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Abstract The SCIP Optimization Suite provides a collection of software packages for
mathematical optimization, centered around the constraint integer programming (CIP)
framework SCIP. This report discusses the enhancements and extensions included in
SCIP Optimization Suite 9.0. The updates in SCIP 9.0 include improved symmetry
handling, additions and improvements of nonlinear handlers and primal heuristics, a
new cut generator and two new cut selection schemes, a new branching rule, a new LP
interface, and several bugfixes. SCIP Optimization Suite 9.0 also features new Rust and
C++ interfaces for SCIP, new Python interface for SoPlex, along with enhancements
to existing interfaces. SCIP Optimization Suite 9.0 also includes new and improved
features in the LP solver SoPlex, the presolving library PaPILO, the parallel framework
UG, the decomposition framework GCG, and the SCIP extension SCIP-SDP. These
additions and enhancements have resulted in an overall performance improvement of
SCIP in terms of solving time, number of nodes in the branch-and-bound tree, as well
as the reliability of the solver.
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1 Introduction

The SCIP Optimization Suite comprises a set of complementary software packages
designed to model and solve a large variety of mathematical optimization problems:

− the constraint integer programming solver SCIP [3], a solver for mixed-integer linear
and nonlinear programs as well as a flexible framework for branch-cut-and-price,

− the simplex-based linear programming solver SoPlex [99],

− the modeling language Zimpl [60],

− the presolving library PaPILO for linear and mixed-integer linear programs,

− the automatic decomposition solver GCG [31], and

− the UG framework for parallelization of branch-and-bound solvers [84].

All six tools are freely available as open-source software packages, either using the
Apache 2.0 or the GNU Lesser General Public License. There also exist two notable
continuously developed extensions to the SCIP Optimization Suite: the award-winning
Steiner tree solver SCIP-Jack [32] and the mixed-integer semidefinite programming
solver SCIP-SDP [30]. This report describes the improvements and new features
contained in version 9.0 of the SCIP Optimization Suite.

Background SCIP is designed as a solver for constraint integer programs (CIPs), a
generalization of mixed-integer linear and nonlinear programs (MILPs and MINLPs).
CIPs are finite-dimensional optimization problems with arbitrary constraints and a
linear objective function that satisfy the following property: if all integer variables
are fixed, the remaining subproblem must form a linear or nonlinear program (LP or
NLP). To solve CIPs, SCIP constructs relaxations—typically linear relaxations, but also
nonlinear relaxations are possible, or relaxations based on semidefinite programming
for SCIP-SDP. If the relaxation solution is not feasible for the current subproblem,
an enforcement procedure is called that takes measures to resolve the infeasibility, for
example by branching or by separating cutting planes.

The most important subclass of CIPs that are solvable with SCIP are mixed-integer
programs (MIPs) which can be purely linear (MILPs) or contain nonlinearities (MINLPs).
MILPs are optimization problems of the form

min c>x

s.t. Ax ≥ b,
`i ≤ xi ≤ ui for all i ∈ N ,
xi ∈ Z for all i ∈ I,

(1)

defined by c ∈ Rn, A ∈ Rm×n, b ∈ Rm, `, u ∈ Rn, and the index set of integer variables
I ⊆ N := {1, . . . , n}. The usage of R := R ∪ {−∞,∞} allows for variables that are free
or bounded only in one direction (we assume that variables are not fixed to ±∞). In
contrast, MINLPs are optimization problems of the form

min f(x)

s.t. gk(x) ≤ 0 for all k ∈M,

`i ≤ xi ≤ ui for all i ∈ N ,
xi ∈ Z for all i ∈ I,

(2)

where the functions f : Rn → R and gk : Rn → R, k ∈ M := {1, . . . ,m}, are possibly
nonconvex. Within SCIP, we assume that f is linear and that gk are specified explicitly
in algebraic form using a known set of base expressions.
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Due to its design as a solver for CIPs, SCIP can be extended by plugins for more
general or problem-specific classes of optimization problems. The core of SCIP is formed
by a central branch-cut-and-price algorithm that utilizes an LP as the default relaxation
which can be solved by a number of different LP solvers, controlled through a uniform LP
interface. To be able to handle any type of constraint, a constraint handler interface is
provided, which allows for the integration of new constraint types, and provides support
for many different well-known types of constraints out of the box. Further, advanced
solving methods like primal heuristics, branching rules, and cutting plane separators can
also be integrated as plugins with a pre-defined interface. SCIP comes with many such
plugins needed to achieve a good MILP and MINLP performance. In addition to plugins
supplied as part of the SCIP distribution, new plugins can be created by users. The
design approach and solving process is described in detail by Achterberg [2].

Although it is a standalone solver, SCIP interacts closely with the other components
of the SCIP Optimization Suite. Zimpl is integrated into SCIP as a reader plugin,
making it possible to read Zimpl problem instances directly by SCIP. PaPILO is
integrated into SCIP as an additional presolver plugin. The LPs that need to be solved
as relaxations in the branch-and-bound process are by default solved with SoPlex.
Interfaces to most actively developed external LP solvers exist, and new interfaces can
be added by users. GCG extends SCIP to automatically detect problem structure and
generically apply decomposition algorithms based on the Dantzig-Wolfe or the Benders’
decomposition schemes. Finally, the default instantiations of the UG framework use
SCIP as a base solver in order to perform branch-and-bound in parallel computing
environments with shared or distributed memory architectures.

New Developments and Structure of the Report This report is structured into three
main parts. First, the changes and progress made in the solving process of SCIP are
explained and the resulting performance improvements on MILP and MINLP instances
are analyzed, both in terms of performance and robustness. A performance comparison
of SCIP 9.0 against SCIP 8.0 is carried out in Section 2.

Second, improvements to the core of SCIP are presented in Section 3, which include

− improved symmetry handling on non-binary variables, symmetry handling for custom
constraints, and signed permutation symmetries,

− symmetry preprocessing using the new interfaces to nauty and sassy,

− a new constraint handler for signomial inequalities as well as cut-strengthening for
quadratic expressions,

− a new indicator diving heuristic, extensions to the existing dynamic partition search
heuristic, as well as a new online scheduling feature for primal heuristics,

− a new Lagromory separator, as well as improvements in cut selection,

− a new branching criterion called GMI branching that is incorporated into the existing
scoring function and acts as a tie-breaker for the existing branching rules,

− a new interface to the HiGHS LP solver [54], and

− certain technical improvements.

Third, improvements to the other components of the SCIP Optimization Suite and
extensions to the interfaces are presented. Improvements to the default LP solver SoPlex
and presolver PaPILO are explained in Sections 4 and 5, respectively. Extensions to the
interfaces of SCIP are presented in Section 6. Besides improvements and extensions to
existing interfaces, this section includes two new interfaces for SCIP: (1) russcip [80],
a new Rust interface, and (2) SCIP++ [83], a new C++ interface, as well as a new
Python interface for SoPlex called PySoPlex [78]. Improvements to distributed
computing with UG and to Dantzig-Wolfe decompositions with GCG are presented in
Sections 7, and 8, respectively; and finally updates to the SCIP extension SCIP-SDP
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for semidefinite problems are presented in Section 9. Not included in this release, but
available as a beta version, is ExactSCIP [27], a new extension of SCIP that allows for
the exact solution of MILPs with rational input data without roundoff errors and zero
numerical tolerances.

2 Overall Performance Improvements for MILP and MINLP

In this section, we present computational experiments conducted by running SCIP
without parameter tuning or algorithmic variations to assess the performance changes
since the 8.0.0 release. We detail below the methodology and results of these experiments.

The indicators of interest to compare the two versions of SCIP on a given subset of
instances are the number of solved instances, the shifted geometric mean of the number
of branch-and-bound nodes, and the shifted geometric mean of the solving time. The
shifted geometric mean of values t1, . . . , tn is(

n∏
i=1

(ti + s)

)1/n

− s.

The shift s is set to 100 nodes and 1 second, respectively.

2.1 Experimental Setup

As baseline we use SCIP 8.0.0, with SoPlex 6.0.0 as the underlying LP solver, and
PaPILO 2.0.0 for enhanced presolving. We compare it with SCIP 9.0.0 with SoPlex
7.0.0 and PaPILO 2.2.0. Both SCIP versions were compiled using GCG 10.2.1, use
Ipopt 3.14.14 as NLP subsolver built with HSL MA27 as linear system solver, Intel
MKL as linear algebra package, CppAD 20180000.0 as algorithmic differentiation library,
and bliss 0.77 for graph automorphisms to detect symmetry in MIPs. SCIP 9.0.0
additionally uses sassy 1.1 as a preprocessor for bliss. The time limit was set to 7200
seconds in all cases. Furthermore, for MINLP, a relative gap limit of 10−4 and an
absolute gap limit of 10−6 were set.

The MILP instances were selected from MIPLIB 2017 [40], including all instances
previously solved by previous SCIP versions with at least one of five random seeds or
newly solved by SCIP 9.0.0 with at least one of five random seeds; this amounted to
158 instances. The MINLP instances were selected in a similar way from the MINLPLib1

for a total of 179 instances.
All performance runs were carried out on identical machines with Intel Xeon Gold

5122 @ 3.60GHz and 96GB RAM. A single run was carried out on each machine in a
single-threaded mode. Each instance was solved with SCIP using five different seeds for
random number generators. This results in a testset of 790 MILPs and 810 MINLPs.
Instances for which the solver reported numerically inconsistent results are excluded from
the results below.

2.2 MILP Performance

Table 1 presents a comparison between SCIP 9.0 and SCIP 8.0 regarding their MILP
performance. SCIP 9.0 improves the solving capabilities for MILP by solving 19 more
instances than SCIP 8.0. In terms of the shifted geometric mean of the running time,
both versions perform almost equally across all instances, with SCIP 9.0 being 2% faster

1https://www.minlplib.org
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on affected instances. On the subset of harder instances in the [1000,7200] bracket,
i.e., instances that take at least 1000 seconds to be solved with at least one setting,
the speedup is larger and amounts to 6%. To compare average tree size across the two
versions, we restrict to the both-solved subset since the number of nodes for instances that
time out is not easy to interpret. In the both-solved subset, SCIP 9.0 significantly reduces
the average tree size by 17%. Finally, it’s worth noting that SCIP 9.0 incorporates
a large number of bugfixes. While these bugfixes have introduced a slowdown, they
contribute significantly to the overall reliability of the solver.

Table 1: Performance comparison of SCIP 9.0 and SCIP 8.0 for MILP instances

SCIP 9.0.0+SoPlex 7.0.0 SCIP 8.0.0+SoPlex 6.0.0 relative

Subset instances solved time nodes solved time nodes time nodes

all 785 637 433.9 4307 618 439.0 5236 1.01 1.22
affected 647 610 297.1 3874 591 301.8 4763 1.02 1.23

[0,tilim] 674 637 272.9 3332 618 276.7 4065 1.01 1.22
[1,tilim] 669 632 283.8 3423 613 287.7 4182 1.01 1.22
[10,tilim] 617 580 399.8 4463 561 404.9 5567 1.01 1.25
[100,tilim] 460 423 986.9 11282 404 985.4 14244 1.00 1.26
[1000,tilim] 278 241 2240.0 30971 222 2383.3 41101 1.06 1.33
diff-timeouts 93 56 3899.0 100922 37 4592.9 160892 1.18 1.59
both-solved 581 581 178.1 1897 581 176.2 2220 0.99 1.17

2.3 MINLP Performance

Table 2 summarizes the results for the performance of SCIP 9.0 as compared to SCIP
8.0 for the MINLP instances. Besides increasing the number of solved instances by 5, the
changes introduced in SCIP 9.0 improve the performance of SCIP in both the overall
solving time as well as the number of nodes needed. On the whole testset, SCIP 9.0
improves the performance by about 4% in time and by 13% in nodes, both in shifted
geometric means. This improvement increases with the difficulty of the instances: When
looking at the most difficult testset [1000, 7200], SCIP 9.0 outperforms SCIP 8.0 by
20% and 46% in the solving time and nodes in shifted geometric means, respectively.
Furthermore, the improvement in solving time is mainly observed on nonconvex instances.
In particular, SCIP 9.0 is 8% faster than SCIP 8.0 on nonconvex instances whereas both
versions perform almost equally when only convex instances are considered.

3 SCIP

3.1 Symmetry Handling

Symmetries of an MILP or MINLP are maps that transform feasible solutions into
feasible solutions with the same objective value. When not handled appropriately, such
symmetries deteriorate the performance of (spatial) branch-and-bound algorithms since
symmetric solutions are found and symmetric subproblems are explored repeatedly
without providing additional information to the solver. The previous versions of SCIP
have already contained many state-of-the-art algorithms to handle symmetries of binary
variables and some basic cutting planes to also handle symmetries of integer or continuous
variables.

SCIP 9.0 substantially extends the ability to handle symmetries in three directions.
First, more sophisticated techniques are available to handle symmetries of non-binary
variables. Second, the mechanism to detect symmetries has been completely restructured.
While previous versions of SCIP could only detect symmetries of the available classes
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Table 2: Performance comparison of SCIP 9.0 and SCIP 8.0 for MINLP instances

SCIP 8.0.0+SoPlex 6.0.0 SCIP 9.0.0+SoPlex 7.0.0 relative

Subset instances solved time nodes solved time nodes time nodes

all 839 810 32.6 2800 815 31.2 2489 1.04 1.13
affected 783 770 32.4 2949 775 31.4 2608 1.03 1.13

[0,7200] 823 810 29.3 2613 815 28.0 2323 1.04 1.12
[1,7200] 767 754 36.6 3288 759 34.9 2907 1.05 1.13
[10,7200] 529 516 97.0 6333 521 90.2 5498 1.08 1.15
[100,7200] 248 235 489.1 29290 240 414.0 21767 1.18 1.35
[1000,7200] 96 83 2020.8 110115 88 1682.8 75556 1.20 1.46
diff-timeouts 21 8 3492.6 72059 13 1691.3 21896 2.07 3.29
both-solved 802 802 25.7 2389 802 25.1 2187 1.03 1.09

convex 168 163 31.4 3601 165 31.0 3177 1.01 1.13
nonconvex 571 547 38.0 2783 550 35.2 2443 1.08 1.14

of constraints, SCIP 9.0 can also detect symmetries of custom constraints added by
users. Moreover, SCIP 9.0 can also detect so-called signed permutation symmetries,
whereas previous versions could only detect permutation symmetries. Finally, to detect
symmetries, SCIP makes use of external software for detecting graph automorphisms.
In the latest version, new interfaces to nauty [74] as well as the preprocessor sassy [6]
have been added.

3.1.1 Symmetry Handling Methods

For the ease of exposition, consider an MILP min {c>x : Ax ≥ b, x ∈ Zp × Rn−p},
where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. Symmetries in MILP are commonly permuting
variables, i.e., a permutation γ of [n] acts on x ∈ Rn as γ(x) = (xγ−1(1), . . . , xγ−1(n)).
Permutation γ is called a formulation symmetry of the MILP if there is a permutation π
of [m] such that γ(c) = c, π(b) = b, Aπ−1(i),γ−1(j) = Ai,j for all (i, j) ∈ [m] × [n],
and γ(i) ∈ [p] for all i ∈ [p]. Formulation symmetries can be detected by constructing a
colored graph whose color-preserving automorphisms correspond to symmetries of the
MILP, see [81] and Section 3.1.2 for more details. Moreover, the definition of formulation
symmetries can be extended to MINLPs by keeping the representation of nonlinear
constraints via expression trees invariant [63].

In previous versions of SCIP, three main classes of symmetry handling methods have
been available:

1. Propagation and separation algorithms for the symmetry handling constraints orbi-
sack [50, 51, 56, 66], symresack [50, 51], and orbitope [9, 57, 58]; these constraints
have only been able to handle symmetries of binary variables and enforce symmetry
reductions based on a scheme that is determined before the solving process starts.

2. The propagation method orbital fixing [70, 75] to handle symmetries of binary variables;
the corresponding symmetry reduction scheme is determined dynamically during the
solving process.

3. Schreier-Sims table cuts (SST cuts) [64, 82], which are cutting planes that are added
to the MILP/MINLP and can handle symmetries of arbitrary variable types.

Note that the first two classes are not compatible with each other due to the different
symmetry handling schemes.

SCIP 9.0 features an implementation of a generalization of the first two classes of
methods as discussed in [95]. This generalization allows to also handle symmetries of
non-binary variables and to apply both classes simultaneously. At the time of adding
this new feature, the performance of SCIP improved by 5.90 % on the MIPLIB 2017
benchmark test set; on the hard instances that take at least 1000 s to be solved, the

6



running time even improved by 25.40 %.

3.1.2 Symmetry Detection

In previous versions of SCIP, symmetries could only be detected if all types of constraints
present in an MILP or MINLP are known by SCIP, i.e., constraints whose correspond-
ing constraint handler is part of the SCIP release. In particular, this means that no
symmetries could be detected and automatically handled by SCIP in the presence of
custom constraints. For SCIP 9.0, the symmetry detection mechanism has been restruc-
tured. Constraint handlers now support two optional callbacks CONSGETPERMSYMGRAPH

and CONSGETSIGNEDPERMSYMGRAPH that allow constraint handlers to inform SCIP about
symmetries of their constraints. The former is used for the detection of permutation
symmetries, whereas the latter allows to detect signed permutation symmetries that
we define below. During run time, SCIP checks whether the constraint handlers of
all constraints present in a problem implement the new callbacks. If this is the case,
symmetries are detected; otherwise, symmetry detection is disabled.

Detection of Permutation Symmetries As briefly explained above, permutation symme-
tries of an MILP or MINLP can be detected by finding automorphisms of a suitable colored
graph, which we call the symmetry detection graph. In the following, we explain this mech-
anism and how it can be implemented using the CONSGETPERMSYMGRAPH callback. We illus-
trate the ideas using the simple MILP max {y+z : −2w+2x+3y+3z ≤ 4, y, z ∈ {0, 1}}.

To detect symmetries, every constraint defines its own local symmetry detection graph.
Such a graph contains a colored node for every variable that is present in the constraint
as well as further colored nodes and edges that model dependencies between the different
variables. The graph for a constraint qualifies as a symmetry detection graph for SCIP if
it is connected and the restriction of every color-preserving automorphism to the variable
nodes corresponds to a permutation symmetry of the corresponding constraint. Moreover,
two symmetry detection graphs are only allowed to be isomorphic if their constraints are
equivalent.

A possible symmetry detection graph for our exemplary MILP is shown in Figure 1a.
The nodes for variables y and z receive the same color since both have the same objective
coefficient and bounds; the remaining variable nodes receive different colors, since they
are not symmetric to each other. Moreover, we introduce one node for the right-hand
side, which is colored according to the right-hand side coefficient. The edges connect the
variable nodes with the right-hand side node; they are colored according to the coefficient
of the corresponding variable in the linear constraint. This construction can easily be
extended to general linear constraints, see [81].

The symmetry detection graphs for individual constraints are then combined into
a single symmetry detection graph. The callback CONSGETPERMSYMGRAPH provides a
pointer to this graph and different functions can be used add nodes and edges to this
“global” symmetry detection graph. To avoid re-defining variable nodes for different
constraints, these nodes cannot be added within the callback. Instead, these nodes are
defined centrally by SCIP and are colored according to the variable’s type, its objective
coefficient, and lower and upper bound. To make sure that only constraints of the same
type can be symmetric to each other (compare the permutation π above), every constraint
should add a “constraint” node to its local symmetry detection graph, which serves as
an identifier of the type of constraint (e.g., “linear”, “knapsack”, or “SOS1”).

The functions for adding nodes to the global graph are SCIPaddSymgraphValnode(),
SCIPaddSymgraphOpnode(), and SCIPaddSymgraphConsnode(). The first function adds
nodes that hold a numerical value, e.g., the right-hand side node of a linear constraint.
The second function can be used to add “operator” nodes that allow to model special
relations between other nodes. For example, in a nonlinear constraint such an operator
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(a) permutation symmetries

w −w x −x y −y z −z

rhs

cons

(b) signed permutation symmetries

Figure 1: Illustration of examplary symmetry detection graphs.

could model (nonlinear) functions that are applied to other nodes (e.g., variables).
Operators are encoded as integer numbers, i.e., the implementation needs to make sure
that only equivalent operators are assigned the same integer value. The third function
adds a node that stores a pointer to the corresponding constraint.

Edges can be added by SCIPaddSymgraphEdge(). To add edges to variable nodes,
the function SCIPgetSymgraphVarnodeidx() can be used to get the index of the variable
node in the symmetry detection graph.

Detection of Signed Permutation Symmetries Let e1, . . . , en be the standard unit vectors
in Rn. A signed permutation is a bijective map γ : {±e1, . . . ,±en} → {±e1, . . . ,±en}
that satisfies γ(−ei) = −γ(ei) for all i ∈ [n]. A signed permutation γ acts on a
vector x ∈ Rn as γ(x) = (sgn(γ−1(1))x|γ−1(1)|, . . . , sgn(γ−1(n))x|γ−1(n)|), where sgn(·)
is the sign function. That is, it permutes the entries of the vector, but it can also change
the sign of some entries. Signed permutation symmetries of an MILP or MINLP can be
defined analogously to permutation symmetries. Such symmetries arise, e.g., in geometric
problems like packing circles into a box [19], where they model reflections along standard
hyperplanes.

To detect signed permutation symmetries, constraint handlers need to implement
the callback CONSGETSIGNEDPERMSYMGRAPH. The functionality is analogous to the one of
CONSGETPERMSYMGRAPH, however, the automorphisms of the symmetry detection graph
need to encode signed permutation symmetries now. This can be achieved by introducing
not only a node for every variable x, but also for every negated variable −x. The colors of
the negated variables are derived based on the negated objective coefficient and negated
bounds of variable x. Moreover, to indicate that x and −x form a pair of negated
variables, both must be connected by an edge in the symmetry detection graph. Finally,
the definition of signed permutations above requires that only reflections along standard
hyperplanes are allowed. In SCIP’s implementation, however, also reflections along
translated standard hyperplanes can be detected. This is achieved by not defining the
colors based on the original variable bounds, but for variables whose domain is translated
to be centered at the origin (except for semi-unbounded variables). Consequently, also
binary variables may admit signed permutation symmetries since the variable domain is
translated to {− 1

2 ,+
1
2}.

Figure 1b shows the symmetry detection graph for our illustrative example. Next to
the classical permutation symmetry that exchanges y and z, also the signed permutation
that maps variable w onto variable −x can be detected.

To create the symmetry detection graph for signed permutation symmetries all
functions to add nodes and edges as described above can be used. To access the index of
a negated variable, SCIPgetSymgraphNegatedVarnodeidx() needs to be used.

Via the parameter propagating/symmetry/symtype a user can select which type of
symmetries is detected. A value of 0 corresponds to permutation symmetries, and a
value of 1 to signed permutation symmetries. By default, signed permutation symmetries
are not detected, because currently only basic symmetry handling techniques for such
symmetries are implemented.
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3.1.3 Symmetry Interfaces

To detect automorphisms of the previously mentioned symmetry detection graphs, the
previous version of SCIP made use of the graph automorphism software bliss [55],
which is also shipped together with SCIP. SCIP 9.0 also features interfaces to nauty/-
traces [74]. Depending on which software package shall be used for symmetry detection,
the SCIP make command takes SYM={none,bliss,nauty} as argument. Moreover,
SCIP 9.0 allows to make use of sassy [6], which preprocesses the symmetry detection
graphs to accelerate the computation of symmetries. sassy can be used by compiling
SCIP with option SYM={sbliss,snauty}.

3.2 Nonlinear Handlers

Nonlinear constraints (see (2)) are handled by the constraint handler nonlinear in
SCIP. This constraint handler can delegate tasks on detecting and exploiting structure
in algebraic expressions to specialized nonlinear handlers, see [10] for details. For
example, the nonlinear handler for quotient expressions identifies expression of the
form vw−1 (where v and w can be arbitrary expressions) in nonlinear handlers and
provides specialized bound tightening and linear under/overestimators for the function
(v, w) 7→ vw−1.

With SCIP 9.0, a new nonlinear handler for signomial functions has been added and
the nonlinear handler for quadratic expressions has been improved. In addition, a new
nonlinear handler callback has been added to request the linearization of an expression
in a given solution point. The nonlinear constraint handler can use this callback to
tighten the linear relaxation when a new feasible solution has been found (parameter
constraints/nonlinear/linearizeheursol, currently disabled by default).

3.2.1 Signomial Handler

An n-variate signomial term is defined as xα =
∏
j∈[n] x

αj

j , where α ∈ Rn and x > 0.
In general, the signomial term is nonconvex. In SCIP 9.0, a new nonlinear handler is
implemented that generates cutting planes for signomial constraints.

Given xα, the handler aims at approximating the lifted set S := {(x, t) ∈ Rn ×R :
t = xα}, which is in general given by a constraint of the extended formulation (see the
8.0.0 release report [10] for details on extended formulations). It is easy to show that S
can be rewritten in the form

S = {(u, v) ∈ Rh+`
+ : uβ̄ = vγ̄}. (3)

with β̄, γ̄ containing only nonnegative entries.
Given a point (ũ, ṽ), the handler outer approximates either S1 := {(u, v) ∈ Rh+`

+ :

uβ̄ ≤ vγ̄} or S2 := {(u, v) ∈ Rh+`
+ : uβ̄ ≥ vγ̄} by checking which of the two sets does not

contain (ũ, ṽ). More precisely, if (ũ, ṽ) /∈ S1, then the handler separates a linear valid
inequality for S1 that (possibly) cuts off (ũ, ṽ) and overestimates the signomial term; if
(ũ, ṽ) /∈ S2, then the handler separates a linear valid inequality for S2 that (possibly) cuts
off (ũ, ṽ) and underestimates the signomial term. In the case of an inequality constraint,
only one of the sets S1, S2 correctly describes the feasible set of the constraint, and thus
only one set is considered for separation.

The above formulation exhibits symmetry between u and v. We only illustrate the
method to approximate S1, and the similar result applies to S2 as well.

Since the signomial terms uβ̄ , vγ̄ are nonnegative over Rh+, R`+, we can take any
positive power η ∈ R>0 on both sides of (3) to obtain

S1 = {(u, v) ∈ Rh+`
+ : uβ ≤ vγ}, (4)
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where β := ηβ̄, γ̄ := ηγ̄, and η = 1/max(
∑
j∈[h]|β̄j |,

∑
j∈[`]|γ̄j |). Thus, we have that

max(
∑
j∈[h]|βj |,

∑
j∈[`]|γj |) = 1.

Moreover, we assume that the range of u is a hyperrectangle U ⊆ Rh>0, which is
usually available as variable bounds in SCIP. The reformulated set enjoys two useful
properties [100]: the terms uβ , vγ in (4) are concave functions, and the convex envelope of
uβ over U is vertex polyhedral. The signomial handler aims at (1) linearizing the convex
envelope of uβ , i.e., an affine underestimator for uβ , and (2) linearizing the concave
function vγ .

Let Q be the vertices of U . Since the convex envelope of uβ over U is vertex polyhedral,
the separation of an affine underestimator a · u+ b could be solved by an LP:

max
a∈Rh,b∈R

{a · ũ+ b : ∀q ∈ Q a · q + b ≤ qγ}, (5)

When h = 1, 2, the handler directly uses a closed form expression of the optimal a, b
without solving the LP [100].

Now, denote g(v) := vγ . Since g is concave, a straightforward way to overestimate it
is to use the gradient at ṽ and obtain g(ṽ) +∇g(ṽ) · (v − ṽ). Then, the separated valid
inequality is of the form a · u+ b ≤ g(ṽ) +∇g(ṽ) · (v − ṽ). In the implementation, such
inequality is further transformed into an overestimator of xα through scaling.

Table 3 shows the impact of the signomial handler on SCIP performance on 152
MINLPLib instances that contain signomial terms. We report the ratio of shifted
geometric means of time and nodes and the number of solved instances.

Table 3: Performance statistics of the signomial handler over SCIP default.

152 selected MINLPLib instances

Time (s) Nodes Solved

0.92 0.93 78 vs 75

The computational cost of estimating a signomial term primarily stems from solv-
ing the LP (5), whose size is exponential in h. An advanced parameter that gov-
erns the maximum allowable value of h that the signomial handler can manage is
nlhdlr/signomial/advanced/maxnundervars. Currently, the signomial handler is dis-
abled by default. Users can enable it via the nlhdlr/signomial/enabled parameter.

The current implementation of the signomial handler lacks a specialized bound
tightening method for variables within signomial terms. Given the critical impact of
variable range (U) on cut quality, a further development of the handler involves refining
these bounds through propagation techniques.

3.2.2 Strengthening Cuts for Quadratic Expressions

To separate nonconvex quadratic constraints, the constraint handler nlhdlr quadratic,
which was introduced in SCIP 8.0, can generate intersection cuts by setting the parame-
ter nlhdlr/quadratic/useintersectioncuts = TRUE (currently disabled by default).
Until now, the intersection cuts were built by using only the current LP relaxation
and the violated quadratic constraint. To additionally leverage integrality information,
SCIP 9.0 allows to strengthen the cutting planes using monoidal strengthening [8] if
some of the variables in the problem need to be integer. As [15] showed, the strengthened
intersection cuts significantly outperform the pure intersection cuts whenever monoidal
strengthening can be applied.
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3.3 Primal Heuristics

3.3.1 Indicatordiving

Semi-continuous variables are variables that take either the value 0 or any value within
a specific range:

x ∈ {0} ∪ [`, u] with 0 < ` ≤ u and u ∈ R+ ∪∞.

Such variables are used, for example, in modeling supply chains where a facility either
can produce nothing or, if enabled, has to produce at least an amount `.

Semi-continuous variables can be formulated in SCIP with an additional binary
variable z ∈ {0, 1} as

x ∈ [0, u],

`z ≤ x, (6)

z = 0 =⇒ x ≤ 0. (7)

Thereby, (7) is a so-called indicator constraint, that is, x ≤ 0 must hold if z = 0. Linear
constraint (6) models the lower bound on x.

If u is finite, one can reformulate the indicator constraint (7) with a linear big-M
constraint, such as x ≤ uz. If u is infinite, this is not directly possible. However, one
could add an artificial upper bound with the risk of cutting off optimal solutions and
causing numerical issues due to the large upper bound M . A new diving heuristic,
indicatordiving, has been developed to find solutions also in the presence of indicator
constraints modeling semi-continuous variables with infinite upper bounds u.

Diving heuristics iteratively fix variables and solve the modified LPs simulating a
depth-first-search in an auxiliary tree. A description of the generic diving procedure used
in SCIP can be found in [39]. Other diving heuristics in SCIP typically take only integer
variables with fractional LP solution value into account. In contrast, indicatordiving
additionally examines all binary indicator variables z corresponding to violated indicator
constraints and which are integral in the LP solution but not fixed already.

Each such variable is assigned a score to determine the variable that should be fixed
next. For indicator variables, the score is given by

φ :=

{
−1, if x̂ ∈ {0} ∪ [`, u],

100 · (`− x̂)/`, if x̂ ∈ (0, u),

where x̂ is the current LP solution value. The indicator variable z with the highest score
gets fixed to 1 if the LP value x̂ is at least 50% of the lower bound `. Otherwise, it gets
fixed to 0. As soon as all the indicator variables are integral in the LP solution or all the
indicator constraints are fulfilled, other candidate variables are considered, for which the
score and rounding direction of farkasdiving are used.

3.3.2 Extension of Dynamic Partition Search

Since SCIP 7.0, the decomposition information can be passed to SCIP in addition to
the instance, which can be leveraged in heuristics, for example. A detailed description of
decompositions and their handling in SCIP can be found in the release report for that
version [33].

Dynamic Partition Search (DPS) introduced in SCIP 8.0 is a heuristic that requires
a decomposition. DPS splits an MILP (1) into several subproblems according to a
decomposition. Thereby, the linking constraints and their right-/left-hand sides are
also split by introducing new parameters pq for each block q, called partition. Such a
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partition is central to the DPS. When the heuristic is called during node preprocessing,
the partition is initialized with a uniform distribution of the constraint sides over the
blocks.

In SCIP 9.0, the DPS has been extended with an option to get called at the end
of the node processing and, therefore, can use the LP solution for initialization of the
partition. The parameter heuristics/dps/timing controls the calling point and, thus,
the initialization. A detailed description of DPS and additional heuristics exploiting
decomposition information can be found in [44].

3.3.3 Learning to Control Primal Heuristics Online

Since the performance of heuristics is highly problem-dependent and most of them can be
very costly, it is necessary to handle them strategically. Thus, sometimes it is preferable
to have dynamic, self-improving procedures rather than relying on static methods to
control primal heuristics.

SCIP has already used two adaptive heuristics in previous versions that use bandit
algorithms to decide which heuristics to additionally run: Adaptive Large Neighborhood
Search (ALNS) [45] and Adaptive Diving [46]. Building upon this, SCIP 9.0 now includes
a general online learning approach [14], which dynamically adapts the application of
primal heuristics to the unique characteristics of the current instance. In particular, both
Large Neighborhood Search and Diving heuristic types are controlled together, making
this the first work where two different classes of heuristics are treated simultaneously by
a single learning agent. In SCIP 9.0, this is implemented as a heuristic called scheduler.
Since this framework was designed to replace the classical heuristic handling as a whole
as opposed to being run as an additional heuristic, scheduler is disabled by default in
SCIP 9.0.

3.4 Cutting Planes

This section discusses the updates to the separation routine in SCIP, both for cut
generation and cut selection. Separation in SCIP is performed in rounds. In a round,
various valid inequalities that cut off the current LP relaxation’s fractional solution are
generated and stored either in a global cut pool (for cuts that are valid globally) or a
separation store (for cuts that are valid only locally). Then, these cuts are filtered and
added to the LP relaxation before re-solving the relaxation and proceeding to the next
round of separation. Note that other components of SCIP such as branching maybe
executed in between two separation rounds. These rounds are performed until a stopping
criterion is met (e.g., maximum number of rounds or cuts added, or dual bound of the
relaxation stalling).

3.4.1 Cut Generation

Lagromory Separator There are two potential issues with the round-based approach
mentioned above.

1. The generation of higher-ranked cuts, e.g., higher-ranked Gomory Mixed-Integer
(GMI) cuts [18], may result in numerical troubles during the solving process.

2. Multiple rounds of separation may be needed to achieve dual bound improvement in
the presence of dual degeneracy [34].

The first issue is addressed in the literature via a relax-and-cut framework-based separation
techniques [43, 68, 12, 28]. The second issue has received less attention until now despite
being critical to the usefulness of separation in the solvers. The new separator in
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SCIP, the Lagromory separator, addresses both these issues. It is a relax-and-cut
framework-based separator which is built based on the separation technique presented
in [28].

In the basic version of the relax-and-cut framework, which is also discussed in [28],
when a separator is called at a node with fractional LP solution, certain cuts are generated
but not added directly to the LP relaxation. These cuts are added to the objective
function of the node LP in a Lagrangian fashion using Lagrangian (penalty) multipliers.
Then, this Lagrangian dual problem is solved via an iterative approach by updating
the Lagrangian multipliers in every iteration, requiring an LP solving in every iteration.
When an LP is solved in an iteration, it is equivalent to exploring a new basis of the node
LP. Then, additional cuts are generated with respect to this newly explored basis and are
added to the objective function of the node LP again. This procedure is repeated until
certain termination criterion is met. While this approach in [28] was proven to improve
the dual bound at a given single node, it turned out to be ineffective in the context of
the entire branch-and-cut tree. To overcome this crucial hurdle, the Lagromory separator
in SCIP also implements various novel enhancements.

− Theoretical enhancements include stabilization and regularization of the vector of
Lagrangian multipliers. This vector is integral to and iteratively updated in the
relax-and-cut framework. Stabilization using a core vector is an essential component
in the literature of decomposition methods such as the Benders’ and Dantzig-Wolfe
decompositions. Regularization of vectors (e.g., by projecting the vectors into `1,
`2, etc, norm balls) is a commonly applied technique in the literature of nonlinear
optimization.

− Computational enhancements include the threshold for dual degeneracy beyond which
the separator is executed; the working limits on the number of LP iterations, number
of cuts generated per explored basis of the LP relaxation; etc.

The separator was tested on the MIPLIB 2017 benchmark library [40]. It speeds up
the solving process of harder instances that require at least 1000 seconds for solving to
optimality. On the other hand, it increases the solving time for many easier instances
resulting in no overall improvement of the default SCIP performance. The Lagromory
separator is OFF by default due to this reason. An interested user may switch it ON by
changing the parameter separation/lagromory/freq to a non-negative number.

3.4.2 Cut Selection

The cut selector plugin introduced in SCIP 8.0 enabled multiple research directions
on the problem of cut selection, which recently underwent a revived scrutiny. The
previously hard-coded algorithm was replaced by the default cut selector cutsel/hybrid,
which in particular scores cuts with a weighted sum of four criteria: efficacy, integer
support, objective parallelism, and directed cutoff distance (with the last one having a
zero default weight). The scored cuts are then filtered iteratively by an orthogonality
criterion. This removes all non-orthogonal cuts (within some tolerance), starting from
the highest-scoring cut until every cut has been processed, and the remaining set of cuts
is pairwise near-orthogonal. The importance of cut selection and some limitations of the
current criteria were in particular shown theoretically and computationally in [94, 92].

These lines of work point to the conclusion that the current cut selection algorithm
fails to capture and adapt to important instance properties. In [90], a new cut selector
coined ensemble was developed to capture more of these properties than the current
weighted sum of the default cutsel/hybrid. The three core aspects of the cut selection
loop described above are the filtering of cuts, their scoring, and the stopping criteria
for the cut loop. All three aspects were extended and modified in the new ensemble cut
selector, resulting in a large number of parameters that were activated and adjusted
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Figure 2: (a) Pairwise cut efficacies, shown for two cases of LP solutions in
yellow and green for cutting planes I and II. (b) Orthogonality-based cutfiltering,
shown by the offset between the pairwise efficacies in red and gray of cut I paired
with either cut II or the orthogonally rotated cut II.

through the blackbox hyperparameter optimization tool SMAC [65]. These parameters
include pseudo-cost based cut scoring, sparsity based cut scoring, density based cut
filtering, parallelism based scoring penalties, and a stopping criterion based on the number
of nonzeros in the added cuts. Because of the filter on cut density, cutsel/ensemble
performs unreliably on MINLPs, where some nonlinear constraints demand the use
of high-density cuts for good solver performance. It is therefore applied with a lower
priority than cutsel/hybrid which remains the default, but can be activated by changing
cutselection/ensemble/priority to a number greater than 8000, the value of hybrid.

Further, a novel dynamic filtering method is introduced in cutsel/dynamic, which
aims to enhance the current near-orthogonal threshold methodology used in the cutsel/hybrid
selector. The geometric rationale for this approach can be understood by considering
how the LP improvements for a pair of cutting planes, in terms of efficacy, are influenced
by the position of their intersection relative to the current LP optimal solution x∗ (refer
to Figure 2a).

This is exemplified by demonstrating that a mere summation of individual cut
efficacies can be misleading in evaluating the actual efficacy of a pair of cuts. The true
efficacy, indicated by red arrows in Figure 2a, represents the minimal distance between
the feasible region A and the current LP solution post-application.

Figure 2a illustrates a fundamental issue when using pure efficacy to evaluate multiple
cuts simultaneously. This underscores the motivation for orthogonality-based filtering as
showcased in Figure 2b. Specifically, if the current LP solution is outside the fan formed
by the intersection of the cuts (yellow), then one of the cuts becomes entirely ineffective,
provided that the vertex created by this pair is not the optimal point in the subsequent
iteration. Conversely, if the LP solution is within this fan, the aggregated efficacy of the
cuts does not accurately reflect their true effectiveness. This discrepancy is due to the
degree of non-orthogonality between the cuts.

To address these limitations, the stringent orthogonality threshold of the default
selector was relaxed. The new dynamic criterion is depending on individual cut efficacies
and aims to position the LP solution within the intersection fan of the cut pairs (as
depicted in Figure 2b). Additionally, users can specify a minimum efficacy improvement
relative to the previous cutting plane via the mingain parameter. The filtermode
parameter ’f’ in cutsel/dynamic facilitates rescoring of cuts between filtering rounds,
using the pairwise efficacy instead of the usual scoring mechanism. Preliminary test
results have not indicated a general improvment over the default cut selection; hence,
this selector is assigned a lower priority than cutsel/hybrid as well.
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3.5 Branching

SCIP 9 introduces a new branching criterion both implemented as a stand-alone rule and
integrated within the default hybrid branching rule [4]. For a more thorough overview of
the results and idea presented in this section, see [91].

3.5.1 GMI Branching

GMI cuts [42] are a standard tool for solving MILPs. It is recommended to see [7, 17, 91]
for an overview of how GMI cuts are derived and applied in practice. The motivation
to use GMI cuts to influence branching decisions stems from the observation that GMI
cuts are derived from a split disjunction. A split disjunction is defined by an integer
π0 ∈ Z and an integral vector π ∈ Zp × {0}n−p, which has zero entries for coefficients of
continuous variables. The disjunction is then given by:

{x ∈ Rn | πT0 x ≤ π0} ∪ {x ∈ Rn | πT0 x ≥ π0 + 1}.

Since no integer point is contained in the split {x ∈ Rn | π0 < πT0 x < π0}, all feasible
points lie in the above split disjunction. Thus, a cut that only cuts off points from the
continuous relaxation that are inside the split is valid for the original problem. Such cuts
are called split cuts and GMI cuts are a special case of this family of cutting planes. An
example split with a valid split cut is visualized in Figure 3.

Figure 3: Example intersection cut that is also a split cut.

To best link GMI cuts and branching, note that for π = ei and π0 = bx̄ic, where ei
denotes the i-th unit vector and x̄ the current LP solution, the split corresponds exactly
to the region that is excluded by branching on a fractional variable xi, i ∈ I. The simple
logic of this branching rule is then the following: Variables whose splits would generate a
deep cut might also be good branching candidates. Therefore, the new Gomory branching
rule generates all GMI cuts (or up to some maximum number of candidates if set), and
branches on the variable whose associated split produces the most efficacious GMI cut.

3.5.2 Using GMI Cuts for Reliability Pseudo-Cost (Hybrid) Branching

The default branching rule of SCIP [4] has been extended to include two new terms in
the weighted sum scoring rule. Currently, the variable that is branched on by SCIP is
the one with the highest branching score (ignoring cases of epsilon-close results). The
score for each variable is computed via a weighted sum rule that combines the following
measures:

− The frequency that the variable appears in a conflict

− The average length of the conflicts that the variable appears in
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− The frequency that the variable’s branching history has resulted in other variables
becoming fixed

− The frequency that the variable’s branching history has resulted in infeasible sub-
problems

− The number of NL constraints the variable features in

− The pseudo-cost associated with the variable from its history of previous branching
decisions.

This weighted sum rule is appended with two terms controlled by the weight parame-
ters gmiavgeffweight and gmilasteffweight. In a separation round, SCIP now stores
the normalized efficacy of generated GMI cuts. The normalization is a simple division
by the largest efficacy of any GMI cut generated in the separation round, resulting in
a value in the range [0, 1] for each variable from which the tableau row produced a
GMI cut. For each variable in the problem, SCIP now records a running average of the
normalized GMI cut efficacies from tableau rows associated with the respective variable.
Additionally, SCIP now also records the last normalized value for each variable. The
parameter gmiavgeffweight is then the weight of the running average in the weighted
sum rule for each variable. The parameter gmiavgeffweight is equivalently the weight
of the most recent recorded value for each variable. By default, gmiavgeffweight is set
to 0, and gmilasteffweight is set to 10−5, effectively acting as a tie-breaker.

3.6 LP Interfaces

HiGHS LPI SCIP 9.0 provides the possibility of using the open-source LP solver
HiGHS [54] 2 . The interface provides the basic functionality, yet it does not fully exploit
all capabilities of HiGHS.

3.7 Technical Improvements

AMPL .nl reader Added support for logical constraints in binary variables and basic
logical operators (and, or, not, equal).

OBBT propagator Variables of linear constraints that are controlled by indicator con-
straints can now also be taken into account for bound tightening. This feature is disabled
by default, but can be enabled via parameter propagating/obbt/indicators.

4 SoPlex

Most importantly, SoPlex 6.0 now supports incremental precision boosting [26] for
solving LPs exactly over the rational numbers, in addition to and in combination with the
existing LP iterative refinement approach [38, 37]. The algorithm for exact solving can be
selected using the boolean parameters precision boosting and iterative refinement.
By default, both are set to true, in which case SoPlex uses a combined algorithm with
an outer precision boosting loop and an inner iterative refinement loop. For further details
and computational experiments we refer to [25]. The new default for exact, rational LP
solving increases the robustness of the algorithm on numerically challenging problems
and allows to solve more problems exactly. Furthermore, a new Python interface for
SoPlex 6.0, called PySoPlex, has been developed, see Section 6.7.

2Available in source code at https://github.com/ERGO-Code/HiGHS.
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5 PaPILO

PaPILO, a C++ library, is a solver-independent presolving library that provides pre-
solving routines for MIP and LP and is part of the presolving routines in SCIP. It
also supports multi-precision arithmetic, which makes PaPILO an essential part of the
presolving process of ExactSCIP [27], the numerically exact version of SCIP [16, 23, 24].

PaPILO 2.2 now supports proof logging as a new feature, i.e., the generation of
machine-verifiable certificates by a solver in order to prove the correctness of its compu-
tation. Proof logging was originally introduced by the SAT community to ensure the
correctness of a solver’s computation, since even state-of-the-art solvers falsely claim
infeasibility or optimality or return infeasible “solutions” [5, 16, 59, 88, 36]. Examples of
such proof formats are DRAT [96, 47, 48], GRIT [21], and LRAT [20]. ExactSCIP has
adapted proof logging to certify the branch-and-cut process using the Vipr format [13],
but since Vipr currently does not provide the necessary functionality to verify presolving
reductions, ExactSCIP only prints the certificate for the presolved problem.

As a first step, PaPILO 2.2 provides the ability to generate proofs for presolving
of binary programs in the VeriPB format3, which was developed for Pseudo-Boolean
(PB) problems [11, 41]. VeriPB readily supports a reverse unit propagation rule and a
redundancy-based strengthening rule for verifying dual arguments, and in our effort to
certify presolving transformations, it has recently been extended by an objective update
rule to support modification of the objective during presolving. We refer to [49] for a
detailed explanation of how each presolving reduction in PaPILO can be certified using
the VeriPB language. In order to print a certificate in PaPILO the boolean parameter
verification_with_veripb must be set to true. Since VeriPB only supports PB
problems, proof logging is currently only supported for this problem class.

Table 4 reports the performance impact of proof logging. These experiments are based
on the selection of binary programs from MIPLIB 2017 [40], called MIPLIB 01 [22], and
the instances of the PB16 competition [79], each split into optimization (opt) and decision
(dec) instances. We only exclude the large-scale instances ivu06-big and supportcase11
with a runtime of more than 2 hours in PaPILO. Times are aggregated using the
geometric mean shifted by 1 second. The overhead of proof logging ranges from 27%
to 54% on both test sets. For 99% of the decision instances, the overhead per applied
transaction is below 0.186 milliseconds on both test sets. This shows the viability of
proof logging in practice especially considering that proof logging runs sequentially while
the presolvers in PaPILO run in parallel.

Test set instances default (in seconds) w/proof log (in seconds) relative

PB16-dec 1398 0.050 0.077 1.54
MIPLIB 01-dec 295 0.498 0.631 1.27
PB16-opt 532 0.439 0.565 1.29
MIPLIB 01-opt 144 0.337 0.473 1.40

Table 4: Runtime comparison of PaPILO with and without proof logging.

6 Interfaces

6.1 AMPL

The AMPL4 interface of SCIP now supports parameters specified in AMPL command
scripts via option scip options. The value of scip options is expected to be a sequence

3available at https://gitlab.com/MIAOresearch/software/VeriPB
4https://www.ampl.com
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of parameter names and values, separated by a space, for example

option scip_options ’limits/time 10 display/verblevel 1’;

6.2 JSCIPOpt

The Java interface to SCIP, JSCIPOpt, is again actively maintained and requires a
C++ compiler (rather than just a C compiler) to compile. The following functionality of
the SCIP C API (or the objscip C++ API) is newly available from Java:

− branch priorities,

− concurrent solving,

− changing the objective coefficient of a variable (contributed by the GitHub user
xunzhang (Hong Wu)),

− message handlers (using the objscip API – the C++ interface class can be transpar-
ently subclassed from Java),

− getting the current dual bound,

− getting the solving status (contributed by the GitHub user patrickguenther),

− interrupting the solving process,

− creating a partial solution (contributed by the GitHub user fuookami (Sakurakouji
Sakuya)).

In addition, the following bugs were fixed:

− running SWIG during the compilation only worked on *nix systems due to the
unnecessary use of the external POSIX command mv,

− building against SCIP 8.0.0 or newer was failing due to a missing #include statement,

− even when defining SCIP DIR at build time, a different SCIP could be silently used if
the passed SCIP DIR was not valid for some reason (this is now an error),

− a JSCIPOpt library dynamically linked to the SCIP library was not binary-
compatible with different versions of SCIP due to the use of macros hardcoding
structure layouts (macros now are avoided unless SCIP is statically linked into
JSCIPOpt),

− the SCIP Longint type was incorrectly mapped to a 32-bit Java type (now correctly
mapped to a 64-bit Java type).

6.3 PySCIPOpt

The Python interface to SCIP, PySCIPOpt [69], is now automatically shipped with
a standard installation of SCIP when installed using PyPI. This automatic SCIP
installation is currently available only for machines running x86 64 architecture. The
Python versions and OS combinations supported include CPython 3.6+ for manylinux2014
(includes Ubuntu / Debian) and MacOS, and CPython 3.8+ for Windows. Linking
PySCIPOpt against a custom installation of SCIP is still possible and encouraged,
however now requires cloning PySCIPOpt’s repository, available on GitHub [77], and
installing from source.

A new Python package, PySCIPOpt-ML [93], is now available. The package uses
PySCIPOpt to automatically formulate machine learning models into MIPs. This func-
tionality allows users to easily optimize MIPs with embedded ML constraints, simplifying
the process of deciding on a formulation and extracting the relevant information from
the machine learning model.
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6.4 SCIP.jl

SCIP.jl is the Julia interface to SCIP and provides access to the solver in two ways.
First, it provides an access to all functions of the C interface mirrored by Clang.jl
and accessed via Julia ccall. Second, it exposes a high-level interface implementing the
MathOptInterface API [62] and callable, e.g., through the JuMP modeling language
[67]. The high-level interface now includes an access to the heuristic, branching, and cut
selection plugins, making them available in an idiomatic Julia style, in addition to the
constraint handler and separator plugins. The heuristic and cut generation plugins are
also available through the standardized MathOptInterface callback mechanism.

6.5 russcip

With SCIP 9.0, we introduce the first version of the Rust interface for SCIP, russcip
[80]. The interface builds on Rust’s solid foundation for type and memory safety. Being
a system’s programming language, it allows for low-level access to the C-API of SCIP,
binding directly without the need for copying data across the language barrier. The
interface is split into two parts: an unsafe part, which provides full access to the C-API
through the module ffi and a limited but safe wrapper that allows access to part of the
API. Currently, the following plugins are implemented on the safe interface that allow
you to addi custom branching rules, primal heuristics, and variable pricers, and control
SCIP through event handlers, all designed to guarantee compliance with SCIP’s return
types at compile-time.

The interface is still in its early stages and we are working on adding more plugins
and improving the ergonomics of the safe interface. The following is a small example of
how to use russcip:

use russcip::prelude::*;

fn main() {

// Create model

let mut model = Model::default()

.hide_output()

.set_obj_sense(ObjSense::Maximize);

// Add variables

let x1 = model.add_var(0., f64::INFINITY, 3., "x1", VarType::Integer);

let x2 = model.add_var(0., f64::INFINITY, 4., "x2", VarType::Integer);

// Add constraint "c1": 2 x1 + x2 <= 100

model.add_cons(vec![x1.clone(), x2.clone()],

&[2., 1.], -f64::INFINITY, 100., "c1");

let solved_model = model.solve();

let status = solved_model.status();

println!("Status:{:?}", status);

let obj_val = solved_model.obj_val();

println!("Objective:{}", obj_val);

let sol = solved_model.best_sol().unwrap();

let vars = solved_model.vars();
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for var in vars {

println!("{}={}",&var.name(), sol.val(var));

}

}

Further examples related to defining and using custom plugins can be found in the
repository’s [80] tests.

6.6 SCIP++

SCIP++ is a C++ wrapper for SCIP’s C interface. It automatically manages the
memory, provides a simple interface to create linear expressions and inequalities, and
provides type-safe methods to set parameters. It can be used in combination with SCIP’s
C interface, especially for features not yet present in SCIP++. The following is a small
example.

#include <scippp/model.hpp>

using namespace scippp;

int main() {

Model model("Simple");

auto x1 = model.addVar("x_1", 1);

auto x2 = model.addVar("x_2", 1);

model.addConstr(3 * x1 + 2 * x2 <= 1, "capacity");

model.setObjsense(Sense::MAXIMIZE);

model.solve();

}

6.7 PySoPlex

PySoPlex [78] is a newly-introduced Python wrapper for SoPlex’s C interface. The
installation process is similar to that of PySCIPOpt, so, a user needs to install SoPlex
first, set the SOPLEX DIR environment variable, and then install the PySoPlex wrapper.
The installation process has been successfully tested on Linux and Mac OS platforms.
The following is a small example.

import pytest

from pysoplex import Soplex, INTPARAM, BOOLPARAM, VERBOSITY

# create solver instance

s = Soplex()

# read instance file, solve LP, and get objective value

success = s.readInstanceFile("PATH_TO_INSTANCE.mps.gz")

# specify "lifting" parameter

s.setBoolParam(BOOLPARAM.LIFTING, 1)

# specify "verbosity" level

s.setIntParam(INTPARAM.VERBOSITY, VERBOSITY.ERROR)

s.optimize()

obj_val = s.getObjValueReal()

print(obj_val)
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7 The UG Framework

UG was originally designed to parallelize powerful state-of-the-art branch-and-bound
based solvers (we call these “base solvers”). Two of the most intensively developed
parallel solvers are FiberSCIP (for a shared memory computing environment) and
ParaSCIP (for a distributed computing environment), both using SCIP as the base
solver. ParaSCIP solved two open instances on a supercomputer from MIPLIB (MI-
PLIB2003) for the first time in 2010 [85]. To achieve this, supercomputer jobs had to
be restarted frequently from snapshots of the branch-and-bound tree. To verify the
results, we aimed to solve the instances with a single job on the supercomputer, which
required the development of new features and intense debugging of ParaSCIP. Since
debugging on distributed environments is inefficient, FiberSCIP was developed, which
has the same parallelization algorithms as that of ParaSCIP (since UG abstracts the
parallelization library), but can run on a single PC. The results of FiberSCIP were
first presented in the MIPLIB2010 paper [61] (therein, FiberSCIP is referred to as
UG[SCIP/SPX]). Even though FiberSCIP was already working in 2010, the FiberSCIP
paper [87] was submitted only 3 years later, since the software went through intensive
tests. The supplement of the FiberSCIP paper includes only a small fraction of the
computational results we had conducted. Due to the major debugging effort of UG and
SCIP via FiberSCIP, ParaSCIP could solve more than 20 open instances [86] from
MIPLIB and none of these results have been proven wrong so far. Thus, next to its main
purpose of parallelization, a major contribution of UG has been an improved stability
of SCIP. For example, complete thread-safety of SCIP was only achieved due to the
development of FiberSCIP.

Since UG provides a systematic way to parallelize a state-of-the-art sequential or
multi-threaded solver to run on a large scale distributed memory environment, with
version 1.0, UG is generalized to a software framework for a high-level task parallelization
framework5. That is, with version 1.0, UG will not only parallelize the tree search of
branch-and-bound based solvers, but allow the parallelization of other kind of solvers.
On top of that, UG version 1.0 will also allow more flexibility and customization when
parallelizing a branch-and-bound based solver for a specific purpose. For an example, see
the recent adaptation CMAP-LAP (Configurable Massively Parallel solver framework for
LAttice Problems) of UG to solve lattice problems [89].

With the new beta version of UG 1.0, which is released with the SCIP Optimization
Suite 9.0, UG has caught up with interface changes in SCIP and includes a few more
bugfixes. It does not include many new features. However, the possibility to appropriately
specify an optimality gap limit has been added.

7.1 Setting optimality gap limit

For FiberSCIP/ParaSCIP, SCIP parameters can be set by using command line
options,“-sl, -sr, -s” as below:

../bin/fscip

syntax: ../bin/fscip fscip_param_file problem_file_name [-l <logfile>] [-q]

[-sl <settings>] [-s <settings>] [-sr <root_settings>] [-w <prefix_warm>]

[-sth <number>] [-fsol <solution_file>] [-isol <initial solution file]

-l <logfile> : copy output into log file

-q : suppress screen messages

-sl <settings> : load parameter settings (.set) file for LC presolving

-s <settings> : load parameter settings (.set) file for solvers

5For concept of UG’s high-level task parallelization framework, see https://ug.zib.de/doc-1.0.0/

html/CONCEPT.php
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-sr <root_settings> : load parameter settings (.set) file for root

-w <prefix_warm> : warm start file prefix ( prefix_warm_nodes.gz and

prefix_warm_solution.txt are read )

-sth <number> : the number of solver threads used

-fsol <solution file> : specify output solution file

-isol <intial solution file> : specify initial solution file

Therefore, parallel solving algorithms of FiberSCIP/ParaSCIP can be controlled
just by setting these parameters. The optimality gap limit could be set by using the “-s”
option. However, using default settings, FiberSCIP/ParaSCIP executes presolving in
the LoadCoordinator, which is the controller thread (process) of FiberSCIP (ParaSCIP,
respectively), and the presolved instance is passed on to all solvers [87]. Therefore, the
“-s” option applies to solving the presolved instance, not the original one. This can be
a problem when trying to set a gap limit, for instance. With a previous release, a UG
parameter was added to handle this appropriately, but it turned out to not work well
and has now been removed again. Instead, with this version, an optimality gap limit
can be set for the original instance. To do so, the gap limit should be set in the SCIP
parameter setting file that is specified with the “-sl” option. The LoadCoordinator will
then handle the gap limit appropriately.

8 The GCG Decomposition Solver

GCG is an extension that turns SCIP into a branch-and-price or branch-and-Benders-
cut solver for mixed-integer linear programs. GCG can automatically detect a model
structure that allows for a Dantzig-Wolfe reformulation or Benders decomposition. The
reformulation process and the corresponding algorithmics like Benders cut and column
generation is done automatically without interaction from the users. They just need
to provide the model. The latest version is GCG 3.6. Here are the few changes since
version 3.5 upon which we reported along with SCIP version 8.0.

GCG 3.6 mainly contains code base improvements, with no major algorithmic changes.
Most importantly for developers, the API has mildly changed: The prefix DEC was
replaced with GCG to achieve a consistent naming.

The model structures detected by GCG are called decompositions. The detection
process itself was described in the SCIP 6.0 release report. Part of this process is
based on classifiers which group constraints and variables for their potential roles in a
decomposition. From the usually many decompositions found, users can select manually
or let GCG select based on different scores. The score implementation was refactored:
Previously, it was cumbersome to add user-defined scores to GCG, but with GCG 3.6,
new scores can be added as plugins. Each score must provide a function that calculates
a score value for a (partial) decomposition. The macro GCG DECL SCORECALC is provided
to declare the method that implements the scoring and is automatically called by GCG.

The display dialog command has been extended and can now be used to print
information about registered scores and classifiers. Furthermore, GCG 3.6 now supports
compiling with Microsoft Visual C++ (MSVC) and it is possible to use CMake to simplify
the build process.

The Python interface PyGCGOpt mirrors the above changes. Users can now
customize the detection process even more by adding own classifiers and scores.
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9 SCIP-SDP

SCIP-SDP is a solver for handling mixed-integer semidefinite programs, w.l.o.g, written
in the following form

inf b>y

s.t.

m∑
k=1

Ak yk −A0 � 0,

`i ≤ yi ≤ ui ∀ i ∈ [m],

yi ∈ Z ∀ i ∈ I,

(8)

with symmetric matrices Ak ∈ Rn×n for i ∈ {0, . . . ,m}, b ∈ Rm, `i ∈ R ∪ {−∞},
ui ∈ R∪{∞} for all i ∈ [m] := {1, . . . ,m}. The set of indices of integer variables is given
by I ⊆ [m], and M � 0 denotes that a matrix M is positive semidefinite.

SCIP-SDP uses an SDP-based branch-and-bound approach based on SCIP (default).
It also supports the possibility to use linear inequalities in an LP-based approach. Which
one is faster, depends on the instance.

The development of SCIP-SDP proceeded along a series of dissertations: Mars [71],
Gally [29], and Matter [72]. Corresponding articles are [30] (existence of Slater points in
branch-and-bound, dual fixing) and [73] (presolving techniques). In the following, we
give an overview of the main changes since version 4.0.0, which was reported on in the
SCIP 8 report. The current version of SCIP-SDP is 4.3.0.

9.1 Symmetry Handling of MISDPs

One can handle permutation symmetries of (8) in the sense of Section 3.1. We will sketch
how this works and refer to [52] for details.

To define symmetries of (8), for a matrix A ∈ Rn×n and a permutation σ of [n], let

σ(A)ij := Aσ−1(i),σ−1(j) ∀ i, j ∈ [n].

Definition 9.1.1. A permutation π of variable indices [m] is a formulation symmetry
of (8) if there exists a permutation σ of the dimensions [n] such that

1. π(I) = I, π(`) = `, π(u) = u, and π(b) = b
(π leaves integer variables, variable bounds, and the objective coefficients invariant),

2. σ(A0) = A0 and, for all i ∈ [m], σ(Ai) = Aπ
−1(i).

Such symmetries can be detected by using graph automorphism algorithms, see [52].
Examples of (formulation) symmetries computed for a testset of MISDP instances can
also be found in [52]. Note that we do not exploit symmetries in the matrix solutions of
the SDPs like it has been done in [35, 53], for example.

Table 5 presents computational results – we refer to [52] for the setup and details. We
observe a speed-up of about 4 % for all instances and of about 34 % for the 21 instances
that contain symmetry.

Since the appearance of [52], SCIP-SDP has been changed to allow for using the
callback access to symmetry computation in SCIP, see Section 3.1.2. Thereby, we
have also changed the symmetry detection graph. It now only contains a single node
for each nonzero entry of the matrix that is connected to the ‘dimension’-nodes. The
corresponding graph for the following MISDP is given in Figure 1.

inf
{
y1 + y2 :

(
3 1 0
1 1 0
0 0 0

)
y1 +

(
0 0 0
0 1 1
0 1 3

)
y2 −

(
1 0 0
0 1 0
0 0 1

)
� 0, 0 ≤ y1, y2 ≤ 1, y1, y2 ∈ Z

}
.
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Table 5: Results on a testset of 184 MISDP instances with/without using
symmetry handling in SCIP. We report the shifted geometric means of the
running times in seconds and number of nodes. Column “symtime” and “#
gens” report the averge time for symmetry handling (including detection) and
number of generators, respectively. The “all optimal” block reports results for
the 168 instances that were solved by both methods. The last column gives the
shifted geometric mean running time only for the 21 instances that contain some
symmetry.

all (184) all optimal (168) only symmetric (21)

time (s) symtime (s) # gens time (s) #nodes time (s)

without 130.6 – – 95.0 778.3 45.07
with 125.3 0.44 99 90.8 760.6 29.84

1 2 3

(1, 1)1 (1, 2)1 (2, 2)1 (2, 2)2 (2, 3)2 (3, 3)2

(1, 1)0 (2, 2)0 (3, 3)0

y1 y2

Figure 4: Illustration of symmetry detection graph.

In Figure 4, the colors of the nodes allow to distinguish different types and values. The
topmost nodes represent the dimensions. Node (i, j)k represents the symmetric entries
(i, j) and (j, i) (or diagonal entry (i, i)) of matrix Ak. The colors of these nodes corre-
spond to distinct coefficients in the matrices. The only non-trivial color-preserving
automorphism of the graph exchanges y1 ↔ y2, (1, 1)1 ↔ (3, 3)2, (1, 2)1 ↔ (2, 3)2,
(2, 2)1 ↔ (2, 2)2, (1, 1)0 ↔ (3, 3)0, 1 ↔ 3, and keeps node 2 fixed. This leads to the
variable permutation π, which exchanges y1 and y2, and the matrix permutation σ, which
exchanges 1 and 3.

9.2 Conflict Analysis for MISDPs

The original idea of conflict analysis was to learn from infeasible nodes in a branch-and-
bound-tree. To this end, Achterberg [1] transferred ideas from SAT-solving to MILPs.
One further way is to try to learn cuts from solutions of the duals, which is called “dual
ray/solution analysis” in Witzig et al. [98] and Witzig [97].

To briefly explain the application to MISDPs, consider the SDP relaxation of (8).
Given a positive semidefinite X̂ ∈ Rn×n, we observe that the inner product with a
positive semidefinite matrix M ∈ Rn×n is nonnegative:

〈X̂,M〉 :=

n∑
i,j=1

X̂ijMij ≥ 0.

Thus, defining A(y) :=
∑m
k=1A

k yi, we get

〈X̂, A(y)〉 =

m∑
k=1

〈X̂, Ak〉 yk ≥ 0 (9)

24



for every feasible solution y of (8). Note that this is a (redundant) linear inequality in y.
The idea is to use it in the propagation of variable bounds and not explicitly add it
to (8).

There are two natural ways to obtain good candidates for X̂. If the relaxation is
feasible, we obtain a solution (X̂, r̂`, r̂u) of the dual

sup 〈A0, X〉+ `>r` − u>ru

s.t. 〈Aj , X〉+ r`j − ruj = bj ∀ j ∈ [m],

X � 0, r`, ru ≥ 0.

Similarly, if the relaxation is infeasible and a constraint qualification holds, one can
obtain a dual ray satisfying

〈Aj , X〉+ r`j − ruj = 0 ∀ j ∈ [m],

〈A0, X〉+ `>r` − u>ru > 0,

X � 0, r`, ru ≥ 0.

One can prove that (9) is infeasible with respect to the local bounds ` and u and can
therefore provide a proof of infeasibility, see [76].

SCIP-SDP generates a conflict constraint (9) for each feasible or infeasible node,
stores them as constraints, and performs bound propagation. This leads to a speed-up
and node reduction of about 8% on the same testset used in the previous section. We
refer to [76] for more details.

9.3 Further Changes

Similar to SCIP, the license of SCIP-SDP has changed to Apache 2.0.
Several improvements have been made to speed up some of the presolving methods.

One can use ARPACK instead of Lapack for eigenvalue computations (use ARPACK

= true when using makefiles); this is usually slower for the typical sizes of MISDPs.
Moreover, when running the LP-based approach (misc/solvesdps = 0), now CMIR
inequalities are generated by default. To implement conflict analysis, the handling of
dual solutions has been extended and improved.

10 Final Remarks

The SCIP Optimization Suite 9.0 release provides new functionality along with improved
performance and reliability. In SCIP, the changes to the symmetry detection feature
include new techniques for handling symmetries of non-binary variables, restructuring
of the mechanism to detect symmetries of the custom constraints, and detection of
the signed permutation symmetries. New interfaces to nauty [74] as well as the
preprocessor sassy [6] have been added. A new nonlinear handler for signomial functions
and improvements to the existing nonlinear handler for quadratic expressions were
implemented. A new diving heuristic for handling indicator constraints that are used to
represent the semi-continuous variables, an extension of the dynamic partition search
heuristic, and a new adaptive heuristic that dynamically adapts the application of large
neighborhood search and diving heuristics to the characteristics of the current instance
were also implemented. Furthermore, a new separator called the Lagromory separator for
generating potentially lower-ranked cuts and reducing the dual bound stalling due to the
dual degeneracy, and two new cut selection schemes were included: cutsel/ensemble

that adapts with respect to the given instance properties and cutsel/dynamic that aims

25



to enhance the near-orthogonal threshold methodology used in the default cut selection
scheme. A new branching criterion called the GMI branching was implemented. It
is available both as a stand-alone rule and also integrated within the default hybrid
branching rule of SCIP. It considers a new scoring component based on the GMI cuts
corresponding to the fractional variable in a given LP solution. Finally, a new interface
to the HiGHS LP solver along with technical improvements to the AMPL reader and
OBBT propagator were implemented.

Regarding usability, various interfaces were improved and new interfaces were added.
The AMPL interface to SCIP was extended to support parameters from the AMPL
command scripts. The Java interface to SCIP, JSCIPOpt, is being maintained actively
and was extended with new functionality. The Python interface to SCIP, PySCIPOpt,
can now be fully installed using PyPI. A new Python package, PySCIPOpt-ML, is
available to automatically formulate machine learning models into MIPs. The Julia
interface to SCIP, SCIP.jl, was extended to be able to access additional plugins of
SCIP. Two new interfaces to SCIP, Rust interface called russcip and C++ interface
called SCIP++, are also available, along with a new Python interface to SoPlex called
PySoPlex.

The LP solver SoPlex now supports incremental precision boosting for exact LP
solving over the rational numbers. It is available as a stand-alone as well as in combination
with the existing LP iterative refinement approach. The presolving library PaPILO now
has a new feature called proof logging that allows the generation of machine-verifiable
certificates for presolving of binary problems to be able to prove the correctness of the
computations. The parallel framework UG now has a new beta version of UG 1.0 that
includes the latest interface changes of SCIP along with new bugfixes. A new feature to
appropriately set the gap limit has also been added. The GCG decomposition solver
now includes improvements to its code base, can be compiled with Microsoft Visual C++
(MSVC), and supports CMake as a build system. The SCIP extension SCIP-SDP has
been improved to include new symmetry handling techniques and conflict analysis for
MISDPs, along with other improvements in its presolving methods and cut generation
techniques.

These developments yield an overall performance improvement of both MILP and
MINLP benchmarking instances. SCIP 9.0 is able to solve 19 more MILP instances as
compared to SCIP 8.0 with a speedup of 2% on the affected instances. This speedup
further increases to 6% when only the hard instances requiring at least 1000 seconds by
at least one setting are considered. The number of nodes required for MILPs that were
solved by both versions of SCIP also reduce considerably by 17% in SCIP 9.0. These
performance gains are more prominent for MINLPs. SCIP 9.0 solves 5 more MINLP
instances as compared to SCIP 8.0 with performance improvements of 4% in time (for
all MINLPs) and 13% in the number of nodes (for the MINLPs that were solved by both
the versions of SCIP). When looking at hard instances requiring at least 1000 seconds
by at least one setting, the gains are further increased to 20% and 46% in time and
number of nodes, respectively. Furthermore, when restrcited to nonconvex instances
only, SCIP 9.0 is faster by 8%. Hence, SCIP 9.0 has become faster and more reliable as
compared to SCIP 8.0.
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The material presented in the article is highly related to code and software. In the
following, we try to make the corresponding contributions of the authors and possible
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− MT and MB worked on the ensemble cut selector (Section 3.4.2).

− CG worked on cut statistics and dynamic cut selection (Section 3.4.2).
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− RvdH contributed to various bug fixes and file reader updates.
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