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Abstract

We present two first-order primal-dual algorithms for solving saddle point for-
mulations of linear programs, namely FWLP (Frank-Wolfe Linear Programming)
and FWLP-P. The former iteratively applies the Frank-Wolfe algorithm to both the
primal and dual of the saddle point formulation of a standard-form LP. The latter
is a modification of FWLP in which regularizing perturbations are used in comput-
ing the iterates. We show that FWLP-P converges to a primal-dual solution with
error O(1/

√
k) after k iterations, while no convergence guarantees are provided for

FWLP. We also discuss the advantages of using FWLP and FWLP-P for solving
very large LPs. In particular, we argue that only part of the matrix A is needed at
each iteration, in contrast to other first-order methods.

1 Introduction

In recent years, data science applications have given birth to problems of very large
scale. This poses a problem for mature LP solvers that require solving a system of linear
equations at each iteration. First-order methods (FoMs) for linear programming aim
to solve LPs in such a way that their most expensive operation at each iteration is the
product of a matrix and a vector. Their goal is to provide an alternative to the practitioner
over LP algorithms such as the simplex method or interior point methods for large-scale
problems.

The Frank-Wolfe algorithm [7], also referred to as the conditional gradient algorithm,
is a FoM for minimizing a smooth convex objective function over a compact convex set.
A major benefit of the Frank-Wolfe algorithm is that each iteration requires only the
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solution of a linear optimization problem over a convex constraint set, a problem which
can be solved efficiently over many constraint sets used in practice. It is known that the
Frank-Wolfe algorithm converges at a rate of O(1/k) [12].

The focus of this paper is on finding optimal solutions to linear programs in standard
form, that is, solving the following optimization problem:

min cTx

s.t. Ax = b,

x ≥ 0,

(1)

where we assume throughout that (1) has an optimal solution. The dual linear program
associated with (1) is

max bTy

s.t. ATy ≤ c.
(2)

We propose two first-order primal-dual algorithms for simultaneously solving (1) and
(2) inspired by the Frank-Wolfe algorithm but using the non-standard step-size of 1/(k+1)
analyzed in [8]. We call our algorithms FWLP and FWLP-P. FWLP, first introduced in
[11], is derived from iteratively applying the Frank-Wolfe algorithm to the primal and
dual problems of a modified saddle-point formulation of (1):

min
x∈∆

max
y∈Γ

L(x,y) := cTx+ yT (b− Ax), (3)

where we define

∆ = {x ∈ Rn : x ≥ 0, eTx ≤ ξ} and Γ = [−η, η]m. (4)

Let (x∗,y∗) denote an optimal primal-dual pair of solutions to (1) and (2). The parameters
ξ, η > 0 are assumed to be chosen large enough to ensure that 2ξ ≥ ∥x∗∥1 and 2η ≥
∥y∗∥∞, thus describing redundant constraints. Despite their redundance, these constraints
are necessary for compactness of the feasible sets corresponding to the primal and dual
subproblems solved by FWLP. FWLP-P is a modification of the original FWLP algorithm
in which regularizing perturbations are introduced when computing the iterates. FWLP-
P is of theoretical importance to FWLP since we are able to prove the convergence of
FWLP-P but no convergence proof is known yet for FWLP.

With the ubiquity of very large-scale problems, FoMs for linear programming have seen
interest of late [1, 2, 4, 14]. Such methods typically apply existing ideas and algorithms
from continuous optimization to linear programming. Our work is related particularly
to [9], where Gidel et al. use the Frank-Wolfe algorithm to solve general convex-concave
saddle point problems:

min
x∈X

max
y∈Y

f(x,y), (5)

where f is a smooth convex-concave function and X × Y is a convex compact set. In
analyzing the convergence of their method, the authors introduce a potential function
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bounding the distance to optimality and then show that this potential function decreases
to zero at a given rate. We employ this technique in Section 3 to analyze the convergence
of FWLP-P. The results of [9] do not directly apply to (3) because their strong-convexity
assumption is not satisfied. The FWLP algorithm is also closely related to the Generalized
Fictitious Play Algorithm proposed by Hammond in her 1984 PhD thesis [10]. Applying
Hammond’s algorithm to (3) yields an algorithm very similar to FWLP, the only difference
being that the update of yk is based on xk instead of xk+1 like in FWLP. For a more in-
depth analysis of the similarities between FWLP and Hammond’s Generalized Fictitious
Play, see [11, Chapter 6.2].

The algorithms FWLP and FWLP-P are described in Section 2. Iterations of FWLP
are simpler and faster than those of FWLP-P, but we do not have a convergence proof
of FWLP. Our preliminary computational tests (not reported here) indicate that the two
algorithms converge at comparable rates.

Our convergence analysis of FWLP-P, presented in Section 3, first introduces a poten-
tial function Uk which we show that for the iterates of FWLP-P has distance O(1/

√
k)

from zero after k iterations. To complete the analysis, we show that as Uk → 0, FWLP-P
and FWLP converge to a primal-dual solution of (1). The potential Uk is similar to a tra-
ditional primal-dual optimality gap as discussed in Section 4. A secondary contribution of
this paper is the discussion in Section 5 of how FWLP and FWLP-P can be implemented
efficiently in a way that only part of the matrix A is needed at each iteration.

2 FWLP and FWLP-P

At each iteration, FWLP performs a Frank-Wolfe update on the primal and the dual
of (3) using the step-size 1/(k + 1) instead of the standard step-size of 1/(k + 2). The
step-size 1/(k + 1) was first analyzed by Freund and Grigas in [8]. Notably, FWLP uses
the information obtained from the primal update, xk+1, in the computation of the dual
update:

rk+1 := argminr

{
(c− ATyk)

Tr : r ∈ ∆
}
, (6)

xk+1 :=
k

k + 1
xk +

1

k + 1
rk+1, (7)

sk+1 := argmaxs
{
(b− Axk+1)

Ts : s ∈ Γ
}
, (8)

yk+1 :=
k

k + 1
yk +

1

k + 1
sk+1. (9)

It is not hard to see that steps (6) and (8) above can be written in closed form (for more
detail, see [11, Chapter 6]), giving rise to Algorithm 2.1. In this algorithm and for the
remainder of the paper, ei denotes the ith column of the identity matrix, whose length is
determined from the context.
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Algorithm 2.1 FWLP: A primal-dual algorithm for (1) based on Frank-Wolfe [11].

Require: Starting points x0 ∈ Rn
+,y0 ∈ Rm, constraint data A and b, and objective c.

Parameters: ξ, η > 0 such that 2∥x∗∥ ≤ ξ and 2∥y∗∥ ≤ η.
1: for k = 1, 2, . . . do
2: Determine i = argmint[c− A⊤yk]t.
3: if [c− A⊤yk]i ≥ 0 then
4: Step towards zero in x:

xk+1 :=
k

k + 1
xk. (10)

5: else
6: Step toward ξ for x(i), otherwise step toward zero for x(j), j ̸= i:

xk+1 =
k

k + 1
xk +

ξ

k + 1
ei. (11)

7: end if
8: Step towards±η for each coordinate in y according to the sign pattern of b−Axk+1:

yk+1 :=
k

k + 1
yk +

η

k + 1
sgn(b− Axk+1). (12)

9: end for

FWLP-P adds the regularizing perturbations ∥r∥2/(2
√
k) and ∥s∥2/(2

√
k) to steps

(10)/(11) and (12) in the above description of FWLP yielding (15) and (17) respectively
in Algorithm 2.2. We analyze this algorithm in the next section.

Note that the computation of sk+1 in FWLP-P is a separable optimization problem
allowing a simple median algorithm for each coordinate entry of sk+1. The computation
of rk+1 is more elaborate, but it requires only evaluation of the smallest (most negative)
elements of c− ATyk. We cover this in more detail in Section 5 but of note here is that
FWLP-P retains some of the benefit of FWLP, namely sub-linear time computation per
iteration, since only a part of A is required. Note also that the formulas (15) and (17) for
rk+1 and sk+1 can be written equivalently as projections:

rk+1 := proj∆(
√
k(ATyk − c)), (13)

sk+1 := projΓ(
√
k(b− Axk+1)). (14)

We discuss how to compute these projections efficiently in Section 5.2.
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Algorithm 2.2 FWLP-P: FWLP with perturbations.

Require: Starting points x0 ∈ Rn
+,y0 ∈ Rm, constraint data A and b, and objective c.

Parameters: ξ, η > 0 such that 2∥x∗∥ ≤ ξ and 2∥y∗∥ ≤ η.
1: for k = 1, 2, . . . do

rk+1 := argminr

{
(c− ATyk)

Tr +
∥r∥2

2
√
k
: r ∈ ∆

}
, (15)

xk+1 :=
k

k + 1
xk +

1

k + 1
rk+1, (16)

sk+1 := argmaxs

{
(b− Axk+1)

Ts− ∥s∥2

2
√
k
: s ∈ Γ

}
, (17)

yk+1 :=
k

k + 1
yk +

1

k + 1
sk+1. (18)

2: end for

3 Convergence analysis of FWLP-P

The forthcoming analysis derives a recursion (30) for potential Uk below satisfied by the
iterates of FWLP-P. The recursion has two perturbation terms δk+1 and ϵk+1 that are
subsequently bounded in (32) and (34). We show that the quantity Uk goes to 0 like
1/
√
k.

3.1 Deriving the recursion and potential function

Let us introduce

δk+1 := rT
k+2(c− ATyk+1) +

1

2
√
k + 1

∥rk+2∥2 − rT
k+1(c− ATyk+1)−

k

2(k + 1)
√
k
∥rk+1∥2.

(19)
Rearrange this equation:

δk+1 − rT
k+2(c−ATyk+1)−

1

2
√
k + 1

∥rk+2∥2 = −rT
k+1(c−ATyk+1)−

k

2(k + 1)
√
k
∥rk+1∥2.

(20)
Rewrite the first-term on the RHS of (20), that is, −rT

k+1(c− ATyk+1), using (18):

−rT
k+1(c− ATyk+1) = −rT

k+1

(
c− AT

(
k

k + 1
yk +

1

k + 1
sk+1

))
= − k

k + 1
rT
k+1(c− ATyk)−

1

k + 1
rT
k+1(c− ATsk+1). (21)
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Substitute (21) for the first term on the RHS in (20), moving the second term of (21)
−rT

k+1(c− ATsk+1)/(k + 1) to the LHS, thereby rewriting (20) as:

δk+1 − rT
k+2(c− ATyk+1)−

1

2
√
k + 1

∥rk+2∥2 +
1

k + 1
rT
k+1(c− ATsk+1)

= − k

k + 1
rT
k+1(c− ATyk)−

k

2(k + 1)
√
k
∥rk+1∥2

=
k

k + 1

(
−rT

k+1(c− ATyk)−
1

2
√
k
∥rk+1∥2

)
. (22)

The point of this algebra is that the 2nd and 3rd terms of the LHS correspond to the
RHS advanced from k to k + 1, thus setting up some of the terms of the recursion.

Next, introduce for k ≥ 2

ϵk+1 :=
k

k + 1

(
−sTk+1(b− Axk) +

√
k + 1

2k
∥sk+1∥2 + sTk (b− Axk)−

1

2
√
k
∥sk∥2

)
. (23)

Rewrite this equation as

ϵk+1 +
k

k + 1

(
sTk+1(b− Axk)−

√
k + 1

2k
∥sk+1∥2

)
=

k

k + 1

(
sTk (b− Axk)−

1

2
√
k
∥sk∥2

)
.

(24)
Rearranging (16) yields xk = (k+1)xk+1/k−rk+1/k. This means that the factor sTk+1(b−
Axk) appearing in the LHS of (24) may be rewritten

sTk+1(b− Axk) = sTk+1

(
b− A

(
k + 1

k
xk+1 −

1

k
rk+1

))
=

k + 1

k
sTk+1(b− Axk+1)−

1

k
sTk+1(b− Ark+1). (25)

Thus, the LHS of (24) is rewritten:

LHS of (24) = ϵk+1 +
k

k + 1

(
k + 1

k
sTk+1(b− Axk+1)−

1

k
sTk+1(b− Ark+1)−

√
k + 1

2k
∥sk+1∥2

)
= ϵk+1 + sTk+1(b− Axk+1)−

1

k + 1
sTk+1(b− Ark+1)−

1

2
√
k + 1

∥sk+1∥2.

(26)

Thus, we have rewritten (24) as

ϵk+1 + sTk+1(b− Axk+1)−
1

k + 1
sTk+1(b− Ark+1)−

1

2
√
k + 1

∥sk+1∥2

=
k

k + 1

(
sTk (b− Axk)−

1

2
√
k
∥sk∥2

)
. (27)
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Here, we see the correspondence between the 2nd and 4th term on the LHS with the two
terms on the RHS (with k advanced by 1).

Multiply (16) by c and rearrange to obtain

cTxk+1 −
1

k + 1
cTrk+1 =

k

k + 1
cTxk. (28)

Similarly, from (18),

−bTyk+1 +
1

k + 1
bTsk+1 = − k

k + 1
bTyk. (29)

Now add (22), (27), (28), and (29), noting that many quantities on the LHS cancel, while
all quantities on the RHS contain the factor k/(k + 1), to obtain a recursion:

δk+1 + ϵk+1 + Uk+1 =
k

k + 1
Uk, (30)

where for k ≥ 2

Uk := −rT
k+1(c−ATyk)−

1

2
√
k
∥rk+1∥2 + sTk (b−Axk)−

1

2
√
k
∥sk∥2 + cTxk − bTyk. (31)

We call Uk the potential function, and we will use this in our convergence analysis to
bound the distance from optimality of (1) and (2).

3.2 Bounding the potential function

Our next task is to lower bound δk+1 and ϵk+1 so that we can use (30) to develop a more
useful bound on the potential function.

Lemma 1. Recall ϵk+1 defined in (23). We have the bound

ϵk+1 ≥ − mη2

6k2
√
k − 1

.

Proof. By adding and subtracting multiples of ∥sk+1∥2 and and ∥sk∥2 inside (23), we
obtain

ϵk+1 =
k

k + 1
(ϵ′k+1 + ϵ′′k+1 + ϵ′′′k+1),

where

ϵ′k+1 := −sTk+1(b− Axk) +
1

2
√
k − 1

∥sk+1∥2 + sTk (b− Axk)−
1

2
√
k − 1

∥sk∥2,

ϵ′′k+1 :=

(
1

2
√
k − 1

− 1

2
√
k

)
∥sk∥2,

ϵ′′′k+1 :=

(√
k + 1

2k
− 1

2
√
k − 1

)
∥sk+1∥2.
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We see that ϵ′k+1 ≥ 0 because sk is the maximizer of sT (b − Axk) − ∥s∥2/(2
√
k − 1)

according to the definition (17), while sk+1 is some other feasible point, and ϵ′k+1 is the
difference between the two objective values. We also see that ϵ′′k+1 ≥ 0.

As for ϵ′′′k+1, use the estimate ∥sk∥ ≤
√
mη according to (17). Finally, by taking a

common denominator and observing that (k−1/(3k))2 ≤ k2−1, we obtain a lower bound
of −1/(6k2

√
k − 1) on the parenthesized factor. Thus, adding the three contributions,

ϵk+1 ≥ − mη2

6k2
√
k − 1

· k

k + 1
≥ − mη2

6k2
√
k − 1

. (32)

Lemma 2. Recall δk+1 defined in (19). We have the bound

δk+1 ≥ −D/k3/2,

where D is a positive constant depending on the data defined in (35) below.

Proof. Split δk+1 into four terms:

δk+1 = δ′k+1 + δ′′k+1 + δ′′′k+1 + δivk+1

where

δ′k+1 := rT
k+2(c− ATyk) +

1

2
√
k
∥rk+2∥2 − rT

k+1(c− ATyk)−
1

2
√
k
∥rk+1∥2,

δ′′k+1 := (rk+2 − rk+1)
TAT (yk − yk+1),

δ′′′k+1 :=

(
1

2
√
k + 1

− 1

2
√
k

)
∥rk+2∥2,

δivk+1 :=

(
1

2
√
k
− k

2(k + 1)
√
k

)
∥rk+1∥2.

We observe that δ′k+1 ≥ 0 because rk+1 is the minimizer of rT (c−ATyk)+∥r∥2/(2
√
k)

according to (15), whereas rk+2 is some other feasible point.
Next, we turn to δ′′k+1, a product of three factors. Starting on the first factor,

∥rk+2 − rk+1∥ = ∥proj∆(
√
k + 1(ATyk+1 − c))− proj∆(

√
k(ATyk − c)∥

≤ ∥
√
k + 1(ATyk+1 − c))−

√
k(ATyk − c)∥ (33)

= ∥(
√
k + 1−

√
k)(ATyk+1 − c) +

√
k(ATyk+1 − c− (ATyk − c))∥

= ∥(
√
k + 1−

√
k)(ATyk+1 − c) +

√
kAT (yk+1 − yk)∥

≤ |
√
k + 1−

√
k| · ∥ATyk+1 − c∥+

√
k∥A∥ · ∥yk+1 − yk∥.

Here, the first line follows from (13), the second (that is, (33)) from the fact that the
Lipschitz constant of projC(·) is 1 for any closed nonempty convex set C, the third line
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adds and subtracts the same term, and the last line applies the triangle inequality and
submultiplicativity.

Now we use the facts that
√
k + 1−

√
k ≤ 1/

√
k, and, from (18),

yk+1 − yk =
1

k + 1
(sk+1 − yk),

and finally, the bounds ∥yk∥ ≤
√
mη, ∥sk∥ ≤

√
mη to conclude that ∥yk+1 − yk∥ ≤

2
√
mη/(k + 1) and thus

∥rk+2 − rk+1∥ ≤ (1/
√
k) · (∥A∥

√
mη + ∥c∥) + (2/

√
k)∥A∥

√
mη.

This takes care of the first factor in δ′′k+1. The middle factor is bound by ∥A∥, and
the third factor ∥yk+1 − yk∥ is bounded by (see the previous paragraph) 2

√
mη/(k + 1).

Thus, overall, we obtain

δ′′k+1 ≥ −∥rk+2 − rk+1∥ · ∥A∥ · ∥yk − yk+1∥
≥ −C/k3/2,

where C depends on the problem data:

C ≤ 2∥A∥
√
mη(3∥A∥

√
mη + ∥c∥).

For δ′′′k+1, by finding a common denominator and then multiplying the resulting fraction

by
√
k +

√
k + 1, we obtain

δ′′′k+1 ≥ −1/(4k3/2) · ∥rk+2∥2 ≥ −1/(4k3/2) · ξ2.

Finally, one sees that δivk+1 ≥ 0. Putting all of these terms together yields:

δk+1 ≥ −D/k3/2, (34)

where

D := 2∥A∥
√
mη(3∥A∥

√
mη + ∥c∥) + ξ2

4
. (35)

Combining (30), Lemma 1, and Lemma 2, we now have for all k ≥ 2

Uk+1 ≤
k

k + 1
Uk +

D

k3/2
+

mη2

6k2
√
k − 1

.

In fact, since
√
k ≥ 1/

√
k − 1 for all k ≥ 2, we can enlarge D to obtain the bound

Uk+1 ≤
k

k + 1
Uk +

D̄

k3/2
, (36)

where

D̄ := D +
mη2

6
.

With this bound, we prove the following bound on Uk.
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Theorem 1. Recall Uk defined in (31). We have the bound

Uk+1 ≤
F√
k
,

for all k ≥ 2, where F := max{
√
2U2, 6D̄}.

Proof. The k = 2 case follows immediately from the definition of F . Suppose inductively
that Uk ≤ F/

√
k. Then we check:

Uk+1 ≤
k

k + 1
Uk + D̄/k3/2

≤ kF

(k + 1)
√
k
+ D̄/k3/2

=
k2F + D̄(k + 1)

(k + 1)k3/2

=
1√
k + 1

· k
2F + D̄(k + 1)√
k + 1 · k3/2

≤ 1√
k + 1

· k2F + D̄(k + 1)

(
√
k + 1/(3

√
k))k3/2

=
1√
k + 1

· k
2F + D̄(k + 1)

k2 + k/3

≤ 1√
k + 1

· k
2F + kF/3

k2 + k/3

=
1√
k + 1

· F.

Here, we used (36) for the first line, the induction hypothesis for the second line, the
inequality

√
k + 1 ≥

√
k+1/(3

√
k) for k ≥ 1 on the 5th line (easy to confirm by squaring)

and the assumption D̄ ≤ F/6 on the 7th line, which implies for all k ≥ 1 that D̄(k+1) ≤
Fk/3.

Thus, Uk ≤ F/
√
k.

The perturbation terms from (15) and (17) in FWLP-P were essential to this analysis.
Without them, as in FWLP, there is no useful bound on how much the primal step rk+2

can differ from rk+1 when the index of the most-violated constraint changes from one
iteration to the next. With the perturbations, we are able to obtain the inequality (33).

3.3 Proving convergence of the potential function implies con-
vergence of the iterates

We have shown that the potential function Uk decreases at a rate of O(1/
√
k) as k

increases. It remains to show that the potential function bounds the distance of the
iterates from an optimizer. We first need the following lemmas. Both lemmas have the
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same flavor: if an infeasible point for an LP improves on the optimal objective value, then
the amount of objective improvement is bounded in terms of the amount of infeasibility.

Lemma 3. Let p∗ denote the optimal value of (1). Assume p∗ is finite, i.e., (1) is
feasible and bounded. Let (x∗,y∗) be an arbitrary optimizing primal-dual pair of (1) and
(2). Then for an arbitrary x̂ ≥ 0,

cT x̂ ≥ p∗ − ∥y∗∥∞∥b− Ax̂∥1. (37)

Proof. Select an arbitrary optimizing pair (x∗,y∗) for (1). Let k := b − Ax̂. Consider
the LP,

minx cTx
s.t. Ax = b− k,

x ≥ 0.
(38)

This LP is clearly feasible since x̂ satisfies the constraints. It is also bounded, as argued by
contradiction: If (38) were feasible and unbounded, then there would exist a certificate of
unboundedness, which is a vector w such that w ≥ 0, Aw = 0, and cTw < 0. However,
such a w would also certify unboundedness of (1), which we have already assumed to be
bounded.

Therefore, the dual of (38), which is,

maxy (b− k)Ty
s.t. ATy ≤ c,

(39)

has an optimal solution, say ŷ. Since y∗ is also feasible for (39), we have the following
chain of inequalities

p∗ = bTy∗ (by strong duality of (1))

= (b− k)Ty∗ + kTy∗

≤ (b− k)Ty∗ + ∥k∥1 · ∥y∗∥∞
≤ (b− k)T ŷ + ∥k∥1 · ∥y∗∥∞ (since ŷ maximizes (39))

≤ cT x̂+ ∥k∥1 · ∥y∗∥∞. (by weak duality between (38) and (39))

Recalling k = b− Ax̂, the final line in this chain establishes (37).

Lemma 4. Let d∗ denote the optimal value of (2). Assume d∗ is finite, i.e., (2) is
feasible and bounded. Let (x∗,y∗) be an arbitrary optimizing primal-dual pair of (1) and
(2). Then for an arbitrary ŷ,

bT ŷ ≤ d∗ + ∥x∗∥1 · l, (40)

where l measures the infeasibility of ŷ, that is,

l := max(0,max
j

{eT
j (A

T ŷ − c)}). (41)
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Proof. This proof is analogous to the previous proof. Let (x∗,y∗) be an arbitrary primal-
dual optimizer of (2). Consider the dual-form LP given by

maxy bTy
s.t. ATy ≤ c+ le,

(42)

where l is from (41) and e denotes the vector of all 1’s. This LP is clearly feasible since
ŷ satisfies the constraint. Furthermore, it is bounded as argued by contradiction. If (42)
were feasible and unbounded, there would exist a certificate of unboundedness, that is, a
vector z such that ATz ≤ 0 and bTz > 0. However, this certificate would also certify the
unboundedness of (2), which is assumed to be bounded.

Therefore, the dual of (42), which is

minx (c+ le)Tx
s.t. Ax = b,

x ≥ 0,
(43)

has an optimal solution which we denote x̂. Since x∗ is also feasible for (43), we have the
following chain of inequalities:

d∗ = cTx∗ (by strong duality of (2))

= (c+ le)Tx∗ − leTx∗

≥ (c+ le)Tx∗ − l∥x∗∥1
≥ (c+ le)T x̂− l∥x∗∥1 (by the optimality of x̂ in (43))

≥ bT ŷ − l∥x∗∥1 (by weak duality betwen (42) and (43)).

The final line after rearrangement is (40).

We are now ready to prove the penultimate theorem that shows convergence of FWLP-
P. We show that, assuming a primal-dual optimal LP solution exists and ξ, η have been
chosen correctly, the Uk plus terms that tend to 0 bound the distance from optimality.
Note that an analog of Theorem 2 can be derived for FWLP using a similar proof. This
analog is not presented here since we are not able to show that Uk → 0 for FWLP.

Theorem 2. Suppose k ≥ 2. Then,

xk ≥ 0, (44)

∥b− Axk∥1 ≤
2Uk

η
+

ξ2

η
√
k
+

η√
k − 1

, (45)

max(0,max
j

{eT
j (A

Tyk − c)}) ≤ 2Uk

ξ
+

ξ√
k
+

η2

ξ
√
k − 1

, (46)

cTxk − bTyk ≤ Uk, (47)

provided
ξ ≥ 2∥x∗∥1, η ≥ 2∥y∗∥∞. (48)
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Proof. It is immediate from the algorithm that (44) holds. Next, notice that sk is a
solution to

max
s∈Γ

{
sT (b− Axk)−

1

2
√
k − 1

∥s∥2
}
,

so for arbitrary s ∈ Γ,

sTk (b− Axk)−
1

2
√
k
∥sk∥2 ≥ sTk (b− Axk)−

1

2
√
k − 1

∥sk∥2,

≥ sT (b− Axk)−
1

2
√
k − 1

∥s∥2.
(49)

Setting s = 0 gives

sTk (b− Axk)−
1

2
√
k
∥sk∥2 ≥ 0.

Similarly, rk+1 is a solution to

min
r

{
rT (c− ATyk) +

1

2
√
k
∥r∥2

}
, (50)

so for arbitrary r ∈ ∆,

rT
k+1(c− ATyk) +

1

2
√
k
∥rk+1∥2 ≤ rT (c− ATyk) +

1

2
√
k
∥r∥2. (51)

Setting r = 0 gives

−rT
k+1(c− ATyk)−

1

2
√
k
∥rk+1∥2 ≥ 0. (52)

The above two results imply with (31) that Uk ≥ cTxk − bTyk, thus establishing (47).
Setting s := η · sgn(b− Axk) ∈ Γ in (49) gives the bound

sTk (b− Axk)−
1

2
√
k
∥sk∥2 ≥ η∥b− Axk∥1 −

1

2
√
k − 1

mη2. (53)

Similarly, set r := ξej where j = argmaxj{eT
j (A

Tyk − c)}. Noting r ∈ ∆, we can use
(51) to obtain the bound

−rT
k+1(c− ATyk)−

1

2
√
k
∥rk+1∥2 ≥ ξ ·max

j
{eT

j (A
Tyk − c)} − 1

2
√
k
ξ2.

In fact, from (52) the left-hand side above is nonnegative. It follows that we can strengthen
the above bound to

−rT
k+1(c− ATyk)−

1

2
√
k
∥rk+1∥2 ≥ ξ · l − 1

2
√
k
ξ2, (54)

13



where l = max(0,maxj{eT
j (A

Tyk − c)}). Using Lemma 3, Lemma 4, (31), (53), and (54),
we may write

Uk = −rT
k+1(c− ATyk)−

1

2
√
k
∥rk+1∥2 + sTk (b− Axk)−

1

2
√
k
∥sk∥2 + cTxk − bTyk,

≥ ξ · l − 1

2
√
k
ξ2 + η∥b− Axk∥1 −

1

2
√
k − 1

mη2 + cTxk − bTyk,

≥ ξ · l − 1

2
√
k
ξ2 + η∥b− Axk∥1 −

1

2
√
k − 1

mη2 + p∗ − ∥y∗∥∞∥b− Axk∥1 − d∗ − ∥x∗∥1 · l,

≥ ξ · l − 1

2
√
k
ξ2 + η∥b− Axk∥1 −

1

2
√
k − 1

mη2 + p∗ − d∗ − η

2
∥b− Axk∥1 −

ξ

2
· l

=
ξ

2
· l − 1

2
√
k
ξ2 +

η

2
∥b− Axk∥1 −

1

2
√
k − 1

mη2,

where the fourth line used the assumption (48) and the final line used the fact that p∗ = d∗.
We are left with the bound

ξ

2
· l + η

2
∥b− Axk∥1 ≤ Uk +

ξ2

2
√
k
+

mη2

2
√
k − 1

,

where both terms on the left are nonnegative. It follows that each term must be individ-
ually bounded by the right-hand side above. This establishes (45) and (46).

Theorem 3. The iterates of FWLP-P converge to an ϵ-optimal solution of (1) and its
dual (2) after O(1/ϵ2) iterations.

Proof. This follows immediately by applying the bound from Theorem 1 in Theorem 2.

4 Relating Uk to the standard primal-dual gap

Consider the general saddle-point problem

min
x∈X

max
y∈Y

f(x,y).

A standard measure of the optimality gap of an iteration (xk,yk) used in the analysis
of many primal-dual algorithms for saddle-point problems (for example, [6, 9, 15]) is the
primal-dual gap:

max {f(xk, ŷk)− f(x̂k,yk) : x̂k ∈ X , ŷk ∈ Y} . (55)

Obviously, the solution to (55) is

x̂k = argmin{f(x,yk) : x ∈ X},
ŷk = argmax{f(xk,y) : y ∈ Y}.

It is noted in [2] that for the saddle-point problem associated with LP

min
x≥0

max
y∈Rm

cTx+ yT (b− Ax),
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the primal-dual gap can be infinite, since the feasible set Rn
+ ×Rm is unbounded. This is

not an issue for the modified saddle-point formulation (3) used in our analysis, since the
feasible set ∆× Γ is bounded by virtue of the redundant constraints.

Recall the definition of L(x,y) from (3). Let

Mk := max{L(xk, s)− L(r,yk) : (r, s) ∈ ∆× Γ},

which is the specialization of (55) to our setting. We argue that Mk is a perturbation of
Uk via the following bound:

|Mk − Uk| =
∣∣∣∣max
s∈Γ

[(b− Axk)
Ts+ cTxk]−min

r∈∆
[(c− ATyk)

Tr + bTyk]− Uk

∣∣∣∣
≤

∣∣∣∣max
s∈Γ

[
(b− Axk)

Ts+ cTxk −
∥s∥2

2
√
k − 1

]
−min

r∈∆

[
(c− ATyk)

Tr + bTyk +
∥r∥2

2
√
k

]
− Uk

∣∣∣∣
+ max

(r,s)∈∆×Γ

∣∣∣∣ ∥s∥2

2
√
k − 1

+
∥r∥2

2
√
k

∣∣∣∣
≤

∣∣∣∣[(b− Axk)
Tsk + cTxk −

∥sk∥2

2
√
k − 1

]
−
[
(c− ATyk)

Trk+1 + bTyk +
∥rk+1∥2

2
√
k

]
− Uk

∣∣∣∣
+

mη2

2
√
k − 1

+
ξ2

2
√
k

≤ mη2 + ξ2

2
√
k − 1

+O(k−3/2).

Here, the second line adds and subtracts the same terms and then applies the triangle
inequality for | · |. The third line uses the definitions of sk from (17) and rk from (15).
The fourth line uses (31), noting that the terms all cancel out except for the difference
between a denominator of 2

√
k − 1 versus a denominator of 2

√
k. This small remainder

is written as O(k−3/2) on the fourth line.

5 Efficient implementation of FWLP and FWLP-P

A major advantage of FWLP and FWLP-P is their low computational cost per iteration.
Näıve implementations of Algorithms 2.1 and 2.2 have iteration cost bounded by the cost
of a full matrix-vector product. We discuss below how this can be significantly improved
with an efficient implementation.

5.1 FWLP

Consider, e.g., the iteration k = 1. Suppose we store Ax1. In Algorithm 2.1 we can
perform an extra step to update Ax2 by either computing

Ax2 =
k

2
Ax1,
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or

Ax2 =
k

2
Ax1 +

ξ

2
Aei,

where i is the index of the most violated dual constraint, computed as argmin{ci −
eT
i A

Ty1}. Ignoring the cost of computing i, such an update runs in O(m+ n) operations
per iteration (cost of updating xk and Axk). Note that O(m+n) can be reduced to O(m)
if we keep track of the product of scaling factors k/(k+1) of xk+1 in a separate variable.
In contrast, the näıve implementation of the primal update in FWLP, where one instead
performs matrix-vector products, runs in O(mn) operations per iteration.

The dual update for, e.g., k = 1, is given by

y2 =
1

2
y1 +

η

2
sgn(b− Ax2),

which also runs in O(m) since Ax2 has already been computed in the primal step. The
näıve implementation again takes O(mn) operations.

To improve the cost of computing the index i, first note that in Algorithm 2.1 we
only need to compute eT

i A
Tyk for indices i such that there is a possibility that i =

argminj{cj−eT
j Ayk}. This could be implemented by a data structure to store the indices

[n] in some order so that only the possibly most infeasible indices need to be considered
at each iteration. In more detail, suppose jk indexes the most violated dual constraint on
iteration k, i.e., jk = argminj[c−ATyk]j. Suppose j ∈ [n] is some other index. Based on
the value of [c−ATyk]j−[c−ATyk]jk and prior knowledge of the stepsize (which tends to 0
with k), one knows in advance that constraint j could not be the most violated constraint
prior to iteration k′, where k′ is a computable index satisfying k′ > k. Then constraint j
does not even have to be considered by the algorithm on all iterations between k and k′.

Thus, the algorithm maintains some subset of constraints Sk on iteration k that need
to be examined for possibly being the most violated. The computation of ATyk in the
primal update thus runs in O(|Sk| · m) plus the cost of updating the data structure to
obtain Sk+1. Naturally, the estimate O(|Sk| ·m) is further reduced if A is sparse.

The total cost of iteration k for this implementation of FWLP is thus

O(n+ |Sk| ·m),

plus the cost of updating the proposed data structure and precomputation. For large
problems, one would expect that |Sk| ≪ n, allowing significant speedup to be achieved by
using the proposed efficient implementation of FWLP. And, as mentioned earlier, the “n”
term may be dropped with a careful implementation for updating xk, and the “|Sk| ·m”
term is reduced in the presence of sparsity.

5.2 FWLP-P

The iterations of FWLP-P differ from FWLP in that the steps (15) and (17) are more
computationally involved.
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To solve (15), we equivalently consider the projection form (13), which amounts to
solving the quadratic programming problem

arg min
x

1

2
∥w0 − x∥2

s.t. eTx ≤ ξ,

x ≥ 0,

where w0 =
√
k(ATyk − c). Expanding, rescaling, and dropping constant terms gives the

equivalent problem

arg min
x

−wTx+
1

2
∥x∥2

s.t. eTx ≤ 1,

x ≥ 0,

(56)

where w = w0/ξ. The KKT conditions of (56) are as follows

−w + x+ µe− z = 0, (57)

eTx ≤ 1, (58)

µ(eTx− 1) = 0, (59)

zTx = 0, (60)

x, µ,z ≥ 0. (61)

We first prove the following lemma, which will become useful once we define our algorithm
for solving (56).

Lemma 5. Suppose (x, µ,z) form a KKT solution for (56) with eTx = 1. There must
exist an index j ∈ [n] such that wj > µ.

Furthermore, we have the following cases regardless of whether eTx = 1.

(i) If wj > µ for some j ∈ [n] , then xj > 0 and zj = 0.

(ii) If wj < µ for some j ∈ [n], then xj = 0 and zj > 0.

(iii) If wj = µ for some j ∈ [n], then xj = zj = 0.

Proof. By (57), we have
wi = xi − zi + µ (62)

for all i ∈ [n]. The condition eTx = 1 along with the nonnegativity of x from (61) implies
that there must exist an index j ∈ [n] such that xj > 0. Now, the complementarity
condition (60) along with the nonnegativity of z from (61) imply that zj = 0. It follows
from (62) that wj = xj + µ > µ.

Now for (i): suppose, wj > µ for some j ∈ [n]. By (62), xj − zj +µ > µ, which implies
xj > zj. But since zj ≥ 0 it follows that xj > 0. By applying (60) we see that zj = 0.
The proof for (ii) is analogous.

For (iii) suppose, wj = µ for some j ∈ [n]. By (62), xj − zj + µ = µ, which implies
xj = zj. By applying (60) we must have xj = zj = 0.
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We now state Algorithm 5.1 for solving (56). Note that the algorithm computes the
KKT multipliers µ, z as well as x in order to illustrate its correctness, but in the FWLP-P
code, the computation of z is not needed.

Algorithm 5.1 An efficient algorithm for finding a KKT solution of (56).

Require: Linear term coefficient w ∈ Rn.

1: Sort w and store result in w̄, along with the permutation function σ : [n] → [n] which
maps the indices of w̄ back to their original positions in w:

(w̄, σ) := sort(w). (63)

2: Compute the cumulative sum of w̄:

S := cumsum(w̄). (64)

3: for j = 1, 2, . . . , n do
4: Compute

µ :=
S(j)− 1

j
(65)

5: if w̄j ≥ µ and either j = n, or w̄j+1 ≤ µ then
6: Record index j in the variable J .
7: break
8: end if
9: end for
10: if µ ≥ 0 then
11: Construct a KKT solution such that eTx = 1:

x := 0,

x(σ(1 : J)) := w̄(1 : J)− µ · e(1 : J),

z := µe−w,

z(σ(1 : J)) := 0.

(66)

12: return
13: end if
14: Otherwise, construct a KKT solution such that eTx < 1:

x := max(0,w),

µ := 0,

z := x−w.

(67)

15: return

We now prove that Algorithm 5.1 is finite and correct.

Theorem 4. Algorithm 5.1 finds a KKT solution to (56) in finite time.
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Proof. It is clear that the algorithm runs in linear time except for the sorting.
Consider the case where (x, µ,z) satisfy the KKT conditions with eTx = 1. Then by

Lemma 5 there must exist an index j ∈ [n] such that wj > µ, so J must be well-defined
on line 6 of the algorithm. Moreover, this means that for all j ∈ [J ], w̄j ≥ µj, and by
applying Lemma 5 we get that xj ≥ 0 and zj = 0 for all j ∈ [J ]. A similar argument tells
us that w̄j < µj and thus xj = 0, zj > 0 for j ∈ J ′ := [n] \ [J ]. Using that eTx = 1 and
that the entries of x must be zero outside of [J ], as well as zj = 0 for all j ∈ [J ], we may
multiply (57) by eT

J and rewrite to obtain:

eT
Jw = eT

Jx− eT
Jz + Jµ = 1 + Jµ,

where eJ is taken to be the vector with ones in entries [J ] and zero everywhere else.
Rearranging gives the formula for µ used in Algorithm 5.1:

µ =
S(J)− 1

J

where we note that S(J) = eT
Jw. It follows from assumption of this case eTx = 1 that

µ ≥ 0 in line 10 of the algorithm. After equations (66), the algorithm has constructed an
x such that

xJ = wJ − µeJ , xJ ′ = 0,

and a z such that
zJ = 0, zJ ′ = µeJ ′ −wJ ′ .

It is now easy to check that the (x, µ,z) constructed by the algorithm satisfy the KKT
conditions.

Now consider the case where (x, µ,z) satisfy the KKT conditions with eTx < 1.
From (59), µ = 0 and clearly the x and z defined in (67) satisfy the remaining KKT
conditions.

The cost of Algorithm 5.1 is bounded below by the cost of either the matrix-vector
product ATyk in computing w or the sort (63), which take O(mn) and O(n log(n))
operations respectively. Meanwhile, (16) takes O(n) operations, so overall the two run in
O(n+mn) operations if we assume m ≥ log(n).

Algorithm 5.1 could be sped up by noticing that in order to construct x,we need only
knowledge of the most-violated dual constraints, i.e., those for which c − ATyk is most
negative. Recall from Section 5.2 that the computation of ATyk would take O(|Sk| ·m)
operations, plus the cost of updating the data structure storing the indices Sk. The
sorting computation cost would also be decreased since only the largest entries would
need sorting.

We now consider the dual updates (17) and (18). Step (17) can be solved by considering
the projection form projΓ(

√
k(b−Axk+1)) and noting that this has a well known closed-

form solution [5, Lemma 6.26]:

sk+1(i) = max(−η,min(η,
√
k[b− Axk+1]i)),

for each i ∈ [m]. The cost of computing Axk+1 is again O(|Sk| ·m) because we can scale
Axk−1 and then add the update Ark/k. The number of nonzero entries in rk is |Sk+1|,
which is the number of entries that partake in the projection.
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6 Conclusion

We proposed two primal-dual first-order algorithms, namely FWLP and FWLP-P, for
solving linear programming problems and discussed how both algorithms can be imple-
mented in such a way that significantly improves their efficiency, especially for large-scale
problems. Our convergence analysis of FWLP-P shows that the algorithm converges to a
primal-dual solution with error O(1/

√
k) after k iterations. Despite this, no convergence

proof is known at this time for the simpler and faster algorithm FWLP, and analysis of
this algorithm is a topic for future research.

Another interesting question is how FWLP and FWLP-P can cope with primal or dual
infeasibility. It should be noted that our proof that Uk → 0 (Theorem 1) did not depend
on feasibility nor on the correct choice of ξ and η, so monitoring Uk cannot diagnose these
conditions. We remark that other first-order algorithms have a theory for infeasibility
detection; see, e.g., [3] and [13]. A related question is how the algorithm can detect
whether the two parameters ξ and η of FWLP and FWLP-P have been chosen correctly.

We showed that FWLP-P converges in the sense that the primal and dual infeasibility
measures tend to 0, as does the duality gap. However, we did not prove convergence of
the iterates. In the case that the LP has multiple optimizers, an open question is whether
the algorithms converge to a particular optimizer.
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