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Abstract. It is well-known that coupling constraints in linear bilevel opti-
mization can lead to disconnected feasible sets, which is not possible without
coupling constraints. However, there is no difference between linear bilevel prob-
lems with and without coupling constraints w.r.t. their complexity-theoretical
hardness. In this note, we prove that, although there is a clear difference
between these two classes of problems in terms of their feasible sets, the classes
are equivalent on the level of optimal solutions. To this end, given a general
linear bilevel problem with coupling constraints, we derive a respective problem
without coupling constraints and prove that it has the same optimal solutions
(when projected back to the original variable space).

1. Introduction

The research interest in bilevel optimization problems increased significantly
over the last years and decades; see, e.g., Dempe and Zemkoho (2020) for a recent
overview. However, and although serious advances have been made both w.r.t.
theoretical aspects and algorithmic developments, there are still open questions.
This is even the case for linear bilevel optimization problems that we consider in
this note and that are given by1

min
x∈X,y

c⊤x+ d⊤y (1a)

s.t. Ax+By ≥ a, (1b)
y ∈ S(x), (1c)

where S(x) is the set of optimal solutions to the x-parameterized lower-level problem

min
y

f⊤y s.t. Cx+Dy ≥ b (2)

and all variables are assumed to be continuous. In particular, we consider the
optimistic linear bilevel problem, i.e., the leader is able to choose the y that is the
best w.r.t. the upper-level objective function if there are multiple optimal solutions to
the follower’s problem. Moreover, Problem (1) contains coupling constraints in (1b),
i.e., upper-level constraints that explicitly depend on the lower-level variables. These
coupling constraints are the main topic of this note. Instead, a bilevel problem
with B = 0 does not have any coupling constraints. Throughout the remainder of
the paper, we assume that the bilevel problem (1) is solvable, that X ⊂ Rn is a
given polyhedron, and that all vectors and matrices have rational entries. Note that
the linear bilevel problem always has an optimal solution that is at a vertex of the
polyhedron obtained by intersecting X, the constraints in (1b), and in (2); see, e.g.,
Bard (1998).
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Figure 1. Visualization of Problem (3); mainly taken from Klein-
ert (2021).

For motivating our main research question, we briefly discuss coupling constraints
in the following both w.r.t. their impact on the geometry of the bilevel feasible set
and their impact on complexity.

1.1. Geometry of the Feasible Set. As an example, we consider the following
linear bilevel problem taken from Kleinert (2021):

min
x,y

F (x, y) = x+ 6y (3a)

s.t. − x+ 5y ≤ 12.5, (3b)
y ∈ S(x), (3c)

with S(x) being the set of optimal solutions to the lower-level problem

min
y

f(x, y) = −y (4a)

s.t. 2x− y ≥ 0, (4b)
− x− y ≥ −6, (4c)
− x+ 6y ≥ −3, (4d)
x+ 3y ≥ 3. (4e)

Both levels are linear optimization problems and all variables are continuous.
The problem is visualized in Figure 1. The gray area is the set of points that

satisfy the lower-level constraints. The points above the dashed line are infeasible
w.r.t. the coupling constraint (3b). Due to the optimization direction of the follower,
the green faces denote the bilevel feasible set. Note that the two red faces are not
part of the bilevel feasible set since, for the respective x-values, the optimal replies y
by the follower violate the coupling constraint.

Hence, the example shows that the usage of coupling constraints makes it possible
to model bilevel feasible sets that are disconnected. Theorem 3.3 in Benson (1989)
states that the feasible set of a linear bilevel problem with B = 0 is always connected,
which means that disconnected sets can only be modeled using coupling constraints—
an aspect that gained some prominence since it allows to model mixed-binary linear
problems using purely continuous linear bilevel models; see, e.g., Section 3 in Vicente
et al. (1996) and Section 3.1 in Audet et al. (1997). Consequently, it seems to be
the case that having coupling constraints introduces larger modeling capabilities.
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1.2. Complexity. Already Jeroslow (1985) showed that linear bilevel problems are
NP-hard. An alternative proof using a reduction from KNAPSACK can be found in
Ben-Ayed and Blair (1990). Moreover, Hansen et al. (1992) proved that linear bilevel
problems are strongly NP-hard by a reduction from KERNEL; see Problem GT57
in Garey and Johnson (1979). In particular, they even showed that the special
case of min-max problems without coupling constraints is strongly NP-hard. The
same holds true for the reduction from 3-SAT shown in Marcotte and Savard (2005).
In Vicente et al. (1994) it is further shown that even checking local optimality
of a given point is strongly NP-hard (again via 3-SAT). As before, the authors
do not require coupling constraints to achieve this hardness result; see the linear
bilevel problems in the proofs of Theorems 5.1 and 5.2 in Vicente et al. (1994).
Hence, coupling constraints are not required to make linear bilevel problems strongly
NP-hard. Moreover, Buchheim (2023) recently showed that the decision versions of
linear bilevel problems with coupling constraints are in NP, which again implies that
linear bilevel problems with coupling constraints are not harder than those without.

1.3. Research Question. Combining the two last discussions, we can summarize
the following two conclusions:

(i) Using coupling constraints in linear bilevel problems allows for modeling a
richer class of feasible sets.

(ii) These stronger modeling capabilities do not result in any change of the
hardness of the resulting problem in terms of complexity theory.

Due to (ii), the question arises if we “really” increase modeling capabilities by
using coupling constraints. While this is the case w.r.t. (dis-)connectedness of
feasible sets, we prove that there is no difference on the level of optimal solutions. To
do this, in the next section, given a linear bilevel problem with coupling constraints,
we derive a linear bilevel problem without coupling constraints that has the same
set of optimal solutions.

2. Exact Penalization of Coupling Constraints

In this section, we show that the bilevel problem (1) with coupling constraints
can be reformulated as a bilevel problem without coupling constraints. To do this,
we show that the violation of the coupling constraints (1b) can be exactly penalized
in the objective function of the leader. This result is surprising for at least two
reasons. First, we just saw that the feasible region of (1) may be disconnected
and nonconvex. In this case, standard Lagrangian duality theory is usually limited
and not as strong as in the convex case. Second, the resulting problem, i.e., after
penalization, has a smooth objective function and no coupling constraint. Thus, it
differs from classic exact penalty methods, which often require a nonsmooth penalty
function.

Our key idea is to reformulate Problem (1) in a way so that the follower measures
the violation of the coupling constraints directly in the lower-level problem, while
the leader enforces that this violation is zero. Doing so leads to the following bilevel
problem which contains a scalar and very simple coupling constraint:

min
x,y,ε

c⊤x+ d⊤y (5a)

s.t. x ∈ X, (5b)
ε = 0, (5c)

(y, ε) ∈ S̃(x). (5d)
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Here, S̃(x) is the set of optimal solutions to the x-parameterized lower-level problem

min
y,ε

f⊤y (6a)

s.t. Ax+By + εe ≥ a, (6b)
Cx+Dy ≥ b, (6c)
ε ≥ 0, (6d)

where e is the vector of ones. Essentially, ε is an additional variable of the follower
that measures the violation of the coupling constraints. The newly introduced
coupling constraint (5c) enforces that it equals zero. Most importantly, we have
S(x) = projy(S̃(x)) for all leader’s decisions x. In the next lemma, we show that
Problem (5) is, indeed, equivalent to Problem (1).

Lemma 2.1. For every bilevel feasible point (x, y) of Problem (1), the point (x, y, 0)
is bilevel feasible for Problem (5) with the same objective value. For every bilevel
feasible point (x, y, ε) of Problem (5), the point (x, y) is bilevel feasible for Problem (1)
with the same objective value.

Proof. Let (x, y) be a bilevel feasible point of Problem (1). Then, (x, y, 0) satisfies
the upper- and lower-level constraints of Problem (5). The point (y, 0) is optimal for
the lower-level problem (6) since ε is not part of the lower-level objective function
and f⊤y is minimal regarding Constraints (6c) due to the bilevel feasibility of (x, y)
for Problem (1).

Let now (x, y, ε) be a bilevel feasible point of Problem (5). Then, the point (x, y)
satisfies the upper- and lower-level constraints of Problem (1) because ε = 0 holds.
The point y is optimal for the lower-level problem (2) since every optimal solution ỹ
to the x-parameterized lower-level problem (2) can be extended to the feasible
point (ỹ,max{∥a−Ax−By∥∞ , 0}) of the x-parameterized lower-level problem (6)
with the same objective value.

We finally note that Problem (1) and Problem (5) have the same upper-level
objective functions, which proves the claim. □

We now penalize the single coupling constraint (5c) of Problem (5) to obtain a
bilevel problem without coupling constraints. Moreover, we show that there is a
polynomial-sized (in the bit-encoding length of the original problem’s data) penalty
parameter so that this formulation is equivalent in terms of optimal solutions.

Theorem 2.2. There is a polynomial-sized parameter κ > 0 so that the bilevel
problem (without coupling constraints)

min
x,y,ε

c⊤x+ d⊤y + κε (7a)

s.t. x ∈ X, (y, ε) ∈ S̃(x), (7b)

has the same set of optimal solutions as Problem (5). Again, S̃(x) is the set of
optimal solutions to the x-parameterized lower-level problem (6).

The idea of the proof is as follows. First, we derive a single-level reformulation
of the bilevel problem (5), using the KKT conditions of the follower’s problem (6).
Second, we apply results from augmented Lagrangian duality theory for mixed-
integer linear problems to show that a polynomial-sized exact penalization parameter
exists. Finally, we show that the resulting mixed-integer linear program is nothing
but the KKT reformulation of Problem (7).
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Proof. Since the lower-level problem (6) of Problem (5) is a linear program, we can
replace it with its KKT conditions (Dempe and Dutta 2012), leading to

min
x,y,ε

c⊤x+ d⊤y (8a)

s.t. x ∈ X, ε = 0, (8b)
Ax+By + εe ≥ a, Cx+Dy ≥ b, ε ≥ 0, (8c)

B⊤λ+D⊤µ = f, e⊤λ+ η = 0, (8d)
λ, µ, η ≥ 0, (8e)

λ⊤(Ax+By + εe− a) = 0, µ⊤(Cx+Dy − b) = 0, ηε = 0. (8f)

Using additional binary variables zλ, zµ, zη, and a sufficiently large big-M value, we
can reformulate the complementarity constraints (8f) as the mixed-integer linear
constraints

λ ≤ (e− zλ)M, µ ≤ (e− zµ)M, η ≤ (1− zη)M, (9a)

Ax+By + εe− a ≤ zλM, Cx+Dy − b ≤ zµM, ε ≤ zηM. (9b)

It is shown in Buchheim (2023) that a valid and polynomial-sized value for M can
be computed in polynomial time. Thus, the resulting problem is a mixed-integer
linear program whose input data is polynomial-sized in the bit-encoding length of
the input data of Problem (5). We now penalize the constraint ε = 0 in the ℓ∞-sense
and obtain

min
x,y,ε

c⊤x+ d⊤y + κε (10a)

s.t. x ∈ X, (10b)
Ax+By + εe ≥ a, Cx+Dy ≥ b, ε ≥ 0, (10c)

B⊤λ+D⊤µ = f, e⊤λ+ η = 0, (10d)
λ, µ, η ≥ 0, (9). (10e)

The existence of a finite and exact value for the penalty parameter κ is guaranteed
by Theorem 4 of Feizollahi et al. (2016), which states that the duality gap for
the augmented Lagrangian dual of a solvable (mixed-integer) linear optimization
problem can be closed by using a norm as the augmenting function and a sufficiently
large but finite penalty parameter. Moreover, Proposition 1 of Feizollahi et al.
(2016) ensures that the sets of optimal solutions of (10) and (8) are the same. Gu
et al. (2020) show in Theorem 22 that the penalty parameter can be chosen to
be of polynomial size in case of the ℓ∞-norm. Finally, Problem (10) is the KKT
reformulation of the bilevel problem (7). □

Note that the results from the literature that we use to conclude the proof are
not constructive but pure existence results. Hence, we also do not state an explicit
formula or big-O expression for the value or the size of the parameter κ here.

Corollary 2.3. There is a polynomial-sized penalty parameter κ > 0 so that
the following holds. For every bilevel optimal solution (x, y) to Problem (1), the
point (x, y, 0) is bilevel optimal to Problem (7) with the same objective value. For
every bilevel optimal point (x, y, ε) of Problem (7), the point (x, y) is bilevel optimal
to Problem (1) with the same objective value.

Remark 2.4. (a) Let us note that the reformulations of mixed-integer linear pro-
grams as linear bilevel problems presented in Vicente et al. (1996) and Audet
et al. (1997) use two strategies for enforcing that continuous lower-level
variables are binary. One is based on coupling constraints of the form v = 0,
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where v is an auxiliary lower-level variable, and the other one corresponds
to an exact penalization of these coupling constraints and therefore requires
no coupling constraints in the final model. Our approach to penalize general
coupling constraints in linear bilevel problems uses the same idea in the
final step.

(b) The derivations in this section suggest that one could potentially extend
the class of bilevel problems to which the results can be applied. First,
the results in Gu et al. (2020) are valid for convex mixed-integer quadratic
programs (MIQPs). Hence, this would allow for convex-quadratic objective
functions of the leader and further integrality constraints in X. Moreover,
we can also allow for convex-quadratic (but still continuous) problems in
the lower level since their KKT conditions lead to polyhedral constraints in
the KKT reformulation (8). However, the big-Ms from Buchheim (2023)
cannot be used directly anymore. Given that valid big-Ms can also be
found for quadratic programs in the lower level, the most general class of
bilevel problems to which our results could be applied are those with convex
MIQPs for the leader and convex QPs for the follower.

(c) Due to the finiteness of the penalty parameter in Corollary 2.3, the original
bilevel problem with coupling constraints can also be solved by a finite se-
quence of bilevel problems without coupling constraints if we follow standard
ideas of penalty methods.

3. Discussion

It has been known for at least 25 years that coupling constraints in linear bilevel
problems can lead to disconnected feasible sets and that this is not possible without
coupling constraints. However, we prove that there is no difference between these
two types of linear bilevel problems on the level of optimal solutions. While, on the
one hand, this closes a gap in the literature on linear bilevel optimization, it, on
the other hand, also has some practical consequences. Many theoretical statements
in the literature on bilevel optimization are made and shown for problems without
coupling constraints—either simply for the ease of presentation or due to a lack of a
proof for the case with coupling constraints. This note now allows for carrying over
some of these results by transforming the given problem having coupling constraints
into one without. We also point to the open question of efficient computation
of the penalty parameter required in the last section. While we prove that it is
polynomial-sized (in the bit-encoding length of the data of the given problem),
the question on how to compute it in polynomial time is still open. Finally, the
analogue question regarding the impact of coupling constraints is, to the best of our
knowledge, still open for pessimistic bilevel problems. We are rather convinced that
the approach applied in this paper cannot be directly transferred to the pessimistic
case. Hence, the latter is an interesting and important research question.
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