
An inexact infeasible arc-search interior-point method for

linear programming problems

Einosuke Iida∗and Makoto Yamashita†

2024/03/27

Abstract

Inexact interior-point methods (IPMs) are a type of interior-point methods that
inexactly solve the linear equation system for obtaining the search direction. On
the other hand, arc-search IPMs approximate the central path with an ellipsoidal
arc obtained by solving two linear equation systems in each iteration, while con-
ventional line-search IPMs solve one linear system, therefore, the improvement due
to the inexact solutions of the linear equation systems can be more beneficial in
arc-search IPMs than conventional IPMs. In this paper, we propose an inexact in-
feasible arc-search interior-point method. We establish that the proposed method
is a polynomial-time algorithm through its convergence analysis. The numerical
experiments with the conjugate gradient method show that the proposed method
can reduce the number of iterations compared to an existing method for benchmark
problems; the numbers of iterations are reduced to two-thirds for more than 70% of
the problems.

Keywords: interior-point method, arc-search, inexact IPM, infeasible IPM, linear
programming.

1 Introduction

Linear programming problems (LPs) have had an important role in both theoretical
analysis and practical applications, and many methods have been studied for solving LPs
efficiently. Since an interior-point method (IPM) was first proposed by Karmarkar [10],
IPMs are extended to larger class of optimization problems, for example, second-order
cone programming and semidefinite programming. Many variations of the IPM have
been proposed, such as Mehrotra’s predictor-corrector method [13].

Inexact IPMs are one of such variations and they inexactly solve a linear equation
system (LES) for obtaining the search direction in each iteration. An inexact IPM was
first proposed for solving a constrained system of equations by Bellavia [2] and it has been
extended for LPs [14, 1]. The inexact IPMs have recently gained much attention due

∗Department of Mathematical and Computing Science, Tokyo Institute of Technology
†Department of Mathematical and Computing Science, Tokyo Institute of Technology.

1

to their relevance to quantum computing. Quantum linear system algorithms (QLSAs)
have the potential to solve LESs fast; their complexity has a better dependence on the
size of variables and the number of constraints but a worse one on other parameters
compared to that on classical computers [5]. Recently, inexact IPMs using the QLSA
called quantum interior-point methods are proposed in [11, 21].

On the other hand, studies to reduce the number of iterations in IPMs have also
contributed to improving the numerical performance. An arc-search IPM was originally
proposed by Yang [23]. IPMs numerically trace a trajectory to an optimal solution
called the central path. Standard IPMs find the next iterate on a straight line that
approximates the central path by computing the search direction; such IPMs are called
line-search IPMs in this paper. In contrast, arc-search IPMs employ an ellipsoidal arc
for the approximation. Since the central path is generally a smooth curve, the ellipsoidal
arc can approximate the central path better than the straight line, and a reduction in
the number of iterations can be expected. Several studies [25, 28] found that the arc-
search IPMs improve the iteration complexity from the line-search IPM in [20], and the
numerical experiments in [24, 28] demonstrated that the number of iterations in solving
LP is reduced compared to the existing methods.

Arc-search IPMs solve two LESs in each iteration for computing the search direction
while line-search IPMs one LES, thus, the improvement due to solving LESs inexactly is
expected to be more beneficial in arc-search IPMs than line-search IPMs. In fact, when
the arc-search IPMs are extended to nonlinear programming problems [22] and convex
optimization problems [27], the arc-search IPMs can reduce the computation time even
if the computation of higher-order derivatives is omitted, i.e., the search direction is
obtained inexactly.

In this paper, we propose a novel inexact infeasible arc-search interior-point method
(II-arc-IPM) by integrating an inexact IPM and an arc-search IPM. We prove that the II-
arc-IPM achieves less iteration complexity than the inexact infeasible line-search IPMs
(II-line-IPMs) [14, 15]. Furthermore, the numerical experiments with the conjugate
gradient (CG) method as an inexact linear equation solver show that the II-arc-IPM
can reduce the number of iterations by a factor of 1.5 compared to II-line-IPM for 70%
benchmark problems from Netlib [4].

This paper is organized as follows. Section 2 introduces the standard form of LP
problems and the formulas necessary for II-arc-IPM. In Section 3, we describe the pro-
posed method, and in Section 4, we discuss the convergence and the polynomial iteration
complexity. Section 5 provides the results of the numerical experiments and the discus-
sion. Finally, Section 6 gives conclusions of this paper and discusses future directions.

1.1 Notations

We use xi to denote the i-th element of a vector x. The Hadamard product of two
vectors u and v is defined by u ◦ v. The vector of all ones and the identity matrix
are denoted by e and I, respectively. We use the capital character X ∈ Rn×n as the
diagonal matrix whose diagonal elements are taken from the vector x ∈ Rn. For a set
B, we denote the cardinality of the set by |B| . Given a matrix A ∈ Rm×n and a set

2

B ⊆ {1, . . . , n}, the matrix AB is the submatrix consisting of the columns {Ai : i ∈ B}.
Similarly, given a vector v ∈ Rn and a set B ⊆ {1, . . . , n} where |B| = m ≤ n, the
matrix VB ∈ Rm×m is the diagonal submatrix consisting of the elements {vi : i ∈ B}.
We use ∥x∥2 = (

∑
i x

2
i)

1/2, ∥x∥∞ = maxi |xi| and ∥x∥1 =
∑

i |xi| for the Euclidean
norm, the infinity norm and the ℓ1 norm of a vector x, respectively. For simplicity, we
denote ∥x∥ = ∥x∥2. For a matrix A ∈ Rm×n, ∥A∥ denotes the operator norm associated
with the Euclidian norm; ∥A∥ = max∥z∥=1 ∥Az∥.

2 Preliminaries

In this paper, we consider an LP in the standard form:

min
x∈Rn

c⊤x, s.t. Ax = b, x ≥ 0, (1)

where A ∈ Rm×n with m ≤ n, b ∈ Rm, and c ∈ Rn are input data. The associated dual
problem of (1) is

max
y∈Rm,s∈Rn

b⊤y, s.t. A⊤y + s = c, s ≥ 0, (2)

where y and s are the dual variable vector and the dual slack vector, respectively. Let
S∗ be the set of the optimal solutions of (1) and (2). When (x∗, y∗, s∗) ∈ S∗, it is
well-known that (x∗, y∗, s∗) satisfies the KKT conditions:

Ax∗ = b (3a)

A⊤y∗ + s∗ = c (3b)

(x∗, s∗) ≥ 0 (3c)

x∗i s
∗
i = 0, i = 1, . . . , n. (3d)

We denote the primal and dual residuals in (1) and (2) as

rb(x) = Ax− b (4a)

rc(y, s) = A⊤y + s− c, (4b)

and define the duality measure as

µ =
x⊤s

n
. (5)

Letting ζ ≥ 0, we define the set of ζ-optimal solutions as

S∗ζ =
{
(x, y, s) ∈ R2n+m | (x, s) ≥ 0, µ ≤ ζ, ∥(rb(x), rc(y, s))∥ ≤ ζ

}
. (6)

From the KKT conditions (3), we know S∗ ⊂ S∗ζ .
In this paper, we make the following assumptions for the primal-dual pair (1) and

(2). These assumptions are common ones in the context of IPMs and are used in many
papers (for example, see [20, 26]).

3

Assumption 2.1. There exists an interior feasible solution (x̄, ȳ, s̄) such that

Ax̄ = b, A⊤ȳ + s̄ = c, and (x̄, s̄) > 0.

Assumption 2.2. A is a full-row rank matrix, i.e., rank(A) = m

Assumption 2.1 guarantees that the optimal set S∗ is nonempty and bounded [20].
IPMs are iterative methods, so we denote the kth iteration by (xk, yk, sk) ∈ Rn ×

Rm×Rn and the initial point by (x0, y0, s0). Without loss of generality, we assume that
the initial point (x0, y0, s0) is bounded. We denote the duality measure of kth iteration
as µk = (xk)⊤sk/n.

Given a strictly positive iteration (xk, yk, sk) such that (xk, sk) > 0, the strategy of
an infeasible IPM is to trace a smooth curve called an approximate central path:

C = {(x(t), y(t), s(t)) | t ∈ (0, 1]} , (7)

where (x(t), y(t), s(t)) is the unique solution of the following system

Ax(t)− b = t rb(x
k), (8a)

A⊤y(t) + s(t)− c = t rc(y
k, sk), (8b)

x(t) ◦ s(t) = t(xk ◦ sk), (8c)

(x(t), s(t)) > 0. (8d)

As t→ 0, (x(t), y(t), s(t)) converges to an optimal solution (x∗, y∗, s∗) ∈ S∗.
Arc-search IPMs approximate C with an ellipsoidal arc. An ellipsoidal approximation

of (x(t), y(t), s(t)) at (xk, yk, sk) for an angle α ∈ [0, π/2] is obtained by (x(α), y(α), s(α))
with the following [26, Theorem 5.1]:

x(α) = x− ẋ sin(α) + ẍ(1− cos(α)), (9a)

y(α) = y − ẏ sin(α) + ÿ(1− cos(α)), (9b)

s(α) = s− ṡ sin(α) + s̈(1− cos(α)). (9c)

Here, (ẋ, ẏ, ṡ) and (ẍ, ÿ, s̈) are the first and second derivatives obtained by differentiating
both sides of (8) by t, and they are computed as the solutions of the following LESs,
respectively: A 0 0

0 A⊤ I
Sk 0 Xk

 ẋ
ẏ
ṡ

 =

 rb(x
k)

rc(y
k, sk)

xk ◦ sk

 (10)

A 0 0
0 A⊤ I
Sk 0 Xk

 ẍ
ÿ
s̈

 =

 0
0

−2ẋ ◦ ṡ

 . (11)

Lastly, we define a neighborhood of the approximate central path [20, Chapter 6]:

N (γ1, γ2) :=

{
(x, y, s) |

(x, s) > 0, xisi ≥ γ1µ for i ∈ {1, . . . , n},
∥(rb(x), rc(y, s))∥ ≤ [

∥∥(rb(x0), rc(y0, s0))∥∥/µ0]γ2µ

}
, (12)

4

where γ1 ∈ (0, 1) and γ2 ≥ 1 are given parameters, and ∥(rb(x), rc(y, s))∥ is the norm of
the vertical concatenation of rb(x) and rc(y, s). This neighborhood will be used in the
convergence analysis.

3 The proposed method

In this section, we propose the II-arc-IPM. In the beginning, to guarantee the conver-
gence of the II-arc-IPM, we introduce a perturbation into (10) as follows:A 0 0

0 A⊤ I
Sk 0 Xk

 ẋ
ẏ
ṡ

 =

 rb(x
k)

rc(y
k, sk)

xk ◦ sk − σµke

 , (13)

where σ ∈ (0, 1] is the constant called centering parameter. In the subsequent discussion,
(ẋ, ẏ, ṡ) denote the solution of (13). The proposed II-arc-IPM solves (13) and (11)
inexactly in each iteration to obtain the ellipsoidal approximation.

Several approaches can be considered for solving the Newton system (13), such as
the full Newton system and the Newton equation system (NES) [3]. The NES formula
of (13) is

Mkẏ = σk
1 , (14)

where

Mk = A(Dk)2A⊤, (15a)

σk
1 = A(Dk)2rc(y

k, sk) + rb(x
k)−A(Sk)−1(xk ◦ sk − σµke)

= A(Dk)2A⊤yk −A(Dk)2c+ σµkA(Sk)−1e+Axk − b, (15b)

with Dk = (Xk)
1
2 (Sk)−

1
2 . When we solve the LES (14) exactly and obtain ẏ, we can

compute the other components ẋ and ṡ of the solution in (13)
As discussed by Mohammadisiahroudi et al. [15], the iteration complexity of the II-

line-IPM can be kept small by the modification to NES (14). This modified NES formula
was examined for II-line-IPMs in [1, 16], it is called MNES. Since A is full row rank from
Assumption 2.2, we can choose an arbitrary basis B̂ ⊂ {1, 2, . . . , n} where |B̂| = m and
AB̂ ∈ Rm×m is nonsingular. Now we can adapt (14) to

M̂kż = σ̂k
1 , (16)

where

M̂k = (Dk
B̂
)−1A−1

B̂
Mk((Dk

B̂
)−1A−1

B̂
)⊤, (17a)

σ̂k
1 = (Dk

B̂
)−1A−1

B̂
σk
1 , (17b)

with Dk
B̂
= (Xk

B̂
)
1
2 (Sk

B̂
)−

1
2 . The inexact solution ˜̇z of (16) satisfies

M̂k ˜̇z = σ̂k
1 + r̂k1 , (18)

5

where r̂k1 is the error of ˜̇z defined as

r̂k1 := M̂k ˜̇z − σ̂k
1 = M̂k

(
˜̇z − ż

)
.

Then, we can obtain the first derivative (˜̇x, ˜̇y, ˜̇s) from the inexact solution in (18)
and the steps below:

˜̇y =

((
Dk

B̂

)−1
A−1

B̂

)⊤
˜̇z (19a)

˜̇s = rc(y
k, sk)−AT ˜̇y (19b)

vk1 =
(
vk
B̂
, vk

N̂

)
=
(
Dk

B̂
r̂k1 , 0

)
(19c)

˜̇x = xk − (Dk)2 ˜̇s− σµk(S
k)−1e− vk1 . (19d)

We also apply the MNES formulation to the second derivative (11). Letting

σk
2 = 2A(Sk)−1 ˜̇x ◦ ˜̇s, σ̂k

2 = (Dk
B̂
)−1A−1

B̂
σk
2 ,

we have
M̂kz̈ = σ̂k

2 (20)

with the same definition of M̂k as in (17a). We use ˜̈z to denote the inexact solution of
(20), then we have

M̂k ˜̈z = σ̂k
2 + r̂k2 , (21)

where r̂k2 is defined as r̂k2 := M̂k

(
˜̈z − z̈

)
. Similarly to (19), to obtain the inexact second

derivative (˜̈x, ˜̈y, ˜̈s) from the inexact solution ˜̈z in (21), we compute as follows:

˜̈y =

((
Dk

B̂

)−1
A−1

B̂

)⊤
˜̈z

˜̈s = −AT ˜̈y

vk2 =
(
vk
B̂
, vk

N̂

)
=
(
Dk

B̂
r̂k2 , 0

)
˜̈x = −(Dk)2 ˜̈s− 2(Sk)−1 ˜̇x ◦ ˜̇s− vk2

Using the derivatives obtained above, the next iteration will be found on the ellip-
soidal arc with the following updated formula:

xk(α) = xk − ˜̇x sin(α) + ˜̈x(1− cos(α)), (23a)

yk(α) = yk − ˜̇y sin(α) + ˜̈y(1− cos(α)), (23b)

sk(α) = sk − ˜̇s sin(α) + ˜̈s(1− cos(α)). (23c)

To give the framework of the proposed method, we prepare some functions below:

Gk
i (α) = xki (α)s

k
i (α)− γ1µk(α) for i ∈ {1, . . . , n},

gk(α) = xk(α)⊤sk(α)− (1− sin(α))(xk)⊤sk,

hk(α) = (1− (1− β) sin(α)) (xk)⊤sk − xk(α)⊤sk(α).

6

Here, hk(α) ≥ 0 corresponds to the Armijo condition with respect to the duality gap µ.
In Section 4, we will show that the proposed algorithm converges to an optimal solution
by selecting a step size α that satisfies the following conditions:

Gk
i (α) ≥ 0 for i ∈ {1, . . . , n}, gk(α) ≥ 0, hk(α) ≥ 0. (24)

When (24) holds, the next lemma confirm that a next iteration point (xk(α), yk(α), sk(α))
is in the neighborhood N (γ1, γ2). This lemma can be proved in the same approach as
Mohammadisiahroudi [15, Lemma 4.5] with Lemma 4.2 below.

Lemma 3.1. Assume a step length α ∈ (0, π/2] satisfies Gk
i (α) ≥ 0 and gk(α) ≥ 0.

Then, (xk(α), yk(α), sk(α)) ∈ N (γ1, γ2).

Lastly, we discuss the error range such that the inexact solutions still can make the
proposed algorithm attain the polynomial iteration complexity. This accuracy will also
be used for the convergence proof in Section 4. We assume the following inequality for
the error r̂k1 of (18) and r̂k2 of (21):∥∥∥r̂ki ∥∥∥ ≤ η

√
µk√
n
, ∀i ∈ {1, 2} (25)

where η ∈ [0, 1) is an enforcing parameter.
To prove the polynomial iteration complexity of the proposed algorithm in Lemma 4.6

below, we set the parameters so that

(1− γ1)σ − (1 + γ1)η > 0, (26a)

β > σ + η. (26b)

We are now ready to give the framework of the proposed method (II-arc-IPM) as
Algorithm 1.

Algorithm 1 The inexact infeasible arc-search interior-point method (II-arc-IPM)

Input: ζ > 0, γ1 ∈ (0, 1), γ2 ≥ 1, σ, η, β satisfying (26) and an initial point (x0, y0, s0) ∈
N (γ1, γ2) such that x0 > 0 and s0 > 0.

Output: ζ-optimal solution (xk, yk, sk)
1: k ← 0
2: while (xk, yk, sk) /∈ Sζ do
3: µk ← (xk)⊤sk/n
4: Calculate (˜̇x, ˜̇y, ˜̇s) by solving (16) inexactly satisfying (25).
5: Calculate (˜̈x, ˜̈y, ˜̈s) by solving (20) inexactly satisfying (25).
6: αk ← max {α ∈ (0, π/2] | α satisfies (24)}
7: Set (xk+1, yk+1, sk+1) = (xk(αk), y

k(αk), s
k(αk)) by (23).

8: k ← k + 1
9: end while

7

4 Theoretical proof

In this section, we prove the convergence of Algorithm 1 and its polynomial iteration
complexity. Our analysis is close to Mohammadisiahroudi et al. [15], but it also employs
properties of arc-search IPMs.

First, we evaluate that the constraint residuals (4). From (18) and (19), the residual
appears only in the last equation as a term Skvk1 , as the following lemma shows.

Lemma 4.1. For the inexact first derivative (˜̇x, ˜̇y, ˜̇s) of (8) obtained by the inexact
solution of (16) and the steps in (19), we have

A˜̇x = rb(x
k), (27a)

A⊤ ˜̇y + ˜̇s = rc(y
k, sk), (27b)

Sk ˜̇x+Xk ˜̇s = Xksk − σµke− Skvk1 . (27c)

Lemma 4.1 can be proved from (16) and (19) in the same way as Mohammadisi-
ahroudi [15, Lemma 4.1], thus we omit the proof. As in Lemma 4.1, (˜̈x, ˜̈y, ˜̈s) obtained
by (21) and (22) satisfies

A˜̈x = 0, (28a)

A⊤ ˜̈y + ˜̈s = 0, (28b)

Sk ˜̈x+Xk ˜̈s = −2˜̇x ◦ ˜̇s− Skvk2 . (28c)

Therefore, the following lemma holds from (27a), (27b), (28a) and (28b) due to (23).

Lemma 4.2 ([26, Lemma 7.2]). For each iteration k, the following relations hold.

rb(x
k+1) = rb(x

k) (1− sin(αk)) ,

rc(y
k+1, sk+1) = rc(y

k, sk) (1− sin(αk)) .

For the following discussions, we introduce the following notation:

νk =
k−1∏
i=0

(1− sin(αi)).

From Lemma 4.2, we can obtain

rb(x
k) = νkrb(x

0) (29a)

rc(y
k, sk) = νkrc(y

0, s0) (29b)

In the next proposition, we prove the existence of the lower bound of the step size
αk to guarantee that Algorithm 1 is well defined.

8

Proposition 4.1. Let {(xk, yk, sk)} be the sequence generated by Algorithm 1. Then,
there exists α̂ > 0 satisfying (24) for any αk ∈ (0, α̂] and

sin(α̂) =
C

n1.5
,

where C is a positive constant.

The proof of Proposition 4.1 will be given later. For this proof, we first evaluate xk

and sk with the ℓ1 norm.

Lemma 4.3. There is a positive constant C1 such that

νk

∥∥∥(xk, sk)∥∥∥
1
≤ C1nµk. (30)

The proof below is based on [20, Lemma 6.3].

Proof. From the definition of N (γ1, γ2) in (12) and γ2 ≥ 1, we know∥∥(rb(xk), rc(yk, sk))∥∥
µk

≤ γ2

∥∥(rb(x0), rc(y0, s0))∥∥
µ0

≤
∥∥(rb(x0), rc(y0, s0))∥∥

µ0
,

which implies

µk ≥
∥∥(rb(xk), rc(yk, sk))∥∥
∥(rb(x0), rc(y0, s0))∥

µ0 = νkµ0 (31)

from (29). When we set

(x̄, ȳ, s̄) = νk(x
0, y0, s0) + (1− νk)(x

∗, y∗, s∗)− (xk, yk, sk),

we have Ax̄ = 0 and A⊤ȳ + s̄ = 0 from (29) and (3), then

0 = x̄⊤s̄

= (νkx
0 + (1− νk)x

∗ − xk)⊤(νks
0 + (1− νk)s

∗ − sk)

= ν2k(x
0)⊤s0 + νk(1− νk)

(
(x0)⊤s∗ + (x∗)⊤s0

)
+ (xk)⊤sk + (1− νk)

2(x∗)⊤s∗

−
(
νk((x

0)⊤sk + (s0)⊤xk) + (1− νk)((x
k)⊤s∗ + (sk)⊤x∗)

)
is satisfied. Since all the components of xk, sk, x∗, s∗ are nonnegative, we have ((xk)⊤s∗+
(sk)⊤x∗) ≥ 0. In addition, we have (x∗)⊤s∗ = 0 from (3). By using these and rearrang-
ing, we obtain

νk((x
0)⊤sk + (s0)⊤xk) ≤ ν2k(x

0)⊤s0 + νk(1− νk)
(
(x0)⊤s∗ + (x∗)⊤s0

)
+ (xk)⊤sk

[∵ (5)] = ν2knµ0 + νk(1− νk)
(
(x0)⊤s∗ + (x∗)⊤s0

)
+ nµk

[∵ (31)] ≤ νknµk +
µk

µ0
(1− νk)

(
(x0)⊤s∗ + (x∗)⊤s0

)
+ nµk

[∵ νk ∈ [0, 1]] ≤ 2nµk +
µk

µ0

(
(x0)⊤s∗ + (x∗)⊤s0

)
. (32)

9

Defining a constant ξ by

ξ = min
i=1,2,...,n

min(x0i , s
0
i) > 0, (33)

we have (x0)⊤sk + (s0)⊤xk ≥ ξ
∥∥(xk, sk)∥∥

1
. Therefore, from (32), we obtain

νk

∥∥∥(xk, sk)∥∥∥
1
≤ ξ−1

(
2 +

(x0)⊤s∗ + (x∗)⊤s0

(x0)⊤s0

)
nµk.

We complete this proof by setting

C1 = ξ−1

(
2 +

(x0)⊤s∗ + (x∗)⊤s0

(x0)⊤s0

)
(34)

in (30), where C1 is independent of n.

Next, we prove upper bounds of the terms related to ˜̇x, ˜̇s, ˜̈x, ˜̈s. From (25), the fol-
lowing lemma gives an upper bound of (27c) and (28c):

Lemma 4.4 ([15, Lemma 4.2]). For the derivatives (˜̇x, ˜̇y, ˜̇s) and (˜̈x, ˜̈y, ˜̈s), when the
residuals r̂ki satisfy (25), it holds that∥∥∥Skvki

∥∥∥
∞
≤ ηµk. (35)

Then, the following lemma holds similarly to [20, Lemma 6.5] and [15, Lemma 4.6].

Lemma 4.5. There is a positive constant C2 such that

max
{∥∥∥(Dk)−1 ˜̇x

∥∥∥, ∥∥∥Dk ˜̇s
∥∥∥} ≤ C2n

√
µk

Proof. Let
(x̄, ȳ, s̄) = (˜̇x, ˜̇y, ˜̇s)− νk(x

0, y0, s0) + νk(x
∗, y∗, s∗).

From (27a), (27b), (29) and (3), we have Ax̄ = 0 and A⊤ȳ + s̄ = 0, therefore, x̄⊤s̄ = 0.
Thus, we obtain∥∥∥(Dk)−1x̄+Dks̄

∥∥∥2 = ∥∥∥(Dk)−1(˜̇x− νk(x
0 − x∗))

∥∥∥2 + ∥∥∥Dk(˜̇s− νk(s
0 − s∗))

∥∥∥2. (36)

From (27c), it holds that

Skx̄+Xks̄ = (Sk ˜̇x+Xk ˜̇s)− νkS
k(x0 − x∗)− νkX

k(s0 − s∗)

= (Xksk − σµke− Skvk1)− νkS
k(x0 − x∗)− νkX

k(s0 − s∗).

Consequently, we verify

(Dk)−1x̄+Dks̄ = (XkSk)−
1
2 (Xksk−σµke−Skvk1)−νk(D

k)−1(x0−x∗)−νkD
k(s0− s∗).

(37)

10

For any vector a ∈ Rd,
∥a∥1 ≤

√
n∥a∥ ≤ n∥a∥∞ (38)

holds from [26, Lemma 3.1]. From (36), (37), (38) and Lemma 4.4, we obtain∥∥∥(Dk)−1(˜̇x− νk(x
0 − x∗))

∥∥∥2 + ∥∥∥Dk(˜̇s− νk(s
0 − s∗))

∥∥∥2
=
∥∥∥(XkSk)−

1
2 (Xksk − σµke− Skvk1)− νk(D

k)−1(x0 − x∗)− νkD
k(s0 − s∗)

∥∥∥2
≤
{∥∥∥XkSk

∥∥∥− 1
2
(∥∥∥Xksk − σµke

∥∥∥+ ∥∥∥Skvk1

∥∥∥)+ νk

∥∥∥(Dk)−1(x0 − x∗)
∥∥∥+ νk

∥∥∥Dk(s0 − s∗)
∥∥∥}2

≤
{∥∥∥XkSk

∥∥∥− 1
2
(∥∥∥Xksk − σµke

∥∥∥+√nηµk

)
+ νk

(∥∥∥(Dk)−1(x0 − x∗)
∥∥∥+ ∥∥∥Dk(s0 − s∗)

∥∥∥)}2

.

(39)

In addition, xki s
k
i ≥ γµk in (12) implies∥∥∥XkSk

∥∥∥− 1
2 ≤ 1
√
γ1µk

. (40)

From (30) and (40), we have

νk

∥∥∥(xk, sk)∥∥∥
1

∥∥∥(XS)−1/2
∥∥∥ ≤ C1n

√
µk√

γ1
. (41)

According to the derivation in [20, Lemma 6.5], we have∥∥∥Xksk − σµke
∥∥∥ ≤ nµk, (42)

νk

(∥∥∥(Dk)−1(x0 − x∗)
∥∥∥+ ∥∥∥Dk(s0 − s∗)

∥∥∥)
≤ νk

∥∥∥(xk, sk)∥∥∥
1

∥∥∥(XS)−1/2
∥∥∥max

{∥∥x0 − x∗
∥∥, ∥∥s0 − s∗

∥∥} . (43)

Therefore, from (43) and (41), we obtain

νk

(∥∥∥(Dk)−1(x0 − x∗)
∥∥∥+ ∥∥∥Dk(s0 − s∗)

∥∥∥)
≤ C1√

γ1
n
√
µk max

{∥∥x0 − x∗
∥∥, ∥∥s0 − s∗

∥∥} . (44)

11

Therefore, we have∥∥∥(Dk)−1 ˜̇x
∥∥∥ ≤ ∥∥∥(Dk)−1(˜̇x− νk(x

0 − x∗))
∥∥∥+ νk

∥∥∥(Dk)−1(x0 − x∗)
∥∥∥

[∵ (39)] ≤
∥∥∥XkSk

∥∥∥− 1
2
(∥∥∥Xksk − σµke

∥∥∥+√nηµk

)
+ 2νk

(∥∥∥(Dk)−1(x0 − x∗)
∥∥∥+ ∥∥∥Dk(s0 − s∗)

∥∥∥)
[∵ (40), (42)] ≤

√
µk√
γ1

(
n+
√
nη
)
+ 2νk

(∥∥∥(Dk)−1(x0 − x∗)
∥∥∥+ ∥∥∥Dk(s0 − s∗)

∥∥∥)
[∵ (44)] ≤

√
µk√
γ1

(
n+
√
nη
)
+

2C1n
√
µk√

γ1
max

{∥∥x0 − x∗
∥∥,∥∥s0 − s∗

∥∥}
≤ 1
√
γ1

(
1 + η + 2C1max

{∥∥x0 − x∗
∥∥,∥∥s0 − s∗

∥∥})n√µk.

Since the optimal set is bounded from Assumption 2.1 and the initial point is bounded,

C2 := γ
−1/2
1

(
1 + η + 2C1max

{∥∥x0 − x∗
∥∥, ∥∥s0 − s∗

∥∥}) (45)

is also bounded, and we can prove this lemma by setting this C2. We can similarly show
˜̇s ≤ C2n

√
µk.

From Lemma 4.5, ∥∥˜̇x ◦ ˜̇s∥∥ ≤ ∥∥∥(Dk)−1 ˜̇x
∥∥∥∥∥∥Dk ˜̇s

∥∥∥ ≤ C2
2n

2µk. (46)

Similarly, we evaluate the terms related to Gk
i (α), g

k(α) and hk(α).

Lemma 4.6. There are positive constants C3 and C4 such that∥∥˜̈x ◦ ˜̈s∥∥ ≤ C3n
4µk,

max
{∥∥∥(Dk)−1 ˜̈x

∥∥∥,∥∥∥Dk ˜̈s
∥∥∥} ≤ C4n

2√µk,

max
{∥∥˜̈x ◦ ˜̇s∥∥,∥∥˜̇x ◦ ˜̈s∥∥} ≤ C2C4n

3µk.

Proof. When u⊤v ≥ 0 for any vector pairs of u, v, the inequality

∥u ◦ v∥ ≤ 2−
3
2 ∥u+ v∥2

holds from [20, Lemma 5.3], so the following is satisfied:∥∥˜̈x ◦ ˜̈s∥∥ =
∥∥∥(Dk)−1 ˜̈x ◦Dk ˜̈s

∥∥∥ ≤ 2−
3
2

∥∥∥(Dk)−1 ˜̈x+Dk ˜̈s
∥∥∥2.

12

From (Dk)−1 ˜̈x+Dk ˜̈s = (XkSk)−1/2(Sk ˜̈x+Xk ˜̈s),∥∥∥(Dk)−1 ˜̈x+Dk ˜̈s
∥∥∥ ≤ ∥∥∥XkSk

∥∥∥− 1
2
∥∥∥Sk ˜̈x+Xk ˜̈s

∥∥∥
[∵ (28c)] ≤

∥∥∥XkSk
∥∥∥− 1

2
(
2
∥∥˜̇x ◦ ˜̇s∥∥+ ∥∥∥Skvk2

∥∥∥)
[∵ (40), (46), (35), (38)] ≤ 1

√
γ1µk

(
2C2

2n
2µk +

√
nηµk

)
≤
√
µk√
γ1

(2C2
2n

2 +
√
nη). (47)

From the above, we can obtain

∥∥˜̈x ◦ ˜̈s∥∥ ≤ 2−
3
2
µk

γ1
(2C2

2n
2 +
√
nη)2 ≤ (2C2

2 + η)2

2
3
2γ1

n4µk =: C3n
4µk.

From (28a) and (28b), we know
˜̈x⊤ ˜̇s = 0, (48)

then (47) leads to

max

{∥∥∥(Dk)−1 ˜̈x
∥∥∥2,∥∥∥Dk ˜̈s

∥∥∥2} ≤ ∥∥∥(Dk)−1 ˜̈x+Dk ˜̈s
∥∥∥2

≤ µk

γ1
(2C2

2n
2 +
√
nη)2

≤ µk

γ1
(2C2

2 + η)2n4 =: C2
4n

4µk,

∥∥˜̈x ◦ ˜̇s∥∥ ≤ ∥∥∥(Dk)−1 ˜̈x
∥∥∥∥∥∥Dk ˜̇s

∥∥∥ ≤ C4n
2√µkC2n

√
µk = C2C4n

3µk.

We can show the boundedness of
∥∥˜̇x ◦ ˜̈s∥∥ similarly.

Using these lemmas, we are ready to prove Proposition 4.1.

Proof of Proposition 4.1. Firstly, we derive the equations necessary for the proofs. We
have the following simple identity:

−2(1− cos(α)) + sin2(α) = −(1− cos(α))2. (49)

13

Therefore, we can obtain

xk(α) ◦ sk(α) =
(
xk − ˜̇x sin(α) + ˜̈x(1− cos(α))

)
◦
(
sk − ˜̇s sin(α) + ˜̈s(1− cos(α))

)
= xk ◦ sk −

(
xk ◦ ˜̇s+ ˜̇x ◦ sk

)
sin(α) +

(
xk ◦ ˜̈s+ ˜̈x ◦ sk

)
(1− cos(α))

+ ˜̇x ◦ ˜̇s sin2(α)−
(
˜̇x ◦ ˜̈s+ ˜̈x ◦ ˜̇s

)
sin(α)(1− cos(α)) + ˜̈x ◦ ˜̈s(1− cos(α))2

[∵ (27c), (28c)] = xk ◦ sk − (xk ◦ sk − σµke− Skvk1) sin(α) +
(
−2˜̇x ◦ ˜̇s− Skvk2

)
(1− cos(α))

+ ˜̇x ◦ ˜̇s sin2(α)−
(
˜̇x ◦ ˜̈s+ ˜̈x ◦ ˜̇s

)
sin(α)(1− cos(α)) + ˜̈x ◦ ˜̈s(1− cos(α))2

[∵ (49)] = xk ◦ sk(1− sin(α)) + σµk sin(α)e

+
(
˜̈x ◦ ˜̈s− ˜̇x ◦ ˜̇s

)
(1− cos(α))2 −

(
˜̇x ◦ ˜̈s+ ˜̈x ◦ ˜̇s

)
sin(α)(1− cos(α))

+ Skvk1 sin(α)− Skvk2 (1− cos(α)) (50)

and

xk(α)⊤sk(α) =
(
xk − ˜̇x sin(α) + ˜̈x(1− cos(α))

)⊤ (
sk − ˜̇s sin(α) + ˜̈s(1− cos(α))

)
[∵ (50), (5), (48)] = (xk)⊤sk ((1− sin(α)) + σ sin(α))

− ˜̇x⊤ ˜̇s(1− cos(α))2 −
(
˜̇x⊤ ˜̈s+ ˜̈x⊤ ˜̇s

)
sin(α)(1− cos(α))

+ sin(α)
n∑

i=1

[Skvk1]i − (1− cos(α))
n∑

i=1

[Skvk2]i. (51)

From Lemmas 4.5 and 4.6 and the Cauchy-Schwartz inequality, we know∣∣˜̇xi ˜̇si∣∣, ∣∣∣˜̇x⊤ ˜̇s∣∣∣ ≤ ∥∥∥(Dk)−1 ˜̇x
∥∥∥∥∥∥Dk ˜̇s

∥∥∥ ≤ C2
2n

2µk (52a)∣∣˜̈xi ˜̇si∣∣, ∣∣∣˜̈x⊤ ˜̇s∣∣∣ ≤ ∥∥∥(Dk)−1 ˜̈x
∥∥∥∥∥∥Dk ˜̇s

∥∥∥ ≤ C2C4n
3µk (52b)∣∣˜̇xi ˜̈si∣∣, ∣∣∣˜̇x⊤ ˜̈s∣∣∣ ≤ ∥∥∥(Dk)−1 ˜̇x

∥∥∥∥∥∥Dk ˜̈s
∥∥∥ ≤ C2C4n

3µk (52c)∣∣˜̈xi ˜̈si∣∣ ≤ ∥∥∥(Dk)−1 ˜̈x
∥∥∥∥∥∥Dk ˜̈s

∥∥∥ ≤ C2
4n

4µk (52d)

Here,
∣∣˜̈x⊤ ˜̈s∣∣ = 0 holds due to (48). Furthermore, we have

sin2(α) = 1− cos2(α) ≥ 1− cos(α) (53)

from α ∈ (0, π/2].
We prove that the step size α satisfying gk(α) ≥ 0 is bounded away from zero. From

14

(51),

xk(α)⊤sk(α) ≥ (xk)⊤sk ((1− sin(α)) + σ sin(α))

−
∣∣∣˜̇x⊤ ˜̇s∣∣∣(1− cos(α))2 −

(∣∣∣˜̇x⊤ ˜̈s∣∣∣+ ∣∣∣˜̈x⊤ ˜̇s∣∣∣) sin(α)(1− cos(α))

−
∥∥∥Skvk1

∥∥∥
1
sin(α)−

∥∥∥Skvk2

∥∥∥
1
(1− cos(α))

[∵ (38), (35)] ≥ (xk)⊤sk ((1− sin(α)) + σ sin(α))

−
∣∣∣˜̇x⊤ ˜̇s∣∣∣(1− cos(α))2 −

(∣∣∣˜̇x⊤ ˜̈s∣∣∣+ ∣∣∣˜̈x⊤ ˜̇s∣∣∣) sin(α)(1− cos(α))

− ηnµk(sin(α) + 1− cos(α)). (54)

Therefore,

gk(α) = xk(α)⊤sk(α)− (1− sin(α))(xk)⊤sk

[∵ (54)] ≥ σ(xk)⊤sk sin(α)− ηnµk (sin(α) + 1− cos(α))

−
∣∣∣˜̇x⊤ ˜̇s∣∣∣(1− cos(α))2 −

(∣∣∣˜̇x⊤ ˜̈s∣∣∣+ ∣∣∣˜̈x⊤ ˜̇s∣∣∣) sin(α)(1− cos(α))

[∵ (5), (53)] ≥ σnµk sin(α)− ηnµk

(
sin(α) + sin2(α)

)
−
∣∣∣˜̇x⊤ ˜̇s∣∣∣ sin4(α)− (∣∣∣˜̇x⊤ ˜̈s∣∣∣+ ∣∣∣˜̈x⊤ ˜̇s∣∣∣) sin3(α)

[∵ (52)] ≥ nµk sin(α)
(
(σ − η)− η sin(α)− C2

2n sin3(α)− 2C2C4n
2 sin2(α)

)
.

Since
(
−η sin(α)− C2

2n sin3(α)− 2C2C4n
2 sin2(α)

)
is monotonically decreasing and σ >

η holds from (26a) and γ1 ∈ (0, 1), there exists the step size α̂1 ∈ (0, π/2] satisfying the
last formula of the right-hand side is no less than 0. When

sin(α̂1) ≤
σ − η

2n

1

max

{
η, C

2
3
2 ,
√
2C2C4

} ,

from 0 < σ − η < σ ≤ 1,

(σ − η)− η sin(α̂1)− C2
2n sin3(α̂1)− 2C2C4n

2 sin2(α̂1)

≥ (σ − η)− σ − η

2n
− (σ − η)3

8n2
− (σ − η)2

4

≥ (σ − η)

(
1− 1

2
− 1

8
− 1

4

)
≥ 0.

Therefore, gk(α) ≥ 0 is satisfied for any α ∈ (0, α̂1].
Next, we consider the range of α such that Gk

i (α) ≥ 0. From (52),∣∣∣˜̇xi ˜̇si − γ1
n
˜̇x⊤ ˜̇s

∣∣∣ ≤ (1 + γ1
n

)
C2
2n

2µk ≤ 2C2
2n

2µk (55a)∣∣∣˜̈xi ˜̇si − γ1
n
˜̈x⊤ ˜̇s

∣∣∣, ∣∣∣˜̇xi ˜̈si − γ1
n
˜̇x⊤ ˜̈s

∣∣∣ ≤ 2C2C4n
3µk (55b)

15

is satisfied. Therefore, we have

Gk
i (α) = xki (α)s

k
i (α)− γ1µk(α)

[∵ (50), (5), (51)] ≥ xki s
k
i (1− sin(α)) + σµk sin(α)

+
(
˜̈xi ˜̈si − ˜̇xi ˜̇si

)
(1− cos(α))2 −

(
˜̇xi ˜̈si + ˜̈xi ˜̇si

)
sin(α)(1− cos(α))

−
∥∥∥Skvk1

∥∥∥
∞
sin(α)−

∥∥∥Skvk2

∥∥∥
∞
(1− cos(α))

− γ1
n

(
nµk ((1− sin(α)) + σ sin(α))

− ˜̇x⊤ ˜̇s(1− cos(α))2 −
(
˜̇x⊤ ˜̈s+ ˜̈x⊤ ˜̇s

)
sin(α)(1− cos(α)))

+
∥∥∥Skvk1

∥∥∥
1
sin(α) +

∥∥∥Skvk2

∥∥∥
1
(1− cos(α))

)
[∵ (12), (35), (38)] ≥ (1− γ1)σµk sin(α)− (1 + γ1)ηµk(sin(α) + 1− cos(α))

+ ˜̈xi ˜̈si(1− cos(α))2 −
(
˜̇xi ˜̇si −

γ1
n
˜̇x⊤ ˜̇s

)
(1− cos(α))2

−
(
˜̇xi ˜̈si −

γ1
n
˜̇x⊤ ˜̈s+ ˜̈xi ˜̇si −

γ1
n
˜̈x⊤ ˜̇s

)
sin(α)(1− cos(α))

[∵ (53), (52d), (55)] ≥ µk sin(α)

(
(1− γ1)σ − (1 + γ1)η − (1 + γ1)η sin(α)

− (C2
4n

4 + 2C2
2n

2) sin3(α)− 4C2C4n
3 sin2(α)

)
.

We can derive the same discussion as gk(α) using (26a). When

sin(α̂2) ≤
(1− γ1)σ − (1 + γ1)η

2n
3
2

1

max
{
(1 + γ1)η, (C2

4 + 2C2
2)

1
3 , 2
√
C2C4

} ,
from 0 < (1− γ1)σ − (1 + γ1)η < σ ≤ 1,

(1− γ1)σ − (1 + γ1)η − (1 + γ1)η sin(α̂2)− (C2
4n

4 + 2C2
2n

2) sin3(α̂2)− 4C2C4n
3 sin2(α̂2)

≥ ((1− γ1)σ − (1 + γ1)η)

(
1− 1

2n
3
2

− 1

23n
1
2

− 1

22

)
≥ ((1− γ1)σ − (1 + γ1)η)

(
1− 1

2
− 1

8
− 1

4

)
≥ 0.

Therefore, Gk
i (α) ≥ 0 is satisfied for α ∈ (0, α̂2].

Lastly, we consider hk(α) ≥ 0. Similarly to the derivation of (54), we can obtain the
following:

xk(α)⊤sk(α) ≤ (xk)⊤sk ((1− sin(α)) + σ sin(α))

+
∣∣∣˜̇x⊤ ˜̇s∣∣∣(1− cos(α))2 +

(∣∣∣˜̇x⊤ ˜̈s∣∣∣+ ∣∣∣˜̈x⊤ ˜̇s∣∣∣) sin(α)(1− cos(α))

+ ηnµk(sin(α) + 1− cos(α)), (56)

16

Therefore,

hk(α) = (1− (1− β) sin(α)) (xk)⊤sk − xk(α)⊤sk(α)

[∵ (56)] ≥ (xk)⊤sk (β sin(α)− σ sin(α))− ηnµk(sin(α) + 1− cos(α))

−
∣∣∣˜̇x⊤ ˜̇s∣∣∣(1− cos(α))2 −

(∣∣∣˜̇x⊤ ˜̈s∣∣∣+ ∣∣∣˜̈x⊤ ˜̇s∣∣∣) sin(α)(1− cos(α))

[∵ (5)] = nµk (β sin(α)− σ sin(α)− η(sin(α) + 1− cos(α)))

−
∣∣∣˜̇x⊤ ˜̇s∣∣∣(1− cos(α))2 −

(∣∣∣˜̇x⊤ ˜̈s∣∣∣+ ∣∣∣˜̈x⊤ ˜̇s∣∣∣) sin(α)(1− cos(α))

[∵ (52)] ≥ nµk ((β − σ − η) sin(α)− η(1− cos(α)))

− C2
2n

2µk(1− cos(α))2 − 2C2C4n
3µk sin(α)(1− cos(α))

[∵ (53)] ≥ nµk sin(α)
(
(β − σ − η)− η sin(α)− C2

2n sin3(α)− 2C2C4n
2 sin2(α)

)
.

The last coefficient on the right-hand side is cubic for sin(α) and monotonically decreas-
ing for α. Therefore, it is possible to take a step size α̂3 satisfying hk(α̂3) ≥ 0 from
(26b). When

sin(α̂3) ≤
β − σ − η

2n

1

max

{
η, C

2
3
2 ,
√
2C2C4

} ,

from 0 < β − σ − η < β < 1, we know

(β − σ − η)− η sin(α̂3)− C2
2n sin3(α̂3)− 2C2C4n

2 sin2(α̂3)

≥ (β − σ − η)− β − σ − η

2n
− (β − σ − η)3

8n2
− (β − σ − η)2

4

> (β − σ − η)

(
1− 1

2
− 1

8
− 1

4

)
=

β − σ − η

8
> 0.

Therefore, gk(α) ≥ 0 is satisfied for α ∈ (0, α̂3].
From the above discussions, when α̂ is taken such that

sin(α̂) =
1

n
3
2

min {(1− γ1)σ − (1 + γ1)η, β − σ − η}

2max
{
(1 + γ1)η, (C2

4 + 2C2
2)

1
3 , 2
√
C2C4

} , (57)

gk(α), Gk
i (α), h

k(α) ≥ 0 are satisfied for all k and α ∈ (0, α̂].

Since α̂ defined in (57) can satisfy the conditions in line 6 of Algorithm 1, we can find
the step length αk ≥ α̂ > 0. Therefore, Algorithm 1 is well-defined. From hk(αk) ≥ 0
for all k,

hk(αk) ≥ 0⇒ xk(αk)
⊤sk(αk) ≤ (1− (1− β) sin(αk))(x

k)⊤sk

≤ (1− (1− β) sin(α̂))(xk)⊤sk

≤ (1− (1− β) sin(α̂))k(x0)⊤s0. (58)

17

Due to (29), it also holds that

∥(rb(xk), rc(yk, sk))∥ ≤ (1− sin(α̂))k ∥(rb(x0), rc(yk, s0))∥ . (59)

We can prove the polynomial complexity of the proposed method based on the fol-
lowing theorem.

Theorem 4.1 ([26, Theorem 1.4]). Suppose that an algorithm for solving (3) generates
a sequence of iterations that satisfies

µk+1 ≤
(
1− δ

nω

)
µk, k = 0, 1, 2, . . . ,

for some positive constants δ and ω. Then there exists an index K with

K = O(nω log(µ0/ζ))

such that
µk ≤ ζ for ∀k ≥ K.

Applying (58), (12), (xk, yk, sk) ∈ N (γ1, γ2), (59) and a result that sin(α̂) is propo-
sitional to n−1.5 in (57) to this theorem, we can obtain the following theorem.

Theorem 4.2. Algorithm 1 generates a ζ-optimal solution in at most

O

(
n1.5 log

(
max{µ0,

∥∥rb(x0), rc(y0, s0)∥∥}
ζ

))

iterations.

Al-Jeiroudi et al. [1] and Mohammadisiahroudi et al. [15] analyzed that the iteration
complexity of II-line-IPM is O(n2L). Theorem 4.2 indicates that II-arc-IPM can reduce
the iteration complexity from n2 to n1.5, by a factor of

√
n. This reduction is mainly

brought by the ellipsoidal approximation in the arc-search method.

5 Numerical experiments

In this section, we describe the implementation and the numerical experiments of the
proposed method. The experiments were conducted on a Linux server with Opteron
4386 (3.10GHz), 16 cores, and 128GB RAM, and the methods were implemented with
Python 3.10.9.

In the following, we use “II-line-IPM” [15, Algorithm 1] as the existing method for
comparisons with the proposed method (II-arc-IPM, Algorithm 1).

18

5.1 Implementation details

5.1.1 Parameter settings

In these numerical experiments, we set

σ = 0.4, η = 0.3, γ1 = 0.1, γ2 = 1, β = 0.9.

These parameters satisfy (26), and we use the same parameters for II-line-IPM as well.

5.1.2 Initial points

To determine the initial point, we employed the same approach as in [24, Section 4.1].
However, the point generated by this approach does not always satisfy (x0, y0, s0) ∈
N (γ1, γ2). In such a case, we set the initial point as (x0, y0, s0) = 104(e, 0, e).

5.1.3 Solving LESs

To solve the LESs inexactly, we employ the conjugate gradient (CG) method in Scipy
package. Although we examined other iterative solvers than CG, the preliminary exper-
iments showed that CG was the fastest inexact solver in the II-arc-IPM.

The proposed method uses the MNES formulation in Section 3, but preliminary
experiments showed that MNES lacks numerical stability. Specifically, CG did not con-
verge to a certain accuracy even when a preconditioner was employed, and the search
direction did not satisfy (24). A possible cause is that the condition number of the
coefficient matrix M̂k for MNES is extremely worse than that for NES; it is known that
the condition number of MNES can grow up to the square of that of NES [17].

Therefore, in the numerical experiments, we choose the NES formulations (14) and

Mkÿ = σk
2 , (60)

instead of the MNES (16) and (20), respectively. The inexact solution of (14) satisfies

Mk ˜̇y = σk
1 + rk1 , (61)

where the error rk1 is defined as rk1 := Mk ˜̇y−σk
1 = Mk

(
˜̇y − ẏ

)
, and that of (60) satisfies

Mk ˜̈y = σk
2 + rk2 , (62)

where the error rk2 is defined similar to rk1 . As for the solution accuracy, we set the
following threshold as in (25):∥∥∥rki ∥∥∥ ≤ η

√
µk√
n
∀i ∈ {1, 2}. (63)

We set the maximum number of iterations of CG to 100m (100 times the dimension
of the coefficient matrix Mk).

19

The coefficient matrix Mk has to be a symmetric positive definite matrix when
solving (14) and (60) in the II-arc-IPM and [15, (NES)] in the II-line-IPM by CG of Scipy.
Though this condition should hold theoretically from Assumption 2.2 and xk, sk > 0, Mk

may not be positive definite due to numerical errors. Therefore, when the CG method
fails to satisfy (63), we replace Mk with Mk + 10−3I, as indicated in [12].

5.1.4 The modification of (˜̈x, ˜̈y, ˜̈s)

If
∥∥−2˜̇x ◦ ˜̇s∥∥∞ ≤ ηµk is satisfied, (28) and (35) can hold with (˜̈x, ˜̈y, ˜̈s) = (0, 0, 0). There-

fore, to shorten the computation time, we skip solving (60) and set (˜̈x, ˜̈y, ˜̈s) = (0, 0, 0).
In this case, (23) can be interpreted as a line-search method.

Furthermore, when the inexact solution of (60) satisfies
∥∥Mk

2
˜̈y − σk

2

∥∥ >
∥∥σk

2

∥∥, ˜̈y is
replaced with a zero vector as in [14] to avoid a large error.

5.1.5 Step size

In line 6 of Algorithm 1 and [15, Algorithm 1, Line 9], since it is difficult to obtain the
solution of (24) analytically, Armijo’s rule [20] is employed to determine an actual step
size αk.

5.1.6 Stopping criteria

The algorithms are designed to terminate when (xk, yk, sk) ∈ S∗ζ is satisfied. The con-
dition µk ≤ ζ, however, does not consider the magnitude of the data, thus it is not
practical especially when the magnitude of the optimal values is relatively large.

Therefore, as in [22], we terminate the algorithms when the following condition is
met:

max

{ ∥∥rb(xk)∥∥
max{1, ∥b∥}

,

∥∥rc(yk, sk)∥∥
max{1, ∥c∥}

,
µk

max {1, ∥c⊤xk∥, ∥b⊤yk∥}

}
< ϵ, (64)

where we set the threshold ϵ = 10−7.
In addition, we stop the algorithm immaturely when one of two conditions is detected;

(i) the iteration number k reaches 100 or (ii) the step size αk diminishes as αk < 10−7.

5.2 Numerical Results

We compare the II-arc-IPM with the II-line-IPM by solving the benchmark problems
using CG in this section.

We use the Netlib test repository [4] and choose 85 test problems by excluding the
largest instances. We applied the same preprocessing as in [9, Section 5.1] to the problem,
e.g., removing redundant rows of the constraint matrix A.

Firstly, Figure 1 shows a performance profile [6, 7] on the numbers of iterations of
the II-arc-IPM and the II-line-IPM. To output the performance profile, we used a Julia
package [19].

20

Figure 1: Performance profile of the number of iterations with the II-arc-IPM and II-
line-IPM

We observe from Figure 1 that the II-arc-IPM demands fewer iterations than the II-
line-IPM in almost all the problems. For nearly 70% of the test problems, the numbers of
iterations in the II-line-IPM are 1.5 times of those in the II-arc-IPM or more. Therefore,
these results verify that the number of iterations can be reduced by approximating the
central path with the ellipsoidal arc, even if the LESs for the search direction are solved
inexactly.

Next, Figure 2 shows a performance profile on the computation time. Since the
computation times on small problems are too short, we compare the methods with 25
larger problems for which both methods spent 10 seconds or longer. This figure indicates
that the II-arc-IPM can solve more than 25% of problems faster than the II-line-IPM,
and the computation times are comparable by a factor of around 1.2.

The reason that the computational times did not decrease as much as the number of
iterations is that the number of the time-consuming CG executions in the II-arc-IPM is
larger than that in the II-line-IPM. For example, the total time to solve a test instance
PILOT (n = 5348, m = 2173) with the II-arc-IPM is 2,014 seconds, and the computation
time of CG for 114 executions is 1,721 seconds. The number of iterations is 57, which
means that both first- and second-order derivatives are obtained by CG in all iterations.
On the other hand, in the case of the II-line-IPM, the total time is 1,758 seconds, and
the computation time of CG for 93 executions is 1,489 seconds. The number of iterations
is 93, equal to that of CG executions.

When more iterations of IPMs are necessary for the convergence, the CG part tends
to take longer times, since the condition number of the the coefficient matrix Mk would
be larger [18] and the higher accuracy in (63) would be required.

Therefore, it can be expected that the effect of switching from the inexact solver to an
exact solver after a certain number is large in the II-arc-IPM, since it solves LESs twice

21

Figure 2: Performance profile of the computation time with Algorithm 1 and II-line-IPM

in each iteration. As an additional investigation on the proposed method, we examined
an experiment that utilized an exact solver based on the Cholesky factorization from the
middle of the algorithm. Figure 3 compares the computation time of the II-arc-IPM with
that of the II-line-IPM when the LESs are solved exactly in the subsequent iterations
after µk < 1/n is reached. We compare the methods with 28 large problems for which
both methods spent 10 seconds or longer. Figure 3 indicates that the improvement in the
computation time per iteration is larger in the II-arc-IPM than that in the II-line-IPM.

6 Conclusion

In this work, we proposed an inexact infeasible arc-search interior-point method (II-arc-
IPM) for solving LPs. In particular, by formulating MNES and setting the parame-
ters appropriately, we showed that the proposed method achieves polynomial iteration
complexity that is smaller than the II-line-IPM by a factor of n0.5. In the numerical
experiments with CG as the solver for the LESs, the II-arc-IPM reduced the number
of iterations compared to the II-line-IPM. Additionally, if the exact search direction is
employed in subsequent iterations after µk < 1/n is satisfied, the improvement of the
computational time in the II-arc-IPM is better than that in the II-line-IPM.

As a future direction, we can consider an II-arc-IPM that utilizes QLSA, for solving
the LESs inexactly, such as the HHL [8] algorithm. In addition, the reduction of the
LESs should be investigated further to shorten the entire computation time, for example,
by combining Nesterov’s restarting strategy into the framework of arc-search IPMs as
in [9].

22

Figure 3: Performance profile of the computation time with the II-arc-IPM and II-line-
IPM

References

[1] G. Al-Jeiroudi and J. Gondzio. Convergence analysis of the inexact infeasible
interior-point method for linear optimization. Journal of Optimization Theory and
Applications, 141:231–247, 2009.

[2] S. Bellavia. Inexact interior-point method. Journal of Optimization Theory and
Applications, 96:109–121, 1998.

[3] S. Bellavia and S. Pieraccini. Convergence analysis of an inexact infeasible inte-
rior point method for semidefinite programming. Computational Optimization and
Applications, 29:289–313, 2004.

[4] S. Browne, J. Dongarra, E. Grosse, and T. Rowan. The Netlib mathematical soft-
ware repository. D-lib Magazine, 1(9), 1995.

[5] P. A. M. Casares and M. A. Martin-Delgado. A quantum interior-point predictor-
corrector algorithm for linear programming. Journal of Physics A: Mathematical
and Theoretical J. Phys. A: Math. Theor, 53:30, 2020.

[6] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance
profiles. Mathematical programming, 91:201–213, 2002.

[7] N. Gould and J. Scott. A note on performance profiles for benchmarking software.
ACM Transactions on Mathematical Software (TOMS), 43(2):1–5, 2016.

[8] A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear systems
of equations. Physical review letters, 103(15):150502, 2009.

23

[9] E. Iida and M. Yamashita. An infeasible interior-point arc-search method with Nes-
terov’s restarting strategy for linear programming problems. To Appear in Compu-
tational Optimization and Applications, 2024.

[10] N. Karmarkar. A new polynomial-time algorithm for linear programming. In Pro-
ceedings of the sixteenth annual ACM symposium on Theory of computing, pages
302–311, 1984.

[11] I. Kerenidis and A. Prakash. A quantum interior point method for LPs and SDPs.
ACM Transactions on Quantum Computing, 1(1):1–32, 2020.

[12] A. Malyshev, R. Quirynen, and A. Knyazev. Preconditioning of conjugate gradient
iterations in interior point mpc method. IFAC-PapersOnLine, 51(20):394–399, 2018.

[13] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM
Journal on Optimization, 2:575–601, 1992.

[14] S. Mizuno and F. Jarre. Global and polynomial-time convergence of an infeasible-
interior-point algorithm using inexact computation. Mathematical Programming,
84(1), 1999.

[15] M. Mohammadisiahroudi, R. Fakhimi, and T. Terlaky. Efficient use of quantum
linear system algorithms in interior point methods for linear optimization. arXiv
preprint arXiv:2205.01220, 2022.

[16] R. D. Monteiro and J. W. O’Neal. Convergence analysis of a long-step primal-
dual infeasible interior-point lp algorithm based on iterative linear solvers. Georgia
Institute of Technology, 2003.

[17] R. D. Monteiro, J. W. O’Neal, and T. Tsuchiya. Uniform boundedness of a pre-
conditioned normal matrix used in interior-point methods. SIAM Journal on Opti-
mization, 15(1):96–100, 2004.

[18] K. Nakata, K. Fujisawa, and M. Kojima. Using the conjugate gradient method in
interior-points methods for semidefinite programs:(in japanese). Institute of Tech-
nology, Tokyo, Japan, 1998.

[19] D. Orban and contributors. BenchmarkProfiles.jl: A Simple Julia Package to Plot
Performance and Data Profiles. https://github.com/JuliaSmoothOptimizers/

BenchmarkProfiles.jl, February 2019.

[20] S. J. Wright. Primal-dual interior-point methods. SIAM, PA, 1997.

[21] Z. Wu, M. Mohammadisiahroudi, B. Augustino, X. Yang, and T. Terlaky. An
inexact feasible quantum interior point method for linearly constrained quadratic
optimization. 2022.

[22] M. Yamashita, E. Iida, and Y. Yang. An infeasible interior-point arc-search algo-
rithm for nonlinear constrained optimization. Numerical Algorithms, 2021.

24

https://github.com/JuliaSmoothOptimizers/BenchmarkProfiles.jl
https://github.com/JuliaSmoothOptimizers/BenchmarkProfiles.jl

[23] Y. Yang. A polynomial arc-search interior-point algorithm for convex quadratic
programming. European Journal of Operational Research, 215(1):25–38, 2011.

[24] Y. Yang. CurveLP-A MATLAB implementation of an infeasible interior-point al-
gorithm for linear programming. Numerical Algorithms, 74:967–996, 4 2017.

[25] Y. Yang. Two computationally efficient polynomial-iteration infeasible interior-
point algorithms for linear programming. Numerical Algorithms, 79(3):957–992,
2018.

[26] Y. Yang. Arc-search techniques for interior-point methods. CRC Press, FL, 2020.

[27] Y. Yang. A polynomial time infeasible interior-point arc-search algorithm for convex
optimization. Optimization and Engineering, 24(2):885–914, 2023.

[28] Y. Yang and M. Yamashita. An arc-search O(nL) infeasible-interior-point algorithm
for linear programming. Optimization Letters, 12(4):781–798, 2018.

25

	Introduction
	Notations

	Preliminaries
	The proposed method
	Theoretical proof
	Numerical experiments
	Implementation details
	Parameter settings
	Initial points
	Solving LESs
	The modification of the second derivative
	Step size
	Stopping criteria

	Numerical Results

	Conclusion

