(logN + 4N−1
8N2 + γ)

.

One can easily check su ≤ N , so the needed condition is satisfied. Consequently, we define cu > ccrit
by

cu = 1 − 1
4N +

√
1

16N2 + 3
(3N + 1)(logN + 4N−1

8N2 + γ)
.

To summarize, from Lemmas A.1 and A.2, we know for all N that cℓ ≤ ccrit ≤ cu. The
proposition’s first claim follows by applying Theorem 4.1 to cℓ < ccrit. The second claim similarly
can be obtained by verifying that 1 + 1/(4

√
N log(N)) < cℓ < ccrit

Lastly, we observe these upper and lower bounds suffice to determine the asymptotic behavior
of ccrit. We claim that cℓ = 1 + Θ

(
1√

N log(N)

)
and similarly cu = 1 + Θ

(
1√

N log(N)

)
, from which

31

we can conclude ccrit = 1 + Θ
(

1√
N log(N)

)
. These claimed asymptotic behaviors of the upper and

lower bounds follow from the following simple limit calculations

lim
N→∞

cℓ − 1
1√

N log(N)

= lim
N→∞

(
− 1

4N +
√

1
16N2 + 1

(2N + 1)(logN + 1
2N + γ)

)√
N log(N)

= lim
N→∞

−
√
N log(N)

4N +
√
N log(N)

16N2 + N log(N)
(2N + 1)(logN + 1

2N + γ)
=

√
2

2 ,

lim
N→∞

cu − 1
1√

N log(N)

= lim
N→∞

(
− 1

4N +
√

1
16N2 + 3

(3N + 1)(logN + 4N−1
8N2 + γ)

)√
N log(N)

= lim
N→∞

−
√
N log(N)

4N +

√√√√N log(N)
16N2 + 3N log(N)

(3N + 1)(logN + 4N−1
8N2 + γ)

= 1 .

A.4 Proof of Lemma A.1

We prove this lower bound in two steps, using an intermediate function ψ̂ℓ(s). Define

ψ̂ℓ(s) = 1 − 1
2N

N−1∑
i=0

s(s+ 1)(2N + 1)
2N + 4Ni− 2i2 + 1 .

We first show that ψ̂ℓ(s) ≤ ψ(s). We calculate

ψ(s) − ψ̂ℓ(s) =
(

1 − 1
2N

N−1∑
i=0

s(s+ 1)(2N + s+ 1)
2N + 4Ni+ (2i+ 1)s− 2i2 + 1

)
−
(

1 − 1
2N

N−1∑
i=0

s(s+ 1)(2N + 1)
2N + 4Ni− 2i2 + 1

)

= s(s+ 1)
2N

(
N−1∑
i=0

2N + 1
2N + 4Ni− 2i2 + 1 −

N−1∑
i=0

2N + s+ 1
2N + 4Ni+ (2i+ 1)s− 2i2 + 1

)

= s(s+ 1)
2N

(
N−1∑
i=0

2i(i+ 1)s
(2N + 4Ni+ (2i+ 1)s− 2i2 + 1)(2N + 4Ni− 2i2 + 1)

)
≥ 0 .

For the final inequality, we use the fact that both terms of the denominator are always positive for
i = 0, . . . , N . Next we show that ψℓ(s) < ψ̂ℓ(s):

ψ̂ℓ(s) = 1 − 1
2N

N−1∑
i=0

s(s+ 1)(2N + 1)
2N(1 + 2i− i i

N + 1
2N)

> 1 − 1
2N

N−1∑
i=0

s(s+ 1)(2N + 1)
2N(1 + i)

= 1 − s(s+ 1)(2N + 1)
4N2

N−1∑
i=0

1
i+ 1

≥ 1 − s(s+ 1)(2N + 1)
4N2

(
logN + 1

2N + γ

)
= ψℓ(s)

where the second inequality uses the harmonic series upper bound
∑N

i=1
1
i ≤ logN + 1

2N + γ.

32

A.5 Proof of Lemma A.2

We again define an intermediate function ψ̂u(s):

ψ̂u(s) = 1 − 1
2N

N−1∑
i=0

s(s+ 1)(3N + 1)
3N + 6Ni− 2i2 + 1 .

We first show that ψ̂u(s) ≥ ψ(s):

ψ(s) − ψ̂u(s) =
(

1 −
N−1∑
i=0

s(s+ 1)(2N + s+ 1)
2N + 4Ni+ (2i+ 1)s− 2i2 + 1

)
−
(

1 − 1
2N

N−1∑
i=0

s(s+ 1)(3N + 1)
3N + 6Ni− 2i2 + 1

)

= s(s+ 1)
2N

(
N−1∑
i=0

3N + 1
3N + 6Ni− 2i2 + 1 − 2N + s+ 1

2N + 4Ni+ (2i+ 1)s− 2i2 + 1

)

= s(s+ 1)
2N

(
N−1∑
i=0

−2i(i+ 1)(N − s)
(3N + 6Ni− 2i2 + 1)(2N + 4Ni+ (2i+ 1)s− 2i2 + 1

)
≤ 0 .

The additional assumption here that s ≤ N is just a formality for our intermediate bound. As we
note in the discussion following Lemma A.2, we do not need to consider s > N . Finally, we show
that ψu > ψ̂u(s).

ψ̂u(s) = 1 − 1
2N

N−1∑
i=0

s(s+ 1)(3N + 1)
3N(1 + 2i− 2i2

3N + 1
3N)

< 1 − 1
2N

N−1∑
i=0

s(s+ 1)(3N + 1)
3N(2 + 2i)

= 1 − s(s+ 1)(3N + 1)
12N2

N−1∑
i=0

1
i+ 1

≤ 1 − s(s+ 1)(3N + 1)
12N2

(
logN + 4N − 1

8N2 + γ

)
= ψu(s)

where the second inequality uses the harmonic series lower bound
∑N

i=1
1
i ≥ logN + 4N−1

8N2 + γ.

33

	Introduction
	Our Contributions

	Preliminaries and Performance Estimation Problems
	Performance Estimation Problems with Averaging/Extrapolation

	Averaging is Strictly Worse than the Last Iterate
	Common Structure Among Tight Last Iterate Convergence Guarantees
	Suboptimal Convergence from Averaging

	Extrapolations are Strictly Better than the Last Iterate
	Improved Convergence Guarantees from Simple Extrapolations
	Proof of Theorem 4.1
	Verification of Nonnegativity of Lambda
	Verification of Positive Semidefiniteness of Z
	Deriving Claimed Extrapolation Guarantee from Weak Duality
	Claimed Extrapolation Guarantee is Tight
	Remarks on Assumptions of the Proof of Theorem 4.1

	Numerical Extensions
	Optimal Extrapolations for Objective Gap and Gradient Norm
	Limitations of One-Dimensional Worst-Case Functions
	Application of Simple Extrapolations to Other Algorithms

	Deferred Proofs
	Verifying Construction of Section 4.2
	Proof of Determinant Formula (Lemma 4.4)
	Proof of Proposition 4.1
	Proof of Lemma A.1
	Proof of Lemma A.2

