
An inexact infeasible arc-search interior-point method for1

linear programming problems2

Einosuke Iida∗and Makoto Yamashita†
3

2024/09/084

Abstract5

Inexact interior-point methods (IPMs) are a type of interior-point methods that6

inexactly solve the linear equation system for obtaining the search direction. On7

the other hand, arc-search IPMs approximate the central path with an ellipsoidal8

arc obtained by solving two linear equation systems in each iteration, while con-9

ventional line-search IPMs solve one linear system. Therefore, the improvement10

due to the inexact solutions of the linear equation systems can be more beneficial11

in arc-search IPMs than conventional IPMs. In this paper, we propose an inexact12

infeasible arc-search interior-point method. We establish that the proposed method13

is a polynomial-time algorithm through its convergence analysis. The numerical14

experiments for the large benchmark problems show that the proposed method us-15

ing the conjugate gradient method as the inexact linear system solver can reduce16

both of the number of iterations and the computation time compared to the existing17

inexact IPM due to the reduction in computational complexity by the arc-search.18

Andmore, it can reduce the computation time compared to the existing exact IPMs19

because the dependence of the computational complexity on the dimension n of the20

coefficient matrix is smaller for the conjugate gradient method than for the Cholesky21

factorization.22

Keywords: interior-point method, arc-search, inexact IPM, infeasible IPM, linear23

programming.24

1 Introduction25

Linear programming problems (LPs) have had an important role in both theoretical26

analysis and practical applications, and many methods have been studied for solving LPs27

efficiently. Since an interior-point method (IPM) was first proposed by Karmarkar [16],28

IPMs have been extended of optimization problems, for example, second-order cone29

programming and semidefinite programming. Many variations of the IPM have been30

∗Department of Mathematical and Computing Science, Tokyo Institute of Technology
†Department of Mathematical and Computing Science, Tokyo Institute of Technology.

1

proposed, such as the primal-dual IPM [18], Mehrotra’s predictor-corrector method [21],31

and recently, two-dimensional search IPMs [30].32

Inexact IPMs are one of such variations and they inexactly solve a linear equation33

system (LES) for obtaining the search direction in each iteration. An inexact IPM was34

first proposed for solving a constrained system of equations by Bellavia [3] and it has been35

extended for LPs [22, 1]. The inexact IPMs have recently gained much attention due36

to their relevance to quantum computing. Quantum linear system algorithms (QLSAs)37

have the potential to solve LESs fast; their complexity has a better dependence on the38

size of variables and the number of constraints but a worse one on other parameters39

compared to that on classical computers [8]. Recently, inexact IPMs using the QLSA40

called quantum interior-point methods are proposed in [17, 32].41

On the other hand, studies to reduce the number of iterations in IPMs have also42

contributed to improving the numerical performance. The higher-order algorithms using43

second-order or higher derivatives in the framework of IPMs have been studied [24, 21,44

11, 19, 10], but these sometimes have a worse polynomial bound, or the analysis of45

computational complexity is not simple. An arc-search IPM is the one of the higher-46

order algorithms originally proposed by Yang [34]. IPMs numerically trace a trajectory47

to an optimal solution called the central path. Standard IPMs find the next iterate on a48

straight line that approximates the central path by computing the search direction; such49

IPMs are called line-search IPMs in this paper. In contrast, arc-search IPMs employ50

an ellipsoidal arc for the approximation. Since the central path is generally a smooth51

curve, the ellipsoidal arc can approximate the central path better than the straight line,52

and a reduction in the number of iterations can be expected. Several studies [36, 39]53

found that the arc-search IPMs improve the iteration complexity from the line-search54

IPM in [31], and the numerical experiments in [35, 39] demonstrated that the number55

of iterations in solving LP is reduced compared to the existing methods.56

Arc-search IPMs solve two LESs in each iteration for computing the search direction57

while line-search IPMs one LES, thus, the improvement due to solving LESs inexactly is58

expected to be more beneficial in arc-search IPMs than line-search IPMs. In fact, when59

the arc-search IPMs are extended to nonlinear programming problems [33] and convex60

optimization problems [38], the arc-search IPMs can reduce the computation time even61

if the computation of higher-order derivatives is omitted, i.e., the search direction is62

obtained inexactly.63

In this paper, we propose a novel inexact infeasible arc-search interior-point method64

(II-arc) by integrating an inexact IPM and an arc-search IPM. We prove that the II-arc65

method achieves a better iteration complexity than the inexact infeasible line-search66

IPMs (II-lines) [22, 23]. We conduct the numerical experiments with the conjugate67

gradient (CG) method as an inexact linear equation solver for large benchmark problems68

in the Netlib collection [6]. The results show that the proposed method can reduce the69

number of iterations by twice and the computation time by 23% compared to II-line for70

almost half of the benchmark problems. Furthermore, the comparison with the IPMs71

for solving the LES exactly shows that the proposed method has an advantage in terms72

of the computation time, even if the number of iterations of II-arc is greater than it of73

2

the exact IPMs.74

This paper is organized as follows. Section 2 introduces the standard form of LP75

problems and the formulas necessary for II-arc. In Section 3, we describe the proposed76

method, and in Section 4, we discuss the convergence and the polynomial iteration com-77

plexity. Section 5 provides the results of the numerical experiments and the discussion.78

Finally, Section 6 gives conclusions of this paper and discusses future directions.79

1.1 Notations80

We use xi to denote the i-th element of a vector x. The Hadamard product of two81

vectors u and v is defined by u ◦ v. The vector of all ones and the identity matrix82

are denoted by e and I, respectively. We use the capital character X ∈ Rn×n as the83

diagonal matrix whose diagonal elements are taken from the vector x ∈ Rn. For a set84

B, we denote the cardinality of the set by |B| . Given a matrix A ∈ Rm×n and a set85

B ⊆ {1, . . . , n}, the matrix AB is the submatrix consisting of the columns {Ai : i ∈ B}.86

Similarly, given a vector v ∈ Rn and a set B ⊆ {1, . . . , n} where |B| = m ≤ n, the87

matrix VB ∈ Rm×m is the diagonal submatrix consisting of the elements {vi : i ∈ B}.88

We use ∥x∥2 = (
∑

i x
2
i)

1/2, ∥x∥∞ = maxi |xi| and ∥x∥1 =
∑

i |xi| for the Euclidean89

norm, the infinity norm and the ℓ1 norm of a vector x, respectively. For simplicity, we90

denote ∥x∥ = ∥x∥2. For a matrix A ∈ Rm×n, ∥A∥ denotes the operator norm associated91

with the Euclidian norm; ∥A∥ = max∥z∥=1 ∥Az∥.92

2 Preliminaries93

section_preliminaries

In this paper, we consider an LP in the standard form:94

min
x∈Rn

c⊤x, s.t. Ax = b, x ≥ 0, (1)
problem_mainproblem_main

95

where A ∈ Rm×n with m ≤ n, b ∈ Rm, and c ∈ Rn are input data. The associated dual96

problem of (1) is97

max
y∈Rm,s∈Rn

b⊤y, s.t. A⊤y + s = c, s ≥ 0, (2)
problem_dualproblem_dual

98

where y and s are the dual variable vector and the dual slack vector, respectively. Let
S∗ be the set of the optimal solutions of (1) and (2). When (x∗, y∗, s∗) ∈ S∗, it is
well-known that (x∗, y∗, s∗) satisfies the KKT conditions:

KKT_conditions

Ax∗ = b (3a)

A⊤y∗ + s∗ = c (3b)

(x∗, s∗) ≥ 0 (3c)

x∗i s
∗
i = 0, i = 1, . . . , n. (3d)

We denote the primal and dual residuals in (1) and (2) as
residuals_constraints

rb(x) = Ax− b (4a)
residual_mainresidual_main

rc(y, s) = A⊤y + s− c, (4b)
residual_dualresidual_dual

3

and define the duality measure as99

µ =
x⊤s

n
. (5)

def_mudef_mu
100

Letting ζ ≥ 0, we define the set of ζ-optimal solutions as101

S∗ζ =
{
(x, y, s) ∈ R2n+m | (x, s) ≥ 0, µ ≤ ζ, ∥(rb(x), rc(y, s))∥ ≤ ζ

}
. (6)

def_zeta_optimal_SolSetdef_zeta_optimal_SolSet
102

From the KKT conditions (3), we know S∗ ⊂ S∗ζ .103

In this paper, we make the following assumptions for the primal-dual pair (1) and104

(2). These assumptions are common ones in the context of IPMs and are used in many105

papers (for example, see [31, 37]).106

assumption_IPC

Assumption 2.1. There exists an interior feasible solution (x̄, ȳ, s̄) such that

Ax̄ = b, A⊤ȳ + s̄ = c, and (x̄, s̄) > 0.
assumption_full_row_rank

Assumption 2.2. A is a full-row rank matrix, i.e., rank(A) = m107

Assumption 2.1 guarantees that the optimal set S∗ is nonempty and bounded [31].108

IPMs are iterative methods, so we denote the kth iteration by (xk, yk, sk) ∈ Rn ×109

Rm×Rn and the initial point by (x0, y0, s0). Without loss of generality, we assume that110

the initial point (x0, y0, s0) is bounded. We denote the duality measure of kth iteration111

as µk = (xk)⊤sk/n.112

Given a strictly positive iteration (xk, yk, sk) such that (xk, sk) > 0, the strategy of113

an infeasible IPM is to trace a smooth curve called an approximate central path:114

C = {(x(t), y(t), s(t)) | t ∈ (0, 1]} , (7)
def_ellipsoiddef_ellipsoid

115

where (x(t), y(t), s(t)) is the unique solution of the following system
curve_to_optimal_solution

Ax(t)− b = t rb(x
k), (8a)

A⊤y(t) + s(t)− c = t rc(y
k, sk), (8b)

x(t) ◦ s(t) = t(xk ◦ sk), (8c)

(x(t), s(t)) > 0. (8d)

As t→ 0, (x(t), y(t), s(t)) converges to an optimal solution (x∗, y∗, s∗) ∈ S∗.116

Arc-search IPMs approximate C with an ellipsoidal arc. An ellipsoidal approximation
of (x(t), y(t), s(t)) at (xk, yk, sk) for an angle α ∈ [0, π/2] is obtained by (x(α), y(α), s(α))
with the following [37, Theorem 5.1]:

def_variable_alpha_original

x(α) = x− ẋ sin(α) + ẍ(1− cos(α)), (9a)

y(α) = y − ẏ sin(α) + ÿ(1− cos(α)), (9b)

s(α) = s− ṡ sin(α) + s̈(1− cos(α)). (9c)

4

Here, (ẋ, ẏ, ṡ) and (ẍ, ÿ, s̈) are the first and second derivatives obtained by differentiating
both sides of (8) by t, and they are computed as the solutions of the following LESs,
respectively: A 0 0

0 A⊤ I
Sk 0 Xk

 ẋ
ẏ
ṡ

 =

 rb(x
k)

rc(y
k, sk)

xk ◦ sk

 (10)
first_derivative_originalfirst_derivative_original

A 0 0
0 A⊤ I
Sk 0 Xk

 ẍ
ÿ
s̈

 =

 0
0

−2ẋ ◦ ṡ

 . (11)
second_derivative_originalsecond_derivative_original

Lastly, we define a neighborhood of the approximate central path [31, Chapter 6]:117

N (γ1, γ2) :=

{
(x, y, s) |

(x, s) > 0, xisi ≥ γ1µ for i ∈ {1, . . . , n},
∥(rb(x), rc(y, s))∥ ≤ [

∥∥(rb(x0), rc(y0, s0))∥∥/µ0]γ2µ

}
, (12)

def_neighborhooddef_neighborhood
118

where γ1 ∈ (0, 1) and γ2 ≥ 1 are given parameters, and ∥(rb(x), rc(y, s))∥ is the norm of119

the vertical concatenation of rb(x) and rc(y, s). This neighborhood will be used in the120

convergence analysis.121

3 The proposed method122

section_proposed_method

In this section, we propose the II-arc method. In the beginning, to guarantee the con-123

vergence of the proposed method, we introduce a perturbation into (10) as follows:124 A 0 0
0 A⊤ I
Sk 0 Xk

 ẋ
ẏ
ṡ

 =

 rb(x
k)

rc(y
k, sk)

xk ◦ sk − σµke

 , (13)
first_derivative_perturbedfirst_derivative_perturbed

125

where σ ∈ (0, 1] is the constant called centering parameter. In the subsequent discussion,126

(ẋ, ẏ, ṡ) denote the solution of (13). The proposed method solves (13) and (11) inexactly127

in each iteration to obtain the ellipsoidal approximation.128

Several approaches can be considered for solving the Newton system (13), such as129

the full Newton system and the Newton equation system (also known as the normal130

equation system, NES) [4]. The NES formula of (13) is131

Mkẏ = ρk1, (14)
first_derivative_NESfirst_derivative_NES

132

where

Mk = A(Dk)2A⊤, (15a)

ρk1 = A(Dk)2rc(y
k, sk) + rb(x

k)−A(Sk)−1(xk ◦ sk − σµke)

= A(Dk)2A⊤yk −A(Dk)2c+ σµkA(S
k)−1e+Axk − b, (15b)

def_NES_rho_1def_NES_rho_1

5

def_NES_constants
with Dk = (Xk)

1
2 (Sk)−

1
2 . When we solve the LES (14) exactly and obtain ẏ, we can133

compute the other components ẋ and ṡ of the solution in (13)134

As discussed by Mohammadisiahroudi et al. [23], the iteration complexity of the II-135

line can be kept small by the modification to NES (14). This modified NES formula136

was examined for II-lines in [1, 25], it is called MNES. Since A is full row rank from137

Assumption 2.2, we can choose an arbitrary basis B̂ ⊂ {1, 2, . . . , n} where |B̂| = m and138

AB̂ ∈ Rm×m is nonsingular. Now we can adapt (14) to139

M̂kż = ρ̂k1, (16)
first_derivative_MNESfirst_derivative_MNES

140

where
def_MNES_constants

M̂k = (Dk
B̂
)−1A−1

B̂
Mk((Dk

B̂
)−1A−1

B̂
)⊤, (17a)

def_MNES_coef_matrixdef_MNES_coef_matrix

ρ̂k1 = (Dk
B̂
)−1A−1

B̂
ρk1, (17b)

with Dk
B̂
= (Xk

B̂
)
1
2 (Sk

B̂
)−

1
2 . The inexact solution ˜̇z of (16) satisfies141

M̂k ˜̇z = ρ̂k1 + r̂k1 , (18)
inexact_first_derivative_MNESinexact_first_derivative_MNES

142

where r̂k1 is the error of ˜̇z defined as

r̂k1 := M̂k ˜̇z − ρ̂k1 = M̂k

(
˜̇z − ż

)
.

Then, we can obtain the first derivative (˜̇x, ˜̇y, ˜̇s) from the inexact solution in (18)
and the steps below:

resolution_first_derivative_from_MNES

˜̇y =

((
Dk

B̂

)−1
A−1

B̂

)⊤
˜̇z (19a)

˜̇s = rc(y
k, sk)−AT ˜̇y (19b)

vk1 =
(
vk
B̂
, vk

N̂

)
=
(
Dk

B̂
r̂k1 , 0

)
(19c)

˜̇x = xk − (Dk)2 ˜̇s− σµk(S
k)−1e− vk1 . (19d)

We also apply the MNES formulation to the second derivative (11). Letting

ρk2 = 2A(Sk)−1 ˜̇x ◦ ˜̇s, ρ̂k2 = (Dk
B̂
)−1A−1

B̂
ρk2,

we have143

M̂kz̈ = ρ̂k2 (20)
second_derivative_MNESsecond_derivative_MNES

144

with the same definition of M̂k as in (17a). We use ˜̈z to denote the inexact solution of145

(20), then we have146

M̂k ˜̈z = ρ̂k2 + r̂k2 , (21)
inexact_second_derivative_MNESinexact_second_derivative_MNES

147

6

where r̂k2 is defined as r̂k2 := M̂k

(
˜̈z − z̈

)
. Similarly to (19), to obtain the inexact second

derivative (˜̈x, ˜̈y, ˜̈s) from the inexact solution ˜̈z in (21), we compute as follows:

˜̈y =

((
Dk

B̂

)−1
A−1

B̂

)⊤
˜̈z,

˜̈s = −AT ˜̈y,

vk2 =
(
vk
B̂
, vk

N̂

)
=
(
Dk

B̂
r̂k2 , 0

)
,

˜̈x = −(Dk)2 ˜̈s− 2(Sk)−1 ˜̇x ◦ ˜̇s− vk2 .

resolution_second_derivative_from_MNES
148

Using the derivatives obtained above, the next iteration will be found on the ellip-
soidal arc with the following updated formula:

def_variable_alpha_with_inexact_derivatives

xk(α) = xk − ˜̇x sin(α) + ˜̈x(1− cos(α)), (23a)

yk(α) = yk − ˜̇y sin(α) + ˜̈y(1− cos(α)), (23b)

sk(α) = sk − ˜̇s sin(α) + ˜̈s(1− cos(α)). (23c)

To give the framework of the proposed method, we prepare some functions below:

Gk
i (α) = xki (α)s

k
i (α)− γ1µk(α) for i ∈ {1, . . . , n},

gk(α) = xk(α)⊤sk(α)− (1− sin(α))(xk)⊤sk,

hk(α) = (1− (1− β) sin(α)) (xk)⊤sk − xk(α)⊤sk(α).

Here, hk(α) ≥ 0 corresponds to the Armijo condition with respect to the duality gap µ.149

In Section 4, we will show that the proposed algorithm converges to an optimal solution150

by selecting a step size α that satisfies the following conditions:151

Gk
i (α) ≥ 0 for i ∈ {1, . . . , n}, gk(α) ≥ 0, hk(α) ≥ 0. (24)

conditions_G_g_h_no_less_than_0conditions_G_g_h_no_less_than_0
152

When (24) holds, the next lemma confirms that a next iteration point (xk(α), yk(α), sk(α))153

is in the neighborhood N (γ1, γ2). This lemma can be proved in the same approach as154

Mohammadisiahroudi [23, Lemma 4.5] with Lemma 4.2 below.155

lemma_in_neighborhood

Lemma 3.1. Assume a step length α ∈ (0, π/2] satisfies Gk
i (α) ≥ 0 and gk(α) ≥ 0.156

Then, (xk(α), yk(α), sk(α)) ∈ N (γ1, γ2).157

Lastly, we discuss the error range such that the inexact solutions still can make the158

proposed algorithm attain the polynomial iteration complexity. This accuracy will also159

be used for the convergence proof in Section 4. We assume the following inequality for160

the error r̂k1 of (18) and r̂k2 of (21):161 ∥∥∥r̂ki ∥∥∥ ≤ η

√
µk√
n
, ∀i ∈ {1, 2} (25)

def_upper_derivatives_residual_MNESdef_upper_derivatives_residual_MNES
162

7

where η ∈ [0, 1) is an enforcing parameter.163

To prove the polynomial iteration complexity of the proposed algorithm in Proposi-
tion 4.1 below, we set the parameters so that

parameter_conditions

(1− γ1)σ − (1 + γ1)η > 0, (26a)
parameter_condition_for_G_iparameter_condition_for_G_i

β > σ + η. (26b)
parameter_condition_beta_more_than_sigma_plus_etaparameter_condition_beta_more_than_sigma_plus_eta

We are now ready to give the framework of the proposed method (II-arc) as Algo-164

rithm 1.

Algorithm 1 The inexact infeasible arc-search interior-point method (II-arc)
algorithm_II_arc_IPM

Input: ζ > 0, γ1 ∈ (0, 1), γ2 ≥ 1, σ, η, β satisfying (26) and an initial point (x0, y0, s0) ∈
N (γ1, γ2) such that x0 > 0 and s0 > 0.

Output: ζ-optimal solution (xk, yk, sk)
1: k ← 0
2: while (xk, yk, sk) /∈ Sζ do

line_algo_II_arc_search_checking_stop

3: µk ← (xk)⊤sk/n
4: Calculate (˜̇x, ˜̇y, ˜̇s) by solving (16) inexactly satisfying (25).
5: Calculate (˜̈x, ˜̈y, ˜̈s) by solving (20) inexactly satisfying (25).

line_algo_II_arc_search_calculate_second_derivative

6: αk ← max {α ∈ (0, π/2] | α satisfies (24)} line_algo_II_arc_search_decide_step_size

7: Set (xk+1, yk+1, sk+1) = (xk(αk), y
k(αk), s

k(αk)) by (23).
8: k ← k + 1
9: end while

165

4 Theoretical proof166

section_theoretical_proof

In this section, we prove the convergence of Algorithm 1 and its polynomial iteration167

complexity. Our analysis is close to Mohammadisiahroudi et al. [23], but it also employs168

properties of arc-search IPMs.169

First, we evaluate the constraint residuals (4). From (18) and (19), the residual170

appears only in the last equation as a term Skvk1 , as the following lemma shows.171

lemma_inexact_solution_MNES_conditions

Lemma 4.1. For the inexact first derivative (˜̇x, ˜̇y, ˜̇s) of (8) obtained by the inexact
solution of (16) and the steps in (19), we have

A˜̇x = rb(x
k), (27a)

inexact_first_derivative_MNES_main_residualinexact_first_derivative_MNES_main_residual

A⊤ ˜̇y + ˜̇s = rc(y
k, sk), (27b)

inexact_first_derivative_MNES_dual_residualinexact_first_derivative_MNES_dual_residual

Sk ˜̇x+Xk ˜̇s = Xksk − σµke− Skvk1 . (27c)
inexact_first_derivative_MNES_dualityinexact_first_derivative_MNES_duality

Lemma 4.1 can be proved from (16) and (19) in the same way as Mohammadisi-
ahroudi [23, Lemma 4.1], thus we omit the proof. As in Lemma 4.1, (˜̈x, ˜̈y, ˜̈s) obtained

8

by (21) and (22) satisfies
indexact_second_derivative_conditions

A˜̈x = 0, (28a)
inexact_second_derivative_main_residualinexact_second_derivative_main_residual

A⊤ ˜̈y + ˜̈s = 0, (28b)
inexact_second_derivative_dual_residualinexact_second_derivative_dual_residual

Sk ˜̈x+Xk ˜̈s = −2˜̇x ◦ ˜̇s− Skvk2 . (28c)
inexact_second_derivative_dualityinexact_second_derivative_duality

Therefore, the following lemma holds from (27a), (27b), (28a) and (28b) due to (23).172

lemma_decrease_constraint_residuals

Lemma 4.2 ([37, Lemma 7.2]). For each iteration k, the following relations hold.

rb(x
k+1) = rb(x

k) (1− sin(αk)) ,

rc(y
k+1, sk+1) = rc(y

k, sk) (1− sin(αk)) .

For the following discussions, we introduce the following notation:

νk =

k−1∏
i=0

(1− sin(αi)).

From Lemma 4.2, we can obtain
residuals_decreasing

rb(x
k) = νkrb(x

0) (29a)

rc(y
k, sk) = νkrc(y

0, s0) (29b)

In the next proposition, we prove the existence of the lower bound of the step size173

αk to guarantee that Algorithm 1 is well defined.174

proposition_lower_bound_of_step_size

Proposition 4.1. Let {(xk, yk, sk)} be the sequence generated by Algorithm 1. Then,
there exists α̂ > 0 satisfying (24) for any αk ∈ (0, α̂] and

sin(α̂) =
C

n1.5
,

where C is a positive constant.175

The proof of Proposition 4.1 will be given later. For this proof, we first evaluate xk176

and sk with the ℓ1 norm.177

lemma_upper_nu_x_s

Lemma 4.3. There is a positive constant C1 such that178

νk

∥∥∥(xk, sk)∥∥∥
1
≤ C1nµk. (30)

upper_bound_norm_x_supper_bound_norm_x_s
179

The proof below is based on [31, Lemma 6.3].180

9

Proof. From the definition of N (γ1, γ2) in (12) and γ2 ≥ 1, we know∥∥(rb(xk), rc(yk, sk))∥∥
µk

≤ γ2

∥∥(rb(x0), rc(y0, s0))∥∥
µ0

≤
∥∥(rb(x0), rc(y0, s0))∥∥

µ0
,

which implies181

µk ≥
∥∥(rb(xk), rc(yk, sk))∥∥
∥(rb(x0), rc(y0, s0))∥

µ0 = νkµ0 (31)
mu_decreasing_lower_boundmu_decreasing_lower_bound

182

from (29). When we set

(x̄, ȳ, s̄) = νk(x
0, y0, s0) + (1− νk)(x

∗, y∗, s∗)− (xk, yk, sk),

we have Ax̄ = 0 and A⊤ȳ + s̄ = 0 from (29) and (3), then

0 = x̄⊤s̄

= (νkx
0 + (1− νk)x

∗ − xk)⊤(νks
0 + (1− νk)s

∗ − sk)

= ν2k(x
0)⊤s0 + νk(1− νk)

(
(x0)⊤s∗ + (x∗)⊤s0

)
+ (xk)⊤sk + (1− νk)

2(x∗)⊤s∗

−
(
νk((x

0)⊤sk + (s0)⊤xk) + (1− νk)((x
k)⊤s∗ + (sk)⊤x∗)

)
is satisfied. Since all the components of xk, sk, x∗, s∗ are nonnegative, we have ((xk)⊤s∗+
(sk)⊤x∗) ≥ 0. In addition, we have (x∗)⊤s∗ = 0 from (3). By using these and rearrang-
ing, we obtain

νk((x
0)⊤sk + (s0)⊤xk) ≤ ν2k(x

0)⊤s0 + νk(1− νk)
(
(x0)⊤s∗ + (x∗)⊤s0

)
+ (xk)⊤sk

[∵ (5)] = ν2knµ0 + νk(1− νk)
(
(x0)⊤s∗ + (x∗)⊤s0

)
+ nµk

[∵ (31)] ≤ νknµk +
µk

µ0
(1− νk)

(
(x0)⊤s∗ + (x∗)⊤s0

)
+ nµk

[∵ νk ∈ [0, 1]] ≤ 2nµk +
µk

µ0

(
(x0)⊤s∗ + (x∗)⊤s0

)
. (32)

x_s_upperx_s_upper

Defining a constant ξ by183

ξ = min
i=1,2,...,n

min(x0i , s
0
i) > 0, (33)

def_xidef_xi
184

we have (x0)⊤sk + (s0)⊤xk ≥ ξ
∥∥(xk, sk)∥∥

1
. Therefore, from (32), we obtain

νk

∥∥∥(xk, sk)∥∥∥
1
≤ ξ−1

(
2 +

(x0)⊤s∗ + (x∗)⊤s0

(x0)⊤s0

)
nµk.

We complete this proof by setting185

C1 = ξ−1

(
2 +

(x0)⊤s∗ + (x∗)⊤s0

(x0)⊤s0

)
(34)

def_C1def_C1
186

in (30), where C1 is independent of n.187

10

Next, we prove upper bounds of the terms related to ˜̇x, ˜̇s, ˜̈x, ˜̈s. From (25), the fol-188

lowing lemma gives an upper bound of (27c) and (28c):189

lemma_upper_derivatives_residual

Lemma 4.4 ([23, Lemma 4.2]). For the derivatives (˜̇x, ˜̇y, ˜̇s) and (˜̈x, ˜̈y, ˜̈s), when the190

residuals r̂ki satisfy (25), it holds that191 ∥∥∥Skvki

∥∥∥
∞
≤ ηµk. (35)

upper_residual_term_MNESupper_residual_term_MNES
192

Then, the following lemma holds similarly to [31, Lemma 6.5] and [23, Lemma 4.6].193

Lemma 4.5. There is a positive constant C2 such that

max
{∥∥∥(Dk)−1 ˜̇x

∥∥∥, ∥∥∥Dk ˜̇s
∥∥∥} ≤ C2n

√
µk

lemma_first_derivative_upper
194

Proof. Let
(x̄, ȳ, s̄) = (˜̇x, ˜̇y, ˜̇s)− νk(x

0, y0, s0) + νk(x
∗, y∗, s∗).

From (27a), (27b), (29) and (3), we have Ax̄ = 0 and A⊤ȳ + s̄ = 0, therefore, x̄⊤s̄ = 0.195

Thus, we obtain196 ∥∥∥(Dk)−1x̄+Dks̄
∥∥∥2 = ∥∥∥(Dk)−1(˜̇x− νk(x

0 − x∗))
∥∥∥2 + ∥∥∥Dk(˜̇s− νk(s

0 − s∗))
∥∥∥2. (36)

eq_norm_D_inv_bar_x_plus_D_bar_seq_norm_D_inv_bar_x_plus_D_bar_s
197

From (27c), it holds that

Skx̄+Xks̄ = (Sk ˜̇x+Xk ˜̇s)− νkS
k(x0 − x∗)− νkX

k(s0 − s∗)

= (Xksk − σµke− Skvk1)− νkS
k(x0 − x∗)− νkX

k(s0 − s∗).

Consequently, we verify198

(Dk)−1x̄+Dks̄ = (XkSk)−
1
2 (Xksk−σµke−Skvk1)−νk(D

k)−1(x0−x∗)−νkD
k(s0− s∗).

(37)
eq_D_inv_bar_x_plus_D_bar_seq_D_inv_bar_x_plus_D_bar_s

199

For any vector a ∈ Rd,200

∥a∥1 ≤
√
n∥a∥ ≤ n∥a∥∞ (38)

inequality_normsinequality_norms
201

holds from [37, Lemma 3.1]. From (36), (37), (38) and Lemma 4.4, we obtain∥∥∥(Dk)−1(˜̇x− νk(x
0 − x∗))

∥∥∥2 + ∥∥∥Dk(˜̇s− νk(s
0 − s∗))

∥∥∥2
=
∥∥∥(XkSk)−

1
2 (Xksk − σµke− Skvk1)− νk(D

k)−1(x0 − x∗)− νkD
k(s0 − s∗)

∥∥∥2
≤
{∥∥∥XkSk

∥∥∥− 1
2
(∥∥∥Xksk − σµke

∥∥∥+ ∥∥∥Skvk1

∥∥∥)+ νk

∥∥∥(Dk)−1(x0 − x∗)
∥∥∥+ νk

∥∥∥Dk(s0 − s∗)
∥∥∥}2

≤
{∥∥∥XkSk

∥∥∥− 1
2
(∥∥∥Xksk − σµke

∥∥∥+√nηµk

)
+ νk

(∥∥∥(Dk)−1(x0 − x∗)
∥∥∥+ ∥∥∥Dk(s0 − s∗)

∥∥∥)}2

.

(39)
upper_sum_of_norm_of_D_inv_bar_x_plus_D_bar_supper_sum_of_norm_of_D_inv_bar_x_plus_D_bar_s

11

In addition, xki s
k
i ≥ γµk in (12) implies202 ∥∥∥XkSk

∥∥∥− 1
2 ≤ 1
√
γ1µk

. (40)
upper_x_s_half_inverseupper_x_s_half_inverse

203

From (30) and (40), we have204

νk

∥∥∥(xk, sk)∥∥∥
1

∥∥∥(XS)−1/2
∥∥∥ ≤ C1n

√
µk√

γ1
. (41)

upper_xs_XS_half_invupper_xs_XS_half_inv
205

According to the derivation in [31, Lemma 6.5], we have∥∥∥Xksk − σµke
∥∥∥ ≤ nµk, (42)

upper_X_supper_X_s

νk

(∥∥∥(Dk)−1(x0 − x∗)
∥∥∥+ ∥∥∥Dk(s0 − s∗)

∥∥∥)
≤ νk

∥∥∥(xk, sk)∥∥∥
1

∥∥∥(XS)−1/2
∥∥∥max

{∥∥x0 − x∗
∥∥,∥∥s0 − s∗

∥∥} . (43)
upper_nu_k_normupper_nu_k_norm

Therefore, from (43) and (41), we obtain

νk

(∥∥∥(Dk)−1(x0 − x∗)
∥∥∥+ ∥∥∥Dk(s0 − s∗)

∥∥∥)
≤ C1√

γ1
n
√
µk max

{∥∥x0 − x∗
∥∥, ∥∥s0 − s∗

∥∥} . (44)
upper_sum_of_norm_of_D_xs_0_minus_xs_starupper_sum_of_norm_of_D_xs_0_minus_xs_star

Therefore, we have∥∥∥(Dk)−1 ˜̇x
∥∥∥ ≤ ∥∥∥(Dk)−1(˜̇x− νk(x

0 − x∗))
∥∥∥+ νk

∥∥∥(Dk)−1(x0 − x∗)
∥∥∥

[∵ (39)] ≤
∥∥∥XkSk

∥∥∥− 1
2
(∥∥∥Xksk − σµke

∥∥∥+√nηµk

)
+ 2νk

(∥∥∥(Dk)−1(x0 − x∗)
∥∥∥+ ∥∥∥Dk(s0 − s∗)

∥∥∥)
[∵ (40), (42)] ≤

√
µk√
γ1

(
n+
√
nη
)
+ 2νk

(∥∥∥(Dk)−1(x0 − x∗)
∥∥∥+ ∥∥∥Dk(s0 − s∗)

∥∥∥)
[∵ (44)] ≤

√
µk√
γ1

(
n+
√
nη
)
+

2C1n
√
µk√

γ1
max

{∥∥x0 − x∗
∥∥,∥∥s0 − s∗

∥∥}
≤ 1
√
γ1

(
1 + η + 2C1max

{∥∥x0 − x∗
∥∥,∥∥s0 − s∗

∥∥})n√µk.

Since the optimal set is bounded from Assumption 2.1 and the initial point is bounded,206

C2 := γ
−1/2
1

(
1 + η + 2C1max

{∥∥x0 − x∗
∥∥, ∥∥s0 − s∗

∥∥}) (45)
def_C2def_C2

207

is also bounded, and we can prove this lemma by setting this C2. We can similarly show208

˜̇s ≤ C2n
√
µk.209

12

From Lemma 4.5,210 ∥∥˜̇x ◦ ˜̇s∥∥ ≤ ∥∥∥(Dk)−1 ˜̇x
∥∥∥∥∥∥Dk ˜̇s

∥∥∥ ≤ C2
2n

2µk. (46)
upper_first_derivative_Hadamardupper_first_derivative_Hadamard

211

Similarly, we evaluate the terms related to Gk
i (α), g

k(α) and hk(α).212

lemma_upper_of_first_and_second_derivatives

Lemma 4.6. There are positive constants C3 and C4 such that∥∥˜̈x ◦ ˜̈s∥∥ ≤ C3n
4µk,

max
{∥∥∥(Dk)−1 ˜̈x

∥∥∥,∥∥∥Dk ˜̈s
∥∥∥} ≤ C4n

2√µk,

max
{∥∥˜̈x ◦ ˜̇s∥∥,∥∥˜̇x ◦ ˜̈s∥∥} ≤ C2C4n

3µk.

Proof. When u⊤v ≥ 0 for any vector pairs of u, v, the inequality

∥u ◦ v∥ ≤ 2−
3
2 ∥u+ v∥2

holds from [31, Lemma 5.3], so the following is satisfied:∥∥˜̈x ◦ ˜̈s∥∥ =
∥∥∥(Dk)−1 ˜̈x ◦Dk ˜̈s

∥∥∥ ≤ 2−
3
2

∥∥∥(Dk)−1 ˜̈x+Dk ˜̈s
∥∥∥2.

From (Dk)−1 ˜̈x+Dk ˜̈s = (XkSk)−1/2(Sk ˜̈x+Xk ˜̈s),∥∥∥(Dk)−1 ˜̈x+Dk ˜̈s
∥∥∥ ≤ ∥∥∥XkSk

∥∥∥− 1
2
∥∥∥Sk ˜̈x+Xk ˜̈s

∥∥∥
[∵ (28c)] ≤

∥∥∥XkSk
∥∥∥− 1

2
(
2
∥∥˜̇x ◦ ˜̇s∥∥+ ∥∥∥Skvk2

∥∥∥)
[∵ (40), (46), (35), (38)] ≤ 1

√
γ1µk

(
2C2

2n
2µk +

√
nηµk

)
≤
√
µk√
γ1

(2C2
2n

2 +
√
nη). (47)

upper_norm_D_inv_ddot_x_plus_D_ddot_supper_norm_D_inv_ddot_x_plus_D_ddot_s

From the above, we can obtain∥∥˜̈x ◦ ˜̈s∥∥ ≤ 2−
3
2
µk

γ1
(2C2

2n
2 +
√
nη)2 ≤ (2C2

2 + η)2

2
3
2γ1

n4µk =: C3n
4µk.

From (28a) and (28b), we know213

˜̈x⊤ ˜̇s = 0, (48)
second_derivative_x_s_zero_inner_productsecond_derivative_x_s_zero_inner_product

214

then (47) leads to

max

{∥∥∥(Dk)−1 ˜̈x
∥∥∥2,∥∥∥Dk ˜̈s

∥∥∥2} ≤ ∥∥∥(Dk)−1 ˜̈x+Dk ˜̈s
∥∥∥2

≤ µk

γ1
(2C2

2n
2 +
√
nη)2

≤ µk

γ1
(2C2

2 + η)2n4 =: C2
4n

4µk,

13

∥∥˜̈x ◦ ˜̇s∥∥ ≤ ∥∥∥(Dk)−1 ˜̈x
∥∥∥∥∥∥Dk ˜̇s

∥∥∥ ≤ C4n
2√µkC2n

√
µk = C2C4n

3µk.

We can show the boundedness of
∥∥˜̇x ◦ ˜̈s∥∥ similarly.215

Using these lemmas, we are ready to prove Proposition 4.1.216

Proof of Proposition 4.1. Firstly, we derive the equations necessary for the proofs. We217

have the following simple identity:218

−2(1− cos(α)) + sin2(α) = −(1− cos(α))2. (49)
sin_cos_1sin_cos_1

219

Therefore, we can obtain

xk(α) ◦ sk(α) =
(
xk − ˜̇x sin(α) + ˜̈x(1− cos(α))

)
◦
(
sk − ˜̇s sin(α) + ˜̈s(1− cos(α))

)
= xk ◦ sk −

(
xk ◦ ˜̇s+ ˜̇x ◦ sk

)
sin(α) +

(
xk ◦ ˜̈s+ ˜̈x ◦ sk

)
(1− cos(α))

+ ˜̇x ◦ ˜̇s sin2(α)−
(
˜̇x ◦ ˜̈s+ ˜̈x ◦ ˜̇s

)
sin(α)(1− cos(α)) + ˜̈x ◦ ˜̈s(1− cos(α))2

[∵ (27c), (28c)] = xk ◦ sk − (xk ◦ sk − σµke− Skvk1) sin(α) +
(
−2˜̇x ◦ ˜̇s− Skvk2

)
(1− cos(α))

+ ˜̇x ◦ ˜̇s sin2(α)−
(
˜̇x ◦ ˜̈s+ ˜̈x ◦ ˜̇s

)
sin(α)(1− cos(α)) + ˜̈x ◦ ˜̈s(1− cos(α))2

[∵ (49)] = xk ◦ sk(1− sin(α)) + σµk sin(α)e

+
(
˜̈x ◦ ˜̈s− ˜̇x ◦ ˜̇s

)
(1− cos(α))2 −

(
˜̇x ◦ ˜̈s+ ˜̈x ◦ ˜̇s

)
sin(α)(1− cos(α))

+ Skvk1 sin(α)− Skvk2 (1− cos(α)) (50)
x_s_alpha_Hadamardx_s_alpha_Hadamard

and

xk(α)⊤sk(α) =
(
xk − ˜̇x sin(α) + ˜̈x(1− cos(α))

)⊤ (
sk − ˜̇s sin(α) + ˜̈s(1− cos(α))

)
[∵ (50), (5), (48)] = (xk)⊤sk ((1− sin(α)) + σ sin(α))

− ˜̇x⊤ ˜̇s(1− cos(α))2 −
(
˜̇x⊤ ˜̈s+ ˜̈x⊤ ˜̇s

)
sin(α)(1− cos(α))

+ sin(α)
n∑

i=1

[Skvk1]i − (1− cos(α))
n∑

i=1

[Skvk2]i. (51)
x_s_alpha_inner_productx_s_alpha_inner_product

From Lemmas 4.5 and 4.6 and the Cauchy-Schwartz inequality, we know∣∣˜̇xi ˜̇si∣∣, ∣∣∣˜̇x⊤ ˜̇s∣∣∣ ≤ ∥∥∥(Dk)−1 ˜̇x
∥∥∥∥∥∥Dk ˜̇s

∥∥∥ ≤ C2
2n

2µk (52a)∣∣˜̈xi ˜̇si∣∣, ∣∣∣˜̈x⊤ ˜̇s∣∣∣ ≤ ∥∥∥(Dk)−1 ˜̈x
∥∥∥∥∥∥Dk ˜̇s

∥∥∥ ≤ C2C4n
3µk (52b)∣∣˜̇xi ˜̈si∣∣, ∣∣∣˜̇x⊤ ˜̈s∣∣∣ ≤ ∥∥∥(Dk)−1 ˜̇x

∥∥∥∥∥∥Dk ˜̈s
∥∥∥ ≤ C2C4n

3µk (52c)∣∣˜̈xi ˜̈si∣∣ ≤ ∥∥∥(Dk)−1 ˜̈x
∥∥∥∥∥∥Dk ˜̈s

∥∥∥ ≤ C2
4n

4µk (52d)
upper_product_of_ddot_x_and_ddot_s_element_wiseupper_product_of_ddot_x_and_ddot_s_element_wise

14

uppers_product_of_derivatives
Here,

∣∣˜̈x⊤ ˜̈s∣∣ = 0 holds due to (48). Furthermore, we have220

sin2(α) = 1− cos2(α) ≥ 1− cos(α) (53)
sin_square_more_than_one_minus_cossin_square_more_than_one_minus_cos

221

from α ∈ (0, π/2].222

We prove that the step size α satisfying gk(α) ≥ 0 is bounded away from zero. From
(51),

xk(α)⊤sk(α) ≥ (xk)⊤sk ((1− sin(α)) + σ sin(α))

−
∣∣∣˜̇x⊤ ˜̇s∣∣∣(1− cos(α))2 −

(∣∣∣˜̇x⊤ ˜̈s∣∣∣+ ∣∣∣˜̈x⊤ ˜̇s∣∣∣) sin(α)(1− cos(α))

−
∥∥∥Skvk1

∥∥∥
1
sin(α)−

∥∥∥Skvk2

∥∥∥
1
(1− cos(α))

[∵ (38), (35)] ≥ (xk)⊤sk ((1− sin(α)) + σ sin(α))

−
∣∣∣˜̇x⊤ ˜̇s∣∣∣(1− cos(α))2 −

(∣∣∣˜̇x⊤ ˜̈s∣∣∣+ ∣∣∣˜̈x⊤ ˜̇s∣∣∣) sin(α)(1− cos(α))

− ηnµk(sin(α) + 1− cos(α)). (54)
lower_x_s_alpha_inner_productlower_x_s_alpha_inner_product

Therefore,

gk(α) = xk(α)⊤sk(α)− (1− sin(α))(xk)⊤sk

[∵ (54)] ≥ σ(xk)⊤sk sin(α)− ηnµk (sin(α) + 1− cos(α))

−
∣∣∣˜̇x⊤ ˜̇s∣∣∣(1− cos(α))2 −

(∣∣∣˜̇x⊤ ˜̈s∣∣∣+ ∣∣∣˜̈x⊤ ˜̇s∣∣∣) sin(α)(1− cos(α))

[∵ (5), (53)] ≥ σnµk sin(α)− ηnµk

(
sin(α) + sin2(α)

)
−
∣∣∣˜̇x⊤ ˜̇s∣∣∣ sin4(α)− (∣∣∣˜̇x⊤ ˜̈s∣∣∣+ ∣∣∣˜̈x⊤ ˜̇s∣∣∣) sin3(α)

[∵ (52)] ≥ nµk sin(α)
(
(σ − η)− η sin(α)− C2

2n sin3(α)− 2C2C4n
2 sin2(α)

)
.

Since
(
−η sin(α)− C2

2n sin3(α)− 2C2C4n
2 sin2(α)

)
is monotonically decreasing and σ >

η holds from (26a) and γ1 ∈ (0, 1), there exists the step size α̂1 ∈ (0, π/2] satisfying the
last formula of the right-hand side is no less than 0. When

sin(α̂1) ≤
σ − η

2n

1

max

{
η, C

2
3
2 ,
√
2C2C4

} ,

from 0 < σ − η < σ ≤ 1,

(σ − η)− η sin(α̂1)− C2
2n sin3(α̂1)− 2C2C4n

2 sin2(α̂1)

≥ (σ − η)− σ − η

2n
− (σ − η)3

8n2
− (σ − η)2

4

≥ (σ − η)

(
1− 1

2
− 1

8
− 1

4

)
≥ 0.

Therefore, gk(α) ≥ 0 is satisfied for any α ∈ (0, α̂1].223

15

Next, we consider the range of α such that Gk
i (α) ≥ 0. From (52),

upper_derivatives_element_wise_munus_products∣∣∣˜̇xi ˜̇si − γ1
n
˜̇x⊤ ˜̇s

∣∣∣ ≤ (1 + γ1
n

)
C2
2n

2µk ≤ 2C2
2n

2µk (55a)∣∣∣˜̈xi ˜̇si − γ1
n
˜̈x⊤ ˜̇s

∣∣∣, ∣∣∣˜̇xi ˜̈si − γ1
n
˜̇x⊤ ˜̈s

∣∣∣ ≤ 2C2C4n
3µk (55b)

is satisfied. Therefore, we have

Gk
i (α) = xki (α)s

k
i (α)− γ1µk(α)

[∵ (50), (5), (51)] ≥ xki s
k
i (1− sin(α)) + σµk sin(α)

+
(
˜̈xi ˜̈si − ˜̇xi ˜̇si

)
(1− cos(α))2 −

(
˜̇xi ˜̈si + ˜̈xi ˜̇si

)
sin(α)(1− cos(α))

−
∥∥∥Skvk1

∥∥∥
∞
sin(α)−

∥∥∥Skvk2

∥∥∥
∞
(1− cos(α))

− γ1
n

(
nµk ((1− sin(α)) + σ sin(α))

− ˜̇x⊤ ˜̇s(1− cos(α))2 −
(
˜̇x⊤ ˜̈s+ ˜̈x⊤ ˜̇s

)
sin(α)(1− cos(α)))

+
∥∥∥Skvk1

∥∥∥
1
sin(α) +

∥∥∥Skvk2

∥∥∥
1
(1− cos(α))

)
[∵ (12), (35), (38)] ≥ (1− γ1)σµk sin(α)− (1 + γ1)ηµk(sin(α) + 1− cos(α))

+ ˜̈xi ˜̈si(1− cos(α))2 −
(
˜̇xi ˜̇si −

γ1
n
˜̇x⊤ ˜̇s

)
(1− cos(α))2

−
(
˜̇xi ˜̈si −

γ1
n
˜̇x⊤ ˜̈s+ ˜̈xi ˜̇si −

γ1
n
˜̈x⊤ ˜̇s

)
sin(α)(1− cos(α))

[∵ (53), (52d), (55)] ≥ µk sin(α)

(
(1− γ1)σ − (1 + γ1)η − (1 + γ1)η sin(α)

− (C2
4n

4 + 2C2
2n

2) sin3(α)− 4C2C4n
3 sin2(α)

)
.

We can derive the same discussion as gk(α) using (26a). When

sin(α̂2) ≤
(1− γ1)σ − (1 + γ1)η

2n
3
2

1

max
{
(1 + γ1)η, (C2

4 + 2C2
2)

1
3 , 2
√
C2C4

} ,
from 0 < (1− γ1)σ − (1 + γ1)η < σ ≤ 1,

(1− γ1)σ − (1 + γ1)η − (1 + γ1)η sin(α̂2)− (C2
4n

4 + 2C2
2n

2) sin3(α̂2)− 4C2C4n
3 sin2(α̂2)

≥ ((1− γ1)σ − (1 + γ1)η)

(
1− 1

2n
3
2

− 1

23n
1
2

− 1

22

)
≥ ((1− γ1)σ − (1 + γ1)η)

(
1− 1

2
− 1

8
− 1

4

)
≥ 0.

Therefore, Gk
i (α) ≥ 0 is satisfied for α ∈ (0, α̂2].224

16

Lastly, we consider hk(α) ≥ 0. Similarly to the derivation of (54), we can obtain the
following:

xk(α)⊤sk(α) ≤ (xk)⊤sk ((1− sin(α)) + σ sin(α))

+
∣∣∣˜̇x⊤ ˜̇s∣∣∣(1− cos(α))2 +

(∣∣∣˜̇x⊤ ˜̈s∣∣∣+ ∣∣∣˜̈x⊤ ˜̇s∣∣∣) sin(α)(1− cos(α))

+ ηnµk(sin(α) + 1− cos(α)), (56)
upper_x_s_alpha_inner_productupper_x_s_alpha_inner_product

Therefore,

hk(α) = (1− (1− β) sin(α)) (xk)⊤sk − xk(α)⊤sk(α)

[∵ (56)] ≥ (xk)⊤sk (β sin(α)− σ sin(α))− ηnµk(sin(α) + 1− cos(α))

−
∣∣∣˜̇x⊤ ˜̇s∣∣∣(1− cos(α))2 −

(∣∣∣˜̇x⊤ ˜̈s∣∣∣+ ∣∣∣˜̈x⊤ ˜̇s∣∣∣) sin(α)(1− cos(α))

[∵ (5)] = nµk (β sin(α)− σ sin(α)− η(sin(α) + 1− cos(α)))

−
∣∣∣˜̇x⊤ ˜̇s∣∣∣(1− cos(α))2 −

(∣∣∣˜̇x⊤ ˜̈s∣∣∣+ ∣∣∣˜̈x⊤ ˜̇s∣∣∣) sin(α)(1− cos(α))

[∵ (52)] ≥ nµk ((β − σ − η) sin(α)− η(1− cos(α)))

− C2
2n

2µk(1− cos(α))2 − 2C2C4n
3µk sin(α)(1− cos(α))

[∵ (53)] ≥ nµk sin(α)
(
(β − σ − η)− η sin(α)− C2

2n sin3(α)− 2C2C4n
2 sin2(α)

)
.

The last coefficient on the right-hand side is cubic for sin(α) and monotonically decreas-
ing for α. Therefore, it is possible to take a step size α̂3 satisfying hk(α̂3) ≥ 0 from
(26b). When

sin(α̂3) ≤
β − σ − η

2n

1

max

{
η, C

2
3
2 ,
√
2C2C4

} ,

from 0 < β − σ − η < β < 1, we know

(β − σ − η)− η sin(α̂3)− C2
2n sin3(α̂3)− 2C2C4n

2 sin2(α̂3)

≥ (β − σ − η)− β − σ − η

2n
− (β − σ − η)3

8n2
− (β − σ − η)2

4

> (β − σ − η)

(
1− 1

2
− 1

8
− 1

4

)
=

β − σ − η

8
> 0.

Therefore, gk(α) ≥ 0 is satisfied for α ∈ (0, α̂3].225

From the above discussions, when α̂ is taken such that226

sin(α̂) =
1

n
3
2

min {(1− γ1)σ − (1 + γ1)η, β − σ − η}

2max
{
(1 + γ1)η, (C2

4 + 2C2
2)

1
3 , 2
√
C2C4

} , (57)
def_min_step_sizedef_min_step_size

227

gk(α), Gk
i (α), h

k(α) ≥ 0 are satisfied for all k and α ∈ (0, α̂].228

17

Since α̂ defined in (57) can satisfy the conditions in line 6 of Algorithm 1, we can find
the step length αk ≥ α̂ > 0. Therefore, Algorithm 1 is well-defined. From hk(αk) ≥ 0
for all k,

hk(αk) ≥ 0⇒ xk(αk)
⊤sk(αk) ≤ (1− (1− β) sin(αk))(x

k)⊤sk

≤ (1− (1− β) sin(α̂))(xk)⊤sk

≤ (1− (1− β) sin(α̂))k(x0)⊤s0. (58)
mu-decrementmu-decrement

Due to (29), it also holds that229

∥(rb(xk), rc(yk, sk))∥ ≤ (1− sin(α̂))k ∥(rb(x0), rc(yk, s0))∥ . (59)
constraints_residual_decrementconstraints_residual_decrement

230

We can prove the polynomial complexity of the proposed method based on the fol-231

lowing theorem.232

polynomiality_by_mu

Theorem 4.1 ([37, Theorem 1.4]). Suppose that an algorithm for solving (3) generates
a sequence of iterations that satisfies

µk+1 ≤
(
1− δ

nω

)
µk, k = 0, 1, 2, . . . ,

for some positive constants δ and ω. Then there exists an index K with

K = O(nω log(µ0/ζ))

such that
µk ≤ ζ for ∀k ≥ K.

Applying (58), (12), (xk, yk, sk) ∈ N (γ1, γ2), (59) and a result that sin(α̂) is propo-233

sitional to n−1.5 in (57) to this theorem, we can obtain the following theorem.234

main-theorem

Theorem 4.2. Algorithm 1 generates a ζ-optimal solution in at most

O

(
n1.5 log

(
max{µ0,

∥∥rb(x0), rc(y0, s0)∥∥}
ζ

))
iterations.235

In the case that the input data is integral, Al-Jeiroudi et al. [1] and Mohammadisi-
ahroudi et al. [23] analyze that the iteration complexity of II-line is O(n2L), where L is
the binary length of the input data denoted by

L = mn+m+ n+
∑
i,j

⌈log (|aij |+ 1)⌉+
∑
i

⌈log (|ci|+ 1)⌉+
∑
j

⌈log (|bj |+ 1)⌉ .

Theorem 4.2 indicates that II-arc can reduce the iteration complexity from n2 to n1.5,236

by a factor of n0.5. This reduction is mainly brought by the ellipsoidal approximation237

in the arc-search method.238

18

5 Numerical experiments239

section_numerical_experiments

In this section, we describe the implementation and the numerical experiments of the240

proposed method. The experiments were conducted on a Linux server with Opteron241

4386 (3.10GHz), 16 cores, and 128GB RAM, and the methods were implemented with242

Python 3.10.9.243

5.1 Implementation details244

We describe the implementation details before discussing the results.245

5.1.1 Parameter settings246

In these numerical experiments, we set

σ = 0.4, η = 0.3, γ1 = 0.1, γ2 = 1, β = 0.9.

These parameters satisfy (26), and we use the same parameters for II-line as well.247

5.1.2 Solving LESs248

To solve the LESs inexactly, we employ the conjugate gradient (CG) method in Scipy249

package. Although we examined other iterative solvers than CG, the preliminary exper-250

iments showed that CG was the fastest inexact solver in II-arc.251

The proposed method uses the MNES formulation in Section 3, but preliminary252

experiments showed that MNES lacks numerical stability. Specifically, CG did not con-253

verge to a certain accuracy even when a preconditioner was employed, and the search254

direction did not satisfy (24). A possible cause is that the condition number of the255

coefficient matrix M̂k for MNES is extremely worse than that for NES; it is known that256

the condition number of MNES can grow up to the square of that of NES [26].257

Therefore, in the numerical experiments, we choose the NES formulations (14) and258

Mkÿ = ρk2, (60)
second_derivative_NESsecond_derivative_NES

259

instead of the MNES (16) and (20), respectively. The inexact solution of (14) satisfies260

Mk ˜̇y = ρk1 + rk1 , (61)
inexact_first_derivative_NESinexact_first_derivative_NES

261

where the error rk1 is defined as rk1 := Mk ˜̇y−ρk1 = Mk
(
˜̇y − ẏ

)
, and that of (60) satisfies262

Mk ˜̈y = ρk2 + rk2 , (62)
inexact_second_derivative_NESinexact_second_derivative_NES

263

where the error rk2 is defined similar to rk1 . As for the solution accuracy, we set the264

following threshold as in (25):265 ∥∥∥rki ∥∥∥ ≤ η

√
µk√
n
∀i ∈ {1, 2}. (63)

def_upper_derivatives_residual_NESdef_upper_derivatives_residual_NES
266

19

When we solve (14) and (60) by CG, we use the inverse matrix of the diagonal267

components of Mk as the preconditioner matrix to speed up its convergence of CG [12].268

We adopt this preconditioner because it is simpler than the other methods, such as the269

controlled Cholesky Factorization preconditioner [5], the splitting preconditioner [27],270

and the hybrid of these [2], and we checked its convergence in a preliminary test.271

The coefficient matrix Mk has to be a symmetric positive definite matrix when272

solving (14) and (60) in II-arc and [23, (NES)] in II-line by CG of Scipy. Though this273

condition should hold theoretically from Assumption 2.2 and xk, sk > 0, Mk may not274

be positive definite due to numerical errors. Therefore, when the CG method fails to275

satisfy (63), we replace Mk with Mk + 10−3I, as indicated in [20].276

5.1.3 The modification of (˜̈x, ˜̈y, ˜̈s)277

If
∥∥−2˜̇x ◦ ˜̇s∥∥∞ ≤ ηµk is satisfied, (28) and (35) can hold with (˜̈x, ˜̈y, ˜̈s) = (0, 0, 0). There-278

fore, to shorten the computation time, we skip solving (60) and set (˜̈x, ˜̈y, ˜̈s) = (0, 0, 0).279

In this case, (23) can be interpreted as a line-search method.280

Furthermore, when the inexact solution of (60) satisfies
∥∥Mk

2
˜̈y − ρk2

∥∥ >
∥∥ρk2∥∥, ˜̈y is281

replaced with a zero vector as in [22] to avoid a large error.282

5.1.4 Step size283

In line 6 of Algorithm 1 and [23, Algorithm 1, Line 9], since it is difficult to obtain the284

solution of (24) analytically, Armijo’s rule [31] is employed to determine an actual step285

size αk.286

5.1.5 Stopping criteria287

section_stopping_criteria

The algorithms are designed to terminate when (xk, yk, sk) ∈ S∗ζ is satisfied. The con-288

dition µk ≤ ζ, however, does not consider the magnitude of the data, thus it is not289

practical especially when the magnitude of the optimal values is relatively large.290

Therefore, in addition to condition µk ≤ ζ (where ζ = 10−2), as in [33], we terminate291

the algorithms when the following condition is met:292

max

{ ∥∥rb(xk)∥∥
max{1, ∥b∥}

,

∥∥rc(yk, sk)∥∥
max{1, ∥c∥}

,
µk

max {1, ∥c⊤xk∥, ∥b⊤yk∥}

}
< ϵ, (64)

condition_solvedcondition_solved
293

where we set the threshold ϵ = 10−7.294

In addition, we stop the algorithm prematurely when the step size αk diminishes as295

αk < 10−7.296

5.2 Test problems297

section_test_problems

The CG or other iterative solvers are often employed when the matrix related to the298

normal equation is very large and makes the Cholesky factorization impractical. In this299

20

context, we use the largest problems in the NETLIB collection [6]; QAP15 and the fifteen300

Kennington problems [7] except KEN-181. We applied the same preprocessing as in [15,301

Section 5.1] to the problems, e.g., removing redundant rows of the constraint matrix A.302

5.3 Numerical Results303
section_numerical_results

We report numerical results as follows. In Section 5.3.1, we compare II-arc and the304

inexact infeasible line-search IPM [23, Algorithm 1] (II-line), and show II-arc can solve305

the large problems with less iterations and computation time. In Section 5.3.2, we306

compare II-arc and the existing exact infeasible IPMs. This result indicates that the307

proposed method requires more iterations but less computation time.308

The detailed numerical results of the all methods are reported in Appendix A.309

5.3.1 Comparison with the Inexact line-search310

section_comparison_II_line_IPM

We compare II-arc with II-line by solving the benchmark problems using CG in this sec-311

tion. We set the initial point as (x0, y0, s0) = 104(e, 0, e) that always satisfies (x0, y0, s0) ∈312

N (γ1, γ2).313

Firstly, Figure 1 shows a performance profile [9, 13] on the numbers of iterations of314

II-arc and II-line. The figures on the performance profile in this section was generated315

with a Julia package [28].

Figure 1: Performance profile of the number of iterations with II-arc and II-linefig_comparison_iter_num_with_existing_method

316

We observe from Figure 1 that II-arc demands fewer iterations than II-line in all317

problems. For more than half of the test problems, II-line required more than twice as318

many iterations as II-arc. Therefore, these results indicate that the number of iterations319

1The size of KEN-18 (n = 255248 and m = 205676) was so large that all of the methods in this
section exceeded the time limit of 36000 seconds.

21

can be reduced by approximating the central path with the ellipsoidal arc, when the320

LESs for the search direction are solved inexactly.321

Figure 2: Performance profile of the computation time with II-arc and II-linefig_comparison_calc_time_with_existing_method

Next, Figure 2 shows a performance profile on the computation time. The compu-322

tation time of II-arc is shorter than that of II-line. These results show that even though323

II-arc requires an additional LES (62) to be solved, II-arc can solve the large problems324

faster than II-line due to the reduction in the number of iterations.325

5.3.2 Comparison with the existing exact IPMs326

section_comparison_Exact_IPM

Next, we compare II-arc and the exact infeasible IPMs; the arc-search IPM [35] (EI-327

arc) and the Mehrotra-type line-search IPM [21] (EI-line). We employ Scipy’s Cholesky328

factorization to solve the LES exactly. We exclude KEN-18, OSA-60 and PDS-20 from329

the comparison, since the computation exceeded the time limit of 36000 seconds due330

to the Cholesky factorization for the extremely large LESs. For the initial points, the331

II-arc method uses the same initial points as in Section 5.3.1. On the other hand, since332

(x0, y0, s0) ∈ N (γ1, γ2) is not required for EI-arc and EI-line, these use the same method333

as Yang [35, Section 4.1]. Therefore, EI-arc and EI-line generate initial point candidates334

using the Mehrotra method [21] and the Lusting one [19], and select the one.335

Figure 3 shows the performance profile for the number of iterations. This figure336

shows that II-arc is inferior to the exact methods. If the exact search direction can be337

calculated, it can be inferred that the number of iterations can be reduced.338

Next, Figure 4 shows the performance profile of the computation time. This figure339

shows that II-arc has an advantage in terms of computation time in spite of a larger340

number of iterations. When solving the LESs (14) and (60) for the search direction, the341

Cholesky factorization requires O
(
n3
)
of the computational complexity, whereas CG re-342

quires O(nd
√
κ log(1/ε)) [29], where d being the maximum number of non-zero elements343

22

Figure 3: Performance profile of the iteration number with II-arc, EI-arc and EI-linefig_comparison_inexact_and_exact_in_iter_num

in any row or column of Mk, κ the condition number of Mk, and ε the error allowed (we344

set ε satisfying (63) in II-arc and II-line). It is known that κ increases as the iterations345

proceed in the IPM [12], but CG still can be faster than the Cholesky factorization if n346

is remarkably large. For instance, when CRE-B was solved, the overall II-arc method347

took 255.85 seconds, of which the CG consumed 247.24 seconds (96.63%). In contrast,348

the EI-arc method took 657.61 seconds and the Cholesky factorization occupies 639.02349

seconds (97.17%). Therefore, the time required to find the search direction per iteration350

can be shorter in the inexact IPM than that in the exact one, and as a result, the entire351

computation time can be reduced.352

6 Conclusion353

section_conclusion

In this work, we proposed an inexact infeasible arc-search interior-point method (II-arc)354

for solving LPs. In particular, by formulating MNES and setting the parameters appro-355

priately, we showed that the proposed method achieves polynomial iteration complexity356

that is smaller than the II-line by a factor of n0.5. In the numerical experiments for357

the largest problems in the NETLIB collection with CG as the solver for the LESs, the358

II-arc outperformed the II-line in terms of both the number of iterations and the com-359

putation time due to the reduction in the computational complexity by the arc-search.360

Additionally, solving the LESs inexactly resulted in a reduction of the computation time361

compared to the existing exact IPMs for the large problems because the computational362

complexity of CG is less dependent on the problem size n than that of the Cholesky363

factorization.364

As a future direction, we can consider the following:365

• utilizing QLSA, such as the Harrow-Hassidim-Lloyd algorithm [14], to solve the366

23

Figure 4: Performance profile of the computation time with II-arc, EI-arc and EI-linefig_comparison_inexact_and_exact_in_calc_time

LESs more quickly,367

• combining Nesterov’s restarting strategy as in [15] to shorten the entire computa-368

tion time,369

• exploring hybrid methods to improve the efficiency of inexact solutions, such as370

Bartmeyer et al. [2],371

• extending the approach to other optimization problems, such as quadratic pro-372

gramming problems.373

References374

[1] G. Al-Jeiroudi and J. Gondzio. Convergence analysis of the inexact infeasible375

interior-point method for linear optimization. Journal of Optimization Theory and376

Applications, 141:231–247, 2009.377

[2] P. M. Bartmeyer, S. Bocanegra, and A. R. L. Oliveira. Switching preconditioners378

using a hybrid approach for linear systems arising from interior point methods for379

linear programming. Numerical Algorithms, 86:397–424, 2021.380

[3] S. Bellavia. Inexact interior-point method. Journal of Optimization Theory and381

Applications, 96:109–121, 1998.382

[4] S. Bellavia and S. Pieraccini. Convergence analysis of an inexact infeasible inte-383

rior point method for semidefinite programming. Computational Optimization and384

Applications, 29:289–313, 2004.385

24

[5] S. Bocanegra, F. F. Campos, and A. R. Oliveira. Using a hybrid preconditioner386

for solving large-scale linear systems arising from interior point methods. Compu-387

tational Optimization and Applications, 36:149–164, 2007.388

[6] S. Browne, J. Dongarra, E. Grosse, and T. Rowan. The Netlib mathematical soft-389

ware repository. D-lib Magazine, 1(9), 1995.390

[7] W. J. Carolan, J. E. Hill, J. L. Kennington, S. Niemi, and S. J. Wichmann. An391

empirical evaluation of the korbx® algorithms for military airlift applications. Op-392

erations Research, 38(2):240–248, 1990.393

[8] P. A. M. Casares and M. A. Martin-Delgado. A quantum interior-point predictor-394

corrector algorithm for linear programming. Journal of Physics A: Mathematical395

and Theoretical J. Phys. A: Math. Theor, 53:30, 2020.396

[9] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance397

profiles. Mathematical programming, 91:201–213, 2002.398

[10] T. A. Espaas and V. S. Vassiliadis. An interior point framework employing higher-399

order derivatives of central path-like trajectories: Application to convex quadratic400

programming. Computers & Chemical Engineering, 158:107638, 2022.401

[11] J. Gondzio. Multiple centrality corrections in a primal-dual method for linear pro-402

gramming. Computational Optimization and Applications, 6(2):137–156, 1996.403

[12] J. Gondzio. Interior point methods 25 years later. European Journal of Operational404

Research, 218(3):587–601, 2012.405

[13] N. Gould and J. Scott. A note on performance profiles for benchmarking software.406

ACM Transactions on Mathematical Software (TOMS), 43(2):1–5, 2016.407

[14] A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear systems408

of equations. Physical review letters, 103(15):150502, 2009.409

[15] E. Iida and M. Yamashita. An infeasible interior-point arc-search method with410

Nesterov’s restarting strategy for linear programming problems. Computational411

Optimization and Applications, pages 1–34, 2024.412

[16] N. Karmarkar. A new polynomial-time algorithm for linear programming. In Pro-413

ceedings of the sixteenth annual ACM symposium on Theory of computing, pages414

302–311, 1984.415

[17] I. Kerenidis and A. Prakash. A quantum interior point method for LPs and SDPs.416

ACM Transactions on Quantum Computing, 1(1):1–32, 2020.417

[18] M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point algorithm418

for linear programming. In Progress in Mathematical Programming, pages 29–47.419

Springer, New York, 1989.420

25

[19] I. J. Lustig, R. E. Marsten, and D. F. Shanno. On implementing mehrotra’s421

predictor–corrector interior-point method for linear programming. SIAM journal422

on Optimization, 2(3):435–449, 1992.423

[20] A. Malyshev, R. Quirynen, and A. Knyazev. Preconditioning of conjugate gradient424

iterations in interior point mpc method. IFAC-PapersOnLine, 51(20):394–399, 2018.425

[21] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM426

Journal on Optimization, 2:575–601, 1992.427

[22] S. Mizuno and F. Jarre. Global and polynomial-time convergence of an infeasible-428

interior-point algorithm using inexact computation. Mathematical Programming,429

84(1), 1999.430

[23] M. Mohammadisiahroudi, R. Fakhimi, and T. Terlaky. Efficient use of quantum431

linear system algorithms in interior point methods for linear optimization. arXiv432

preprint arXiv:2205.01220, 2022.433

[24] R. D. Monteiro, I. Adler, and M. G. Resende. A polynomial-time primal-dual affine434

scaling algorithm for linear and convex quadratic programming and its power series435

extension. Mathematics of Operations Research, 15(2):191–214, 1990.436

[25] R. D. Monteiro and J. W. O’Neal. Convergence analysis of a long-step primal-437

dual infeasible interior-point lp algorithm based on iterative linear solvers. Georgia438

Institute of Technology, 2003.439

[26] R. D. Monteiro, J. W. O’Neal, and T. Tsuchiya. Uniform boundedness of a pre-440

conditioned normal matrix used in interior-point methods. SIAM Journal on Opti-441

mization, 15(1):96–100, 2004.442

[27] A. R. Oliveira and D. C. Sorensen. A new class of preconditioners for large-scale443

linear systems from interior point methods for linear programming. Linear Algebra444

and its applications, 394:1–24, 2005.445

[28] D. Orban and contributors. BenchmarkProfiles.jl: A Simple Julia Package to Plot446

Performance and Data Profiles. https://github.com/JuliaSmoothOptimizers/447

BenchmarkProfiles.jl, February 2019.448

[29] Y. Saad. Iterative methods for sparse linear systems. SIAM, PA, 2003.449

[30] F. Vitor and T. Easton. Projected orthogonal vectors in two-dimensional search450

interior point algorithms for linear programming. Computational Optimization and451

Applications, 83(1):211–246, 2022.452

[31] S. J. Wright. Primal-dual interior-point methods. SIAM, PA, 1997.453

[32] Z. Wu, M. Mohammadisiahroudi, B. Augustino, X. Yang, and T. Terlaky. An454

inexact feasible quantum interior point method for linearly constrained quadratic455

optimization. 2022.456

26

https://github.com/JuliaSmoothOptimizers/BenchmarkProfiles.jl
https://github.com/JuliaSmoothOptimizers/BenchmarkProfiles.jl
https://github.com/JuliaSmoothOptimizers/BenchmarkProfiles.jl

[33] M. Yamashita, E. Iida, and Y. Yang. An infeasible interior-point arc-search algo-457

rithm for nonlinear constrained optimization. Numerical Algorithms, 2021.458

[34] Y. Yang. A polynomial arc-search interior-point algorithm for convex quadratic459

programming. European Journal of Operational Research, 215(1):25–38, 2011.460

[35] Y. Yang. CurveLP-A MATLAB implementation of an infeasible interior-point al-461

gorithm for linear programming. Numerical Algorithms, 74:967–996, 4 2017.462

[36] Y. Yang. Two computationally efficient polynomial-iteration infeasible interior-463

point algorithms for linear programming. Numerical Algorithms, 79(3):957–992,464

2018.465

[37] Y. Yang. Arc-search techniques for interior-point methods. CRC Press, FL, 2020.466

[38] Y. Yang. A polynomial time infeasible interior-point arc-search algorithm for convex467

optimization. Optimization and Engineering, 24(2):885–914, 2023.468

[39] Y. Yang and M. Yamashita. An arc-search O(nL) infeasible-interior-point algorithm469

for linear programming. Optimization Letters, 12(4):781–798, 2018.470

27

A Details on numerical results471

section_appendix

Table 1 reports the numerical results in Section 5.3. The first column of the table is472

the problem name, and the second and the third are the variable size n and the number473

of constraints m, respectively, after preprocessing denoted in Section 5.2. The fourth474

to last columns report the number of iterations and the computation time (in seconds).475

The underlined results indicate the best results among the four methods. A mark ‘-476

’ indicates the algorithms stop before reaching the optimality, since the step size αk477

diminishes prematurely. In columns of EI-arc and EI-line, ‘*’ means that these methods478

exceeded the time limit of 36000 seconds.479

Table 1: Numerical results on the proposed method and the existing methodstable_results_for_comparison

problem n m II-arc II-line EI-arc EI-line
Itr. Time Itr. Time Itr. Time Itr. Time

CRE-A 6997 3299 41 37.18 113 39.88 27 41.43 28 41.28
CRE-B 36382 5336 70 255.85 257 357.5 41 657.61 44 666.94
CRE-C 5684 2647 44 50.45 111 51.86 30 26.72 30 24.66
CRE-D 28601 4102 70 175.99 242 240.82 43 237.77 42 221.57
KEN-07 5127 3951 33 23.66 39 21.61 15 2.03 17 1.59
KEN-11 32996 26341 36 2239.44 55 2276.8 - - - -
KEN-13 72784 58757 46 16841.77 83 16367.94 - - - -
OSA-07 25067 1118 40 4.45 69 6.04 94 31.75 51 5.95
OSA-14 54797 2337 45 10.29 85 16.99 - - 60 14.85
OSA-30 104374 4350 44 18.87 104 43.58 - - 66 39.44
OSA-60 243246 10280 47 52.13 143 165.76 * * * *
PDS-06 36920 17604 56 128.64 102 117.98 35 866.18 41 1000.53
PDS-10 63905 30773 71 420.27 151 420.29 45 7107.41 46 7267.52
PDS-20 139330 65437 89 17269.62 215 23297.11 * * * *
QAP15 22275 6330 19 2.46 19 1.93 12 580.75 11 534.94

28

	Introduction
	Notations

	Preliminaries
	The proposed method
	Theoretical proof
	Numerical experiments
	Implementation details
	Parameter settings
	Solving LESs
	The modification of the second derivative
	Step size
	Stopping criteria

	Test problems
	Numerical Results
	Comparison with the Inexact line-search
	Comparison with the existing exact IPMs

	Conclusion
	Details on numerical results

