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Abstract— We present a linear cutting-plane relaxation ap-
proach that rapidly proves tight lower bounds for the Alter-
nating Current Optimal Power Flow Problem (ACOPF). Our
method leverages outer-envelope linear cuts for well-known
second-order cone relaxations for ACOPF along with modern
cut management techniques. These techniques prove effective
on a broad family of ACOPF instances, including the largest
ones publicly available, quickly and robustly yielding sharp
bounds. Our primary focus concerns the (frequent) case where
an ACOPF instance is considered following a small or moderate
change in problem data, e.g., load changes and generator or
branch shut-offs. We provide significant computational evidence
that the cuts computed on the prior instance provide an effective
warm-start for our algorithm.

I. INTRODUCTION
The Alternating-Current Optimal Power Flow (ACOPF)

problem [1] is a well-known challenging computational task.
It is nonlinear, non-convex and with feasible region that may
be disconnected; see [2], [3]. From a theoretical perspective,
in [4], [5] it is shown that the feasibility problem is strongly
NP-hard; [6] proved that it is weakly NP-hard on star-
networks. In the current state-of-the-art, some interior point
methods are empirically successful at computing excellent
solutions but cannot provide any bounds on solution quality.

At the same time, strong lower bounds are available
through second-order cone (SOC) relaxations [7], [8]; how-
ever all solvers do struggle when handling such relaxations
for large or even medium cases (see [9]; we will provide
additional evidence for this point). Other techniques, such
as spatial-branch-and-bound methods applied to McCormick
(linear) relaxations of quadratically-constrained formulations
for ACOPF, tend to yield poor performance unless aug-
mented by said SOC inequalities and interior point methods,
the latter for upper bounds.

In this paper we present a fast (linear) cutting-plane
method used to obtain tight relaxations for even the largest
ACOPF instances, by appropriately approximating the SOC
relaxations. The emphasis on linearly constrained formu-
lations is motivated by the fact that, whereas the tight
SOC relaxations for ACOPF are clearly challenging, linear
programming technology is, at this point, very mature –
many LP solvers are able to handle massively large instances
quickly and robustly; these attributes extend to the case
where formulations are dynamically constructed and updated,
as would be the case with a cutting-plane algorithm. As we
will show herein, our approach is both fast and accurate.

Moreover, the central focus on this paper concerns reop-
timization. In power engineering practice it is often the case
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that a power flow problem is solved on data that reflects
a recent, and likely limited, update on a case that was
previously handled. In short, the current problem instance
is not addressed ’from scratch.’ Our algorithm can naturally
operate in warm-started mode, i.e., make use of previously
computed cuts to obtain sharp bounds more rapidly than from
scratch.

As an additional attribute arising from our work the fact
that our formulations are linear paves the way for effective
pricing schemes, i.e., extensions of the LBMP pricing setup
currently used in energy markets [10], [11], [12].

A. Our contributions

• We describe very tight linearly constrained relaxations
for ACOPF. The relaxations can be constructed and
solved robustly and quickly via a cutting-plane algo-
rithm that relies on proper cut management. On medium
to (very) large instances our algorithm is competitive or
better, from scratch, with what was previously possible
using nonlinear relaxations, both in terms of bound
quality and solution speed.

• We provide a theoretical justification for the tightness
of the SOC relaxation for ACOPF as well as for the use
of our linear relaxations.

• As a main contribution we demonstrate, through ex-
tensive numerical testing, that the warm-start feature
for our cutting-plane algorithm yields tight bounds far
faster than otherwise possible. It is worth noting that this
capability stands in contrast to what is possible using
nonlinear (convex) solvers (cf. Tables IV and V).

II. ACOPF PROBLEM FORMULATION AND
RELAXATIONS

A. ACOPF

We denote by N := (B, E) the network, where B denotes
the set of buses, and E denotes the set of branches. We denote
by G the set of generators of the grid, each of which is located
at some bus; for each bus k ∈ B, we denote by Gk ⊆ G the
generators at bus k.

Each bus k has a fixed load P d
k + jQd

k, where P d
k ≥ 0

is termed active power load, and −∞ ≤ Qd
k ≤ +∞

is reactive power load; and lower V min
k ≥ 0 and upper

V max
k ≥ 0 voltage limits. For each branch {k,m} we are

given a thermal limit 0 ≤ Ukm ≤ +∞, and maximum
angle-difference |∆km| ≤ π. Thus, the goal is to find a
voltage magnitude |Vk| and phase angle θk at each bus k,
and active P g and reactive Qg power generation for every
generator g, so that power is transmitted by the network so



as to satisfy active P d and reactive Qd power demands at
minimum cost. Using the so-called polar representation we
obtain the following nonlinear optimization problem:

[ACOPF] : min
∑
k∈G

Fk(P
g
k ) (1a)

subject to:
∀ k ∈ B, ∑

{k,m}∈δ(k)

Pkm =
∑
ℓ∈Gk

P g
ℓ − P d

k (1b)

∑
{k,m}∈δ(k)

Qkm =
∑
ℓ∈Gk

Qg
ℓ −Qd

k (1c)

∀{k,m} ∈ E ,
Pkm = Gkk|Vk|2 +Gkm|Vk||Vm| cos(θkm)

+Bkm|Vk||Vm| sin(θkm) (1d)

Pmk = Gmm|Vm|2 + |Vk||Vm|Gmk cos(θkm)

−Bmk|Vk||Vm| sin(θkm) (1e)

Qkm = −Bkk|Vk|2 +Bkm|Vk||Vm| cos(θkm)

−Gkm|Vk||Vm| sin(θkm) (1f)

Qmk = −Bmm|Vm|2 +Bmk|Vk||Vm| cos(θkm)

+Gmk|Vk||Vm| sin(θkm) (1g)

∀k ∈ G : Pmin
k ≤ P g

k ≤P
max
k , Qmin

k ≤ Qg
k ≤ Qmax

k (1h)

∀k ∈ B, V min
k ≤ |Vk| ≤ V max

k (1i)
∀{k,m} ∈ E , |θkm| ≤ ∆̄km, θkm = θk − θm (1j)

max
{
P 2
km +Q2

km , P 2
mk +Q2

mk

}
≤ U2

km (1k)

In the above formulation, the physical parameters of each
branch {k,m} ∈ E are described by

Y{km} :=

(
Gkk + jBkk Gkm + jBkm

Gmk + jBmk Gmm + jBmk,

)
which is the (complex) admittance matrix of branch {k,m}.
These parameters model in (1d)-(1g) physical active and
reactive power flows. Inequalities (1j) -(1k) amount to flow
capacity constraints, and inequalities (1h)-(1i) impose op-
erational limits on power generation and voltages. Con-
straints (1b)-(1c) impose active and reactive power balance;
the left-hand side represents power injection at bus k ∈ B,
while the right-hand side represents net power generation
(generation minus demand) at bus k. Finally, for each
generator k ∈ G, it is customary to assume the functions
Fk : R → R in the objective (1a) are convex piecewise-
linear or convex quadratic.

We remark that, often, constraint (1j) is not present, and,
when explicitly given, concerns angle limits ∆̄km that are
small (smaller than π/2). Under such assumptions there
are equivalent ways to restate (1j) involving the arctangent
function and other variables present in the formulation (the
same applies to convex relaxations).

Please refer to the surveys [13], [14] for alternative, but
equivalent, ACOPF formulations.

B. Prior work
We briefly review the very large literature on convex

relaxations for ACOPF.
The simplest relaxations use, a starting point, a rectan-

gular formulation of the ACOPF problem (rather than the
polar setup described above) yielding a QCQP (quadratically
constrained quadratic program) and rely on the well-known
McCormick [15] reformulation to linearize bilinear expres-
sions. This straightforward relaxation has long been known
to provide very weak bounds.

The SOC relaxation introduced in [7], which is widely
known as the Jabr relaxation (see next subsection), has
had significant impact due to its effectiveness as a lower
bounding technique. While on the one hand the SOC re-
laxation is strong, it also yields formulations that, in the
case of large ACOPF instances, are very challenging even
for the best solvers. A wide variety of techniques have been
proposed to strengthen the Jabr relaxation. In [8] arctangent
constraints are associated with cycles, with the goal of
capturing the relationship between the additional variables in
the Jabr relaxation and phase angles – these are formulated as
bilinear constraints, and then linearized via McCormick [15]
inequalities. The two other strengthened SOC formulations
proposed in [8] add polyhedral envelopes for arctangent
functions, and dynamically generate semi-definite cuts for
cycles in the network. [9] developed the Quadratic Convex
(QC) relaxation, which corresponds to the Jabr relaxation
strengthened with polyhedral envelopes for sine, cosine and
bilinear terms appearing in the power flow definitions (1d)-
(1g). [16] proposes a minor-based formulation for ACOPF
(which is a reformulation of the rank-one constraints in
the semidefinite programming formulation for ACOPF [13]),
which is relaxed to generate cutting-planes improving on the
tightness of the Jabr relaxation.

A semidefinite programming relaxation based on the Shor
relaxation [17] is presented in [18]. This formulation is at
least as tight as the Jabr relaxation at the expense of even
higher computational cost [16].

Overall, experiments for all of these nonlinear relaxations
have been limited to small and medium-sized cases, in part
because SOCP solution technology may not be sufficiently
mature.

Next we review linear relaxations for ACOPF. [19], [20]
introduces the so-called active-power loss linear inequalities
which state that on any branch the active power loss is
nonnegative. The resulting relaxation, which we term the
linear-loss-relaxation, is shown to yield good lower bounds.

In a similar same vein, [21] propose the network flow
and the copper-plate relaxations. The network flow relaxation
amount to the linear loss-relaxation with additional sparse
linear inequalities that lower bound net reactive power losses
in appropriate cases. Moreover, the copper-plate relaxation
is obtained from the network flow relaxation by neglecting
the power flow equations entirely via aggregation of all
active and reactive power injections in the network. Along
these lines [22] provide a relaxation which enforces a (valid)
linear relationship between active and reactive power losses



by relaxing linear combinations of (1d)-(1g). The technique
in [19] ϵ-approximates the products of continuous variables
(arising from the rectangular formulation of ACOPF [13]), to
arbitrary precision, using binary expansions and McCormick
inequalities. This process yields a mixed integer linear ϵ-
approximation for ACOPF. Another linear ϵ-approximation,
which is based on the Jabr relaxation, is used in [23]. Their
main contribution is using the SOC linear approximation
developed in [24] which requires O(kℓ log(1/ϵ)) linear con-
straints and variables to ϵ-approximate a conic constraint of
row size kℓ. Moreover, [25], [26] propose successive linear
programming (SLP) algorithms for finding locally optimal
AC solutions. One of the algorithms in [26] is an SLP
method focusing on the Jabr relaxation, and thus yielding
a linear relaxation for ACOPF. We remark that the well-
known Direct Current Optimal Power Flow (DCOPF) may
prove a poor approximation to ACOPF in the sense that AC
feasible solutions might not be ϵ-feasible for DCOPF [27]
for arbitrary small ϵ > 0.

We refer the reader to the surveys [13], [14], [28] for
additional material on convex relaxations for ACOPF.

C. Two Convex Relaxations for ACOPF

1) The Jabr SOCP: A well-known convex relaxation of
ACOPF is the Jabr relaxation [7]. It linearizes the power flow
definitions (1d)-(1g) using |B|+2|E| additional variables and
adds |E| rotated-cone inequalities. A simple derivation is as
follows: For any line {k,m} ∈ E , we define v

(2)
k := |Vk|2,

ckm := |Vk||Vm| cos(θk − θm), skm := |Vk||Vm| sin(θk −
θm). Clearly we have the following valid (non-convex)
quadratic relation

c2km + s2km = v
(2)
k v(2)m , (2)

which in [7] is relaxed into the (convex) inequality

c2km + s2km ≤ v
(2)
k v(2)m . (3)

This is a rotated-cone inequality hence it can be represented
as a second-order cone constraint. Note that the newly
defined variables v(2)k , ckm, and skm can be used to represent
the power flow equations in (1d)-(1g) as, ∀{k,m} ∈ E ,

Pkm = Gkkv
(2)
k +Gkmckm +Bkmskm (4a)

Pmk = Gmmv(2)m +Gmkckm −Bmkskm (4b)

Qkm = −Bkkv
(2)
k +Bkmckm −Gkmskm (4c)

Qmk = −Bmmv(2)m +Bmkckm +Gmkskm (4d)

In summary, the Jabr relaxation can be obtained from the
formulation (1) by (i) adding the ckm, skm, v

(2)
k variables,

(ii) replacing (1d)-(1e) with (4), and (iii) adding constraint
(3).1

1We stress that the definitions of v(2)k , ckm, and skm are not added.

2) The i2 SOCP: Recall that complex power injected into
branch {k,m} ∈ E at bus k ∈ B is defined by

Skm := VkI
∗
km,

hence, |Skm|2 = |Vk|2|Ikm|2 holds. Moreover, since com-
plex power can be decomposed into active and reactive power
as Skm = Pkm + jQkm, and recalling that v

(2)
k := |Vk|2

while denoting i
(2)
km := |Ikm|2, we have

P 2
km +Q2

km = v
(2)
k i

(2)
km. (5)

By relaxing the equality (5) we obtain the rotated-cone
inequality [9], [29]

P 2
km +Q2

km ≤ v
(2)
k i

(2)
km. (6)

Since the variable i
(2)
km can be defined linearly in terms of

v
(2)
k , v(2)m , ckm, and skm, we obtain an alternative SOC relax-

ation. This formulation, which we call the i2 relaxation, is
comprised by (1a)-(1c), (4), the linear definition of i(2)km (17)
and the rotated-cone inequalities (6), c.f. VI-B.

It is known [30], [9], [31] that the systems defined by
each branch’s {k,m} linearized power flows (4) with its
corresponding Jabr inequality (3), and on the other hand,
branch’s {k,m} linearized power flows (4) with the rotated-
cone inequality (6) and the linear definition of i(2)km VI-B, are
equivalent. In other words, for each feasible solution to one
system there is a feasible solution to the other one. It must
be noted though that in terms of the complete formulations,
equivalence always holds true if i(2) is not upper bounded.

Proposition 1: The Jabr and the i2 relaxations are equiv-
alent if i(2) is not upper bounded, and otherwise the i2
relaxation can be strictly stronger.

Proof: Sufficiency was proven in [9]. For an example
where the i2 relaxation is strictly stronger than the Jabr
relaxation see Appendix VI-A.

Our computational experiments corroborate this fact; we
have found that linear outer-approximation cuts for the
rotated-cone inequalities (3) and (6) have significantly dif-
ferent impact in lower bounding ACOPF (c.f. III-B).

III. OUR WORK

In this paper we use a dynamically generated linearly-
constrained relaxation as a lower bounding procedure for
ACOPF. We introduce a few concepts from the integer
programming community.

Given a set X in Rn, we say that a convex inequality
g(x) ≤ d is valid for X if for every x in X g(x) ≤ d holds.
For a set R in Rn, usually R ⊇ X is a relaxation of X , we
say that c⊤x ≤ d is a (linear) cut for X (relative to R) if the
inequality is valid for X but not for R. A (linear) cutting-
plane algorithm [32] for a set X is an iterative procedure in
which, starting from an initial (linear) relaxation, in every
round (linear) cuts are added to outer-approximate a set X .
In general, these cuts are computed using a solution x to the
relaxation at the current round and valid inequalities which
are violated by x. In this paper, our target set X is the i2
relaxation of ACOPF.



To justify the use of our methodology we note that
direct solution of the Jabr and i2 relaxations of ACOPF,
for large instances, is computationally prohibitive and often
results in non-convergence (c.f. Tables II, III, IV and V).
Empirical evidence further shows that outer-approximation
of the rotated-cone inequalities (in either case) requires a
large number of cuts in order to achieve a tight relaxation
value. Moreover, employing such large families of cuts yields
a relaxation that, while linearly constrained, still proves
challenging – both from the perspective of running time and
numerical tractability. Nonetheless, a characteristic feature
of our iterative procedure is its robustness to potentially
suboptimal termination of the oracle used to solve the LPs or
convex QPs; independent of the quality of the primal solution
obtained, our linear cuts will always be valid.

However, as we show, adequate cut management proves
successful, yielding a procedure that is (a) rapid, (b) numer-
ically stable, and (c) constitutes a very tight relaxation (c.f.
Tables IV and V). The critical ingredients in this procedure
are: (1) quick cut separation; (2) appropriate violated cut se-
lection; and (3) effective dynamic cut management, including
rejection of nearly-parallel cuts and removal of expired cuts,
i.e., previously added cuts that are slack (cf. III-B).

Our procedure possesses efficient warm-starting capabili-
ties – this is a central goal of our work. Previously computed
cuts, for some given instance, can be re utilized and loaded
into new runs of related instances, hence leveraging previous
computational effort. It is worth noting that this reoptimiza-
tion feature stands in sharp contrast to what is possible using
nonlinear (convex) solvers. In III-C.3 we justify the validity
of this feature and Tables IV and V summarize extensive
numerical evidence on its performance relative to solving
the SOCPs ‘from scratch’. We remark that adequate cut
management is what makes possible this feature for large
ACOPF instances.

A. Cuts

In this subsection we present a theoretical justification for
using an outer-approximation cutting-plane framework on the
Jabr and i2 relaxations, as well as computationally efficient
cut separation procedures. We also give brief intuition on the
complementarity of the Jabr and i2 outer-envelope cuts.

1) Losses and Outer-Envelope Cuts: For transmission
lines with Gkk > 0 > Gkm = Gmk ≥ −Gkk and
Bkm = Bmk, in particular lines with no transformer nor
shunt elements, active-power loss inequalities are implied
by the Jabr inequalities, and also by the definition of the
i(2) variable. We remark that if negative losses are present,
then total generation is smaller than total loads – effectively,
the negative losses amount to a source of free genera-
tion and directly contribute to a lower objective value for
ACOPF that should not be feasible. This follows from a
flow decomposition argument that shows that every unit of
demand and (positive) loss is matched by a corresponding
unit of generation or negative loss. See [33] for the flow
decomposition argument and [34] for numerical examples
showing the impact of negative losses – we remind the reader

that in standard ACOPF the objective function accounts for
generation. We begin with two simple technical observations.

First, consider a (generic) rotated cone inequality

x2 + y2 ≤ wz, (7)

which is equivalent to (2x)2+(2y)2 ≤ (w+ z)2− (w− z)2.
Hence,

x2 + y2 ≤ wz ⇐⇒ ||(2x, 2y, w − z)⊤||2 ≤ w + z. (8)

Next, let λ ∈ R3 satisfy ||λ||2 = 1. Then, by (8),

(2x, 2y, w − z)λ ≤ ||(2x, 2y, w − z)⊤||2 ||λ||2
≤ w + z. (9)

Inequality (9) provides a generic recipe to obtain outer-
envelope inequalities for the rotated cone (7). As a result
of these developments, we have:

Proposition 2: For a transmission line {k,m} ∈ E with
Gkk > 0 > Gkm = Gmk ≥ −Gkk and Bkm = Bmk, the
Jabr inequality c2km + s2km ≤ v

(2)
k v

(2)
m implies, as an outer

envelope approximation inequality, that Pkm + Pmk ≥ 0.
Proof: See Appendix VI-C.

See [34] for examples where removing a single Jabr inequal-
ity from the SOC formulation results in a strictly weaker
relaxation – this arises because on that branch we will have a
negative loss, which acts, effectively, as cost-free generation.
See the discussion above focused on the flow decomposition
in [33].

Moreover, it is known that for transmission lines with no
transformers nor shunt elements the definition of the variable
i(2) implies the active-power loss inequalities [30], [31].

2) Two Simple Cut Procedures: The following proposition
and corollary give us an inexpensive computational proce-
dure for separating the rotated-cone inequalities

c2km + s2km ≤ v
(2)
k v(2)m , P 2

km +Q2
km ≤ v

(2)
k i

(2)
km. (10)

Proposition 3: Consider the second-order cone C :=
{(x, s) ∈ Rn × R+ : ||x||2 ≤ s}. Suppose (x, s) /∈ C with
s > 0. Then the cut for C which achieves the maximum
violation by (x, s) is given by x⊤x ≤ s||x||.

Proof: See Appendix VI-D.
Corollary 1: Let C := {(x, y, w, z) ∈ R2 × R2

+ : x2 +
y2 ≤ wz} ⊆ R4 and suppose that (x, y, w, z) /∈ C where
w + z > 0. The cut which achieves the maximum violation
by (x, y, w, z) is given by

(4x)⊤x+ (4y)⊤y + ((w − z)− n0)
⊤w

+ (−(w − z)− n0)
⊤z ≤ 0, (11)

where n0 := ||(2x, 2y, w − z)⊤||.
Proof: Rewriting the rotated-cone inequality as (8) and

a direct application of Proposition 3 gives us the desired
separating hyperplane.

Finally, we present a proposition which gives us a simple
procedure for computing linear cuts for violated thermal-
limit inequalities

P 2
km +Q2

km ≤ U2
km. (12)



Proposition 4: Consider the Euclidean ball in R2 of radius
r, Sr := {(x, y) ∈ R2 : x2 + y2 ≤ r2}, and let (x, y) /∈ Sr.
Then the cut that attains the maximum violation by (x, y) is
given by

(x)⊤x+ (y)⊤y ≤ r||(x, y)⊤||. (13)
Proof: See Appendix VI-E.

3) On the Complementarity of the Jabr and i2 cuts: If
{k,m} is a transmission line with no transformer nor shunt
elements, then

i
(2)
km =

(
1

r2km + x2
km

)(
v
(2)
k + v(2)m − 2ckm

)
(14)

where rkm and xkm denote line’s {k,m} resistance and
reactance (see VI-B). Suppose that i

(2)
km is upper-bounded

by some constant Hkm and that the line {k,m} has a small
resistance, e.g., on the order of 10−5 (p.u.). Since xkm is
usually an order of magnitude larger than rkm, the coefficient
(r2km + x2

km)Hkm can be fairly small, hence we have

v
(2)
k + v(2)m − 2ckm ≤ (r2km + x2

km)Hkm ≈ 0 (15)

Since v
(2)
k + v

(2)
m − 2ckm ≥ 0 is a Jabr outer-envelope cut

(c.f. proof Proposition (2)), inequality (15) is enforcing our
solutions to be on the surface of the rotated-cone c2km +

s2km ≤ v
(2)
k v

(2)
m .

B. Basic Algorithm and Cut Management

In what follows we describe our cutting-plane algorithm.
First we define a linearly constrained base model M0 as
follows:

[M0] : min
∑
k∈G

Fk(P
g
k ) (16a)

subject to:
constraints (1b), (1c), (4), (1h), (1i) (16b)

In other words, we consider the linearized power flow
equations of the Jabr SOCP and all of the linear constraints
in (1).

In every round of our iterative procedure, linear constraints
will be added to and removed from M0. The exact manner in
how this will be done is described below. We will denote by
M our dynamic relaxation at some iteration of our cutting-
plane algorithm.

Given a feasible solution x̄ to M , and letting fkm(x) ≤ 0
be some valid convex inequality (10) or (12), our measure
of cut-quality is the amount max{fkm(x), 0} by which the
solution x violates the valid convex inequality. Let ϵ > 0,
then for each type τ ∈ {Jabr, i2, limit} of inequality, i.e., Jabr
and i2 rotated-cones and thermal limits, we sort the branches
{k,m} from highest to lowest violation strictly greater than
ϵ, and pick as τ -candidates branches, for which cuts will be
added to M , the top pτ (fixed parameter) percentage of the
most violated branches.

For each list of τ -candidates, we compute cuts for the
corresponding branches using the efficient cut procedures
described in III-A. Candidate cuts will be rejected if they
are too parallel to incumbent cuts in M [35], [36]. To be

Algorithm 1 Cutting-Plane Algorithm
1: procedure CUTPLANE
2: Initialize r ← 0, M ←M0, z0 ← +∞
3: while t < T and r < Tftol do
4: z ← minM and x̄← argminM
5: Check for violated inequalities by solution x
6: Sort inequalities by violation
7: Compute cuts for the most violated inequalities
8: Add cuts if they are not ϵ-parallel to cuts in M
9: Drop cuts of age ≥ Tage whose slack is ≥ ϵj

10: if z − z0 < z0 · ϵftol then
11: r ← r + 1
12: else
13: r ← 0
14: end if
15: z0 ← z
16: end while
17: end procedure

precise, given ϵpar > 0, we say that two linear inequalities
ctx ≤ 0 and dtx ≤ 0 are ϵpar-parallel if the cosine of the
angle between their normal vectors c and d is strictly more
that 1− ϵpar.

Finally, we describe a heuristic for cleaning-up our for-
mulation. For each added cut, we keep track of its current
cut-age, i.e., the difference between the current round and the
round in which it was added to the relaxation. Then, in every
iteration, if a cut c⊤x ≤ d has age greater or equal than a
fixed parameter Tage ∈ N, and it is ϵ-slack, i.e., d−c⊤x > ϵ,
then it is dropped from M .

In addition to M0 and the parameters pτ , ϵ, ϵpar, Tage,
other inputs for our procedure are: a time limit T > 0; the
number of admissible iterations without sufficient objective
improvement Tftol ∈ N; and a threshold for objective relative
improvement ϵftol > 0.

C. Computational Results

We ran all of our experiments on an Intel(R) Xeon(R)
Linux64 machine CPU E5-2687W v3 3.10GHz with 20
physical cores, 40 logical processors, and 256 GB RAM.
We used three state-of-the-art commercial solvers: Gurobi
version 10.0.1 [37], Artelys Knitro version 13.2.0 [38], and
Mosek 10.0.43 [39] For the SOCP and ACOPF we wrote
AMPL modfiles and we ran them with a Python 3 script. We
note that unlike Gurobi and Knitro, Mosek does not detect
that a constraint like x2 + y2 ≤ z2 or x2 + y2 ≤ wz is
actually a conic constraint, therefore we had to reformulate
the SOCP to a format Mosek-AMPL was able to read. Now
we describe the parameter specifications for each solver.

a) Gurobi: We use the Gurobi’s default homogeneous
self-dual embedding interior-point algorithm (barrier method
without Crossover, and Bar Homogeneous set to 1), and
we set the parameter Numeric Focus equal to 1. Barrier
convergence tolerance and absolute feasibility and optimality
tolerances were set to 10−6. Since by default Gurobi assigns



TABLE I
CUTTING-PLANE (NOT WARM-STARTED)

Cutting-Plane Primal bound

Case Objective Time (s) Computed Added Rounds Objective Time (s)

9241pegase 309221.81 378.82 135599 29875 23 315911.56 96.74
9241pegase-api 6924650.57 277.32 128316 30230 21 7068721.98 73.85
9241pegase-sad 6141202.28 386.51 113686 27273 21 6318468.57 33.92
9591goc-api 1346373.10 187.26 87812 22469 22 1570263.74 42.85
9591goc-sad 1055493.25 246.87 90153 20514 27 1167400.79 28.15
ACTIVSg10k 2476851.62 132.16 60803 18183 19 2485898.75 76.71
10000goc-api 2502026.03 147.12 73084 19666 24 2678659.51 23.46
10000goc-sad 1387303.02 114.97 58984 18528 17 1490209.66 103.06
10192epigrids-api 1849488.30 152.87 97921 24882 22 1977687.11 117.15
10192epigrids-sad 1672819.53 185.02 95740 23726 23 1720194.13 23.74
10480goc-api 2708819.18 200.48 114967 29805 21 2863484.4 38.71
10480goc-sad 2287314.69 270.38 118122 28004 24 2314712.14 27.93
13659pegase 379084.55 841.83 176962 37297 22 386108.81 1184.15
13659pegase-api 9270988.77 326.57 147479 34390 19 9385711.45 44.43
13659pegase-sad 8868216.24 301.87 130682 32662 19 9042198.49 42.08
19402goc-api 2448812.41 440.67 213564 52388 22 2583627.35 87.33
19402goc-sad 1954047.79 488.33 218291 49749 25 1983807.59 64.01
20758epigrids-api 3042956.88 464.17 189436 46124 25 3126508.3 61.39
20758epigrids-sad 2612551.03 379.36 180790 44624 24 2638200.23 58.11
24464goc-api 2560407.12 471.14 226595 57162 22 2683961.9 533.03
24464goc-sad 2605128.51 506.39 222908 55242 23 2653957.66 73.87
ACTIVSg25k 5993266.85 592.39 156285 43851 28 6017830.61 56.69
30000goc-api 1531110.84 464.16 142385 41840 24 1777930.63 134.71
30000goc-sad 1130733.51* 147.74 76546 76546 6 1317280.55 565.05
ACTIVSg70k 16326225.66 1065.76 350572 123431 13 16439499.83 240.55
78484epigrids-api 15877674.54 1007.99 556893 240576 10 16140427.68 1079.03
78484epigrids-sad 15175077.19 1062.55 501202 313587 8 15315885.86 343.45

any available cores to use for parallel computing automati-
cally, it was not necessary to specify the number of threads.

b) Knitro: We use Knitro’s default Interior-
Point/Barrier Direct Algorithm, with absolute feasibility
and optimality tolerances equal to 10−6. We used the linear
solver HSL MA57 sparse symmetric indefinite solver, and
the Intel Math Kernel Library (MKL) functions for Basic
Linear Algebra Subroutines (BLAS), i.e., for basic vector
and matrix computations. Moreover, we gave Knitro 20
threads to use for parallel computing features. When solving
the SOCPs, we explicitly told Knitro that the problem is
convex. We note that for computing primal bounds, we
also tried the non-deterministic linear solver HSL MA97
whenever Knitro with MA57 was not converging.

c) Mosek: We use Mosek’s default homogeneous and
self-dual interior-point algorithm for conic optimization. We
set the relative termination tolerance, as well as primal and
dual absolute feasibility tolerances to 10−6. On the test
platform we assigned to Mosek 20 threads.

Our cutting-plane algorithm is implemented in Python 3
and calls Gurobi 10.0.1 as a subroutine for solving an LP or
convex QP. All of our reported experiments were obtained
with the following parameter setup: ϵ = 10−5, pJabr = 0.55,
pi2 = 0.15, plimit = 1, Tage = 5, ϵpar = 10−5/2, ϵftol =
10−5, and Tftol = 5. All of our codes and AMPL model
files can be downloaded from www.github.com/matias-vm,
as well as links to our reported solutions.

We report extensive numerical experiments on instances

with at least 9000 buses from the following data sets: the Pan
European Grid Advanced Simulation and State Estimation
(PEGASE) project [40], [41], ACTIVSg synthetic cases
developed as part of the US ARPA-E GRID DATA research
project [42], [43], and the largest instances from the Power
Grid Library for Benchmarking AC Optimal Power Flow
Algorithms [44].

We set a time limit of 1, 000 seconds for all of our SOCP
experiments. We did not set a time limit for computing
ACOPF primal bounds, and for our cutting-plane algorithm
we enforced the 1, 000 seconds time limit before starting
a new round (one iteration of our algorithm takes around
60− 100 seconds for the largest cases). The character “− ”
denotes that the solver did not converge, while the string
“TLim” means that the solver did not converge within our
time limit of 1, 000 seconds. By convergence we mean that
the solver declares to have obtained an optimal solution,
within the previously defined tolerances. We remark though
that Gurobi and Knitro provide control of absolute primal
and dual feasibility tolerances [37], [38], while Mosek only
allows controlling normalized (by the RHS of the constraints)
primal and dual feasibility tolerances [39]. The string “INF”
means that the instance was declared infeasible by the
solver, while “LOC INF” that the instance might be locally
infeasible. Moreover, if Gurobi declares numerical trouble
while solving our LPs or convex QPs at some iteration of
our algorithm, we report the objective value of the previous
iteration followed by the character “ ∗ ”. We also note
that objective values and running times are reported with



2 decimal places.
We remark that, to the best of our knowledge, this is the

first computational study which compares the performance
of three leading commercial solvers on the Jabr SOCP using
a common framework (AMPL). We evaluate the solvers on
Jabr SOCP, and compare our warm-started formulations on
this formulation instead of the i2 SOCP because Jabr is
numerically better behaved from the solvers’ perspective.
Indeed, the definition (17) of the i(2) variables can involve
very large coefficients (on linear inequalities), yielding a
numerically challenging nonlinear relaxation for most of
the solvers. We report on these numerical issues in subsec-
tion III-C.2.

1) Non-Warm-Started Cut Computations: The purpose of
Table I is summarize information regarding cut computations
for a substantial number of instances from the libraries
described above. The first multicolumn “Cutting-Plane” sub-
sumes information regarding our cutting-plane procedure: its
first column “Objective” reports the objective of the last
iteration of our algorithm, the second column “Time (s)”
reports the total running time (in seconds) of our method;
the third column “Computed” reports the number of cuts
computed throughout the whole procedure; the fourth column
“Added” exhibits the total number of cuts in our linearly
constrained relaxation at the last round (these are the cuts
used to warm-start our relaxations, c.f. III-C.3); and the fifth
column “Rnd” the number of rounds of cuts. Finally, the last
multicolumn “Primal bound” reports the objective value of
a feasible solution to ACOPF and the amount of time (in
seconds) it took the nonlinear solver Knitro to find it.

Overall, we see that our cut management heuristics per-
mits us obtain very tight linearly constrained relaxations
with a relatively small number of cuts - note that we
could potentially add 3|E| cuts per round (since for each
transmission {k,m} there are exactly three nonlinear valid
convex inequalities (10) and (12) that could be violated). For
instance, case ACTIVSg70k has 88207 branches and after 10
rounds of cuts we end up keeping 123431 out of the 350572
linear cuts computed throughout the course of our algorithm.
Therefore, fewer than 1.5 of linear cuts per branch gives us
a relaxation with optimality gap2 equal to 0.69%.

We remark that for some instances the objective value of
our procedure can be higher than the objective value of the
Jabr SOCP since our algorithm is outer-approximating the
feasible region of the i2 SOCP (c.f. Proposition 1).

We also note that 30000goc-sad was the only instance for
which the solver ran into numerical trouble while solving
the linearly constrained relaxation (indicated by the character
“ ∗ ” next to the objective value). Therefore, the reported
objective value corresponds to the previous iteration. Setting
a more aggressive cut management heuristic, for instance
decreasing Tage from 4 to 5, gave us numerically more stable
cuts and a better bound.

2Given a primal bound of a minimization problem, we define the
optimality gap of a relaxation of the given problem as zp−zr

zp
, where zp

denotes the objective value of the primal bound and zr denotes the objective
value of the relaxation.

Finally, we obtained our primal bounds by running Knitro
with a flat-start, i.e., we provided as initial point voltages set
to 1 and θkm = 0.

2) Solvers’ Performance on Jabr SOCP: In Table II, we
observe that for the cases in which at least two solvers
converge, the reported bounds for the Jabr SOCP agree
on the first 3 most significant digits. These differences in
bounds across the different solvers reflect how numerically
challenging the given instances are. We remind the readers of
the parameter choices that we made in order for the solvers
to achieve termination – which otherwise would often fail.

As we mentioned at the beginning of this section, the i2
SOCP is numerically even more challenging for the solvers
than the Jabr SOCP. Indeed, in Table III we can see that
the solvers do struggle. We studied in detail some cases
where Gurobi AMPL declared optimality, for example case
ACTIVSg70k, and observed variable bound max violation
(scaled) equal to 8.43 as well as large primal and dual
residuals (0.0128 and 3.25, respectively). Moreover, we no-
ticed inconsistent termination status for cases 10192epigrids-
sad, 10480goc-api, 20758epigrids-sad, and 30000goc-sad on
Gurobi and Gurobi through AMPL (Gurobi-AMPL) using
the same model; Gurobi AMPL declares optimal termination
for these instances while Gurobi does not. Cases for which
we were able to identify low quality solutions or inconsisten-
cies have been denoted with the character “†” next to their
reported objective value in Table III.

3) Warm-Starts: In power engineering practice, it is often
the case that a power flow problem (either in the AC
or DC version) is solved on data that reflects a recent,
and likely limited, update on a case that was previously
handled. In power engineering language, a ’prior solution’
was computed, and the problem is not solved ’from scratch.’
In the context of our type of algorithm, this feature opens
the door for the use of warm-started formulations, i.e.,
the application of a cutting-plane procedure that leverages
previously computed cuts to obtain sharp bounds more
rapidly than ‘from scratch’. In this subsection we present
this warm-starting feature of our algorithm; we justify its
validity and show via numerical experiments its appealing
lower bounding capabilities.

The convex inequalities (10), based on which we are
dynamically adding cuts, do not depend on input data such as
loads or operational limits. Any such inequality remains valid
and can be used if the associated branch remains operational.
This will be our strategy, below.

We created two kinds of perturbed instances: a) Instances
were the load of each bus was perturbed by a Gaussian
(µ, σ) = (0.01 ·Pd, 0.01 ·Pd), where Pd denotes the original
load, subject to the newly perturbed load being non negative;
and b) instances were the transmission line which carries
the largest amount of active power in an ACOPF solution
is turned off. We note though that perturbed cases b) do
change the structure of the network, since we are setting off
the status of an active branch. Hence, when warm-starting
type b) cases, we will skip any cuts associated to the branch
which becomes inactive.



TABLE II
SOLVERS’ PERFORMANCE ON JABR SOCP

Objective Time (s)

Case Gurobi Knitro Mosek Gurobi Knitro Mosek

9241pegase - 309234.16 - 82.11 34.68 31.11
9241pegase-api - 6840612.84 - 116.32 23.39 72.29
9241pegase-sad - 6083747.85 - 111.05 26.01 75.99
9591goc-api 1346480.71 1348107.89 1345869.72 38.25 23.74 36.60
9591goc-sad 1055698.54 1058606.56 1054379.58 49.29 32.83 37.61
ACTIVSg10k - 2468172.93 2466666.10 40.18 21.48 26.08
10000goc-api - 2507034.94 2498948.00 48.63 35.19 30.13
10000goc-sad 1387288.49 1388679.63 1386041.07 23.58 26.27 23.68
10192epigrids-api - 1849684.14 1848873.47 75.82 42.69 29.09
10192epigrids-sad - 1672989.96 1672534.72 83.85 28.33 28.63
10480goc-api - 2708973.58 2707828.26 75.94 27.21 56.82
10480goc-sad - 2286454.3 2285547.23 149.93 38.17 59.48
13659pegase 379135.73 379144.11 - 33.61 43.26 34.92
13659pegase-api - 9198542.14 - 162.21 30.64 105.11
13659pegase-sad 8826902.31 8826958.23 8787429.86 83.75 31.84 108.74
19402goc-api - 2449020.25 2447799.72 158.12 152.89 103.04
19402goc-sad - 1954331.70 1952550.06 203.56 155.89 104.88
20758epigrids-api - - 3040421.02 143.99 TLim 93.46
20758epigrids-sad - - 2610196.94 98.30 TLim 75.88
24464goc-api 2548335.96 - 2558631.63 603.95 TLim 129.90
24464goc-sad - - 2603525.46 333.50 TLim 128.50
ACTIVSg25k 5956787.54 5964417.54 5955368.56 169.66 87.14 87.18
30000goc-api - 1531256.65 1529197.81 207.60 118.80 123.38
30000goc-sad - - 1130868.71 191.22 TLim 84.90
ACTIVSg70k - 16221577.73 16217263.66 553.26 320.98 232.47
78484epigrids-api - - - 756.00 TLim 637.48
78484epigrids-sad 15180775.21 - 15169401.54 463.17 TLim 601.04

Tables IV and V summarize our warm-started experiments
on perturbed instances from our data set in Table I and
compare to solvers’ performance on the Jabr SOCP. “First
Round” reports the objective value and running time of the
relaxation M0 loaded with the cuts computed in Table I,
i.e., our warm-started relaxation. “Last Round” presents
the objective value and running time of the last iteration
of our cutting-algorithm (on the warm-started relaxation).
“Jabr SOCP” and “Primal bound” report, respectively, on
the objective value and running time of the Jabr SOCP for
the three solvers, and ACOPF primal solutions.

We stress the comparison between the running time for
our first round, and the solvers’ running time.

a) Loads perturbed – Gaussian deltas: For most of the
instances, our procedure proves very tight lower bounds in
less than 25 seconds (“First Round” column). Judging by the
time it takes Knitro to find a locally optimal primal bound
and by the number of cases in which the solvers converge,
running the SOCPs, it seems that these instances are overall
more challenging than their unperturbed counterparts.

Our procedure also stands out in quickly lower bounding
the largest cases. For instance, a very sharp bound for case
ACTIVSg70k is obtained in 102.25 seconds, taking less than
half of the time it takes the fastest SOCP solver to converge.
Similar performance is achieved on the largest epigrids cases
where our method is 3x to 5x faster.

An interesting empirical fact is that our cuts are robust
with respect to load perturbations. Indeed, our evidence
shows that there is not a considerable improvement from the

“First Round” to the “Last Round” objectives. This means
that the previously pre-computed cuts loaded to M0 in the
first iteration are accurately outer-approximating the SOC
relaxations.

Moreover, our linearly constrained relaxations are able to
prove infeasibility for case 9241pegase-api in 23.10 seconds
while none of the three solvers were able to provide a
certificate of infeasibility for the Jabr SOCP. Knitro required
1845.42 seconds to declare convergence to a locally infeasi-
ble solution. Similar results are obtained for case 24464ogc-
api.

The only case were our method fails to provide a valid
lower bound is case 30000goc-sad – our minimization oracle
reports numerical trouble and fails to provide a solution
to our warm-started relaxation. This is not surprising since
difficult numerical behavior was noticed when computing
cuts for this case.

b) Transmission line with largest flow turned off:
Overall, our method achieves a similar performance on this
set of perturbed instances as in a); sharp lower bounds are
obtained in about 25 seconds for most of the cases.

For this data set, our method and all of the SOCP solvers
are able to prove infeasibility relatively quickly. On the other
hand, our method proves a lower bound for ACTIVSg70k
relatively quickly in the first round, but fails to converge in
the next round due to numerical trouble caused by the newly
added cuts.

As in a), our warm-started formulation achieves a good
performance on the largest epigrid cases – bounds are sharp



with respect to the SOC relaxations and it is at least 3x faster.
The only case were our method fails to provide a lower

bound is case 30000goc-sad – our minimization oracle
reports numerical trouble and fails to provide a solution to
our warm-started relaxation.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we present a fast (linear) cutting-plane
method used to obtain tight relaxations for even the largest
ACOPF instances, by appropriately outer-approximating the
SOC relaxations. Our relaxations can be constructed and
solved robustly and quickly via a cutting-plane algorithm
that relies on proper cut management and leverages mature
linear programming technology.

The central focus on this paper concerns reoptimization.
We show that our procedure possesses efficient warm-starting
capabilities – previously computed cuts, for some given in-
stance, can be re utilized and loaded into new runs of related
instances, hence leveraging previous computational effort.
As a main contribution we demonstrate, through extensive
numerical testing in medium to (very) large instances, that
the warm-start feature for our cutting-plane algorithm yields
tight and accurate bounds far faster than otherwise possible.
It is worth noting that this capability stands in contrast to
what is possible using nonlinear (convex) solvers.

We believe our work paves the way for promising new
research directions. For instance, since our relaxations are
linear they could be deployed for practical pricing schemes
which could increase welfare and mitigate biasedness in price
signals [12]. Moreover, we believe our relaxation is a natural
candidate to supersede the well-known DC linear approx-
imation in harder problems such as the Unit-Commitment
problem or Security Contrained ACOPF (SCOPF), hence it
would be interesting to evaluate its performance on these
challenging problems.
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VI. APPENDIX

A. i2 SOCP strictly stronger than Jabr SOCP

An instance where the i2 SOCP is strictly stronger than
the Jabr SOCP is case1354pegase. Knitro attains an optimal
solution to the Jabr SOCP of value 74009.28 while an
optimal solution to the i2 SOCP has value 74013.68. As a
sanity check, we fixed, within tolerance ±10−5, the solution
to the Jabr SOCP in the i2 SOCP’s formulation, and Gurobi
declared the SOCP infeasible and provided the following
Irreducible Inconsistent Subsystem (IIS):

i
(2)
549,5002 = 11822.45384038167 v

(2)
549

+ 11822.45384038167 v
(2)
5002

− 23644.8888107824 c549,5002

− 29.87235441454166 s549,5002

v
(2)
549 ≥ 1.209989999283128

v
(2)
5002 ≥ 1.19745626014781

c549,5002 ≤ 1.195643087927643

s549,5002 ≤ 0.0246578041355137

i
(2)
549,5002 ≤ 39.69

B. i(2) definition

Let the admittance matrix for line {km} be

Y :=

((
y + ysh

2

)
1
τ2 −y 1

τe−jσ

−y 1
τejσ y + ysh

2

)
= G+ jB

where y = g + jb denotes its series admittance, shunt
admittance is denoted by ysh = gsh + jbsh, and N := τejσ

denotes the transformer ratio of magnitude τ > 0 and phase
shift angle σ. By Ohm’s Law the current flowing from bus k
to m is given by Ikm = y

τ

(
1
τ Vk − ejσVm

)
+ Vk

ysh

2τ2 . It can
be shown (c.f. [34]) that i2km := |Ikm|2 can be written as

i2km = αkmv
(2)
k + βkmv(2)m + γkmckm + ζkmskm, (17)

where

αkm : =
1

τ4

(
(g2 + b2) + (ggsh + bbsh) +

(gsh2 + bsh2)

4

)
βkm : =

(g2 + b2)

τ2

γkm : =
1

τ3
cos(σ)(−2(g2 + b2)− (ggsh + bbsh))

+
1

τ3
sin(σ)(bgsh − gbsh)

ζkm : =
1

τ3
sin(σ)(−2(g2 + b2)− (ggsh + bbsh))

− 1

τ3
cos(σ)(bgsh − gbsh).

C. Proof of Proposition 2

By (8) we have that the Jabr inequality c2km + s2km ≤
v
(2)
k v

(2)
m can be written as ||(2ckm, 2skm, v

(2)
k − v

(2)
m )||2 ≤

v
(2)
k + v

(2)
m . Hence, taking λ = (1, 0, 0)⊤, and using (9) we

have

v
(2)
k + v(2)m − 2ckm ≥ 0. (18)

On the other hand, since by summing up equations (4b) and
(4a) we have Pkm+Pmk = Gkkv

(2)
k +Gmmv

(2)
m +2Gkmckm,

which can be lower bounded by min{Gkk, Gmm}(v(2)k +

v
(2)
m − 2ckm), the inequality (18) implies Pkm + Pmk ≥ 0.



TABLE III
SOLVERS’ PERFORMANCE ON I2 SOCP

Objective Time (s)

Case Gurobi Knitro Mosek Gurobi Knitro Mosek

10192epigrids-api 1849683.44 1849684.2 - 37.44 19.4 30.74
10192epigrids-sad 1672998.72† 1672998.73 - 23.36 21.48 24.53
10480goc-api 2709110.52† 2709110.71 - 41.44 27.78 35.28
10480goc-sad 2287736.73 2287715.33 - 41.11 28.46 28.48
13659pegase 379142.67 - - 52.12 TLim 36.49
13659pegase-api 9287242.7 9287244.72 - 66.39 236.65 30.01
13659pegase-sad 8878803.69 - - 63.11 TLim 30.48
19402goc-api 2449100.15† 2449102.05 - 79.38 55.6 54.18
19402goc-sad 1954367.11† 1954367.2 - 180.97 59.46 82.55
20758epigrids-api - 3043275.95 - 79.03 64.17 56.02
20758epigrids-sad 2612841.71† 2612841.8 - 48.32 84.07 58.87
24464goc-api 2560829.65† - - 132.34 TLim 88.79
24464goc-sad 2605532.65† - - 74.43 916.1 65.41
ACTIVSg25k 5994727.45 - - 70.61 TLim 52.38
30000goc-api 1531320.78 1531322.2 - 96.91 593.73 71.38
30000goc-sad 1132242.88† 1132256.94 - 78.0 325.11 74.61
ACTIVSg70k 16333807.38† - - 300.98 TLim 209.3
78484epigrids-api 15882668.49 15882668.46 15882654.42 216.15 315.31 203.81
78484epigrids-sad 15180792.15 15180792.0 15180763.6 250.43 376.82 222.17

TABLE IV
WARM-STARTED RELAXATIONS, LOADS PERTURBED GAUSSIAN (µ, σ) = (0.01 · Pd, 0.01 · Pd)

Cutting-Plane Jabr SOCP

First Round Last Round Objective Time (s) Primal bound

Case Objective Time (s) Objective Time (s) Gurobi Knitro Mosek Gurobi Knitro Mosek Objective Time (s)

9241pegase 309288.32 13.78 309299.97 160.28 - 309302.67 - 73.12 32.21 36.04 315979.53 101.48
9241pegase-api INF 23.10 INF 23.10 - - - 134.53 TLim 72.96 LOC INF 1845.92
9241pegase-sad 6153913.91 16.18 6154117.59 136.78 - 6096743.03 - 97.51 26.07 83.43 6333763.92 43.71
9591goc-api 1343642.47 11.06 1343670.62 56.36 1343767.43 1345384.57 1343190.29 39.36 25.36 35.30 1571582.59 54.16
9591goc-sad 1058124.48 12.62 1058157.44 65.37 1058337.76 1061275.83 1057323.31 51.85 34.04 37.52 1178895.53 29.53
ACTIVSg10k 2475041.43 9.52 2475078.69 50.51 - 2466383.20 - 42.31 21.75 29.33 2484093.15 57.24
10000goc-api 2502049.28 8.51 2502098.01 36.48 2501946.30 2507074.78 2499373.75 31.91 43.44 32.33 LOC INF 1677.21
10000goc-sad 1388833.86 8.70 1388859.09 44.50 1388824.91 1390230.41 1387588.17 25.96 29.31 23.67 1493481.44 93.72
10192epigrids-api 1848085.36 10.27 1848133.48 45.84 - 1848285.26 1847120.93 65.38 41.17 25.99 LOC INF 1458.35
10192epigrids-sad 1672358.89 10.33 1672398.61 53.37 - 1672533.02 1671364.67 73.64 28.61 35.66 1717429.36 23.89
10480goc-api 2704157.29 12.43 2704252.95 58.45 - 2704373.73 2703432.85 197.17 27.57 55.92 2868495.28 36.89
10480goc-sad 2294908.37 12.81 2294990.69 70.93 - 2294080.35 2292830.56 185.22 35.90 58.31 2322198.81 27.34
13659pegase 379742.62 60.74 379794.51 426.88 379799.37 379804.43 - 34.21 43.17 32.75 386765.25 370.23
13659pegase-api 9253539.07 21.25 9253773.43 109.20 9181205.93 9181269.20 - 97.11 30.41 118.31 9368277.57 62.20
13659pegase-sad 8865733.59 21.28 8865892.49 113.04 8824442.20 8824486.03 - 86.49 33.19 102.59 9039904.52 40.02
19402goc-api 2452185.69 23.55 2452270.83 120.10 - 2452448.33 2451708.50 146.87 120.39 103.32 LOC INF 4440.99
19402goc-sad 1956255.19 23.28 1956313.91 113.89 - 1956570.60 1955018.07 231.90 172.82 102.19 1986936.95 66.02
20758epigrids-api 3043006.76 22.34 3043076.56 104.06 - - 3032919.24 134.60 TLim 78.32 LOC INF 12425.89
20758epigrids-sad 2610197.53 20.46 2610261.88 93.09 - - 2608090.26 143.69 TLim 72.19 2635892.81 49.25
24464goc-api 2561680.14 26.28 INF 50.38 - LOC INF - 223.07 573.37 118.6 - 19444.54
24464goc-sad 2606391.76 26.78 2606473.78 133.54 - - 2604708.86 423.12 TLim 128.84 2655942.01 72.48
ACTIVSg25k 5988886.18 28.24 5989016.75 198.58 5952404.50 5960068.30 5949381.04 138.01 73.75 109.39 6013477.05 57.87
30000goc-api 1527412.96 25.35 1527487.45 151.75 - 1528338.73 1525625.64 243.61 369.83 119.92 LOC INF 3407.47
30000goc-sad - 46.33 - 46.33 - - 1132715.53 257.94 TLim 75.20 1318389.55 620.27
ACTIVSg70k 16316572.42 102.25 16317886.35 536.51 - 16210682.53 16206290.43 498.80 309.56 229.07 16428367.50 243.84
78484epigrids-api 15862318.24 115.76 15865624.98 883.93 - - 15859950.52 757.64 TLim 642.24 - 8113.53
78484epigrids-sad 15176866.00 151.77 15180592.27 1118.02 15182602.75 - 15174716.43 420.56 TLim 589.46 15316872.94 353.13



TABLE V
WARM-STARTED RELAXATIONS, TRANSMISSION LINE WITH LARGEST FLOW TURNED OFF

Cutting-Plane Jabr SOCP

First Round Last Round Objective Time (s) Primal bound

Case Objective Time (s) Objective Time (s) Gurobi Knitro Mosek Gurobi Knitro Mosek Objective Time (s)

9241pegase INF 10.86 INF 10.86 INF INF INF 8.36 7.55 10.22 INF 8.37
9241pegase-api INF 7.55 INF 7.55 INF INF INF 7.92 8.02 10.22 INF 8.23
9241pegase-sad INF 7.33 INF 7.33 INF INF INF 8.14 8.10 10.31 INF 8.46
9591goc-api 1346470.95 10.42 1346859.06 60.76 1346969.75 1348591.44 1346437.99 39.30 17.98 36.89 1395829.51 28.08
9591goc-sad 1055823.53 11.51 1056267.57 101.64 1056447.48 1059382.10 1055501.31 45.09 35.41 37.18 1199276.44 29.90
ACTIVSg10k 2477043.05 9.94 2477537.79 75.85 - 2468821.96 2466981.35 44.81 21.60 17.52 LOC INF 7092.45
10000goc-api 2506671.15 8.06 2509971.69 46.10 2509846.00 2514991.16 2506236.75 31.03 33.95 32.15 2692320.35 23.28
10000goc-sad 1387382.65 8.76 1387515.89 66.14 1387480.33 1388870.68 1386283.75 26.53 34.24 24.14 1506187.88 108.19
10192epigrids-api 1849901.82 9.47 1850621.81 68.73 - 1850788.76 1849821.44 69.81 38.01 25.30 2021493.05 117.18
10192epigrids-sad 1673575.50 11.08 1674274.99 74.49 - 1674417.21 1673564.57 69.91 43.91 28.54 1734014.50 24.11
10480goc-api 2710040.46 11.33 2711100.23 73.85 - 2711224.27 2710520.15 95.40 27.99 56.58 2862699.50 225.06
10480goc-sad 2288069.64 13.47 2288969.47 98.88 - 2288069.23 2286864.08 106.54 37.65 59.43 2318279.76 26.13
13659pegase 379102.13 53.29 379163.58 199.96 379177.99 379182.14 - 33.18 345.83 31.90 386126.93 394.93
13659pegase-api INF 10.81 INF 10.81 INF INF INF 10.94 8.90 13.79 INF 11.55
13659pegase-sad INF 10.63 INF 10.63 INF INF INF 11.02 10.80 13.76 INF 11.73
19402goc-api 2450110.09 23.93 2451621.60 171.31 - 2451793.39 2450488.01 154.42 132.03 104.58 2587915.50 403.20
19402goc-sad 1954365.39 23.70 1954881.06 191.52 - 1955116.35 1953676.05 258.93 156.10 102.63 1985954.83 63.38
20758epigrids-api 3043482.21 20.44 3044690.46 133.92 - - 3041974.74 112.78 TLim 96.19 3132571.31 52.82
20758epigrids-sad 2612646.70 20.62 2612786.37 115.89 - - 2610315.41 169.67 TLim 73.02 2638560.64 47.87
24464goc-api 2560669.11 25.94 2561110.03 161.80 2550118.22 - 2559240.55 440.81 TLim 118.05 2684708.93 1663.63
24464goc-sad 2605179.75 26.98 2605369.03 166.81 - 2605474.23 2603609.34 564.27 74.69 124.19 2654344.45 76.39
ACTIVSg25k 6045885.88 27.52 6048122.86 238.67 6009656.52 6018875.03 6009500.57 144.28 65.42 81.41 LOC INF 1634.38
30000goc-api 1531110.55 25.02 1531159.95 130.30 - 1532013.41 1529195.12 195.74 135.71 119.77 LOC INF 3203.26
30000goc-sad - 45.60 - 45.60 - - 1130917.78 218.12 TLim 74.27 1324622.71 186.43
ACTIVSg70k 16426522.74 98.51 16426522.74* 98.51 - - - 150.77 TLim 129.60 LOC INF 3160.81
78484epigrids-api 15888353.48 104.32 15892229.11 916.88 15894055.55 - 15880422.78 322.22 TLim 625.74 16169740.92 2328.79
78484epigrids-sad 15179882.22 149.65 15185980.69 1151.33 15188085.99 - 15182701.65 437.59 TLim 594.84 15330674.69 272.41

D. Proof of Proposition 3

We solve the following convex QCQP analitically:

min
1

2
||(x, s)− (x, s)||2 s.t. ||x||2 ≤ s2.

For a multiplier λ ∈ R+, consider the Lagrangean L :=
1
2 ||(x, s)−(x, s)||

2+λ(||x||2−s2). The first order conditions
are x− x+ 2xλ = 0 and s− s− 2sλ = 0. Then the second
FOC implies s > 0 (since we assumed s > 0). Therefore,
λ = (s−s)

2s > 0, and by substituting λ in the first FOC we
obtain x = s

2s−sx, where 2s−s > 0 holds since λ > 0. Since
the projection must be on the boundary of the closed cone C
we have that (x, s) satisfies ||x||2 = s2 ⇐⇒ ||x|| = 2s− s,
i.e., s0 = ||x||+s

2 . Therefore, x0 = ||x||+s
2

x
||x|| .

The normal vector of the supporting hyperplane of C at
(x0, s0) is given by

(x, s)− (x0, s0) =

(
x′
(
1− s0
||x||

)
,
s− ||x||

2

)
=

(
||x|| − s

2

)(
x

||x||
,−1

)
Finally, by strong duality the separating hyperplane of inter-
est is atx+ bs ≤ 0, hence xtx− s||x|| ≤ 0.

E. Proof of Proposition 4

Since (x′)2 + (y′)2 > r2, there exists some 0 < t0 <
1 such that (t0x

′)2 + (t0y
′)2 = r2. It can be readily

checked that t0(x′, y′) is the projection of (x′, y′) onto Sr.

Therefore, the normal vector of the separating hyperplane
is (1 − t0)(x

′, y′) and the RHS is (1 − t0)t0||(x′, y′)||22, in
other words, (x′)x+(y′)y ≤ r||(x′, y′)||2 is the desired valid
inequality since 0 < t0 < 1.
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