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Abstract

The singularity degree plays a crucial role in understanding linear and semidefinite pro-
gramming, providing a theoretical framework for analyzing these problems. It is defined as the
minimum number of facial reduction (FR) steps needed to reach strict feasibility for a convex
set. On the other hand, the maximum singularity degree (MSD) is the maximum number of
steps required. Recent progress in the applications of MSD has motivated us to explore its
fundamental properties in this paper.

For semidefinite programming, we establish a necessary condition for an FR sequence to be
the longest. Additionally, we propose an upper bound for MSD, which can be computed more
easily. By leveraging these findings, we prove that computing MSD is NP-hard. This complexity
result complements the existing algorithms for computing the singularity degree found in the
literature. For linear programming, we provide a characterization for the longest FR sequences,
which also serves as a polynomial-time algorithm for constructing such a sequence. In addition,
we introduce two operations that ensure the longest FR sequences remain the longest. Lastly,
we prove that MSD is equivalent to a novel parameter called the implicit problem singularity.
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1 Introduction

Let F be a convex set defined as the intersection of an affine subspace and a convex cone K.
The way in which F is described is important for the efficiency of numerical algorithms in solving
optimization problems constrained by F . When F is poorly described, these algorithms are prone
to encountering numerical issues, leading to unreliable outcomes. A theoretical framework known
as the Facial Reduction Algorithm (FRA), introduced by Borwein and Wolkowicz, offers insights
into addressing numerical challenges that emerge due to the absence of strict feasibility in the
problem formulation, see [1–3]. Since its proposal, the FRA has enhanced the speed and stability
of computations across numerous Semidefinite Programming (SDP) problems and has shed light
on the geometric properties of the convex sets involved.

From a computational perspective, the efficacy of the FRA in numerically solving SDP problems
is initially demonstrated through the quadratic assignment problem in the study by Zhao et al.
[23]. Recent advancements in first-order methods, especially when integrated with the FRA, have
enhanced the ability of solving SDP relaxations for large-scale problems, see [5, 7, 17,22,24].

The FRA is also an important tool in theory. Sturm [21] introduces a parameter called sin-
gularity degree which is the smallest number of facial reduction steps to recover strict feasibility;
and it provides an important error bound for F . This parameter has been used to obtain many
exciting new results for different choices of K. For example, Drusvyatskiy, Li and Wolkowicz [4]
derive convergence rate of the alternate projection method for semidefinite feasibility problems that
do not satisfy Slater’s condition; Pataki and Touzov [18] elucidate the occurrence of exponentially
large solutions in SDP by using singularity degree. Lourenço [14] develops error bound result that
does not require constraint qualification. Lindstrom, Lourenço and Pong [13] compute tight error
bounds for the exponential cone feasibility problem.

A closely related parameter, known as the maximum singularity degree (MSD), which represents
the maximum number of facial reduction steps required to restore strict feasibility, has also been
studied recently. In their work [12], Ito and Lourenço establish an upper bound for the Carathéodory
number of convex cones in relation to MSD. Nishijima [16] explores the longest chain of faces of
completely positive and copositive cones. Im and Wolkowicz [11] use MSD to derive an improved
Barvinok-Pataki bound on SDP rank. Lourenço, Muramatsu and Tsuchiya [15] introduce a new
concept called distance to polyhedrality. Im and Wolkowicz [10] provide numerical evidence that
MSD can negatively affect the behavior of numerical algorithms in linear programming (LP).

We provide new theoretical results about MSD for both LP and SDP. Our main contributions,
presented in the sequence they appear within the paper, include:

• A necessary condition for an FR sequence to be one of the longest for SDP.

• An upper bound for MSD that can be computed more easily.

• NP-hardness of the MSD for SDP.

• Two useful operations for manipulating the longest FR sequences for LP.

• A characterization of the longest FR sequences for LP.

• The equivalence between MSD and the implicit problem singularity for LP.

The paper is organized as follows. In Section 2, we introduce the notations, and review the FRA
in a general setting and formally define MSD. In Section 3.1, we examine the FRA for SDP. In
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Section 3.2, we introduce and analyze the minimal FR sequences for SDP. In Section 3.3, we provide
an upper bound for MSD. In Section 3.4, we show that computing MSD for SDP is NP-hard. In
Section 4.1, we revisit the FRA for LP. In Section 4.2, we explore the minimal FR sequences for
LP. In Section 4.3, we investigate operations that preserve minimality of FR sequences for LP. In
Section 4.4, we apply these operations to characterize the longest FR sequences through the minimal
FR sequences for LP. In Section 4.5, we establish the equivalence between the MSD and the implicit
problem singularity, discussing their relationship with degeneracy and potential applications.

2 Notation and Preliminaries

Throughout, Sn is the set of symmetric matrices of order n. Sn+ is the set of positive semidefinite
matrices of order n. Given X,Y ∈ Sn, 〈X,Y 〉 = tr(XY ) is the trace inner product between X and
Y . For any M ∈ Rn×n, the range space of M is Im(M) := {Mx | x ∈ Rn}; the kernel of M is
ker(M) := {x |Mx = 0}. Denote by ei the i-th unit vector, with the dimension determined by the
context. The n× n identity matrix is denoted by In. For any positive semidefinite matrix W ∈ Sn+
of rank r, the set of orthornormal matrices whose columns span the null space of W is denoted by

N (W ) =
{
P ∈ Rn×(n−r) | P TP = In−r, Im(P ) = ker(W )

}
.

For any vector w ∈ Rn, the i-th entry of w is denoted by w(i). If S ⊆ {1, . . . , n}, then w(S)
is the subvector of w consisting of entries in w(i) for i ∈ S. The support of w is the subset
supp(w) := {i | w(i) 6= 0} ⊆ {1, . . . , n}.

Let K be a closed convex cone in a finite-dimensional real Euclidean space V. Let A : K → Rm
be a linear operator, and b ∈ Rm an m-dimensional vector. Define the convex set

F (K) := K ∩ L where L := {X ∈ V | A(X) = b} . (1)

Throughout, we assume that F (K) 6= ∅, and we often write F for F (K) to simplify the notation
when K is clear from the context. We say Slater’s condition holds for F (K) if it contains a feasible
solution in the relative interior of K. When Slater’s condition is not met, we can apply a conceptual
method called the Facial Reduction Algorithm (FRA) to compute the minimal face of K containing
the feasible region F (K). To find this minimal face, we attempt to identify an element in the set

K∗ ∩ L⊥. (2)

Any element W in this set is an exposing vector of K containing the feasible region F (K). Let K1

be the face of K exposed by W . If W additionally satisfies

W /∈ K⊥, (3)

then K1 is a proper face of K. In this case, we can equivalently reformulate F (K) as a reduced
feasible set F (K1). It is a fundamental result that if F (K) fails to meet Slater’s condition, then there
always exists an element W satisfying the above conditions. Utilizing this fact, the FRA achieves
a sequence of proper faces of K containing F (K) through an iterative process, which converges to
the minimal face in a finite number of steps. Specifically, the FRA follows this iterative scheme
with K1 := K,

1. Find Wi ∈ K∗i ∩ L⊥ such that Wi /∈ K⊥i . If it does not exist, then we stop.
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2. Let Ki+1 ← Ki ∩W⊥i .

At the end of the FRA, we obtain the so-called FR sequence K1 ) · · · ) Kd+1 such that Kd+1

is the smallest face of K containing F (K). An FR step is a completed iteration in the FRA, i.e.,
both lines are executed. The length of the FR sequence is d which is the number of FR steps. The
associated sequence of exposing vectors (W1, . . . ,Wd) comprises exactly d terms. For i < d+ 1, the
subsequence K1 ) · · · ) Ki is referred to as a partial FR sequence since the final face Ki is not yet
the minimal face.

The singularity degree SD(F ) is the length of the shortest FR sequence for F . A shortest
FR sequence can be obtained by picking an exposing vector in the relative interior of K∗i at each
FR step. Generally, we have SD(F ) ≥ 1 and the inequality can be strict for K = Sn+; however,
SD(F ) = 1 always holds for K = Rn.

The maximum singularity degree (MSD) of F , denoted by MSD(F ), is the length of the longest
FR sequences for F . In contrast to the singularity degree, numerous fundamental questions about
MSD remain unanswered, such as how to identify the longest FR sequences for both LP and SDP.
This paper aims to address these questions.

3 Maximum Singularity Degree for Semidefinite Programming

3.1 FRA for SDP

Let K = Sn+ be the set of positive semidefinite matrices of order n. Given symmetric matrices
A1, . . . , Am ∈ Sn, we define the linear operator A : Sn+ → Rm by

A(X) :=

 〈A1, X〉
...

〈Am, X〉

 ∈ Rm.

Let b ∈ Rm be given. Then (1) becomes a semidefinite programming (SDP) problem, i.e.,

F (Sn+) := Sn+ ∩ L where L := {X ∈ Sn | A(X) = b} . (4)

To provide a more explicit description of the FRA applied to SDP, we include the following well-
known results.

• Note that L is an affine subspace, and its orthogonal complement is given by

L∗ =
{
A∗(y) ∈ Sn | bT y = 0

}
,

where A∗ is the adjoint operator of A.

• Any non-empty face K1 of Sn+ can be described by a matrix V ∈ Rn×r with orthonormal
columns, as expressed through the relation

K1 =
{
X ∈ Sn+ | ImX ⊆ ImV

}
.

The matrix V is termed a facial range vector associated with the face K1. Thus, we can write
V and K1 interchangeably without causing confusion. For example, F (V ) is understood to
mean F (K1). The dual cone of the face K1 is

K∗1 =
{
W ∈ Sn | V TWV ∈ Sr+

}
.
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Now we are prepared to detail the FRA for SDP more explicitly. At the i-th iteration, the face Ki
is associated with a specific facial range vector Vi ∈ Rri . As previously mentioned, we will refer to
Ki using its facial range vector Vi for clarity. Consequently, V1 is always assumed to be the n× n
identity matrix In for SDP. The set of exposing vectors K∗i ∩ L⊥ is

D(Vi) :=
{
A∗(y) ∈ Sn | V T

i A∗(y)Vi ∈ Sri+ and bT y = 0 for some y ∈ Rm
}
. (5)

The exposing vector Wi exposes a proper face of Ki if Wi /∈ K⊥i which can be written as

V TWiV 6= 0. (6)

To obtain Ki+1, or equivalently, its facial range vector Vi+1, we use the following formula

Vi+1 = ViPi ∈ Rn×ri+1 for any Pi ∈ N (V T
i WiVi).

In the subsequent discussion, upon introducing an FR sequence f , we will directly use Wi, Vi,
Pi, and ri without redefining them for f . The length of f is denoted by |f |. The i-th FR step in f
is denoted by fi. If there is another FR sequence g, then fi = gi indicates that the i-th FR steps
in both f and g are identical, in that the facial range vectors share the same range space and the
exposing vectors expose the same proper face. To specify an FR sequence, it suffices to list the
corresponding sequence of exposing vectors or facial range vectors. To validate that fi is an FR
step, we usually need to verify the following three conditions:

1. Wi is an exposing vector of Vi containing F (Vi).

2. Wi exposes a proper face of Vi containing F (Vi).

3. The proper face exposed by Wi is Vi+1.

To keep the presentation concise, we will simply state “Wi is an exposing vector of Vi” in the proof,
without referencing the set F .

When studying FR sequences, there are a few tricks that help make proofs and notation easier.
They are outlined below:

Fact 3.1. When we prove the i-th FR step satisfies some conditions, it is often possible to assume
i = 1 without loss of generality. This is because the reduced feasible set F (Ki) can be viewed as the
initial problem. As V1 is the identity matrix, this approach makes the proof simpler to write and
understand.

Fact 3.2. The length of the FR sequence is independent of the choice Pi ∈ N (V T
i WiVi) at each FR

step. This means we can pick any Pk that makes the proof easier, as shown in [8, 20].

3.2 The Minimal FR Sequences

Let V be a given facial range vector. We say an exposing vector W ∈ D(V ) is minimal for the face
V , if there does not exist an M ∈ D(V ) such that

0 6= Im(V TMV ) ( Im(V TWV ).

An FR sequence f is called minimal if every exposing vector Wi ∈ D(Vi) is minimal. In this section,
we prove that if f is one of the longest FR sequence, then f must be minimal. We also provide
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examples showing that the converse direction does not hold in general, even if we impose a more
restrictive rank assumption. Additionally, we introduce some technical lemmas related to minimal
FR sequences.

The first technical result shows that minimal exposing vectors are unique. Its special case for
LP is a key result to be used later.

Lemma 3.1. Let V be a facial range vector. Let W ∈ D(V ) be minimal, and M ∈ L. Define
M̄ := V TMV and W̄ := V TWV . If 0 6= Im(M̄) ⊆ Im(W̄ ), then M̄ = W̄ up to some non-zero
scaling.

Proof. Let U be an orthonormal matrix such that Im(U) = Im(W̄ ). Since W̄ and M̄ have the
same range space, we have W̄ = UDUT and M̄ = UΛUT for some diagonal matrices D and Λ. In
addition, the diagonal entries of D are strictly positive as W̄ is positive semidefinite, and Λ 6= 0
as Im(M̄) 6= 0. Assume Λ contains a strictly negative diagonal entry. (The proof is similar if
every diagonal entry of Λ is positive.) Denote by di and λi the i-th diagonal entry of D and Λ,
respectively. Define

α := min
i

{
−di
λi
| λi < 0

}
> 0.

Then D + αΛ is positive semidefinite, but not positive definite. This implies that W̄ + αM̄ ∈ Sr+
and thus W + αW ′ ∈ D(V ). In addition, we have Im(W̄ + αM̄) ( Im(W̄ ). Since W is minimal,
we must have W̄ + αM̄ = 0.

Theorem 3.1. If f is a longest FR sequence, then f is minimal.

Proof. Let f be an FR sequence of length d. We prove that if f is not minimal, then it is not
the longest. Assume Wj ∈ D(Vj) is not minimal. We construct and prove that the sequence g in
Figure 1 is an FR sequence.

iteration 1 · · · j − 1 j j + 1 j + 2 · · · d+ 1

face V1 · · · Vj−1 Vj VjP Vj+1 · · · Vd

exposing vector W1 · · · Wj−1 M Wj Wj+1 · · · Wd

Figure 1: The sequence g obtained by splitting Wj into two parts.

Based on the construction, we can apply Fact 3.1 to assume j = 1. Recall that V1 is the identity
matrix. As W1 ∈ D(V1) is not minimal, there exists an M ∈ D(V1) such that

0 6= Im(M) ( Im(W1). (7)

As M ∈ D(V1) yields a proper face of V1, we have g1 is an FR step. The facial range vector in g2
is P ∈ Rn×k for any P ∈ N (M). Since W1 ∈ Sn+ implies that P TW1P ∈ Sk+, we have W1 ∈ D(P )
is an exposing vector in g2. Next we show that W1 yields a proper face. From (7), we have
ker(M) ) ker(W1) and thus Im(P ) ) Im(P1) for any P1 ∈ N (W1). So there exists a vector u ∈ Rn
such that u ∈ Im(P ) and u /∈ Im(P1). Let u = Pv for some v ∈ Rk. Then

vT (P TW1P )v = uTW1u 6= 0.

This shows that P TW1P 6= 0, and thus W1 yields a proper face. This proves that g2 is an FR step.
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The facial range vector in g3 is obtained as follows. Let G ∈ N (P TW1P ). We show that
Im(P1) = Im(PG). As W1 ∈ Sn+, we have Im(PG) ⊆ ker(W1) = Im(P1). Conversely, let u ∈
Im(P1). As Im(P1) ( Im(P ), we have u ∈ Im(P ) and u = Pv for some vector v. Since P1 ∈ N (W1),
we have W1u = W1Pv = 0 and thus v ∈ ker(P TW1P ). As G ∈ N (P TW1P ), we have v = Gw for
some vector w. This shows that u = PGw and thus u ∈ Im(PG). This proves Im(PG) = Im(P1).
By Fact 3.2, we can take P and G such that PG = P1 to obtain V1PG = V1P1 = V2. This allows
us to conclude that gi = fi−1 for i = 3, . . . , d+ 1. Putting together, we prove that g is also an FR
sequence. Since |g| = |f |+ 1, this shows f is not a longest FR sequence.

It turns out that a minimal FR sequence may not be a longest one for SDP. We demonstrate
this in the next example.

Example 3.1. Consider the SDP problem (4) given by

A1 :=

1 0 0
0 0 0
0 0 0

 , A2 :=

−1 1 0
1 1 0
0 0 0

 , A3 :=

0 0 0
0 1 0
0 0 1

 and b :=

0
0
0

 ∈ R3.

The only feasible solution is zero. The set of exposing vectors D(V1) defined in (5) with variable
y = (y(1), y(2), y(3)) is given by

A∗(y) =

y(1)− y(2) y(2) 0
y(2) y(2) + y(3) 0

0 0 y(3)

 � 0.

The sequence of exposing vectors (A3, A1) is a minimal FR sequence, and it has length 2. However
it is not a longest FR sequence, as the minimal FR sequence (A1, A2, A3) has length 3.

In addition, this example also shows that after taking a minimal FR step, there can be more
than one redundant equality constraints if we reformulate the data matrices correspondingly. After
taking A3 as the exposing vector at the first FR step, the three data matrices become 1, −1 and 0,
and thus there are two redundant constraints. This phenomenon is different for LP and SDP, see
Theorem 4.2.

In fact, even if we pick an exposing vector of minimal rank at each FR step, then it still does
not always yield a longest FR sequence. We illustrate this with the following example.

Example 3.2. Consider the SDP problem with data matrices

A1 :=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 , A2 :=


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 1 0
0 0 0 0 0

 , A3 :=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 and b :=

0
0
0

 ∈ R3.

(8)
In the first FR step, all the possible exposing vectors and their ranks can be listed as follows

exposing vector rank

A3 2
A1 + αA2 for α ∈ {0, 1} 3
A1 + αA2 for α ∈ (0, 1) 4

A1 + αA2 + βA3 � 0 for α ∈ {1−
√
1+4β
2 , 1+

√
1+4β
2 }, β > 0 4

A1 + αA2 + βA3 � 0 for α ∈ (1−
√
1+4β
2 , 1+

√
1+4β
2 ), β > 0 5

7



Based on the minimum rank rule, A3 must be the exposing vector in the first FR step. This
corresponds to removing the last two rows and columns. In the second FR step, there is only one
possible exposing vector, namely, A1. This yields an FR sequence (A3, A1) of length 2. However,
(A1, A2, A3) is a longer FR sequence, and A1 does not have the minimum rank.

Example 3.2 suggests that computing MSD can be highly non-trivial, even without considering
the difficulties associated with solving SDP alone. Indeed, we will prove the hardness of computing
MSD. To achieve this goal, we provide a useful upper bound for MSD next.

3.3 An Upper Bound for MSD

Given that computing MSD can be challenging, we provide an upper bound for MSD that may
be easier to compute in certain cases. For example, we will use the upper bound in this section
to derive the hardness result about computing MSD later. Assume F = {0}. Let U ∈ Rn×r be
any facial range vector. Let f be a given FR sequence for F . We are interested in constructing an
FR sequence for the reduced feasible set F (U) based on f . To this end, we derive the following
technical result.

Lemma 3.2. Let U ∈ Rn×k and V ∈ Rn×r be facial range vectors, and W ∈ Sn. Define Ŵ =
UTWU and W̄ = V TWV . Assume Im(U) ⊆ Im(V ) and W̄ ∈ Sr+. Then Ŵ ∈ Sk+, and Im(UQ) ⊆
Im(V P ) for any Q ∈ N (Ŵ ) and P ∈ N (W̄ ).

Proof. By the assumption Im(U) ⊆ Im(V ), we have U = V R for some matrix R ∈ Rr×k. This
yields Ŵ = RT W̄R ∈ Sk+ as W̄ ∈ Sr+. Since Q ∈ N (Ŵ ), we have 0 = QT ŴQ = QTRT W̄RQ. This
shows that Im(RQ) ⊆ ker(W̄ ) = Im(P ) as P ∈ N (W̄ ). Thus Im(UQ) = Im(V RQ) ⊆ Im(V P ).

Define a sequence of facial range vectors (U1, . . . , Ud) with U1 := U for the reduced feasible set
F (U) as follows. For i = 1, . . . , d− 1, we set

Ui+1 = UiQi for any Qi ∈ N (UTi WiUi). (9)

Since V1 = In, we always have Im(U1) ⊆ Im(V1). Applying Lemma 3.2 to the sequence (U1, . . . , Ud)
in an iteratively manner, we see that Im(Ui) ⊆ Im(Vi) and UTi WiUi is positive semidefinite for
every i = 1, . . . , d. This shows that Wi is an exposing vector of the face Ui. However, Wi may not
expose a proper face. Thus, if we remove Ui whenever Im(Ui) = Im(Ui−1) for i ≥ 2, then this yields
an FR sequence g for the reduced feasible set F (U) with the corresponding sequence of facial range
vectors

(Un1 , . . . , Unk
), (10)

for some positive integers 1 = n1 < · · · < nk. We call g the subsequence of f with respect to U .
Now we are ready to present the upper bound for MSD.

Theorem 3.2. Let
[
U1 · · · Uk

]
∈ Rn×n be any orthogonal matrix such that Uj ∈ Rn×nj with∑k

j=1 nj = n. Assume F = {0}. It holds that

MSD(F ) ≤
k∑
j=1

MSD(F (Uj)).
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Proof. Let f be an FR sequence. For each j = 1, . . . , k, define Uj,1 := Uj and let

(Uj,1, . . . , Uj,d)

be the sequence of facial range vectors defined as in (9) for F (Uj,1). For each i = 1, . . . , d, define
the matrix

Hi =
[
U1,i · · · Uk,i

]
. (11)

We prove that if Im(Vi) = Im(Hi), then

• There exists at least one index j such that Wi exposes a proper face of Uj,i.

• Im(Vi+1) = Im(Hi+1)

Since Wi exposes a proper face of Vi, we have V T
i WiVi 6= 0 is positive semidefinite matrix, see (6).

As Im(Vi) = Im(Hi), we have HT
i WiHi 6= 0 is also positive semidefinite. By construction (11),

there exists an index j such that UTj,iWiUj,i 6= 0 is positive semidefinite matrix. This shows that
Wi exposes a proper face of Uj,i.

To show Im(Vi+1) = Im(Hi+1), define the block-diagonal matrix Q̃i as

Q̃i :=


Q1,i 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 Qk,i

 where Qj,i ∈ N (UTj,iWiUj,i) for j = 1, . . . , k.

By construction, we have Im(Q̃i) = ker(HT
i WiHi). The assumption Im(Hi) = Im(Vi) implies that

ViR = Hi for some invertible matrix R ∈ Rri×ri . For any Pi ∈ N (V T
i WiVi), it holds that

Im(Q̃i) = ker(HT
i WiHi) = ker(RTV T

i WiViR) = Im(R−1Pi).

This shows the relation

Im(Hi+1) = Im(HiQ̃i) = Im(HiR
−1Pi) = Im(ViPi) = Im(Vi+1).

As V1 = In, we always have Im(V1) = Im(H1). Thus the above relation implies that, at each
FR step fi, there exists at least one index j such that Wi exposes a proper face of Uj,i. Denote by
gj the subsequence of f with respect to Uj as defined in (10). We obtain that

|f | ≤
k∑
j=1

|gj | ≤
k∑
j=1

MSD(F (Uj)).

In particular, if f is a longest FR sequence, then |f | = MSD(F ) and thus MSD(F ) ≤
∑k

j=1 MSD(F (Uj)).

Note that as SD(F ) ≤ MSD(F ), Theorem 3.2 is also an upper bound for SD(F ). When we
partition the space into proper subspaces U1, . . . , Uk, it can be easier to compute MSD(F (Ui))
and thus obtaining an upper bound for MSD(F ). For example, if we take U1 =

[
e1 e2 e3

]
and

U2 =
[
e4 e5

]
for (8), then MSD(F (U1)) = 1 and MSD(F (U2)) = 2. This yields a tight upper

bound as MSD(F ) = 3.
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We further clarify the power of the upper bound in Theorem 3.2 by constructing a set F in
Example 3.3 and computing upper bounds for MSD(F ) in Lemmas 3.3 and 3.4. This example and
its upper bounds are not artificial. In fact, it is an essential part in proving one of the main results
in Theorem 3.3.

Example 3.3. Let M ∈ {0, 1}p×q be a zero-one matrix with p rows and q columns. Define the set
F associated with M as follows. Let n be the number of ones in M . The matrix variable X in
F is of order n. The rows and columns of X are indexed by the indices (i, j) such that Mij = 1.
There are m := p + q linear constraints. The first p constraints are associated with the rows in
M . For each row i = 1, . . . , p, the matrix Ai is a diagonal matrix with ones in the diagonal entries
associated with {(i, j) | Mi,j = 1 for some j}. For each column j = 1, . . . , q, the matrix Ap+j is a
diagonal matrix with ones in the diagonal entries associated with {(i, j) |Mi,j = 1 for some i}. Let
b := 0 ∈ Rp+q be the all-zeros vector of length p+ q.

In Example 3.3, the only feasible solution of F is zero. The data matrices defining F can be a
zero matrix if the corresponding row or column in M are zeros, and we keep them only to ease the
notation. Note that F is actually a polyhedron. In fact, we have a characterization of the longest
FR sequences for polyhedra, together with a polynomial-time algorithm for finding such a sequence
in Section 4.4. However, the algorithm relies on solving LP problems, and thus the upper bound in
Theorem 3.2 remains meaningful for LP. We first consider the case when M is the all-ones matrix.

Lemma 3.3. Let M ∈ {0, 1}p×q be the all-ones matrix. Define the set F associated with M as in
Example 3.3. Then MSD(F ) = p+ q − 1.

Proof. As F is a polyhedron, any minimal FR sequence is also a longest one, see Theorem 4.1. It
is clear that A1, . . . , Ap+q are exposing vectors. We distinguish two cases based on p and q.

• Assume p = 1 or q = 1. If q = 1, then Ai is minimal for i = 1, . . . , p, and thus (A1, . . . , Ap) is
a longest FR sequence. This shows that MSD(F ) = p. Similarly, if p = 1, then MSD(F ) = q.

• Assume p > 2 and q > 2. We show that all exposing vectors are minimal in the first FR step.
Assume A1 is not minimal. Then there exists a vector y such that W := A∗(y) 6= 0 exposes
a proper face of Sn+ such that

∅ 6= S := {(i, j) | The (i, j)-th diagonal entry of W is nonzero} ( {(1, j) | j = 1, . . . , q} .
(12)

Without loss of generality, we assume that (1, 1) /∈ S. Assume y(1) = λ. Then y(p+ 1) = −λ
as (1, 1) /∈ S. It follows from the containment in (12) that y(2), . . . , y(p) = λ, and thus
y(p+ 2), . . . , y(p+ q) = −λ. But then A∗(y) = 0 which is a contradiction.

Thus, we can apply the above argument inductively to conclude that the exposing vector at
any minimal FR step must be one of the data matrices. Therefore, a longest FR sequence
can be obtained as follows: we use A1, . . . , Ap−1 as the first p − 1 FR steps; after that the
problem reduced to the first case above, and thus we can use Ap+1, . . . , Ap+q as the last q FR
steps. This yields an FR sequence (A1, . . . , Ap−1, Ap+1, . . . , Ap+q) of length p+ q − 1.

Based on the upper bound related to the all-ones matrix above, we provide an upper bound for
MSD(F ) when M contains duplicated columns.
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Lemma 3.4. Assume M =
[
M1 · · · Mk

]
where the submatrix Mj =

[
vj · · · vj

]
∈ {0, 1}p×qj

consists of qj copies of the same non-zero column vector vj ∈ {0, 1}p. Define the set F associated
with M as in Example 3.3. Then

MSD(F ) ≤
k∑
j=1

1T vj + qj − 1.

Proof. Let Fj be the polyhedron associated with the submatrix Mj as defined in Example 3.3. Let
U =

[
U1 · · · Uk

]
be a square orthogonal matrix such that F (Uj) = Fj . Applying Theorem 3.2

and Lemma 3.3, we have MSD(F ) ≤
∑k

j=1 MSD(F (Uj)) =
∑k

j=1 1T vj + qj − 1.

3.4 NP-hardness

In this section, we show that finding a longest FR sequence for SDP is NP-hard. We will construct
a polynomial-time transformation from the well-known NP-complete problem 3SAT.

3SATISFIABILITY (3SAT)
INSTANCE: A finite set U = {u1, . . . , up} of variables, and C = {c1, . . . , cq} a collection of
clauses on U such that |ci| = 3 for i = 1, . . . , q.
QUESTION: Is there a truth assignment for U such that all the clauses in C are satisfiable.

To facilitate our analysis later, we can simplify a given 3SAT instance in the following way. If a
clause ck = (ui, ūi, uj) contains both the positive and negative literal of the same variable ui, then
ck is always true. Thus we can remove this clause ck from the problem. If the positive literal ui
never appear in any clause, then it is always possible to assume ui is assigned false. This allows us
to remove ui and all clauses containing the negative literal ūi. A similar approach is applied if the
negative literal ūi is absent from all clauses. After simplification, we obtain an equivalent 3SAT
instance which satisfies the following two properties.

Definition 3.1. We say an instance of 3SAT is simplified if it satisfies

• For each variable ui, we have ui ∈ cj and ūi ∈ ck for some j and k.

• If ui ∈ cj, then ūi /∈ cj. And if ūi ∈ cj, then ui /∈ cj.

The simplification can clearly be implemented in polynomial time, ensuring that the simplified
3SAT instance preserves the complexity of the original problem. Next, we define the MSD problem
for SDP as decision problems.

MAXIMUM SINGULARITY DEGREE for SDP (MSD-SDP)
INSTANCE: An SDP problem (4) with A1, . . . , Am ∈ Sn, b ∈ Rm and a positive integer d.
QUESTION: Does (4) have an FR sequence of length d or more?

Theorem 3.3. MSD-SDP is NP-hard.

Proof. We transform 3SAT to MSD-SDP. Let U = {u1, . . . , up} and C̃ = {c1, . . . , cq̃} be any
simplified instance of 3SAT, see Definition 3.1. For technical reasons, it is necessary to introduce
certain redundancy into the simplified 3SAT instance as follows. We duplicate the clauses in C̃ so
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that each clause ci ∈ C̃ is replicated to have 2q̃ copies, including the original. Let q := 2q̃2. This
results in a 3SAT instance that retains the same set of variables U , with the collection of clauses
being C = {c1, . . . , cq} such that ci = cj if i ≡ j (mod q̃).

We construct an MSD-SDP instance with n := 3q + p + 1 and m := 2p + q. The rows and
columns of the matrix variable X are indexed by the n elements in

(⋃
i∈U Ti ∪ Fi

)
∪ {0, 1, . . . , p},

where
Ti = {(i, j) | ui ∈ cj} ,
Fi = {(i, j) | ūi ∈ cj} .

Note that there are 3q elements in
⋃
i∈U Ti ∪ Fi, and p+ 1 elements in {0, 1, . . . , p}.

Next, we construct the data matrices A1, . . . , Am which can be classified into two different
components as follows.

• For each variable ui ∈ U , we make two diagonal matrices Ai, An+i ∈ {0, 1}n×n as a truth-
setting component to force a choice between assigning ui true and assigning ui false. The
diagonal entries of Ai and An+i associated with Ti ∪ {i} and Fi ∪ {i} are ones, respectively.
All other entries are zeros.

Note that Ai is an exposing vector as it is positive semidefinite for i = 1, . . . , 2p. We intent
to build a correspondence between the way using Ai or An+i in the FR sequence and the
truth-false setting of variable ui.

• For each clause cj ∈ C, we make one matrix A2p+j ∈ {0, 1}n×n to serve as a satisfaction
testing component. Define

Cj = {(i, j) | (i, j) ∈ Ti ∪ Fi} .

By Definition 3.1, the set Cj is well-defined as each variable ui appears in each clause at most
once, either as a positive or negative literal. In addition, |Cj | = 3 as each clause contains
exactly 3 literals. The entries of A2p+j are specified as follows. The diagonal entries of A2p+j

associated with Cj are ones. In addition, the principal submatrix of A2p+j associated with
{0, . . . , p} is the matrix [

0 1Tp
1p 0

]
∈ Sp+1, (13)

where 1p is the all-ones column vector of length p. All other entries are zeros. The principal
submatrix (13) is indefinite and it has rank p− 1. The two non-zero eigenvalues are

√
p and

−√p corresponding to the eigenvectors
[√
p 1Tp

]T
and

[
−√p 1Tp

]T
, respectively. Since none

of the data matrices contains a non-zero diagonal entry associated with {0}, A2p+j is not an
exposing vector unless the rows and columns associated with {1, . . . , p} are all removed from
the matrix variable X by the FRA.

Let b := 0 ∈ Rm be the all-zeros vector of length m, and d := p + q. This defines an MSD-SDP
instance, and the construction can be accomplished in polynomial time. It is not difficult to see
that if X is feasible for the constructed SDP problem, then all rows and columns are zeros except
the one associated with {0}.

All that remains to be shown is that 3SAT is satisfiable if and only if MSD-SDP has an FR
sequence of length at least d. Assume there exists a satisfying assignment for the 3SAT instance.
We construct an FR sequence f of length d by specifying the exposing vector Wi at each FR step
as follows.
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• The first p steps are based on the truth-assignment of the p variables. For i = 1, . . . , p, the
exposing vector at the i-th FR step is given by

Wi =

{
Ai if ui is false

An+i if ui is true.
(14)

By construction, these are clearly FR steps.

• The last q steps are given by

Wp+j = A2p+j for j = 1, . . . , q.

As discussed already, from the (p+1)-th FR step, the matrices A2p+j for j = 1, . . . , q become
exposing vectors. We only need to show that A2p+j exposes a proper face at each iteration.
By construction, this is equivalent to show that the principal submatrix of A2p+j −

∑p
i=1Wi

associated with the indices

E := {Ti | ui is true} ∪ {Fi | ui is false}

is non-zero. Recall that A2p+j contains exactly three positive diagonal entries corresponding
to the literals in the clause cj . Since we are given a satisfying assignment for the 3SAT
instance, the clause cj contains a true literal. Assume the positive literal ui in cj is true.
Then Wi = An+i based on the construction in (14) and thus, (i, j) ∈ E . As the (i, j)-th
diagonal entry is one in A2p+j and zero in

∑p
i=1Wi, this proves that A2p+j exposes a proper

face. A similar argument can be used when the negative literal ūi in cj is true. Therefore the
last q steps are also FR steps.

This yields an FR sequence of length p+ q.
Conversely, assume that the 3SAT instance is not satisfiable. Let f be any FR sequence for the

constructed SDP problem. We prove that |f | < p + q. Denote by l the smallest positive integer
such that the rows and columns associated with {1, . . . , p} are removed after the l-th FR step. We
show that the first l FR steps either satisfy or can be assumed to satisfy the following properties.

• Let W = A∗(y) be any exposing vector for some y ∈ Rm at one of the first l FR steps. It
follows from the discussion after (13) that

y(2p+ j) = 0 for j = 1, . . . , q. (15)

Thus the exposing vectors in the first l FR steps do not involve matrices A2p+1, . . . , A2p+q.

• Applying the first condition in Definition 3.1, we see that the exposing vectors Ai for i =
1, . . . , 2p are minimal, and there exists no other minimal exposing vectors obtained from their
linear combinations. As we are interested in finding an FR sequence with longer length, it is
possible to assume that each of the first l FR steps is minimal by applying Theorem 3.1, i.e.,

Wi ∈ {A1, . . . , A2p} for i = 1, . . . , l.

In addition, either Ai or Ap+i is an exposing vector in the first l FR steps, and we are free
to permute the first l FR steps. Therefore, after suitable permutation, we can assume that
l = p and the first p FR steps satisfy

Wi ∈ {Ai, Ap+i} for i = 1, . . . , p. (16)
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By assuming f is in the form of (16), it induces unambiguously a truth-assignment via the relation

ui =

{
false if Wi = Ai

true if Wi = An+i.
(17)

After the p-th FR step, only the rows and columns associated with Ẽ ∪ {0} are left, where

Ẽ := {Ti |Wi = Ap+i} ∪ {Fi |Wi = Ai}

The reduced SDP problem after removing rows and columns not in Ẽ ∪ {0} is equivalent to the
SDP problem defined in Example 3.3 associated with the zero-one matrix M ∈ {0, 1}p×q defined
as follows. The (i, j)-th entry M(i, j) is given by

M(i, j) :=


1 if ui is false and ūi ∈ cj
1 if ui is true and ui ∈ cj
0 otherwise.

Up to some permutation of the columns, M is the same as the matrix
[
M1 · · · Mq̃

]
where each

submatrix Mj ∈ {0, 1}p×2q̃ are columns consisting of the 2q̃ duplication associated with the clause
cj for j = 1, . . . , q̃.

Let Uj be a facial range vector corresponding to the non-zero entries in Mj . Consider the truth-
assignment in (17). If cj is unsatisfied, then Mj is an all-zeros matrix and thus MSD(F (Uj)) = 0.
If cj is satisfied, then Mj is a matrix with at least one row of ones. Since Mj contains at most three
rows of ones, we have MSD(F (Uj)) = 2q̃ + 2 by Lemma 3.3. Since the given 3SAT instance is not
satisfiable, there exists at least one unsatisfied clause. It follows from Lemma 3.4 that

q̃∑
j=1

MSD(F (Uj)) ≤ (2q̃ + 2)(q̃ − 1). (18)

Applying Theorem 3.2, the remaining number of FR steps after the p-th FR step can be upper
bounded by (18). This means the length of f satisfies

|f | ≤ p+ (2q̃ + 2)(q̃ − 1) = 2q̃2 + p− 2 = p+ q − 2 < d.

Therefore the constructed MSD-SDP instance has no FR sequences of length d or more.

4 Maximum Singularity Degree for Linear Programming

4.1 FRA for LP

While LP is a special case of SDP, it is pretty cumbersome to derive theories and algorithms
following the same notations used for SDP. Thus we describe the FRA for LP with some new
notations to simplify the presentation. The most notable difference is that we use subsets in (23)
to represent exposing vectors in LP.

Let K = Rn. Let A ∈ Rm×n and b ∈ Rm be given. Then (1) becomes a linear programming
(LP) problem, i.e.,

F (Rn) := Rn ∩ L where L := {x ∈ Rn | Ax = b}. (19)

As before, we provide L⊥, the faces of Rn+ and its dual faces in a more concrete form.
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• The orthogonal complement of L is given by

L∗ =
{
AT y ∈ Rn | bT y = 0

}
.

• The non-empty faces K1 of the non-negative orthant Rn+ can be characterized by subsets
V ⊆ {1, . . . , n} via the relation

K1 =
{
x ∈ Rn+ | x(i) = 0 for i /∈ V

}
.

For LP, the subset V is a facial range vector associated with the face K1. Similar to SDP, we
write V and K1 interchangeably without causing confusion. The dual cone of the face K1 is

K∗1 = {w ∈ Rn | w(V ) ≥ 0} . (20)

The FRA applied to LP can be described as follows. At the i-th iteration, the face Ki is associated
with some facial range vector Vi ⊆ {1, . . . , n}. In particular, we always set V1 := {1, . . . , n}. The
set of exposing vectors K∗i ∩ L⊥ is

D(Vi) :=
{
w ∈ Rn | w = AT y, w(Vi) ≥ 0 and bT y = 0 for some y ∈ Rm

}
. (21)

The exposing vector wi ∈ D(Vi) exposes a proper face of Ki, if wi /∈ K⊥i which can be written as

wi(Vi) 6= 0. (22)

To simplify the presentation, we define a subset associated with wi. The exposing vector wi ∈ D(Vi)
induces a unique subset

Si = supp(wi) ∩ Vi ⊆ {1, . . . , n}. (23)

We abuse the notation and call both the vector wi and the subset Si exposing vectors of Vi. As
we can apply standard set operations like intersection and exclusion straightforwardly, this greatly
eases the presentation. For example, the update of the facial range vector becomes

Vi+1 = Vi\Si.

We follow the same convention as for SDP. For example, after introducing an FR sequence f , we
will use Vi, wi, Si directly without defining them again.

4.2 Minimal FR sequences for LP

The notion of minimality can also be simplified for LP as follows. Let V ⊆ {1, . . . , n} be a given
facial range vector. We say an exposing vector S ⊆ V is minimal for the face V , if there does not
exist an exposing vector S′ of V such that ∅ 6= S′ ( S. Let f be an FR sequence for (19). If Si is
minimal in Vi, then we say the i-th FR step is minimal. If all FR steps are minimal, then we say
f is minimal.

In this section, we state some useful technical lemmas for LP as special cases of the established
lemmas for SDP. We also highlight new lemmas that apply only to LP and do not hold for SDP.
The next two results are special cases of Lemmas 3.1 and 3.2 for SDP. They play a key role in the
analysis of our results for LP. A self-contained proof is provided for Lemma 4.2.
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Lemma 4.1. Let S be an exposing vector of V , and u its associated vector in (23). Assume S is
minimal. For any u ∈ L⊥ such that u(S) 6= 0 and u(V \S) = 0, we have w(S) = u(S) up to some
non-zero scaling.

Lemma 4.2. Let S be exposing vector of V . For any U ⊆ V , the intersection S ∩U is an exposing
vector of U .

Proof. Let w be the vector corresponding to S. Then w(S) > 0 and w(V \S) = 0. Since S∩U ⊆ S,
we have that w(S ∩ U) > 0. In addition, U ⊆ V implies that U\(S ∩ U) = U\S ⊆ V \S and thus
w(U\(S ∩ U)) = 0. This shows that S ∩ U is an exposing vector of U .

Corollary 4.1. Let f be an FR sequence. If S be an exposing vector of Vi, then S ∩ Vj is also an
exposing vector of Vj for any j > i.

Proof. Since Vj ( Vk for any j > k, the statement follows by applying Lemma 4.2.

If an exposing vector S of V1 has size one, i.e., |S| = 1, then any minimal FR sequence must
use S as an exposing vector in one of its FR step. This is stated formally in the next result.

Lemma 4.3. Let f be a minimal FR sequence. If {t} is an exposing vector of Vk, then Sj = {t}
for some j ≥ k.

Proof. The subset {t} is an exposing vector of Vk implies that j ≥ k. Since t ∈ Sj ⊆ Vj , we have
{t} is an exposing vector of Vj Corollary 4.1. As f is minimal, we must have Sj = {t}.

Lemma 4.3 is a special property of FR sequences for LP, if exposing vectors of size one for LP
are generalized as rank one exposing vectors for SDP. Consider the spectrahedron F given by

A1 :=

[
1 0
0 0

]
, A2 :=

[
0 0
0 1

]
, A3 :=

[
1 1
1 1

]
and b :=

0
0
0

 ∈ R3.

The exposing vector A1 is rank one and thus minimal in the first FR step. However, the sequence
(A3, A2) is a minimal FR sequence and it does not contain A1.

As LP is a special case of SDP, minimality is also a necessary condition for being the longest FR
sequence in LP, see Theorem 3.1. We sketch a self-contained proof here for Theorem 4.1. Let f be
an FR sequence of length d. If Sj is not minimal in Vj , then there exists an exposing vector I of Vj
such that ∅ 6= I ( Sj . We claim that it is possible to split Sj into I and Sj\I as two FR steps, and
thus obtain a longer FR sequence. To be more precise, we define the sequence g as in Figure 2. The
j-th iteration is an FR step as I is an exposing vector of Vj by assumption. Since Sj is an exposing
vector of Vj , we have Sj ∩ (Vj\I) is an exposing vector of Vj\I by Lemma 4.2. Since Sj ⊆ Vj and
I ( Sj , we have Sj ∩ (Vj\I) = Sj\I is non-empty. This shows that the (j + 1)-th iteration is also
an FR step. The facial range vector at the (j + 2)-th iteration is (Vj\I)\(Sj\I) = Vj\Sj as I ( Sj .
This yields a longer FR sequence g.

iteration 1 · · · j − 1 j j + 1 j + 2 · · · d+ 1

face V1 · · · Vj−1 Vj Vj\I Vj+1 · · · Vd

exposing vector S1 · · · Sj−1 I Sj\I Sj+1 · · · Sd

Figure 2: The FR sequence g obtained by splitting Sj into I and Sj\I.
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4.3 Operations that Preserve Minimality

In this section, we present two operations called swapping and deletion which preserve the min-
imality of FR sequences. These operations only work for LP, which is part of the reasons why
computing MSD for LP is easier than SDP. We provide an application of these operations in Sec-
tion 4.4 showing that minimal FR sequences are also the longest for LP.

4.3.1 Swapping FR Steps

In this section, we study the operation of swapping adjacent steps Sj and Sj+1 in a minimal FR
sequence f of length d. After swapping, this yields a new sequence g. We will present a sufficient
condition for g to remain a minimal FR sequence. And when this sufficient condition is satisfied,
the faces associated with g expressed in terms of faces in f can be summarized as follows.

iteration 1 · · · j − 1 j j + 1 j + 2 · · · d

face V1 · · · Vj−1 Vj Vj\Sj+1 Vj+2 · · · Vd
exposing vector S1 · · · Sj−1 Sj+1 Sj Sj+2 · · · Sd

Figure 3: The sequence g obtained by swapping Sj and Sj+1.

Lemma 4.4 (Swapping). Let f be a minimal FR sequence for (19). Let g be the sequence in
Figure 3 obtained by swapping Sj and Sj+1. If any one of the following conditions is met, then g
is also a minimal FR sequence for (19).

• |Sj | = 1.

• |Sj+1| = 1 and Sj+1 is an exposing vector of Vj.

Proof. In both cases, the sequences f and g are identical in the first (j−1) steps. Applying Fact 3.1,
we can assume j = 1 without loss of generality. Next we discuss two different conditions separately.

• Assume the first condition |S1| = 1 holds. Up to some labeling, we can assume that S1 = {1}
and S2 = {2, . . . , k} for some k ≥ 2. As f is an FR sequence, S1 and S2 are exposing vectors
in V1 and V2, respectively. Let w and u be the vectors associated with S1 and S2 as in (23),
respectively. Then w and u satisfy

w(1) = 1, w(2), . . . , w(k) = 0, w(k + 1), . . . , w(n) = 0,
u(1) ∈ R, u(2), . . . , u(k) > 0, u(k + 1), . . . , u(n) = 0.

Define h := u− u(1)w. Then the following holds

– h(1) = u(1)− u(1)w(1) = u(1)− u(1) = 0.

– For i ∈ {2, . . . , k}, we have h(i) = u(i)− u(1)w(i) = u(i) > 0.

– For i ≥ k + 1, we have h(i) = u(i)− u(1)w(i) = 0.

We obtain that h(S2) > 0 and h(V1\S2) = 0, which means S2 6= ∅ is an exposing vector of
V1. Thus the g1 is an FR step.

The subset S2 is also minimal for V1. If not, there exists an exposing vector S for V1 such
that ∅ 6= S ( S2. As 1 /∈ S, we have S ∩ V2 = S and thus S is also an exposing vector of V2
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by Lemma 4.2. But this means S2 is not minimal for V2, and this is a contradiction to the
minimality of f . Thus g1 is a minimal FR step.

The facial range vector in g2 is V1\S2. By Lemma 4.2, we have S1 is an exposing vector of
V1\S2 in g2, as S1 ∩ (V1\S2) = S1. In addition, |S1| = 1 and thus the g2 is a minimal FR
step. The facial range vector in g3 is V1\(S1 ∪ S2) = V3.

• For the second condition, we assume that S1 = {1, . . . , k} for some k ≥ 1 and S2 = {n} up
to some relabeling. By assumption, S2 exposes a proper face for V1. As |S2| = 1, we have g1
is a minimal FR step. The facial range vector at g2 is V1\{n} = {1, . . . , n− 1}. It remains to
prove that g2 is a minimal FR step.

By Lemma 4.2, we have S1 is an exposing vector of V1\{n} as S1 ∩ (V1\{n}) = S1. Thus we
only need to show that S1 is minimal in V1\{n}. Assume this is not the case. There exists
an exposing vector S for V1\{n} such that S = {1, . . . , l} ( S1 for some 1 < l < k. Let w be
the vector associated with S as in (23), i.e.,

w(1), . . . , w(l) > 0, w(l + 1), . . . , w(n− 1) = 0, w(n) ∈ R. (24)

If w(n) = 0, then w(l+ 1), . . . , w(n) = 0 and thus S ( S1 is an exposing vector of V1 as well.
This is a contradiction to S1 is minimal in V1 in f .

Assume w(n) 6= 0. By assumption, S2 = {n} is an exposing vector of V1, and let u be the
associated vector as in (23). Up to some positive scaling, the vector u is

u(1), . . . , u(n− 1) = 0, u(n) = 1. (25)

Define h := w − w(n)u. Then the vector h satisfies

h(S) > 0 and h(V1\S) = 0. (26)

This shows that S is an exposing vector of V1 such that ∅ 6= S ( S1, and thus S1 is not
minimal in V1. This is a contradiction. We conclude that S1 is minimal in V1\{n} which
shows that g2 is also a minimal FR step. The facial range vector at g3 is (V1\S2)\S1 = V3.

As gi = fi for i ≥ 3 are minimal FR steps, this shows that g is a minimal FR sequence in both
cases.

4.3.2 Deleting Variables

In this section, we discuss the effects of removing a variable from the linear system on its FR
sequences. Let f be a minimal FR sequence of length d for the set F in (19). For any fixed
t ∈ {1, . . . , n}, let g be the subsequence of f with respect to U := V1\{t}, see (10). Recall that g
is an FR sequence for the system F (U), and the system F (U) can be viewed as the linear system
obtained from removing the variable xt. We study necessary and sufficient conditions for g to be a
minimal FR sequence for F (U).

Let Sj be the exposing vector containing t in the sequence f . We distinguish two cases based
on the size of Sj . The first case is when |Sj | = 1. Assume Sj = {t}. Then the FR sequence g has
the form in (4). As Sj is removed, the length of g is d − 1 which is one less than the length of f .
In Lemma 4.5, we provide a necessary and sufficient condition for g to be minimal.
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iteration 1 · · · j − 1 j · · · d− 1

face V1\{t} · · · Vj−1\{t} Vj+1 · · · Vd

exposing vector S1 · · · Sj−1 Sj+1 · · · Sd

Figure 4: The sequence g obtained by deleting Sj = {t}.

Lemma 4.5. (Deletion-Case1) Let f be a minimal FR sequence for (19). Assume Sj = {t}. Let
g be the subsequence of f with respect to V1\{t}. It holds that g is minimal if and only if {t} is an
exposing vector of V1.

Proof. If {t} is an exposing vector of V1, then we can assume that S1 = {t} in f by applying
Lemmas 4.3 and 4.4. In this case, it is clear that g is minimal. Conversely, assume {t} is not an
exposing vector of V1. Then Sj = {t} for some j ≥ 2. We will show that Sj−1 is not minimal in
g and thus g is not minimal. In view of Fact 3.1, we can assume without loss of generality that
j = 2. Up to some relabeling, suppose that S1 = {1, . . . , k} for some k ≥ 1, and S2 = {n} with
t = n. Since S2 = {n} is an exposing vector of V2 = V1\S1 = {k + 1, . . . , n} in f , the associated
vector w for S2 in (23) satisfies

w(1), . . . , w(k) ∈ R, w(k + 1), . . . , w(n− 1) = 0, w(n) > 0.

In addition, if w(S1) = 0, then w implies that {n} is an exposing vector of V1 in f which is a
contradiction. Thus the vector w also satisfies

w(S1) 6= 0.

Since S1 is an exposing vector of V1 in f , the associated vector u satisfies

u(1), . . . , u(k) > 0, u(k + 1), . . . , u(n− 1) = 0, u(n) = 0.

Suppose for the sake of contradiction that S1 is minimal for V1\{n} in g. But then, since w(S1) 6= 0
and w(V1\(S1 ∪ {n})) = u(V1\(S1 ∪ {n})) = 0, we can apply Lemma 4.1 to get w(S1) = αu(S1) for
some non-zero constant α 6= 0. Define h := w − αu. Then we have

h(1), . . . , h(n− 1) = 0, h(n) > 0.

This implies that h, or equivalently, {n} is an exposing vector of V1. This is a contradiction. Thus
S1 is not minimal in V1\{n}, i.e., the FR step g1 is not minimal.

From Lemma 4.5, we know that g is not a minimal FR sequence if {t} is not an exposing vector
of V1. However it is not hard to see that the FR step gi remains minimal for every i ≥ k, where k
is the smallest positive integer such that {t} is an exposing vector of Vk. Thus at most k − 1 the
FR steps in g are not minimal.

In the second case, we assume t ∈ Sj and |Sj | ≥ 2. The FR sequence g is described in Figure 5.
As |Sj | > 2, the length of g is the same as the length of f . We will show that g is always minimal.

iteration 1 · · · j − 1 j j + 1 · · · d

face V1\{t} · · · Vj−1\{t} Vj\{t} Vj+1 · · · Vd

exposing vector S1 · · · Sj−1 Sj\{t} Sj+1 · · · Sd

Figure 5: The sequence g obtained by deleting the variable xt, assuming t ∈ Sj .
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Lemma 4.6. (Deletion-Case2) Let f be a minimal FR sequence for (19). Assume t ∈ Sj and
|Sj | ≥ 2. Let g be the subsequence of f with respect to V1\{t}. Then g is minimal and |g| = |f |.

Proof. Assume Si\{t} is not minimal in Vi\{t} for some i ≤ j. Then there exists an exposing vector
S of Vi\{t} such that ∅ 6= S ( (Si\{t}). Let w be the vector associated with S as in (23). Then w
satisfies

w(S) > 0, w(Vi\(S ∪ {t})) = 0, w(t) ∈ R. (27)

If w(t) = 0, then w(S) > 0 and w(Vi\S) = 0. This means that S is also an exposing vector of Vi in
f , which is a contradiction to Si is minimal for Vi in f . Thus w(t) 6= 0. We distinguish two cases
based on i.

• Assume i < j. Then Vj ( Vi\Sj ( Vi\S and thus Vj\{t} ( Vi\(S ∪ {t}). The last inclusion
and (27) imply that w(Vj\{t}) = 0. Multiply w by −1 if necessary, we can assume w(t) > 0.
Then w shows that {t} is an exposing vector of Vj in f , see (23). As t ∈ Sj , this means Sj is
not minimal which is a contradiction.

• Assume i = j. Recall that Sj is an exposing vector of Vj in f . Let u be the vector associated
with Sj as in (23). Then u satisfies

u(Sj) > 0, u(Vj\Sj) = 0.

Since S ( Sj\{t}, we have S ∪ {t} ( Sj and thus Vj\(S ∪ {t}) ) Vj\Sj . The last inclusion
and (27) imply that w(Vj\Sj) = 0. As Sj is minimal for Vj , we can apply Lemma 4.1 to
obtain w(Sj) = αu(Sj) for some constant α 6= 0. Let k ∈ Sj\{t} and k /∈ S. We have
0 = w(k) = αu(k) 6= 0 which is a contradiction.

It is clear that gi is a minimal FR step for i > j. Thus g is a minimal FR sequence.

4.4 The Longest FR Sequences

In this section, we show a striking difference between LP and SDP in the characterization of the
longest FR sequences. For LP, any minimal FR sequence is also one of the longest FR sequences.

Theorem 4.1. Let f be an FR sequence for (19). We have f is minimal if and only if f is one of
the longest FR sequences.

Proof. If f is one of the longest FR sequences, then f is minimal by Theorem 3.1. Conversely, we
show that any two minimal FR sequences f and g have the same length. Assume this is not the
case, we pick a counterexample with the smallest number of variables. Denote by Si and Ti the
exposing vector at the i-th FR step in f and g, respectively. We prove that the sequences f and g
have certain special properties in this counterexample below.

• Property 1. If k ∈ Si ∩ Tj 6= ∅ for some i and j, then Si = {k} or Tj = {k}. If this is not
case, then Si\{k} 6= ∅ and Tj\{k} 6= ∅. By Lemma 4.6, when we remove the variable xk from
the linear system, the corresponding subsequences are still minimal FR sequences and their
lengths do not change. This yields a smaller counterexample and thus a contradiction.
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• Property 2. The subset {k} is not an exposing vector of V1 for any k = 1, . . . , n. Assume
this is not the case. By Lemmas 4.3 and 4.4, we can assume that S1 = {k} and T1 = {k}.
Applying Lemma 4.5, we can remove xk to obtain a smaller linear system. The corresponding
subsequences remain minimal, and their lengths are both decreased by one and thus different.
This is a contradiction.

Without loss of generality, assume that |f | > |g|. If the exposing vector at each FR step in g
has size one, then |f | > |g| = MSD(F ) which is not possible. Thus, there exists an index j such
that |Tj | ≥ 2 at the j-th FR step in g. Let Si = {t} be the exposing vector at the i-th FR step in f
such that t ∈ Tj , see Property 1. Assume we delete the variable xt from the linear system (19) to
obtain the smaller linear system F (U) with U = V1\{t}. Let f̃ and g̃ be the subsequences of f and
g with respect U as in Lemma 4.5 and Lemma 4.6, respectively. Then f̃ and g̃ are FR sequences
for F (U) satisfying |f̃ | = |f | − 1 and |g̃| = |g|. As |f | > |g|, we have |f̃ | ≥ |g̃|.

By Lemma 4.6, the FR sequence g̃ remains minimal for F (U). We prove that f̃ is also minimal
for F (U). Assume this is not the case. Then we can iteratively split the non-minimal exposing
vectors as described in the paragraph before Figure 2 until it becomes minimal. But after each
splitting, the length of f̃ is increased by one. This results in two minimal FR sequences with
different lengths for the smaller linear system F (U), which is not possible. Thus f̃ is also minimal.
Applying Lemma 4.5, we have {t} is an exposing vector of V1. This is a contradiction to Property
2. Thus the counterexample does not exist.

Based on Theorem 4.1, we can generate a longest FR sequence by ensuring the exposing vector at
each FR step is minimal. This can be achieved easily by solving a number of auxiliary LP problems.
Thus we also obtain a polynomial-time algorithm for generating the longest FR sequences.

4.5 Implicit Problem Singularity and Degeneracy

In this section, we investigate a parameter called Implicit Problem Singularity (IPS) for a given set
(1) introduced by Im and Wolkowicz in [10]. We show an equivalence between IPS and MSD for LP,
and provide applications of this equivalence. The parameter IPS is motivated by the observation
that there exists at least one redundant constraint after each FR step, see [20]. To be more precise,
let I ⊆ {1, . . . , n} be a given fixed subset. Denote by AI the submatrix of A consisting of the
columns associated with elements in I. Similarly, xI denotes the entries in x associated with I.1

Let F be as given in (19). Recall that if S ⊆ V := {1, . . . , n} is an exposing vector of V , then there
exists a vector y such that w = AT y and

w(S) > 0, w(V \S) = 0 and yT b = 0. (28)

Let I := V \S. Then AIxI = b, xI ≥ 0 is the reduced linear system after the FR step with exposing
vector S. The equality constraints AIxI = b in the reduced system is linearly dependent, as the
vector y in (28) yields a non-trivial linear combination of them equal to zero, i.e., yTAI = 0 and
yT b = 0. This means there exists at least one redundant equality constraints after each FR step.

Assume that at the end of an FR sequence, the final reduced linear system is AIxI = b for some
I ⊆ {1, . . . , n}. Then the implicit singularity degree for F is defined as

IPS(F ) := m− rank AI . (29)

1The notation xI is the same as x(I), but it is more convenient for the discussion here.
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The next result shows that after taking a minimal FR step, the number of redundant equality
constraints in the reduced system is exactly one.

Theorem 4.2. Assume A ∈ Rm×n has full row rank. Let S be minimal for V := {1, . . . , n}, and
I := V \S. Then there is exactly one redundant equality constraint in the linear system AIxI = b.

Proof. Assume there are more than one redundant equality constraints in AIxI = b. Without loss
of generality, we assume the (m− 1)-th and the m-th equations are linear combinations of the first
m− 2 equality constraints, respectively. Thus there exist non-zero vectors y and z in Rm such that

yTAI = 0, yT b = 0, y(m− 1) = 1, y(m) = 0.
zTAI = 0, zT b = 0, z(m− 1) = 0, z(m) = 1.

Note that y and z are linearly independent. As A has full row rank, the vectors w := AT y and
u := AT z are both non-zero and linearly independent of each other. However, as w, u ∈ L⊥ with
w(S), u(S) 6= 0 and w(V \S) = u(V \S) = 0, it follows from Lemma 4.1 that w and u are linearly
dependent. This is a contradiction.

It is worth to note that Theorem 4.2 only works for LP. In Example 3.1, we show that there
can be more than one redundant constraints for SDP. Next we note that it is always possible to
assume that A has full row rank in the study of MSD.

Lemma 4.7. Let F := {x ∈ Rn+ | Ax = b} 6= ∅ for some A ∈ Rm×n, b ∈ Rm. Assume r :=

rank A < m. Let Ãx = b̃ be any r linearly independent constraints in Ax = b. Define F̃ := {x ∈
Rn+ | Ãx = b̃}. Then MSD(F ) = MSD(F̃ ).

Proof. By assumption, there exists Q ∈ Rr×m such that AT = ÃTQ and bT = b̃Q. Denote by

D =
{
AT y ≥ 0 | bT y = 0

}
and D̃ :=

{
ÃT ỹ ≥ 0 | bT ỹ = 0

}
the set of exposing vectors for F and F̃ ,

respectively. In view of Fact 3.1, it suffices to show that D = D̃ for the first FR step. It is trivial to
see that D̃ ⊆ D. For the converse direction, let w ∈ D. Then w = AT y and bT y = 0 for some vector
y ∈ Rm. Define ỹ := Qy ∈ Rr. We have w = AT y = ÃTQy = ÃT ỹ and 0 = bT y = b̃TQy = b̃T ỹ.
Thus w ∈ D̃.

Theorem 4.3. Let F be as given in (19). Let I = {i | xi > 0, x ∈ F} be the set of irredundant
variables. Then MSD(F ) = rank A− rank AI .

Proof. We remove any redundant constraints in Ax = b so that A has full row rank. Let f be a
minimal FR sequence for F , see Lemma 4.7. After the first FR step, we find exactly one redundant
equation in the reduced system. Applying Lemma 4.7 again, we can remove the redundant con-
straint in the reduced system without affecting the remaining FR steps. We repeat this procedure
for all FR steps.

At the beginning, we remove m − rank A constraints to meet the full row rank assumption.
After each FR step, we remove a single redundant equation. In total, we remove m− rank A+ |f |
constraints which must be equal to the total number of redundant equations in AIxI = b, i.e.,
m − rank A + |f | = m − rank AI . This yields |f | = rank A − rank AI . By Theorem 4.1, we have
|f | = MSD(F ) and this finishes the proof.
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In fact, Theorem 4.3 provides an alternative proof for Theorem 4.1 as it shows that the minimal
FR sequences for (19) have the same length via the relation |f | = rank A − rank AI . As a direct
corollary of Theorem 4.3, we see that MSD(F ) = IPS(F ) whenever the data matrix A has full row
rank. This result is stated below.

Corollary 4.2. Let F be as given in (19). It holds that MSD(F ) = IPS(F ) − m + rank A. In
particular, if A has full row rank, then MSD(F ) = IPS(F ).

Proof. It follows directly from Theorem 4.3 and the definition of IPS in (29).

Next, we discuss the interplay between FRA and degeneracy. There are three sources of degen-
eracy, namely, weakly redundant constraints, implicit equalities and geometry, see details in [6]. Im
and Wolkowicz [10] show that the loss of strict feasibility implies that every basic feasible solution
is degenerate, and this can be viewed as degeneracy from implicit equalities.

Denote by ν(x) the number of different ways to use n linearly independent active constraints for
identifying x as a basic feasible solution. If a basic feasible solution x is degenerate, then ν(x) > 1
and thus the simplex algorithm may stuck at the same basic feasible solution without making any
progress. A large MSD may imply that ν(x) is huge. To be more precise, any FR sequence yields a
lower bound for ν(x) as follows. Let f be an FR sequence of length d for (19), and Si the exposing
vector at the i-th FR step. It holds that

ν(x) ≥
d∏
i=1

|Si|. (30)

Clearly, we expect to obtain a stronger lower bound from (30) if f is a longer FR sequence, e.g.,
d = MSD(F ). Unfortunately the lower bound also depends on the choice of f , and it can vary
significantly for different FR sequences. We provide an exponential separation between the lower
bounds (30) obtained from different FR sequences next. Let Ip be the p×p identity matrix. Define

A :=

[
0 1T2p
I2p M

]
∈ R(2p+1)×4p where M := Ip ⊗

[
1 1
−1 −1

]
∈ R2p×2p.

Let b := 0 ∈ R2p+1. Note that MSD(F ) ≤ 2p+ 1. We construct two different FR sequences below.

• The FR sequence f has 2p− 1 exposing vectors of size 2, and two exposing vectors of size 1;
they are given by S1 = {1, 2}, . . . , Sp−1 = {2p− 3, 2(p− 1)}, Sp = {2p− 1}, Sp+1 = {2p} and
Sp+2 = {2p+ 1, 2p+ 2}, . . . , S2p+1 = {4p− 1, 4p}.

• The FR sequence g has 1 exposing vector of size 2p, and 2p exposing vectors of size 1; they
are given by T1 = {2p+ 1, . . . , 4p}, Ti = {i− 1} for i = 2, . . . , 2p+ 1.

The lengths of f and g are both 2p+ 1, and thus they are the longest FR sequences. But f yields
an exponential lower bound ν(x) ≥ 22p−1, and g only yields a linear bound ν(x) ≥ 2p.

Finally, we discuss potential applications of MSD related to FRA and degeneracy. Implementing
FRA to regularize LP and SDP problems is challenging because it involves solving an optimization
problem of about the same size at each FR step. Therefore, a primary concern in applying FRA
is how to efficiently achieve a partial FR sequence at reasonable costs. For SDP, numerous studies
have tackled this challenge, as indicated by research from Permenter, Zhu, Hu, and others, see
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[9, 19, 25]. Im and Wolkowicz [10] propose a strategy of applying FRA for LP. Let k := MSD(F ),
and S := {i | xi = 0 for every x ∈ P} be the set of variables fixed at zero. Let x be any basic
feasible solution with the set of basic variables B. They show that |B ∩S| ≥ k, implying that every
basic feasible solution is degenerate whenever k > 1. Hence, if x is degenerate, at least one basic
variable must be zero. They employ specific pivoting steps to determine whether any zero basic
variables are in S, and if so, eliminate them from the problem. This approach can be integrated
with the two-phase simplex algorithm. In our work, we additionally discover from Theorem 4.2 that
|B ∩ S| = k under the assumption that implicit equalities in S are the sole cause of degeneracy at
x. In such instances, we can remove all zero basic variables without incurring extra computational
costs. We understand that this assumption is strict and leave its further investigation for future
research.
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