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Abstract

Stochastic optimization is often hampered by distributional ambiguity, where critical probability
distributions are poorly characterized or unknown. Addressing this challenge, we introduce a new
framework that targets the minimization of a statistical upper bound for the expected value of un-
certain objectives, facilitating more statistically robust decision-making. Central to our approach is
the Average Percentile Upper Bound (APUB), a novel construct that simultaneously delivers a sta-
tistically rigorous upper bound for the population mean and a meaningful risk metric for the sample
mean. The integration of APUB into stochastic optimization not only fortifies the process against
distributional ambiguity but also reinforces key data-driven decision-making attributes, such as reli-
ability, consistency, and comprehensibility. Notably, APUB-enriched optimization problems feature
tractability, with particular advantages in two-stage stochastic optimization with random recourse.
Empirical demonstrations on two-stage product mix and multi-product newsvendor benchmark
problems reveal the benefit of the APUB optimization framework, in comparison with conventional
techniques such as sample average approximation and distributionally robust optimization.
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1 Introduction

In both engineering and management, effective decision-making often hinges on the ability to nav-

igate through uncertain parameters. Stochastic optimization offers a modeling framework repre-

senting the uncertain parameters as random variables, complete with their respective probabilistic

information or distribution. Despite this theoretical foundation, real-world applications grapple

with challenges such as limited data, incomplete information, and the inherent complexity of the

systems being modeled. As a result, the exact estimation of probability distributions becomes a

formidable task. This discrepancy between theoretical models and practical constraints introduces

distributional ambiguity — a pervasive challenge in decision-making scenarios. This creates a sub-

stantial hurdle known as the Optimizers’ Curse (Smith and Winkler, 2006), where optimizing under

the influence of this ambiguity may lead to suboptimal solutions. Addressing the Optimizers’ Curse

becomes imperative in ensuring the practical efficacy of decision-making processes in the face of

real-world complexities.

In this paper, we develop a novel approach that integrates statistical inference into stochastic

optimization to address the challenges posed by distributional ambiguity. Within the field of

statistical inference, frequentists tackle distributional ambiguity by considering sample uncertainty,

leading to the concept of the sampling distribution of a point estimator. Utilizing repeated sampling,

frequentist methods aim to comprehend the inherent variability in point estimators. This approach

facilitates the quantification of uncertainty surrounding an estimator’s performance and provides a

foundation for constructing upper confidence bounds within a frequentist framework.

A general expectation minimization problem can be formulated as follows:

min
x∈X

E[F (x, ξ)], (EM-M)

where X is a decision region, ξ is a vector-valued random parameter associated with probability

measure P, and F is a multivariate cost function. Suppose we lack knowledge of P but possess a

random sample and its associated empirical distribution P̂N . With a sufficiently large sample size

N , the Sample Average Approximation (SAA) model,

min
x∈X

E
[
F (x, ξ)

∣∣∣ P̂N

]
, (SAA-M)

can serve a good estimate of EM-M. However, the estimation may exhibit significant bias when N

is small. This research aims to develop a 100(1− α)% upper confidence bound for the expectation

E[F (x, ξ)] based on the empirical distribution P̂N . Denote by Uα
[
E[F (x, ξ)]

∣∣∣P̂N

]
this upper

confidence bound and generally describe our data-driven model as follows:

min
x∈X

Uα
[
E[F (x, ξ)]

∣∣∣P̂N

]
. (UB-M)

UB-M incorporates an upper confidence bound into stochastic optimization. This method effec-

tively addresses challenges stemming from distributional ambiguity by leveraging robust statistical

techniques. These techniques, specifically designed to accommodate estimation errors, provide a

range of values within which the true population mean is likely to reside. By presenting this range,
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particularly the upper bound, we not only quantify uncertainty but also enhance the reliability of

our statistical inferences. Nevertheless, conventional upper confidence bounds, while based on firm

statistical concepts, may be non-convex or overly conservative due to a lack of data sensitivity.

We will address these limitations by proposing a practical statistical upper bound applicable to

optimization.

In the existing literature, the recognition of distributional ambiguity highlights the necessity of

deploying distributionally robust optimization (DRO) strategies (Rahimian and Mehrotra (2019);

Lin et al. (2022) and references therein). These strategies are crafted to guide decision-making

processes that excel across a spectrum of plausible distributional assumptions, avoiding reliance on

a single assumed distribution. Two predominant DRO approaches involve representing moment-

based and discrepancy-based ambiguity sets for the distributions. The moment-based approach

characterizes uncertainty by imposing constraints on the moments (such as mean and variance) of

the distribution (Calafiore and Ghaoui, 2006; Delage and Ye, 2010; Wiesemann et al., 2014). On the

other hand, the discrepancy-based approach focuses on measuring the difference between the true

distribution and a candidate distribution within the set. Examples of discrepancy-based ambiguity

sets include those based on ϕ-divergence (Read and Cressie, 2012; Ben-Tal et al., 2013; Bayraksan

and Love, 2015) and the Wasserstein metric (Mohajerin Esfahani and Kuhn, 2018; Blanchet and

Murthy, 2019; Xie, 2020; Duque et al., 2022; Gao and Kleywegt, 2023). By embracing the inherent

ambiguity associated with underlying probability distributions, DRO empowers decision-makers to

formulate strategies that demonstrate resilience and effectiveness under diverse scenarios. Notably,

the Wasserstein metric-based DRO has gained popularity in various fields due to its appealing

properties, which include finite-sample guarantees and asymptotic consistency.

The advantages of using DRO include: (i) DRO frameworks are designed to hedge against model

uncertainty. They account for variations in the data distribution, making solutions more reliable

under different future scenarios. (ii) Because DRO considers a range of possible distributions,

it often results in solutions that generalize better to unseen data, as opposed to solutions based

solely on empirical risk minimization. (iii) DRO can be tailored to various levels of conservatism

depending on the choice of ambiguity set (the set of distributions considered). This flexibility allows

tuning the robustness to specific application needs. (iv) By explicitly incorporating ambiguity into

the optimization problem, DRO provides a systematic way to handle cases where data is scarce or

noisy, improving decision-making under uncertainty. (v) DRO often comes with strong theoretical

guarantees regarding performance bounds, which enhances confidence in the solutions produced.

While DRO offers significant benefits, it also presents several limitations. The computational

intensity of DRO models escalates with the model size, making large-scale optimization daunting

and time-consuming. DRO’s pivotal strategy of hedging against the worst-case distribution can

also lead to overly conservative outcomes, which, while safe, may not be cost-optimal or practical

under typical operating conditions. Furthermore, the practicality of DRO hinges on the assumption

of a well-defined ambiguity set; however, constructing such a set with accuracy can be a complex

endeavor in data-scarce environments. Additionally, the nature of DRO as a ‘black-box’ means that
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it typically does not provide insight into the specific probability distributions it encapsulates, which

can be a significant limitation for decision-makers seeking transparent and interpretable models for

policy development and risk management in practice.

In contrast to the conventional practice of defining an ambiguity set of distributions in Distribu-

tionally Robust Optimization (DRO), UB-M proposes an innovative methodology that intersects

two significant areas: statistical inference and stochastic programming. A notable advantage of

UB-M is its introduction of the following well-regarded merits of statistical inference into the opti-

mization process: (i) Upper confidence bounds provide a range of values that likely contain the true

population mean, giving a clear measure of the uncertainty associated with estimates derived from

limited data. (ii) Upper confidence bounds explicitly account for sampling and estimation errors,

providing a more realistic picture of the potential variability in the estimates. (iii) Upper confidence

bounds can be adjusted for different confidence levels (e.g., 90%, 95%), allowing researchers and

practitioners to balance between precision and confidence based on the specific requirements of

the situation. (iv) The adaptive nature of upper confidence bounds avoids over-conservatism. As

more data becomes available, the intervals can be recalculated, continuously refining the estimates

and improving the robustness of decisions based on them. (v) By communicating the degree of

uncertainty, upper confidence bounds make the results more transparent and easier to interpret

for stakeholders, fostering trust in the analysis. (vi) Upper confidence upper can be applied across

different statistical and stochastic models, making them a versatile tool in various domains and

research settings.

By minimizing an upper confidence bound rather than relying on a single point estimate, UB-M

enables more informed and robust decision-making. In this study, we address the following three

perspectives in optimization:

1. Design a statistically robust yet consistent data-driven mechanism. The primary

objective is to create a versatile mechanism that takes advantage of the available data to

inform modeling choices, encouraging performance and reliability without succumbing to

undue conservatism. This approach aspires to establish consistency in decision-making, where

robustness is harmonized with adaptability to data availability.

2. Interpret outcomes within statistical frameworks for decision-making. We intend

to construct a bridge between complex statistical models and practical decision-making pro-

cesses. Our aim is to introduce reliability levels cognizant of statistical significance and

confidence intervals, ultimately rendering these models more intuitive and usable.

3. Enhance computational efficiency for large-scale optimization. Acknowledging the

importance of computational prowess, this line of inquiry targets the advancement of com-

putational methodologies for large-scale stochastic programming. This research is oriented

toward improving algorithmic efficiency and practical applicability for sizable optimization

challenges. Especially, we will develop an L-shaped method to solve two-stage stochastic pro-

gramming problems with random recourse. Notably, these problems often present challenges
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that are insurmountable by conventional DRO techniques.

1.1 Literature review of statistical confidence interval

One-sided and two-sided confidence intervals, a well-explored domain in statistical theory, are

renowned for their robust asymptotic correctness, accuracy, and consistency, directly linked to

sample size. A confidence interval is deemed first-order accurate if its confidence level error is within

the inverse of the square root of the sample size, and second-order accurate if within the inverse of

the sample size (Vaart, 1998). The inherent convergence with the sample size is a notable feature of

those upper confidence bounds. Moreover, statistical upper bounds provide additional advantages

rooted in their well-established theoretical foundations. The definitions and concepts underpinning

those bounds have undergone thorough scrutiny and refinement in the field of statistics. This

rigorous academic exploration has yielded a comprehensive and uniform framework, facilitating a

nuanced understanding and practical application of those bounds. Consequently, incorporating a

statistical upper bound into stochastic optimization offers not only robustness and reliability but

also interpretation of our proposed optimization framework.

The most classical frequentist asymptotic approach, which utilizes the sample mean, standard

deviation, and normal approximation, has been extensively discussed (see Devore (2009) and ref-

erences therein). This method is particularly favored in practice for sample sizes larger than 30,

offering a straightforward yet effective means of estimating confidence intervals (Hazra, 2017). It

hinges on the Central Limit Theorem (CLT), which posits that the distribution of a sample mean

approximates a normal distribution as the sample size increases, regardless of the population’s

distribution. Efron’s bootstrap confidence interval (Efron, 1981), another method for constructing

statistical upper bounds, employs the 100(1−α)-th percentile of the bootstrap distribution of a sam-

ple mean. Both these methods achieve first-order accuracy. Building upon these concepts, (Efron,

1987) developed bias-corrected and accelerated bootstrap confidence interval (BCa) achieving a

second-order accuracy. This approach fine-tunes the nominal level as a function of the sample size.

This advancement marks a significant step towards more precise confidence interval estimation,

especially in cases where first-order methods might not suffice due to smaller sample sizes or more

complex data structures. In machine learning, the construction of upper confidence bounds often

leverages concentration inequalities to ensure robustness against data variability. Hoeffding-type

bounds (Auer et al., 2002) are popular for their simplicity and effectiveness in bounding the sum

of bounded random variables, particularly useful in scenarios with limited prior knowledge about

data distributions. Empirical Bernstein-type bounds (Mnih et al., 2008) offer improvements over

Hoeffding’s approach by incorporating sample variance, making them more adaptable to data with

varying degrees of variability. This type of bound is particularly advantageous in dealing with het-

eroskedastic data, where the variance is not constant. The self-normalized bounds (Abbasi-yadkori

et al., 2011), on the other hand, are designed to handle the challenges of auto-correlated data,

common in time-series analysis. These bounds normalize the sum of random variables by their

cumulative variance, offering a more dynamic approach to uncertainty quantification in sequential
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decision processes. While these bounds are grounded in robust statistical principles, they each

have limitations: they may be non-convex or not sufficiently data-driven, leading to challenges in

optimization or an overly conservative nature.

1.2 Contributions and Organization of this Paper

The primary contributions of this paper are summarized as follows:

• We introduce the Average Percentile Upper Bound (APUB), a novel statistical construct

that serves as an upper bound for population means and a risk metric for sample means.

The robust statistical foundations of APUB are established through rigorous proofs of its

asymptotic correctness and consistency, offering a reliable basis for its applications in data-

driven decision-making.

• The innovative integration of APUB into stochastic optimization frameworks mitigates the

ambiguity stemming from sparse data in probability distributions. The theoretical properties

of APUB are adeptly applied to a new optimization framework, simultaneously ensuring

model reliability and interpretability while reducing over-conservatism. This synergy narrows

the gap between statistical upper bounds and stochastic optimization, fostering theoretical

advancement and practical utility.

• The development of a bootstrap sampling approximation method tailored for solving APUB-

embedded optimization frameworks is addressed, with a particular focus on two-stage linear

stochastic optimization with random recourse. Practically, we present a cut generation algo-

rithm for solving large-scale cases and an L-shaped method for two-stage stochastic program-

ming problems with random recourse.

The rest of this paper is organized as follows: Section 2 introduces the concept of APUB. Specif-

ically, Section 2.1 formally defines APUB and explores its statistical implications, while Section 2.2

provides a thorough examination of the asymptotic properties of APUB, including the proofs of

asymptotic correctness and consistency. Section 3 details the integration of APUB into stochastic

optimization. Section 3.1 establishes the asymptotic consistency of our optimization framework,

and Section 3.2 addresses its asymptotic correctness. Section 4 develops a bootstrap sampling

approximation approach to solve our optimization framework, particularly in the context of the

two-stage stochastic programming. We develop practical solution methods for solving large-scale

cases. Section 5 presents a comprehensive numerical analysis, applying the proposed framework

across a variety of classical stochastic optimization scenarios. In Section A.5, we rigorously prove

the the asymptotic correctness of the optimization framework. The paper concludes with Section

6, summarizing key findings and contributions.
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2 Average Percentile Upper Bound

We establish formal definitions for the key concepts employed in this paper. Consider an induced

probability space (Ξ,B,P), where Ξ ⊆ Rdξ is the support of a random vector, B is the Borel

σ-algebra, and P is a probability measure. Let (ξ1, . . . , ξN ) ∼ P indicate an independent and

identically distributed (i.i.d) random sample with a size of N generated from (Ξ,B,P). The

empirical distribution associated with the random sample is represented as

P̂N :=
1

N

N∑
n=1

δξn ,

where δξn is the Dirac delta function at ξn. As N increases to infinity, we have a sample path

(ξ1, ξ2, . . . ). Without loss of generality, we ignore the decision variable x and focus our discussion

on a measurable cost function F : Ξ → R in this section. Denote by µ := E[F (ξ)] the population

mean and by σ2 := E[(F (ξ)− µ)2] the population variance. We assume µ and σ to be finite in the

late statement.Let µ̂N := E[F (ζ)|P̂N ] be the sample mean and σ̂2N := E[(F (ζ) − µ̂N )2|P̂N ] be the

asymptotic sample variance, where ζ ∼ P̂N .

2.1 Concept of Average Percentile Upper Bound

Using the bootstrap percentile method, Efron (1981) presents a 100(1−α)% bootstrap-based upper

confidence bound for µ as

inf {t ∈ R : Pr (µ∗ ≤ t | P∗) ≥ 1− α} ,

where P∗ is a bootstrap distribution and µ∗ is a bootstrap estimator of µ. The above equation can

be explicitly represented as the limit of

Uα
M := inf

{
t ∈ R :

1

M

M∑
m=1

1

{
1

N

N∑
n=1

F (ζm,n) ≤ t

}
≥ 1− α

}
,

where 1{·} is the indicator function and (ζm,1, . . . , ζm,N )∼P̂N , for m = 1, . . . ,M , are bootstrap

samples. The following proposition depicts the limit of Uα
M .

Proposition 2.1. Let

Uα
Efron[µ|P̂N ] := inf

{
t ∈ R : Pr

(
1

N

N∑
n=1

F (ζn) ≤ t

∣∣∣∣∣ P̂N

)
≥ 1− α

}
,

where ζn ∼ P̂N for n = 1, . . . , N . Then, as M → ∞, Uα
M → Uα

Efron[µ|P̂N ] w.p.1 (for ζ).

While Uα
Efron[µ|P̂N ], the percentile-based upper bound, is satisfactory in many statistical anal-

yses, it is non-convex and difficult to control/optimize for highly skewed distributions, which are

regarded as inferior properties in the realm of optimization. Therefore, we extend Efron’s upper

bound by averaging over the values to the right of the 100(1− α)-th percentile.
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Definition 2.2. The average percentile upper bound for µ with a nominal level (1− α) is denoted

as

Uα
APUB[µ|P̂N ] :=

1

α

∫ α

0
Uτ

Efron[µ|P̂N ]dτ. (APUB)

We can interpret Efron’s upper bound, alternatively in the realm of risk management and

decision making, as an approximation of the Value at Risk (VaR) of µ̂N by substituting P̂N for the

true distribution P of the random variable ξn in the following VaR equation:

VaRα(µ̂N ) = inf

{
t ∈ R : Pr

(
1

N

N∑
n=1

F (ξn) ≤ t

)
≥ 1− α

}
.

Analogously, APUB approximates the Conditional Value at Risk (CVaR) of µ̂N ,

CVaRα(µ̂N ) =
1

α

∫ α

0
VaRτ (µ̂N )dτ.

APUB serves a dual purpose: as an upper bound for the population mean in statistics and as an

approximate risk measure for the sample mean in risk assessment. As a risk measure, it primarily

focuses on approximating the tail distribution of the potential estimation error of the population

mean, which could result from an inadequacy of sample points. Furthermore, APUB complies with

fundamental properties of a coherent risk measure, such as sub-additivity, homogeneity, convexity,

translational invariance, and monotonicity. These characteristics make APUB a good candidate

to be applied to stochastic optimization under distributional ambiguity, particularly in scenarios

requiring solvability, such as two-stage stochastic optimization with random recourse. Analogous

to Theorem 1 in Rockafellar and Uryasev (2000) (Theorem B.1), the following proposition provides

an alternative representation for APUB.

Proposition 2.3.

Uα
APUB[µ|P̂N ] = inf

t∈R

{
t+

1

α
E

[[
1

N

N∑
n=1

F (ζn)− t

]
+

∣∣∣∣∣ P̂N

]}

= inf
t∈R

t+ 1

α

∫ [
1

N

N∑
n=1

F (ζn)− t

]
+

N∏
n=1

P̂N (dζn)

 ,

where the bold integral symbol means an N -fold integral over the N -fold product of P̂N .

Remark 2.4. By Proposition 2.3, we have that Uα
APUB[µ|P̂N ] monotonically decreases in α ∈ (0, 1]

w.p.1. This implies that, for α ∈ (0, 1],

Uα
APUB[µ|P̂N ] ≥ U1

APUB[µ|P̂N ] = E

[
1

N

N∑
n=1

F (ζn)

∣∣∣∣∣ P̂N

]
=

1

N

N∑
n=1

E
[
F (ζn)

∣∣∣ P̂N

]
= µ̂N , w.p.1.

The quality of a statistical upper bound refers to the rate of its true coverage probability

increasing beyond the nominal level (1− α) as the sample size grows. Example 2.5 illustrates the

following two attractive asymptotic characteristics of APUB. A theoretical discussion is given in

Section 2.2.
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1. Asymptotic Correctness (defined in Vaart (1998, Section 23.3)): A statistical upper bound

Uα[µ|P̂N ] for µ is correct at level (1− α) up to κth-order if its coverage probability

Pr
(
µ ≤ Uα[µ|P̂N ]

)
≥ (1− α) +O(N−κ/2).

If the equality holds, one says that Uα[µ|P̂N ] is κth-order accurate (Hall, 1986). Efron’s upper

bound is first-order accurate and APUB is first-order correct. Notably, the terms ‘asymptotic

correctness’ and ‘asymptotic accuracy’ are different. Specifically, the asymptotic correctness

implies that, when the sample size N is sufficiently large, the nominal level serves as a reliable

lower bound for the coverage probability.

2. Asymptotic consistency : APUB converges to the population mean w.p.1 as the sample size

increases to ∞. This attribute ensures that APUB is a consistent estimator for the population

mean.

(a) Standard Upper Bound (b) Efron’s Upper Bound (c) APUB

Figure 1: The comparison between APUB, Efron’s upper bound, and the standard large-sample
upper bound.

Example 2.5. Let ξ ∼ Gamma(2, 1) and F (ξ) = ξ. So the population mean µ = 2. We compare

APUB with Efron’s percentile-based upper bound and the standard large-sample upper bound given

as µ̂N + zασ̂N/
√
N , where zα denotes z critical value. In order to estimate the probability density

functions (pdf) of three upper bounds, we performed a Monte Carlo simulation with α = 0.05 while

allowing the sample sizes, N , to vary from 80 to 10,000.

As illustrated in Figure 1, the coverage probability is essentially the area to the right of the

vertical dotted line at µ = 2 in a pdf. Our results show that as N increases, the coverage probabilities

for both the large-sample and Efron’s upper bounds get closer to (1−α) = 0.95. This demonstrates

the asymptotic accuracy of these two types of bounds. However, this is in stark contrast to APUB

which doesn’t have asymptotic accuracy. In fact, as N approaches ∞, the coverage probability of

APUB can grow beyond (1− α). Moreover, this growth rate is observed to be more rapid than the

other two bounds, which brings attention to the unique nature of APUB.
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Furthermore, all three upper bounds exhibit asymptotic consistency. As N increases, they all

converge to µ = 2 w.p.1. This essentially means they become more precise as more data is collected.

By examining the pdf curves, it is apparent that they narrow and concentrate more intensely around

µ, which visually indicates this trend.

2.2 Asymptotic Characteristics of APUB

We now theoretically discuss the asymptotic correctness and consistency of APUB. The following

proposition shows its asymptotic correctness.

Proposition 2.6. Suppose that the skewness E[F (ξ) − µ]3/σ3 < ∞. Then, for a fixed nominal

level 1− α, Uα
APUB[µ|P̂N ] is first-order asymptotically correct, i.e.,

Pr
(
µ ≤ Uα

APUB[µ|P̂N ]
)
≥ (1− α) +O(N−1/2).

Proposition 2.6 establishes the asymptotic correctness of APUB, which guarantees that the

nominal level is a conservative boundary for the actual coverage probability. This attribute con-

firms that APUB is an effective upper-bound statistic, especially valuable for its robust response

to distributional ambiguity encountered with limited sample data. Considering the uncertainty

diminishes along with an increase in the sample size, we next show that APUB is a consistent

estimator for the population mean.

Theorem 2.7. For any α ∈ (0, 1], as N → ∞,

Uα
APUB[µ|P̂N ] → µ, w.p.1.

3 Optimization with APUB

In this section we apply APUB to stochastic optimization problems. In the context of optimization,

we have a decision region X ⊆ Rdx and let the cost function F (x, ξ) : X ×Ξ 7→ R be B-measurable

for all x ∈ X . Denote the mean and standard deviation of F (x, ξ) by µ(x) and σ(x) respectively.

The UB-M framework using APUB is written as

min
x∈X

Uα
APUB[µ(x)|P̂N ]. (APUB-M)

Let ϑ̂αN be the optimal value of APUB-M and Ŝα
N denote the set of its optimal solutions. Also,

denote by ϑ∗ the optimal value of EM-M and by S the set of its optimal solutions. By Remark 2.4,

we know that ϑ̂αN decreases in α ∈ (0, 1] w.p.1 and ϑ̂1N is the optimal value of SAA-M.

By applying the statistical technique, we expect to significantly reduce the impact of distribu-

tional ambiguity. This methodology has the following benefits, poised to yield insightful solutions

to our three research perspectives mentioned in Section 1.

(i) The coverage probability of APUB can be employed to evaluate enhancements in the resilience

and reliability of APUB-M when contending with distributional ambiguity. In practice, the
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probability is approximated by the nominal level (1−α). The nominal level of APUB, which

adheres to asymptotic correctness, provides a reliable lower bound for the coverage probability.

(ii) APUB exemplifies asymptotic consistency, rendering it ideal for a data-driven method. As

ambiguity in distribution decreases with larger sample sizes, the influence of APUB conse-

quently lessens. As a result, APUB-M avoids conservatism.

(iii) APUB can be interpreted as a risk measure, namely, the CVaR of a sample mean. CVaR

is widely recognized as one of the most popular risk measures by many disciplines (Artzner

et al., 1999; Rockafellar and Uryasev, 2000). In this way, APUB-M is designed to model

risk aversion, aiming to mitigate the inherent risk in SAA-M caused by the limited number of

sample points. APUB adheres to fundamental properties expected of a coherent risk measure,

including sub-additivity, homogeneity, convexity, translational invariance, and monotonicity.

These inherent characteristics render APUB-M not only coherent but also readily solvable,

particularly in the context of two-stage stochastic programming with random recourse.

We now present some mild assumptions as follows.

Assumption A. There exists a compact set K ⊆ X such that:

(A1) S ⊆ K;

(A2) Ŝα
N ⊆ K w.p.1 for sufficiently large N and α ∈ (0, 1].

Assumption A is frequently encountered in the literature pertaining to the asymptotic analysis

of the SAA method (Birge and Louveaux, 2011; Shapiro et al., 2021). This assumption posits that

it is adequate to confine the examination of decision properties to the compact set K. For the

purposes of the discussion in the remainder of Section 3, we proceed under the premise that the

decision space is indeed K, a simplification that does not limit the generality of our analysis.

Assumption B. There exists an open convex hull N containing K such that:

(B1) F (x, ξ) is convex on N for each ξ ∈ Ξ;

(B2) µ(x) and σ(x) are finite for all x ∈ N .

In Sections 3.1 and 3.2, we examine asymptotic characteristics of APUB-M, focusing on its data-

driven nature which includes aspects such as consistency, reliability, and ease of interpretation.

3.1 Asymptotic Consistency

In optimization, asymptotic consistency refers to the convergence of the optimal value and optimal

solution set of APUB-M with their counterparts in EM-M w.p.1 as the sample size increases. The

following theorem exhibits the asymptotic consistency of APUB-M.
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Theorem 3.1. Suppose Assumptions A and B hold. Then, for any given α ∈ (0, 1], as N → ∞,

ϑ̂αN → ϑ∗, and D(Ŝα
N ,S) := sup

y∈Ŝα
N

inf
z∈S

∥y − z∥ → 0 w.p.1.

Remark 3.2. Unlike DRO approaches that require additional parameter adjustments based on the

sample size to achieve data-driven objectives, the sample size itself is the unique factor to determine

the convergence of APUB-M. This characteristic offers a more consistent data-driven approach in

practice. As ambiguity in distribution decreases with larger sample sizes, the influence of APUB

consequently lessens. As a result, APUB-M avoids over-conservatism.

3.2 Asymptotic Correctness

Mohajerin Esfahani and Kuhn (2018) introduce the concept of reliability for a certain optimal

solution in DRO approaches. The reliability refers to the probability that the optimal value of

a DRO model exceeds the expected cost of the system at its optimal solution in true scenarios.

We extend this concept to the entire optimal solution set, which in our case is called the coverage

probability of the general UB-M framework. Denote a probability function of a given subset S ⊆ X
as

β(ϑ, S) := Pr

(
ϑ ≥ max

x∈S
µ(x)

)
. (1)

Let ϑ
α
N and Sα

N be the optimal value and optimal solution set of UB-M, respectively. The coverage

probability of UB-M is β(ϑ
α
N ,S

α
N ), which measures the chance that ϑ

α
N can serve as an upper bound

of the actual performance of UB-M across all optimal solutions. In the following, we define the

asymptotic correctness of UB-M.

Definition 3.3. UB-M is asymptotically correct if the limit of its coverage probability serves as a

lower bound for the nominal level as

lim
N→∞

β(ϑ
α
N ,S

α
N ) ≥ (1− α)

Defined on the entire optimal solution set, the concept of asymptotic correctness is stricter

than the reliability concerning a certain optimal solution. If a UB-M framework is asymptotically

correct, we have that, for any x̄N ∈ Sα
N ,

lim
N→∞

β(ϑ
α
N , {x̄N}) ≥ lim

N→∞
β(ϑ

α
N ,S

α
N ) ≥ (1− α).

In the subsequent statement, we refer to β(ϑ
α
N , {x̄N}) as the coverage probability of UB-M concern-

ing x̄, or simply the coverage probability at x̄N . Thus, we can say that the asymptotic correctness

of UB-M guarantees the asymptotic correctness at any optimal solution. The following theorem

shows the asymptotic correctness of APUB-M.

Theorem 3.4. Suppose that Assumption A and B hold. Assume that (i) there exists x0 ∈ K such

that E
[
|F (x0, ξ)|3

]
<∞; (ii) for any x, y ∈ K, |F (x, ξ)−F (y, ξ)| < L(ξ)∥x−y∥, where E

[
|L(ξ)|3

]
<
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∞; and (iii) σ(x) and σ−1(x) are bounded on x ∈ K. Then, APUB-M is asymptotically correct for

α ∈ (0, 1], i.e.,

lim
N→∞

β(ϑ̂αN , Ŝα
N ) ≥ (1− α).

Remark 3.5. The attribute of asymptotic correctness lends APUB-M interpretability in the context

of statistics. This means that the decision-maker can intuitively set the desired reliability level of

APUB-M by selecting an appropriate nominal level. Section 5 provides a numerical demonstration

of how this model interpretability confers an advantage.

Remark 3.6. Recall ϑ∗ is the optimal value of EM-M. Since ϑ∗ ≤ µ(x) for all x ∈ Ŝα
N , we obtain

that

lim
N→∞

Pr
(
ϑ̂αN ≥ ϑ∗

)
≥ lim

N→∞
β(ϑ̂αN , Ŝα

N ) ≥ (1− α).

This implies that the nominal level approximately represents the lower bound of the probability that

ϑ̂αN serves as an upper bound for ϑ∗.

4 Solution Method Based on Bootstrap Sampling Approximation

By Proposition 2.3, we rewrite APUB-M as

min
(x,t)∈X×R

t+
1

α

∫ [
1

N

N∑
n=1

F (x, ζn)− t

]
+

N∏
n=1

P̂N (dζn). (2)

Recall that the empirical distribution P̂N is associated with the original random sample (ξ1, . . . , ξN ).

We generate a bootstrap sample point (ζ1, . . . , ζN ) from P̂N , Let us count the number of times

the specific original sample point ξn appears in (ζ1, . . . , ζN ), which is denoted by Vn. Note that

Vn ≥ 0 and
∑N

n=1 Vn = N . We can interpret (V1, . . . , VN ) as a random vector with a multinomial

distribution with index N and parameter vector (1/N, . . . , 1/N). Its probability mass function

(pmf), in the support V := {(v1, . . . , vN ) ∈ ZN
+ :

∑N
n=1 vn = N}, is written as

MN (v1, . . . , vN ) =
N !

v1! · · · vN !

(
1

N

)v1

· · ·
(

1

N

)vN

=
N !

NNv1! · · · vN !
. (3)

This observation motives us to reformulate (2) as

min
(x,t)∈X×R

t+
1

α

∑
(v1,...,vN )∈V

[
1

N

N∑
n=1

vnF (x, ξn)− t

]
+

MN (v1, . . . , vN ). (4)

The multinomial distribution denoted as in (3) comprises
(
2N−1
N

)
random scenarios. Addressing its

large-scale nature becomes imperative. To tackle the complexity arising from the sheer number of

scenarios, we can leverage the sampling approximation method to solve

min
(x,t)∈X×R

t+
1

αM

M∑
m=1

[
1

N

N∑
n=1

Vm,nF (x, ξn)− t

]
+

, (BP-APUB-M)
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where (Vm,1, . . . , Vm,N ), for m = 1, . . . ,M , are a random sample of a size M generated from the

multinomial distribution. Achieving a satisfactory approximation, BP-APUB-M actually needs a

significantly smaller number M ≪
(
2N−1
N

)
of sample points in practice. For detailed discussions on

the asymptotic behaviors of the SAA method, which has been demonstrated to exhibit fast con-

vergence rates under mild assumptions, we refer readers to Shapiro et al. (2021) and the references

therein.

Algorithm 1 Cut Generation Algorithm for BP-APUB-M.

Step 1: Initialization
Let k = 0. Find a feasible solution x̂0 ∈ X and let η̂0 = −∞.

Step 2: Solve Master problem
If k = 0, go to Step 3. Otherwise, find an optimal solution (x̂k, η̂k) of the following problem:

min
x,η

η (5a)

s.t. η ≥ wj(x), j = 1, . . . , k, (5b)

where wj(·) is defined in (7).

Step 3: Generate Cuts
Sort the following sequence

rm(x̂k) :=
1

N

N∑
n=1

Vm,nF (x̂k, ξn), m = 1, . . . ,M, (6)

in ascending order and label the sorted sequence as r(1)k(x̂k) ≤ · · · ≤ r(M)k(x̂k). Here, (·)k :
{1, . . . ,M} → {1, . . . ,M} is a one-to-one mapping related to x̂k. Let J := ⌈(1− α)M⌉ and

wk+1(x) :=

(
1− M − J

αM

)
r(J)k(x) +

1

αM

M∑
m=J+1

r(m)k(x). (7)

If η̂k ≥ wk+1(x̂k), stop; x̂k is an optimal solution. Otherwise, add wk+1 to the constraint set
(5b), set k = k + 1, and return to Step 2.

4.1 Cut Generation Method

We now propose a cut generation solution approach to BP-APUB-M. The details of our method

are provided in Algorithm 1. Denote the objective value of BP-APUB-M at a given x ∈ X as

ϑ̃(x) := min
t∈R

t+
1

αM

M∑
m=1

[
1

N

N∑
n=1

Vm,nF (x, ξn)− t

]
+

= min
t∈R

t+
1

αM

M∑
m=1

[rm(x)− t]+ , (8)

where the function rm is defined in (6). Let J = ⌈(1− α)M⌉, where the ceiling function ⌈z⌉ gives

the smallest integer greater than or equal to z. Definition 2.2 indicates that APUB is derived by

taking a weighted average of the “extreme” losses in the tail of the distribution of possible outcomes,

beyond its (1− α)-th percentile which is the cutoff point of Efron’s percentile-based upper bound
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(Uα
Efron[µ|P̂N ]). In our case, the tail of the sequence r1(x), . . . , rM (x) beyond its (1−α)-th percentile

has M − J + 1 items.

Consider a combination without replacement which firstly selects an element in {1, . . . ,M} and

next pick out otherM−J different elements from the remains. We depict this combination as a set

{(i1), (i2, . . . , iM−J+1)}, where each ij is unique and belongs to {1, . . . ,M}. In this way, we can form(
M
1

)(
M−1
M−J

)
different sets, denoted as Γℓ for ℓ = 1, . . . ,

(
M
1

)(
M−1
M−J

)
. For Γℓ = {(i1), (i2, . . . , iM−J+1)},

we write Γℓ = i1 and Γℓ = {i2, . . . , iM−J+1}. The weighted average for Γℓ is represented as

τℓ(x) :=

(
1− M − J

αM

)
rΓℓ

(x) +
1

αM

∑
j∈Γℓ

rj(x).

Then, as the weighted average of the extreme losses, ϑ̃(x) equals to the maximum of τℓ(x) for all

ℓ ∈
{
1, . . . ,

(
M
1

)(
M−1
M−J

)}
. In other words, problem (8) is equivalent to

ϑ̃(x) = max
ℓ∈{1,...,(M1 )(M−1

M−J)}
τℓ(x). (9)

This observation motivates us to develop the cut generation algorithm to solve BP-APUB-M.

In Algorithm 1, we first solve a sequence of master programs denoted as (5), where constraint

(5b) represents optimality cuts generated throughout the algorithm. In the k-th iteration, the

master program (5) finds an optimal solution, (x̂k, η̂k). To calculate ϑ(x̂k), Algorithm 1 presents a

sorting method to solve problem (9). This method sorts the sequence r1(x̂k), . . . , rM (x̂k). Notably,

in the sorted sequence r(1)k(x̂k), . . . , r(M)k(x̂k), r(⌈(1−α)M⌉)k(x̂k) serves as the cutoff point of Efron’s

percentile-based upper bound. Accordingly, ϑ̃(x̂k) = wk+1(x̂k), where the function wk+1 is given

in (7). As a concequence, if η̂k ≥ wk+1(x̂k), x̂k is an optimal solution of BP-APUB-M. Otherwise,

we generate an additional optimality cut, as η ≥ wk+1(x), in the master program. It is worth

mentioning that Algorithm 1 adds a mere few bootstrap samples into the cut set instead of all M

samples, which effectively addresses issues when M is very large.

4.2 Practical Solution Method of a Two-Stage APUB Model

As an illustrative application, we now demonstrate the utility of APUB within the context of

a specific class of optimization problems known as two-stage linear stochastic optimization with

random recourse. In this case, APUB-M is adapted to formulate the first stage as

min
x

c⊺x+ Uα
APUB

[
E[Q(x, ξ)]

∣∣∣P̂N

]
(10a)

s.t. Ax = b, (10b)

x ≥ 0. (10c)

By letting ξ = (q, h, T,W ), the second stage is represented as

Q(x, ξ) := min
y

q⊺y (11a)

s.t. Wy = h− Tx, (11b)

y ≥ 0. (11c)
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Let ξn = (qn, hn, Tn,Wn) be the nth point of the original random sample associated with the

empirical distribution P̂N . The bootstrap sampling approximation of the two-stage APUB-M (10)-

(11) can be written as

min
x,t

c⊺x+ t+
1

αM

M∑
m=1

[
1

N

N∑
n=1

Vm,nQ(x, ξn)− t

]
+

(12a)

s.t. Ax = b, (12b)

x ≥ 0, (12c)

which can be further reformulated as the following linear program,

min
x,y,s,t

c⊺x+ t+
1

αM

M∑
m=1

sm (13a)

s.t. Ax = b, (13b)

sm + t ≥ 1

N

N∑
n=1

Vm,nq
⊺
nyn, m = 1, . . . ,M, (13c)

Wnyn = hn − Tnx, n = 1, . . . , N, (13d)

x ≥ 0, y ≥ 0, s ≥ 0. (13e)

We now propose adapting the well-established L-shaped method (Van Slyke and Wets, 1969;

Birge and Louveaux, 2011) to achieve an efficient solution derivation described in Algorithm 2.

Firstly, we solve a sequence of master programs denoted as in (14), where constraints (14c) and

(14d) describe feasibility and optimality cuts, respectively, throughout the algorithm. The master

program (14) finds an optimal solution, (x̂, η̂). We represent the objective value of the bootstrap

sampling approximation problem (12) at x̂ as

˜̃
ϑ(x̂) := min

t∈R
t+

1

αM

M∑
m=1

[
1

N

N∑
n=1

Vm,nQ(x̂, ξn)− t

]
+

. (22)

Step 3 in the algorithm considers the feasibility of the second-stage problem (11) at x̂ and some

ξn. If constraint (11b) is unsatisfied with x̂ and ξn, problem (11) is infeasible and consequently˜̃
ϑ(x̂) = Q(x̂, ξn) = ∞. This necessitates the generation of one or more feasibility cuts of the type

(14c). In the algorithm, the feasibility is checked solving the linear program (15). At step 4, we

generate the optimality cut of type (14d) when η̂ <
˜̃
ϑ(x̂) < ∞. Analogous to Algorithm 1, we

also employ the sorting method to calculate problem (22) and thus obtain
˜̃
ϑ(x̂) = w(x̂), where the

function w is described in (19). Notably, the sorting method used in Algorithm 2 facilitates the

rapid computation of problem (22), which involves solving the second-stage optimization problems,

effectively addressing performance issues when M is very large.
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Algorithm 2 L-Shaped Algorithm for the Two-Stage APUB-M (10)-(11).

Step 1: Initialization
Let ℓ = k = 0.

Step 2: Solve Master Problem.
Solve the linear program as follows:

min
x,η

c⊺x+ η (14a)

s.t. Ax = b, (14b)

Djx ≥ dj , j = 0, . . . , ℓ, (14c)

Ejx+ η ≥ ej , j = 0, . . . , k, (14d)

x ≥ 0. (14e)

Let (x̂, η̂) be an optimal solution. If no constraint (14d) is present, let η̂ = −∞ and be not
considered in the computation of x̂.

Step 3: Generate feasibility Cuts.
For n = 1, . . . , N, solve the linear program

u(x̂) := min
y,v+,v−

1⊺v+ + 1⊺v−

s.t. Wny + Iv+ − Iv− = hn − Tnx̂, (15)

y ≥ 0, v+ ≥ 0, v− ≥ 0,

where 1 is the all-ones vector and I is the identity matrix, until for some n, the optimal value
u(x̂) > 0. In this case, let ϕ be the associated simplex multipliers and define

Dℓ+1 := ϕ⊺Tn, dℓ+1 := ϕ⊺hn, (16)

to generate a feasibility cut of type (14c). Add Dℓ+1, dℓ+1 to the constraint set (14c), set
ℓ = ℓ+ 1, and return to Step 2. If for all n, u(x̂) = 0, go to Step 4.

Step 4: Generate Optimality Cuts.
For n = 1, . . . , N , solve the linear program

Q(x̂, ξn) = min
y

q⊺ny

s.t. Wny = hn − Tnx̂, (17)

y ≥ 0.

Let ψn be the simplex multipliers associated with the optimal solution of Problem n of type
(17).

Sort the following sequence

rm(x̂) :=
1

N

N∑
n=1

Vm,nQ(x̂, ξn), m = 1, . . . ,M, (18)

in ascending order and label the sorted sequence as r(1)(x̂) ≤ · · · ≤ r(M)(x̂). Here, (·) :
{1, . . . ,M} → {1, . . . ,M} is a one-to-one mapping related to x̂. Let J := ⌈(1− α)M⌉ and

w(x) :=

(
1− M − J

αM

)
r(J)(x) +

1

αM

M∑
m=J+1

r(m)(x). (19)
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Algorithm 2 L-Shaped Algorithm for the Two-Stage APUB-M (10)-(11) (continued)

If η̂ ≥ w(x̂), stop; x̂ is an optimal solution. Otherwise, define

Ek+1 :=

(
1− M − J

αM

)(
1

N

N∑
n=1

V(J),nψ
⊺
nTn

)
+

1

αM

M∑
m=J+1

(
1

N

N∑
n=1

V(m),nψ
⊺
nTn

)
, (20)

ek+1 :=

(
1− M − J

αM

)(
1

N

N∑
n=1

V(J),nψ
⊺
nhn

)
+

1

αM

M∑
m=J+1

(
1

N

N∑
n=1

V(m),nψ
⊺
nhn

)
, (21)

add Ek+1, ek+1 to the constraint set (14d), set k = k + 1, and return to Step 2.

5 Numerical Analyses

We assess the efficacy of APUB-M through an extensive examination of classic problems in stochas-

tic optimization, spanning both single-stage and two-stage scenarios. Section 5.1 provides a com-

parative analysis between APUB-M and traditional DRO utilizing Wasserstein distance. This

comparison involves evaluating their respective out-of-sample performances and coverage proba-

bilities in addressing a two-stage benchmark problem with fixed recourse (Dantzig, 2016). The

comparative analysis reveals that, although APUB-M does not guarantee 100% coverage proba-

bility in situations characterized by a severe lack of data, it demonstrates a potential advantage

by mitigating over-conservatism and achieving better average out-of-sample performance than the

DRO approach. Furthermore, Section 5.2 extends the application scope of APUB-M to encompass

problems featuring random recourse. It shows that the robustness and favorable performance of

APUB-M are maintained. Traditional DRO methodologies encounter inherent limitations when

confronted with the computational complexity resulting from random recourse. In Section 5.3,

we subject APUB-M to rigorous testing using a multi-product newsvendor problem (Hanasusanto

et al., 2015). APUB-M provides stable and high-quality solutions even when the sample size is

small. Notably, Mohajerin Esfahani and Kuhn (2018) highlight that the Wasserstein distance based

DRO fails to perform effectively in situations, like the newsvendor problem, where the random loss

function exhibits a Lipschitz modulus concerning random scenarios, independent of decision vari-

ables. Across all investigated scenarios, the close correspondence between nominal levels and actual

coverage probabilities serves as a testament to the methodological reliability of APUB-M.

5.1 A Two-Stage Product Mix Problem with Fixed Recourse

We adapt the benchmark two-stage product mix problem presented by King (1988) to our test

case, which seeks to optimize the product mix of a furniture shop amid uncertain labor conditions.

During the ‘here-and-now’ stage, the company commits to a long-term contract, promising to

deliver a set quantity of furniture in each time period. This quantity can be adjusted due to strong

market demand. Labor hours, which are crucial to production, are uncertain and variable, partly

because of factors such as the COVID-19 pandemic. The production involves four distinct products

and two workstations each constrained by the availability of labor hours. Each product requires
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varying amounts of labor across these workstations and contributes specific profit margins upon sale.

Labor availability dictates production time, with more hours leading to reduced production time,

a phenomenon attributed to skill diversity and improved efficiency. At this stage, the company’s

objective is to determine the most profitable product mix that meets contractual requirements

while contending with the unpredictability of labor availability.

In the subsequent ‘wait-and-see’ stage, the company must confront the actual labor hours

available, which may deviate from earlier estimates. In instances where there is a shortfall in

the labor hours anticipated by the production plan conceived in the ‘here-and-now’ stage, the

option exists to outsource additional labor hours for workstation. However, this supplemental

workforce is not as efficient as the in-house labor. Thus, at this juncture, the firm’s focus pivots

to minimizing the expenses linked to acquiring these supplemental, less efficient labor hours, while

still fulfilling the contractual furniture delivery commitments. The decision-making process in this

stage is heavily dependent on actual labor availability and is geared toward economical adjustments

to labor shortages.

In practice, the company determines the production quantities outlined in the contract by

analyzing historical labor hours. However, the unpredictability of absenteeism, exacerbated by the

COVID-19 pandemic, has led to a significant lack of reliable data. In response to this uncertainty,

the company seeks to define a profit threshold that the expected profit from this contract is likely to

meet or exceed, maintaining a confidence level of approximately 100(1−α)%. We describe the profit

threshold in form of APUB, which ensures the statistical reliability of the company’s objective. On

this basis, we represent this product mix problem as the two-stage APUB-M (10)-(11). In the

first stage, x is the decision vector for the product mix and the negative value of c represents the

per-unit profits of products. In the second stage, the decision vector y signifies the outsourced

labor hours assigned to workstations and associated with unit cost q (the last two components with

a cost of zero correspond to two slack variables), h stands for the random labor hours available

at workstations, T includes the production times required for products, and the negative value of

W represents the efficiency rate of outsourced labor. The numerical parameters in our study are

specified as follows:

A = 0, b = 0, c = [−12,−20,−18,−40]⊺,

q = [6, 12, 0, 0]⊺, h = [500γ1, 500γ2]
⊺,

T =

[
4− γ1

4 9− γ1
4 7− γ1

4 10− γ1
4

3− γ2
4 1− γ2

4 3− γ2
4 6− γ2

4

]
, W =

[
−0.9 0 1 0

0 −0.9 0 1

]
,

where

[γ1, γ2]
⊺ ∼ 7

10
N

([
12

8

]
,

[
5.76 1.92

1.92 2.56

])
+

3

10
N

([
2

1

]
,

[
0.16 0.04

0.04 0.04

])
has a mixed 2-dimensional normal distribution. In the two-stage APUB-M (10)-(11), we generate

a random sample with a size N from the mixed normal distribution.
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5.1.1 Convergence of Bootstrap Sampling Approximation.

Figure 2: Convergence of the bootstrap sampling approximation.

We now assess the convergence of the bootstrap sampling method applied to our model. Our

evaluation encompasses 10 independent simulations, each producingN = 30 sample data points and

resolving the subsequent approximation as defined in (13). Throughout these tests, we maintain a

consistent nominal level of (1− α) = 0.8. Figure 2 illustrates the relationship between the number

M of bootstrap samples and the optimal values of our approximation problem, with M reaching

up to 2000. A discernible stabilization trend is evident in the data: as M increases, variability

in the optimal values conspicuously decreases. Notably, for M ≥ 1000, the convergence of the

approximation becomes evident as the fluctuation in the optimal values significantly lessens. This

consistency bolsters our decision to adopt M = 2000 for all subsequent experiments in this section.

5.1.2 Comparative Analysis between APUB-M and DRO.

We carry out a comparative analysis between APUB-M and the Wasserstein distance based DRO

approach when applied to this two-stage product mix problem. Recall that, used in the two-stage

problem, APUB-M is formed as (10)-(11). Our aim is to evaluate their performance under various

conditions and identify their respective strengths and limitations.

All the tests are conducted using a Monte Carlo simulation of 1000 replications. In each

replication, we generate a training sample set of size N , using which APUB-M provides an optimal

solution x̂αN . The out-of-sample performance, µ(x̂αN ), is evaluated using a unique large-sized test

sample set. The all replications provide the approximate probability distribution of µ(x̂αN ). For N

= 30, 120, and 480, respectively, Figures 3a-3c display the curve of the mean of µ(x̂αN ) and the range

from the 10th to the 90th percentile when varying (1−α) from 0 to 1. Note that the leftmost case

represents the out-of-sample performance of SAA-M, which is equivalently represented as APUB-M

with (1− α) = 0. We also estimate the coverage probability of APUB-M concerning x̂αN as

β(ϑ̂αN , {x̂αN}) = Pr
(
ϑ̂αN ≥ µ(x̂αN )

)
.
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(a) N = 30, APUB-M (d) N = 30, WassDRO

(b) N = 120, APUB-M (e) N = 120, WassDRO

(c) N = 480, APUB-M (f) N = 480, WassDRO

Figure 3: Out-of-sample performance (left axis, solid line, and shaded area) and the coverage
probability (right axis, dashed line) as a function of the nominal level (1 − α) in APUB-M and
a function of ϵ in WassDRO. The star symbol indicates the point where the mean of the out-of-
sample performance attains its minimum. The minimum value of the mean is written next to the
star symbol.
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Recall that the function β is defined in (1). By Theorem 3.4, we know the asymptotic correctness

of APUB-M concerning x̂αN , i.e.,

lim
N→∞

β(ϑ̂αN , {x̂αN}) ≥ (1− α).

Figures 3a-3c draw the curve of β(ϑ̂αN , {x̂αN}) with respect to (1−α). Similarly, Figures 3d-3f report

the out-of-sample performance and the coverage probability of the Wasserstein distance based DRO

(labelled WassDRO in the figures), when altering the radius ϵ of the ball in 1-Wasserstein distance

metric.

Comparing the out-of-sample performances and coverage probabilities of the two approaches in

Figure 3, we have the following observations:

• Analysis of the minimum average costs (where negative values represent profits), as indicated

by stars, and their associated 90th percentiles across varying sample size N , consistently

showed that APUB-M achieves lower costs in comparison to WassDRO. Despite this, Wass-

DRO demonstrates higher coverage probabilities when achieving its minimum average costs.

This observation indicates a potential strategic compromise between minimizing the cost

objective and improving the reliability of the solution.

• For small and medium sample sizes (N = 30 an N = 120), both APUB-M and WassDRO

substantially outpace SAA-M. This advantage is evident from the notably lower and more

focused cost distributions over a broad spectrum of nominal levels and radii. Additionally,

both APUB-M and WassDRO reveal improvements in coverage probability, lending further

support to their robustness and operational efficacy.

• For medium and large sample sizes (N = 120 an N = 480), we observe an accurate alignment

of nominal level and actual coverage probabilities attests to the methodological soundness of

APUB-M. This alignment not only acts as a validation of the fidelity of the method in asymp-

totic correctness but also highlights a significant methodological stride in the interpretability

of intuitively chosen reliability levels.

• In the large sample scenarios (N = 480), while an increase in ϵ within the WassDRO frame-

work improves the coverage probability, the associated cost is concurrently magnified, espe-

cially when ϵ is selected to be excessively large. This phenomenon suggests that an inappro-

priately chosen ϵ can lead to significant over-conservatism. In contrast, APUB-M sustains

the out-of-sample performance at a level analogous to SAA-M, while exhibiting a consistent

increment in coverage probability. Such findings validate the stability of APUB-M, affirming

that the asymptotic consistency of APUB-M is maintained irrespective of the chosen nominal

level.

• Lastly, it is noteworthy that, for both APUB-M and WassDRO, the critical (1 − α) and ϵ

points, corresponding to the minimum average costs, approach the leftmost point representing
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SAA-M as N increases. This observation accentuates the benefits of SAA-M in a large sample

scenario, where distributional ambiguity is reduced.

Overall, APUB-M not only exemplifies robustness but also avoids the over-conservatism often

seen in traditional DRO approaches. Crucially, the nominal level (1 − α) functions as a faithful

reflection of its statistical meaning, aligning with the company’s preference for a specific confidence

level amidst distributional ambiguity. This functionality bolsters the statistical interpretability of

our method, providing clear, relevant insights even before model training commences. However, it

is important to recognize that, in contrast to DRO, APUB-M does not invariably guarantee a 100%

coverage probability. This limitation is particularly evident in cases with too few data points, where

even the worst-case scenarios in the sample may fail to encompass the most extreme eventualities,

an issue that becomes pronounced in the face of severe sample scarcity.

5.2 A Two-Stage Product Mix Problem with Random Recourse

We now extend our analysis to a two-stage stochastic optimization problem incorporating random

recourse. To facilitate direct comparison, we modify the test problem outlined in Section 5.1

to incorporate this element of randomness in the recourse measures. Accordingly, we define the

random course as

W =

[
−U(0.6, 1.2) 0 1 0

0 −U(0.6, 1.2) 0 1

]
,

where U represents a uniform distribution. In this product mix optimization, the random recourse

refers to the treatment of externally sourced labor hours as stochastic variables in the second stage,

reflecting the real-world variability in the labor market.

We first observe the out-of-sample performance of SAA-M in both fixed and random recourse

scenarios. The results, depicted in Figures 4a through 4b, reveal that the random recourse scenario

exhibits a wider 10-90th percentile range and more than a 300-unit increase in the 90th percentile

for both N = 30 and N = 120, as well as a higher mean, compared to the fixed recourse scenario

(shown in Figures 3a through 3b). This indicates a heightened volatility in the random recourse

case.

Nevertheless, APUB-M maintains a consistent performance profile in the random recourse sce-

nario, as demonstrated in Figure 4, similar to its behavior in fixed recourse settings. This supports

the model’s methodological flexibility. Specifically, Figure 4a shows that APUB-M is exceptionally

resilient when dealing with limited data, effectively reducing the mean of the cost and enhancing

solution stability. This underscores the robustness of APUB-M when a suitable nominal level is

chosen. Additionally, Figure 4b confirms the asymptotic correctness of APUB-M. In other words,

APUB-M consistently meets the actual coverage probability when varying nominal levels, parallel-

ing its fixed recourse performance. Moreover, Figure 4c suggests that with a large sample size (N

= 480), APUB-M can avoid excessive conservatism irrespective of the nominal level.

On the other hand, in the random recourse scenario, using the same sample size, achieving
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(a) N = 30 (b) N = 120

(c) N = 480

Figure 4: Out-of-sample performance (left axis, solid line, and shaded area) and the coverage
probability (right axis, dashed line) as a function of the nominal level (1−α) in APUB-M. The star
symbol indicates the point where the mean of the out-of-sample performance attains its minimum.
The minimum value of the mean is written next to the star symbol.

the minimum average cost (signified by a star in Figure 4) requires a higher nominal level to

ensure greater robustness. Consequently, this minimum average cost is higher than that of the

fixed recourse scenario. Additionally, the 10-90th percentile range is marginally broader across all

nominal levels, compared to the fixed recourse case. These findings indicate a necessity for setting

a larger nominal level in APUB-M to effectively manage the increased uncertainty introduced by

random recourse.

5.3 A Multi-Product Newsvendor Problem

Consider a multi-product newsvendor problem, described in Hanasusanto et al. (2015), with the

following random cost function,

F (x, ξ) = p⊺x+ h⊺(x− ξ)+ + b⊺(ξ − x)+,
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where x is the vector of order quantities for ten products, ξ represents random demand, p is the

unit profit (p < 0 in the cost function), h and b are overage and underage costs.

5.3.1 Out-of-Sample Performance Analysis.

This test compares two cases: Case I assumes that ξ follows a mixed normal distribution as

Case I: ξ ∼ 1

2
N(µ1,Σ1) +

1

2
N(µ2,Σ2),

and on this basis, Case II considers a biased noise added in the data generation as

Case II: ξ′ = ξ + ε.

With the noise ε included, Case II has a large variation and, as a result, its distributional ambiguity

is more serious. The numerical values of all parameters are provided in Appendix C.

Figures 5a to 5c depict the out-of-sample performances and coverage probabilities of APUB-M

in Case I as the sample size N varies from 30 to 120, while Figures 5d to 5f illustrate Case II.

In both cases, APUB-M outperforms SAA-M in terms of lower average cost and a narrower range

from the 10th to the 90th percentile. Additionally, Figures 5 showcase the asymptotic correctness

and consistency of APUB-M, as observed in Sections 5.1 and 5.2.

On the other hand, SAA-M exhibits more stable performance in Case I than in Case II. This

suggests that Case I experiences less distributional ambiguity. We observe that APUB-M is adapt-

able to different levels of ambiguity. However, the model’s performance is sensitive to the level

of ambiguity. When N = 30, Case II demonstrates a much wider 10-90th percentile range and

requires a larger nominal level (1 − α) to achieve the minimum average cost indicated by a star.

Increasing N weakens the impact of noise on distributional ambiguity. APUB-M with a higher

(1 − α) exhibits similar performance in both cases, particularly when N = 120. This observation

underscores the capability of APUB-M to adjust to different uncertainty levels and the positive

effect of increased sample sizes in lessening disparities caused by system noise.

5.3.2 Optimal Solutions Analysis.

We now compare the optimal solutions of Models SAA-M and APUB-M in Case I, as illustrated in

Figures 6a through 6c, with N varying from 30 to 120. These solutions dictate the recommended

order quantities for the ten products.

When N = 30, Figure 6a depicts significant fluctuations in the curves of the order quantities as

(1− α) increases, notably for product P2. The order quantity of product P2 decreases by 10.14%

from SAA-M to APUB-M with (1 − α) = 0.5. The increase in N noticeably stabilizes the order

quantities. Upon reaching N = 60, the relative difference in the order quantities of product P2

reduces to 9.95% between SAA-M and APUB-M with (1 − α) = 0.5. With a larger N = 120, all

curves become flattened. In this scenario, as depicted in Figure 5c, APUB-M and SAA-M appear

to achieve comparable performance. It can be seen in Figure 6c that their recommended optimal

solutions are also very close.
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(a) Case I, N = 30 (d) Case II, N = 30

(b) Case I, N = 60 (e) Case II, N = 60

(c) Case I, N = 120 (f) Case II, N = 120

Figure 5: Out-of-sample performance (left axis, solid line, and shaded area) and the coverage
probability (right axis, dashed line) as a function of the nominal level (1−α) in APUB-M. The star
symbol indicates the point where the mean of the out-of-sample performance attains its minimum.
The minimum value of the mean is written next to the star symbol.
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(a) N = 30 (b) N = 60

(c) N = 120

Figure 6: Optimal order quantities of the ten products.

SAA-M appears to be much more sensitive to N than APUB-M. Let us quantify the difference

between the two solutions using the 2-norm. When N changes from 30 to 120, the difference is 7.89

for SAA-M, 3.99 for APUB-M with (1−α) = 0.5, and 3.36 for APUB-M with (1−α) = 0.95. This

observation suggests that APUB-M can provide a high-quality optimal solution even with a small

sample size. This capability underscores the ability of APUB-M to simulate scenarios typically

requiring a larger volume of data.

6 Conclusions

In this work, we introduce APUB, a novel statistical upper bound that acts as a critical bridge be-

tween the realms of statistical inference and stochastic optimization. APUB enriches the theoretical

landscape and highlights practical implications for the interpretability and application of stochastic

optimization models. APUB serves as both an upper bound for the population mean, enhancing

statistical analysis, and a coherent risk measure for the sample mean, focusing particularly on tail

distribution errors due to insufficient sample sizes. By rigorously proving the statistical soundness
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of our approach, including its asymptotic correctness and consistency, we lay a solid foundation for

integrating statistical methods into decision-making frameworks under distributional ambiguity.

Furthermore, APUB-M that we innovatively develop integrates APUB into stochastic opti-

mization. This integration makes the reliability of APUB-M transparent, by ensuring that the

attribute of asymptotic correctness inherent in APUB is seamlessly transferred to APUB-M in the

optimization context. Indeed, the coverage probability of APUB-M aligns with asymptotic cor-

rectness at this predefined nominal level. Also, we meticulously show the asymptotic consistency

of APUB-M, ensuring that our approach remains the nature of data-driven statistical methods,

thereby promising stability and unbiasedness of APUB-M, as the sample size increases, but avoid-

ing over-conservatism.

We employ a bootstrap sampling approximation method, BP-APUB-M, to manage the com-

putational complexity, demonstrating that a significantly smaller number of bootstrap samples

effectively maintains model integrity and reliability. Furthermore, we develop a cut generation

algorithm for solving large-scaled cases and an L-shaped method for two-stage linear stochastic op-

timization with random recourse. These solution approaches, underpinning the practical viability

of APUB-M, confirm their applicability in real-world scenarios, particularly in two-stage prob-

lems. Moreover, our empirical studies across various stochastic optimization problems, including

single-stage and two-stage models, underscore the robustness and practicality of APUB-M. The

comparative analysis with traditional DRO methods, particularly in settings of fixed and random

recourse, highlights the enhanced interpretability and reduced conservatism of APUB-M. These

results not only validate our theoretical findings but also showcase the broad applicability and

effectiveness of our approach in real-world scenarios.

We demonstrate that APUB is asymptotically correct to the first order. In the context of

optimization, APUB-M also shows asymptotic correctness. Future research will investigate the

order of asymptotic correctness for APUB-M, specifically examining the rate at which its coverage

probability converges to the predefined nominal level as the sample size increases.

Acknowledgments

The authors wish to extend their sincere gratitude to Prof. Jim Luedtke for his invaluable contri-

butions to this work. His innovative insights have significantly contributed to the efficient reformu-

lation of the bootstrap sampling approximation model. We immensely appreciate his willingness

to share his expert knowledge, which has greatly enhanced the quality of our research.

References
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A Proofs of Theorems and Propositions

A.1 Proof of Proposition 2.1

For a given P̂N , we briefly denote by ζ := (ζ1, . . . , ζN ) a (dξ ×N)-dimensional random matrix. Let

G(ζ) := 1
N

∑N
n=1 F (ζn). It means that Ψ(t) := Pr

(
G(ζ) ≤ t

∣∣∣ P̂N

)
is the cumulative probability

distribution (cdf) of G(ζ) and ΨM (t) := 1
M

∑M
m=1 1{G(ζm) ≤ t} is an empirical cdf associated

with a random sample G(ζ1), . . . , G(ζM ). Thus, ΨM (t) uniformly converges to Ψ(t) as M goes to

∞ w.p.1 with respect to the bootstrap sample. Note that the fixed P̂N is deterministic. Therefore,

any percentile of ΨM (t) converges to the counterpart of Ψ(t) w.p.1. It follows that Uα
M converges

to Uα
Efron[µ|P̂N ].

A.2 Proof of Proposition 2.6

Efron’s percentile-based upper bound (Uα
Efron[µ|P̂N ]) is asymptotically accurate to the first-order,

i.e.,

Uα
Efron[µ|P̂N ] = (1− α) +O(N−1/2).

Its proof refers to Section 4.2 in Shao and Tu (2012). By Definition 2.2, we know that Uα
APUB[µ|P̂N ] ≥

Uα
Efron[µ|P̂N ].

A.3 Proof of Theorem 2.7

To prove Theorem 2.7, we need the following lemma about the bootstrap law of large numbers.

Lemma A.1. Let (ζ1, . . . , ζN ) ∼ P̂N . Then, as N → ∞,

1

N

N∑
n=1

F (ζn) → µ w.p.1.

Proof. According to Theorem 2 in Athreya (1983) (Theorem B.2), if lim infM,N→∞MN−ϕ > 0 for

some ϕ > 0, and E|F (ξ)− µ|θ <∞ for some θ ≥ 1 such that θϕ > 1, we have that, as M,N → ∞,

1

M

M∑
m=1

F (ζm) → 1 w.p.1,

where (ζ1, . . . , ζM ) ∼ P̂N .

In our case, choose ϕ = 1, θ = 2, andM = N . This ensures that lim infM,N→∞MN−ϕ = 1 > 0.

The condition E|Z(ξ)− µ|θ <∞ is satisfied due to finite variance. This completes the proof.

Proof of Theorem 2.7 Let (ξ̄1, ξ̄2, . . . ) be a realization of the sample path and P̄N be the

empirical distribution associated with the firstN sample points. Denote by (ζ1(P̄N ), . . . , ζN (P̄N )) ∼
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P̄N a random sample under P̄N . Denote a collection of realizations as

S :=

(ξ̄1, ξ̄2, . . . ) :
lim

N→∞
1
N

N∑
n=1

F (ξ̄n) = µ,

lim
N→∞

1
N

N∑
n=1

F
(
ζn(P̄N )

)
= µ w.p.1 (for ζ)

 . (23)

It follows by the Strong Law of Large Number and Lemma A.1 that Pr{(ξ1, ξ2, . . . ) ∈ S} = 1.

We now fix (ξ̄1, ξ̄2, . . . ) ∈ S along with its corresponding (P̄1, P̄2, . . . ). Here, (ξ̄1, ξ̄2, . . . ) and

P̄N are deterministic, while (ζ1(P̄N ), . . . , ζN (P̄N )) remains randomness. For clarity, denote

µ̂N (P̄N ) :=
1

N

N∑
n=1

F
(
ζn(P̄N )

)
.

By Proposition 2.3, we have

Uα
APUB[µ|P̄N ] = CVaRα

(
µ̂N (P̄N )

)
.

Then, to prove Theorem 2.7, it suffices to show

lim
N→∞

CVaRα

(
µ̂N (P̄N )

)
= µ. (24)

Sarykalin et al. (2008) provide an expression of CVaR as

CVaRα

(
µ̂N (P̄N )

)
= ηαVaRα

(
µ̂N (P̄N )

)
+ (1− ηα)CVaR

+
α

(
µ̂N (P̄N )

)
, (25)

where

CVaR+
α

(
µ̂N (P̄N )

)
= E

[
µ̂N (P̄N )

∣∣∣∣∣ µ̂N (P̄N ) > VaRα

(
µ̂N (P̄N )

)]
,

ηα =
Pr
(
µ̂N (P̄N ) ≤ VaRα

(
µ̂N (P̄N )

) ∣∣∣ P̄N

)
− α

1− α
.

Describe µ̂N (P̄N ) > VaRα

(
µ̂N (P̄N )

)
as event AN . By the definition of VaR, it is clear to see

Pr(AN | P̄N ) ≥ α for all N . The expression (25) implies that

VaRα

(
µ̂N (P̄N )

)
≤ CVaRα

(
µ̂N (P̄N )

)
≤ CVaR+

α

(
µ̂N (P̄N )

)
.

According to Lemma 21.2 in (Vaart, 1998) (Theorem B.3), we understand that convergence in

distribution implies the convergence of the quantile function. Thus, we have

lim
N→∞

VaRα

(
µ̂N (P̄N )

)
= µ,

On the other hand, applying Theorem 2.1 in (Mallows and Richter, 1969) (Theorem B.4), we have∣∣CVaR+
α

(
µ̂N (P̄N )

)
− E

[
µ̂N (P̄N )

]∣∣ = ∣∣∣E [µ̂N (P̄N )
∣∣∣ AN

]
− E

[
µ̂N (P̄N )

]∣∣∣
≤ σ̃N

(
1− Pr(AN | P̄N )

Pr(AN | P̄N )

)1/2

≤ σ̃N

(
1− α

α

)1/2

,

where σ̃N represents the standard deviation of µ̂N (P̄N ). Since µ̂N (P̄N ) converges to µ w.p.1, we
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know that σ̃N converges to 0. Therefore, we establish:

lim
N→∞

CVaR+
α

(
µ̂N (P̄N )

)
= lim

N→∞
E
[
µ̂N (P̄N )

]
(a)
= lim

N→∞
E
[
F (ζ1(P̄N ))

]
= lim

N→∞

1

N

N∑
n=1

F (ξ̄n)

(b)
= µ,

where (a) holds since (ζ1(P̄N ), . . . , ζN (P̄N )) are drawn i.i.d. from P̄N , and (b) holds due to the

definition of S (see (23)). Hence, we obtain (24) and complete the proof.

A.4 Proof of Theorem 2.7

To prove Theorem 3.1, we first prove the following two lemmas: the first lemma show the continuity

of µ(x) and Uα
APUB[µ(x)|P̂N ]; the second lemma shows the uniform consistency of Uα

APUB[µ(x)|P̂N ]

on K.

Lemma A.2. Suppose Assumption B holds. Then µ(x) is continuous on N , and Uα
APUB[µ(x)|P̂N ]

is a continuous convex function on N w.p.1.

Proof. Since F (x, ξ) is convex on N , µ(x) is also convex on N . Hence, µ(x) is continuous. Under

Assumption B, F (·, ξ) is continuous and convex on N . It is easy to see that, by Proposition 2.3,

Uα
APUB[µ(x)|P̂N ] is continuous convex on N .

Lemma A.3. Suppose Assumption A and B holds. Then, we have as N → ∞,

sup
x∈K

∣∣∣Uα
APUB[µ(x)|P̂N ]− µ(x)

∣∣∣→ 0, w.p.1.

Proof. Note that the open convex set N ⊆ Rdx . We first construct a countable dense subset of

N as D := Qdx ∩ N , where Qdx represents the set of dx-dimensional rational numbers. Choose a

sample path (ξ1, ξ2, . . . ) and hence P̂N is the empirical distribution associated to the first N sample

points. For x ∈ D, we denote an event as

Υx :=

{
(ξ1, ξ2, . . . ) : lim

N→∞
Uα

APUB[µ(x)|P̂N ] = µ(x)

}
.

Since µ(x) <∞ and σ(x) <∞ under Assumption (B2), it follows by Theorem 2.7 that Pr
(
(ξ1, ξ2, . . . ) ∈

Υx

)
= 1, which implies that Pr

(
(ξ1, ξ2, . . . ) ∈

⋂
x∈D Υx

)
= 1. In other words, Uα

APUB[µ(x)|P̂N ] con-

verges pointwisely to µ(x) on D w.p.1. Furthermore, by Proposition A.2 and Theorem 10.8 in

Rockafellar (2015) (Theorem B.5), we can conclude that Uα
APUB[µ(x)|P̂N ] converges uniformly a

certain continuous function ν on K w.p.1. Since ν(x) and µ(x) coincidence on a dense subset of K
and they are both continuous on K, we know that ν(x) = µ(x) for all x ∈ K. This completes the

proof.
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Proof of Theorem 2.7

i) Proof of the consistency of ϑ̂αN . Choose x∗ ∈ S and x̂N ∈ ŜN . It is easy to see that

Uα
APUB[µ(x̂N )|P̂N ] ≤ Uα

APUB[µ(x
∗)|P̂N ]

and

µ(x∗) ≤ µ(x̂N ).

Thus, we have

|ϑ̂αN − ϑ∗| =
∣∣∣Uα

APUB[µ(x̂N )|P̂N ]− µ(x∗)
∣∣∣

= max
{
Uα

APUB[µ(x̂N )|P̂N ]− µ(x∗), µ(x∗)− Uα
APUB[µ(x̂N )|P̂N ]

}
,

≤ max
{
Uα

APUB[µ(x
∗)|P̂N ]− µ(x∗), µ(x̂N )− Uα

APUB[µ(x̂N )|P̂N ]
}

≤ sup
x∈K

∣∣∣Uα
APUB[µ(x)|P̂N ]− µ(x)

∣∣∣,
which converges to 0 w.p.1 by Theorem A.3. This completes the proof.

ii) Proof of the consistency of Ŝα
N . Let O as a collection of sample paths along which Ŝα

N ⊆ K
for a sufficiently large N and ϑ̂αN → ϑ∗. By the above proof and Assumption (A2), we have

Pr
(
(ξ1, ξ2, . . . ) ∈ O

)
= 1. We now choose (ξ1, ξ2, . . . ) ∈ O. Thus Ŝα

N is the optimal solution set of

APUB-M using the first N sample points.

Suppose by contradiction that D(Ŝα
N ,S) ̸→ 0 along the sample path (ξ1, ξ2, . . . ). Then, there

exists ε > 0 such that for allM ∈ N, there exists some N > M for which D(Ŝα
N ,S) > ε. Specifically,

there exists x̂N ∈ Ŝα
N such that infy∈S ∥x̂N , y∥ > ε. Because of the compactness of K, we can find

a subsequence x̂Nk
∈ Ŝα

Nk
such that x̂Nk

⊆ K for all k ∈ N, and

lim
k→∞

x̂Nk
= x̂ ∈ K, inf

y∈S
∥x̂N , y∥ > ε, for all k.

It follows that x̂ ̸∈ S and hence µ(x̂) > ϑ∗. On the other hand, we have∣∣∣∣Uα
APUB[µ(x̂Nk

)|P̂N ]− µ(x̂)

∣∣∣∣ ≤ ∣∣∣∣Uα
APUB[µ(x̂Nk

)|P̂N ]− µ(x̂Nk
)

∣∣∣∣+ ∣∣∣∣µ(x̂Nk
)− µ(x̂)

∣∣∣∣.
On the right hand of the above inequality, the first term converges to zero by Theorem A.3, and

the second term converges to zero because of the continuity of µ(x). Thus,

lim
k→∞

Uα
APUB[µ(x̂Nk

)|P̂N ] = µ(x̂).

The definition of O ensures that Uα
APUB[µ(x̂Nk

)|P̂N ] = ϑ̂αN → ϑ∗. It implies that µ(x̂) = ϑ∗. This is

contradictory to the assertion that D(Ŝα
N ,S) ̸→ 0.

A.5 Proof of Theorem 3.4

For the convenience of reading, we restate some notations here. Recall (ξ1, . . . , ξN ) is an i.i.d.

random sample generated from (Ω,F ,P). Consider a function F : X × Ξ → R, where Ξ is the

support of ξ1 and X is a decision region. We define the population mean µ(x) = E[F (x, ξ)] and
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variance σ2(x) = E[(F (x, ξ) − µ(x))2]. Let P̂N be the empirical distribution associated with the

random sample, and (ζ1, . . . , ζN ) is a bootstrap sample generated from P̂N . Accordingly, denote

µ̂N (x) = E[F (x, ζ)|P̂N ], σ̂2N (x) = E
[
(F (x, ζ)− µ̂N (x))2

∣∣∣ P̂N

]
, and the standardized sample mean

SN (x) :=

√
N (µ̂N (x)− µ(x))

σ(x)
.

Denote the bootstrap counterparts of µ̂N (x) and SN (x) by

µ̂∗N (x) :=
1

N

N∑
n=1

F (x, ζn) and S∗
N (x) :=

√
N (µ̂∗N (x)− µ̂N (x))

σ̂N (x)
.

We now outline our proof as follows. We know by Proposition A.2 that, the objective function

of APUB-M, Uα
APUB[µ(x)|P̂N ], is continuous. Also, Assumption A states that the set Ŝα

N of the

optimal solutions of APUB-M is contained in the compact set K for a sufficiently large N w.p.1.

This implies that Ŝα
N is compact and then there exists x̃N ∈ Ŝα

N such that

µ(x̃N ) = max
x∈Ŝα

N

µ(x).

Subsequently, we have

β(ϑ̂αN , Ŝα
N ) = Pr

(
Uα

APUB[µ(x̃N )|P̂N ] ≥ µ(x̃N )
)

≥ Pr
(
Uα

Efron[µ(x̃N )|P̂N ] ≥ µ(x̃N )
)
,

which means that, to obtain

lim
N→∞

β(ϑ̂αN , Ŝα
N ) ≥ (1− α),

it suffices to prove the following uniform convergence as

lim
N→∞

sup
x∈K

∣∣∣Pr(Uα
Efron[µ(x)|P̂N ] ≥ µ(x)

)
− (1− α)

∣∣∣ = 0. (26)

In this section we describe the proof of equation (26) in five steps as follows:

(i) Section A.5.1 shows the first three moments of F (x, ξ) are finite.

(ii) Section A.5.2 proves that as N increases to ∞, the cdf of SN (x) uniformly (in x ∈ K)

approximates to the standard normal distribution function.

(iii) Section A.5.3 proves a bootstrap version of the result of step (iii).

(iv) Section A.5.4 links Uα
Efron[µ(x)|P̂N ] to SN (x), and utilizes the results from the step (ii) and

(iii) to prove the bootstrap percentile uniformly converges to normal percentile.

(v) Section A.5.5 rigorously proves (26).

A.5.1 Finite Moments and Domination Property.

The following lemma shows the first three moments of F (x, ξ) are finite.
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Lemma A.4. Under the assumptions of Theorem 3.4, for k ≤ 3, there exist Kk such that

sup
x∈K

E
[
|F (x, ξ)|k

]
≤ Kk.

Proof. We first prove the boundedness for E
[
|F (x, ξ)|k

]
over x ∈ K. The Lipschitz continuity of

F (x, ξ) leads to

|F (x, ξ)| ≤ |F (x0, ξ)|+ |F (x, ξ)− F (x0, ξ)| ≤ |F (x0, ξ)|+ L(ξ)∥x− x0∥ ≤ |F (x0, ξ)|+D · L(ξ),

where D := supx∈K ∥x− x0∥ is the diameter of K. Raising both sides to the power k and applying

the inequality (a+ b)k ≤ 2k−1(ak + bk) for a, b ≥ 0, we obtain

|F (x, ξ)|k ≤ 2k−1
(
|F (x0, ξ)|k +DkL(ξ)k

)
.

Taking expectations on both sides,

E
[
|F (x, ξ)|k

]
≤ 2k−1

(
E
[
|F (x0, ξ)|k

]
+DkE

[
L(ξ)k

])
.

The assumptions of Theorem 3.4 require that E
[
|F (x0, ξ)|k

]
< ∞ and E

[
L(ξ)k

]
< ∞ for k ≤ 3.

Let

Kk := 2k−1
(
E
[
|F (x0, ξ)|k

]
+DkE

[
L(ξ)k

])
.

Then,

sup
x∈K

E
[
|F (x, ξ)|k

]
≤ Kk.

Lemma A.5. Under the assumptions of Theorem 3.4, there exists an integrable function G(x, ξ)

with E[G(x, ξ)] <∞ for each x ∈ K such that |F (x, ξ)| ≤ G(x, ξ).

Proof. By Assumption (ii) of Theorem 3.4,

|F (x, ξ)| ≤ |F (x, ξ)− F (x0, ξ)|+ |F (x0, ξ)| < |F (x0, ξ)|+ L(ξ)∥x− x0∥.

Define

G(x, ξ) := |F (x0, ξ)|+ L(ξ)∥x− x0∥.

Then, we have

E[G(x, ξ)] = E|F (x0, ξ)|+ E[L(ξ)]∥x− x0∥

Assumption (i) and (iii) of Theorem 3.4 implies E|F (x0, ξ)| < ∞ and E[L(ξ)] < ∞. Thus,

E[G(x, ξ)] <∞ for all x ∈ K.

A.5.2 Uniform Berry-Esseen Inequality.

The following theorem states the Berry-Esseen bound for SN (x), which is fundamental in our proof.
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Theorem A.6 (Berry-Esseen Inequality (Berry, 1941)). For a fixed x ∈ K, if E|F (x, ξ)|3 < ∞,

then

sup
z∈R

∣∣Pr(SN (x) ≤ z)− Φ(z)
∣∣ ≤ C

E|F (x, ξ)|3

σ3(x)
√
N

where C is a constant independent of x.

Lemma A.7 implies the pdf of SN (x) converges to the standard normal uniformly in x ∈ K.

Lemma A.7. Under the assumptions of Theorem 3.4, we have Pr(SN (x) ≤ z) = Φ(z) + o(1)

uniformly in x ∈ K and z ∈ R.

Proof. It follows by the assumptions of Theorem 3.4 that there exist a constant σmin such that

σ(x) ≥ σmin for all x ∈ K. In addition, by Lemma A.4, supx∈K E|F (x, ξ)|3 ≤ K3. Then, by

Theorem A.6, we have

sup
x∈K

sup
z∈R

|Pr(SN (x) ≤ z)− Φ(z)| ≤ C
supx∈K E|F (x, ξ)|3

infx∈K σ3(x)
√
N

≤ C
K3

σ3min

√
N

= o(1).

A.5.3 Uniform Berry-Esseen Inequality for Percentile Bootstrap Sampling.

We now show the uniform asymptotic behavior of the moments of P̂N in the following lemma.

Lemma A.8. Under the assumptions of Theorem 3.4, the following two conditions hold as N → ∞
w.p.1.,

(C1*) supx∈K

∣∣∣E [|F (x, ζ)|k ∣∣∣ P̂N

]
− E

[
|F (x, ξ)|k

]∣∣∣→ 0 for k ≤ 3.

(C2*) supx∈X |σ̂N (x)− σ(x)| → 0.

Proof. We now prove (C1*). Assumption B states that F (x, ξ) is continuous in x ∈ K for any

ξ. In addition, Lemma A.5 implies F (x, ξ) dominated by an integrable function for each x ∈ K.

According to Theorem 7.53 in Shapiro et al. (2021) (Theorem B.6), we know that, as N → ∞,

sup
x∈K

∣∣∣E [|F (x, ζ)|k ∣∣∣ P̂N

]
− E

[
|F (x, ξ)|k

]∣∣∣→ 0, w.p.1. (27)

We next prove (C2*). Since

σ̂2N (x) = E
[
(F (x, ζ)− µ̂N (x))2

∣∣∣ P̂N

]
= E

[
((F (x, ζ)− µ(x))− (µ̂N (x)− µ(x)))2

∣∣∣ P̂N

]
= E

[
(F (x, ζ)− µ(x))2

∣∣∣ P̂N

]
− (µ̂N (x)− µ(x))2 ,

we obtain

sup
x∈K

∣∣σ̂2N (x)− σ2(x)
∣∣ ≤ sup

x∈K

∣∣∣E [(F (x, ζ)− µ(x))2
∣∣∣ P̂N

]
− σ2(x)

∣∣∣+ sup
x∈K

(µ̂N (x)− µ(x))2 .

Equation (27) has shown that the two terms at the right-hand-side of the above inequality converge

to 0 as N → ∞ w.p.1, which implies (C2*) holds.
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The following lemma shows the Berry-Esseen Inequality for the percentile bootstrap approach.

Lemma A.9. Under the assumptions of Theorem 3.4, we have Pr
(
S∗
N (x) ≤ z

∣∣∣ P̂N

)
= Φ(z)+o(1)

uniformly in x ∈ K and z ∈ R w.p.1.

Proof. By the assumptions of Theorem 3.4, we know there exist σmin such that σ(x) > σmin > 0.

In addition, by Lemma A.4, supx∈K E
[
|F (x, ξ)|3

]
≤ K3. By (C1*) and (C2*) in Lemma A.8, the

following two inequalities hold w.p.1,

lim
N→∞

sup
x∈K

E
[
|F (x, ζ)|3

∣∣∣ P̂N

]
≤ lim

N→∞
sup
x∈K

∣∣∣E [|F (x, ζ)|3 ∣∣∣ P̂N

]
− E |F (x, ξ)|3

∣∣∣+ sup
x∈K

E |F (x, ξ)|3 ≤ K3,

lim
N→∞

inf
x∈K

|σ̂N (x)| ≥ inf
x∈K

|σ(x)| − lim
N→∞

sup
x∈K

|σ̂N (x)− σ(x)| ≥ σmin.

Then, by Lemma A.6, we have

lim
N→∞

sup
x∈K

sup
z∈R

∣∣∣Pr(S∗
N (x) ≤ z

∣∣∣ P̂N

)
− Φ(z)

∣∣∣ ≤ lim
N→∞

C
supx∈K E

[
|F (x, ξ)|3

∣∣∣ P̂N

]
infx∈K σ̂3N (x)

√
N

≤ lim
N→∞

C
K3

σ3min

√
N

= 0.

A.5.4 Uniform Convergence on Bootstrap Percentile.

Define

zαN (x) := inf
z

{
z ∈ R : Pr

(
S∗
N (x) ≤ z

∣∣∣ P̂N

)
≥ 1− α

}
.

Recall

Uα
Efron[µ(x)|P̂N ] = inf

{
z ∈ R : Pr

(
µ̂∗N (x) ≤ z

∣∣∣ P̂N

)
≥ 1− α

}
.

We derive

Uα
Efron[µ(x)|P̂N ] = µ̂N (x) +

σ̂N (x)√
N

zαN (x).

Letting

Tα
N (x) := − σ̂N (x)

σ(x)
· zαN (x),

we further express the coverage probability as

Pr
(
Uα

Efron[µ(x)|P̂N ] ≥ µ(x)
)
= Pr

(
µ̂N (x) +

σ̂N (x)√
N

· zαN (x) ≥ µ(x)

)
= Pr

(√
N(µ̂N (x)− µ(x))

σ(x)
≥ − σ̂N (x)

σ(x)
· zαN (x)

)
= Pr

(
SN (x) ≥ Tα

N (x)
)
. (28)

Lemma A.10. limN→∞ supx∈K |Tα
N (x)− Φ−1(α)| = 0, w.p.1.
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Proof. Consider a sample path ξ = (ξ1, ξ2, . . . ) and denote its sample space by Ξ∞. Define

Υ :=

{
ξ ∈ Ξ∞ : lim

N→∞
sup
x∈K

|Tα
N (x)− Φ−1(α)| = 0

}
,

Υ0 :=

{
ξ ∈ Ξ∞ : lim

N→∞
sup
x∈K

∣∣∣∣ σ̂N (x)

σ(x)
− 1

∣∣∣∣ = 0

}
,

Υ1 :=

{
ξ ∈ Ξ∞ : lim

N→∞
sup
x∈K

∣∣(−zαN (x))− Φ−1(α)
∣∣ = 0

}
,

and

Υ2 :=

{
ξ ∈ Ξ∞ : lim

N→∞
sup
x∈K

sup
z∈R

∣∣∣Pr(S∗
N (x) ≤ z

∣∣∣ P̂N

)
− Φ(z)

∣∣∣ = 0

}
.

Our goal is to prove Pr(ξ ∈ Υ) = 1. We now give our proof in the following three steps.

Step 1: we prove that (Υ0 ∩Υ1) ⊆ Υ.

Consider ξ ∈ Υ0 ∩Υ1. Observe that∣∣Tα
N (x)− Φ−1(α)

∣∣ = ∣∣∣∣( σ̂N (x)

σ(x)
− 1

)
(−zαN (x)) +

(
−zαN (x)− Φ−1(α)

)∣∣∣∣
≤
∣∣∣∣ σ̂N (x)

σ(x)
− 1

∣∣∣∣ |−zαN (x)|+
∣∣−zαN (x)− Φ−1(α)

∣∣ .
By definition of Υ1, we know −zαN (x) → Φ−1(α) uniformly in x ∈ K. There exists N1 such that for

all N ≥ N1,

sup
x∈K

|−zαN (x)| ≤
∣∣Φ−1(α)

∣∣+ 1.

Similarly, by definition of Υ0 and Υ1, for any ε > 0, there exists N2 such that for all N ≥ N2,

sup
x∈K

∣∣∣∣ σ̂N (x)

σ(x)
− 1

∣∣∣∣ < ε, and sup
x∈K

∣∣−zαN (x)− Φ−1(α)
∣∣ < ε.

Therefore, for N ≥ N0 := max{N1, N2}, we have∣∣Tα
N (x)− Φ−1(α)

∣∣ ≤ ε
(∣∣Φ−1(α)

∣∣+ 1
)
+ ε.

Since ε > 0 is arbitrary, it follows that

lim
N→∞

sup
x∈K

∣∣Tα
N (x)− Φ−1(α)

∣∣ = 0.

Thus, ξ ∈ Υ, and therefore (Υ0 ∩Υ1) ⊆ Υ, which completes the proof for Step 1.

Step 2: we prove that Υ2 ⊆ Υ1.

Consider ξ ∈ Υ2 and a given δ > 0. Since Φ(z) is continuous and strictly increasing, its inverse

Φ−1(·) is also continuous and strictly increasing on its domain (0, 1). Let

ε(δ) := min
{
Φ
(
Φ−1(1− α) + δ

)
− (1− α), (1− α)− Φ

(
Φ−1(1− α)− δ

)}
.

By definition of Υ2, there exists N0 such that for all N ≥ N3, we have

sup
x∈K

sup
z∈R

∣∣∣∣Pr(S∗
N (x) ≤ z

∣∣∣∣ P̂N

)
− Φ(z)

∣∣∣∣ < ε(δ).
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In other words, for all N ≥ N3, we have:∣∣∣∣Pr(S∗
N (x) ≤ z

∣∣∣∣ P̂N

)
− Φ(z)

∣∣∣∣ < ε(δ), for all x ∈ K, z ∈ R.

Thus, at z = Φ−1(1− α)− δ:

Pr

(
S∗
N (x) ≤ Φ−1(1− α)− δ

∣∣∣∣ P̂N

)
< Φ

(
Φ−1(1− α)− δ

)
+ ε(δ) ≤ (1− α)− ε(δ) + ε(δ) = 1− α.

Similarly, at z = Φ−1(1− α) + δ:

Pr

(
S∗
N (x) ≤ Φ−1(1− α) + δ

∣∣∣∣ P̂N

)
> Φ

(
Φ−1(1− α) + δ

)
− ε(δ) ≥ (1− α) + ε(δ)− ε(δ) = 1− α.

Therefore, it follows by the definition of zαN (x) that, for all N ≥ N3 and x ∈ K, zαN (x) ∈[
Φ−1(1− α)− δ, Φ−1(1− α) + δ

]
. Thus,

sup
x∈K

∣∣zαN (x)− Φ−1(1− α)
∣∣ ≤ δ.

Note that Φ−1(α) = −Φ−1(1− α). When choosing an arbitrarily small δ, we obtain

lim
N→∞

sup
x∈K

∣∣(−zαN (x))− Φ−1(α)
∣∣ = 0,

which completes the proof for Step 2.

Step 3: we prove that Pr(ξ ∈ Υ) = 1.

By (C2*) in Lemma A.8, it is clear to see Pr(ξ ∈ Υ0) = 1. In addition, by Lemma A.7,

Pr(ξ ∈ Υ2) = 1. By previous two steps, we establish

(Υ0 ∩Υ2) ⊆ (Υ0 ∩Υ1) ⊆ Υ.

Therefore, Pr(ξ ∈ Υ) = 1. It completes the proof of Lemma A.10.

A.5.5 Proof of Equation (26).

Now we finalize the proof of (26). It follows from (28) that

Pr
(
Uα

Efron[µ(x)|P̂N ] ≥ µ(x)
)
− (1− α)

=Pr
(
SN (x) ≥ Tα

N (x)
)
− (1− α)

=E
[
E
[
1{SN (x) ≥ Tα

N (x)}
∣∣∣ Tα

N (x)
]]

− 1 + Φ
(
Φ−1(α)

)
=E

[
E
[
1{SN (x) ≥ Tα

N (x)} − [1− Φ (Tα
N (x))]

∣∣∣ Tα
N (x)

]]
+ E [[1− Φ (Tα

N (x))]]− 1 + Φ
(
Φ−1(α)

)
=E

[
E
[
1{SN (x) ≥ Tα

N (x)} − [1− Φ (Tα
N (x))]

∣∣∣ Tα
N (x)

]]
+ E[Φ

(
Φ−1(α)

)
− Φ (Tα

N (x))]
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We can further derive

sup
x∈K

∣∣∣Pr(Uα
Efron[µ(x)|P̂N ] ≥ µ(x)

)
− (1− α)

∣∣∣
≤ sup

x∈K

∣∣∣E [E [1{SN (x) ≥ Tα
N (x)} − [1− Φ (Tα

N (x))]
∣∣∣ Tα

N (x)
]]∣∣∣+ sup

x∈K

∣∣E[Φ (Φ−1(α)
)
− Φ (Tα

N (x))]
∣∣

≤E
[
sup
x∈K

∣∣∣∣E [1{SN (x) ≥ Tα
N (x)} − [1− Φ (Tα

N (x))]
∣∣∣ Tα

N (x)
] ∣∣∣∣]+ E

[
sup
x∈K

∣∣∣Φ (Φ−1(α)
)
− Φ (Tα

N (x))
∣∣∣]

Therefore, to prove (26), it suffices to prove

lim
N→∞

E
[
sup
x∈K

∣∣∣∣E [1{SN (x) ≥ Tα
N (x)} − [1− Φ (Tα

N (x))]
∣∣∣ Tα

N (x)
] ∣∣∣∣] = 0, (29)

and

lim
N→∞

E
[
sup
x∈K

∣∣∣Φ (Φ−1(α)
)
− Φ (Tα

N (x))
∣∣∣] = 0. (30)

Let us first prove (29). By Lemma A.7, for any ϵ > 0, there exists N4 such that for N > N4,

sup
x∈K

∣∣∣∣E [1{SN (x) ≥ Tα
N (x)} − [1− Φ (Tα

N (x))]
∣∣∣ Tα

N (x)
] ∣∣∣∣

≤ sup
x∈K

sup
z∈R

|Pr(SN (x) ≥ z)− [1− Φ(z)]| < ϵ, w.p.1,

and then

E
[
sup
x∈K

∣∣∣∣E [1{SN (x) ≥ Tα
N (x)} − [1− Φ (Tα

N (x))]
∣∣∣ Tα

N (x)
] ∣∣∣∣] < ϵ.

This proves (29).

Next, we prove (30). Since Φ(·) is continuous on R, for any ϵ > 0, there exists δ > 0 such that

whenever

|Tα
N (x)− Φ−1(α)| < δ,

we have ∣∣Φ(Tα
N (x))− Φ(Φ−1(α))

∣∣ < ϵ.

By Lemma A.10, there exists N5 such that for N > N5,

sup
x∈K

|Tα
N (x)− Φ−1(α)| < δ, w.p.1,

and thus,

sup
x∈K

∣∣Φ(Tα
N (x))− Φ(Φ−1(α))

∣∣ < ϵ, w.p.1.

This implies (30), that is, for N > N5,

E
[
sup
x∈K

∣∣∣Φ (Φ−1(α)
)
− Φ (Tα

N (x))
∣∣∣] < ϵ.
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B Theorems Used in the Paper

Theorem B.1 (Theorem 1, Rockafellar and Uryasev (2000)). Let h(x, ω) be a random function

where x ∈ X and ω belong to an arbitrary probability space with distribution Q. Let qα(x) denote

the 100(1− α)-percentile of h(x, ω) and

Hα(x, t) = t+
1

α

∫
[h(x, ω)− t]+Q(dω),

where t ∈ R. Then, for all x ∈ X , we have

1

α

∫ α

0
qτ (x)dτ = min

t∈R
Hα(x, t).

Theorem B.2 (Theorem 2, Athreya (1983)). Suppose lim infMN−ϕ > 0 for some ϕ > 0 as

M,N → ∞, and EP|F (ξ) − µ|θ < ∞ for some θ ≥ 1 such that θϕ > 1. Then, as M,N → ∞, we

have

1

M

M∑
m=1

F
(
ζm(P̂N )

)
→ 1 w.p.1.

Theorem B.3 (Lemma 21.2, Vaart (1998)). The quantile function of a cumulative distribution

function F is the generalized inverse F−1 : (0, 1) → R given by

F−1(p) = inf{x : F(x) ≤ p}.

For any any sequence of cumulative distribution functions, FN converges to F in distribution if

and only if F−1
N converges to F−1 in distribution.

Theorem B.4 (Theorem 2.1, Mallows and Richter (1969)). Let η be a random variable, A be an

event, and ση be its standard deviation. Then we have:∣∣∣E[η|A]− E[η]
∣∣∣ ≤ ση

(
1− Pr(A)

Pr(A)

)1/2

.

Theorem B.5 (Theorem 10.8 (Rockafellar, 2015)). Let C be an open convex set. Let (g1, g2, · · · )
be a sequence of finite convex functions on C. Suppose that the sequence converges pointwise on a

dense subset D ⊆ C and the limit is finite. Then, the sequence (g1, g2, · · · ) converges uniformly to

a continuous function on any compact subset inside C.

Theorem B.6 (Theorem 7.53, Shapiro et al. (2021)). Let K be a nonempty compact subset of Rn

and suppose that (i) for any x ∈ K the function F (·, ξ) is continuous at x for almost every ξ ∈ Ξ,

(ii) F (x, ξ), x ∈ K, is dominated by an integrable function, and (iii) the sample is iid. Then, the

expected function f(x) is finite valued and continuous on K, and the sample mean f̂N (x) converges

to f(x) w.p.1 uniformly on K.

C Data for the Newsvendor problem in Section 5.3

p = −2, h = 9, b = 5
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µ1 = [60.89, 48.58, 46.81, 56.54, 61.58, 52.69, 69.42, 60.54, 54.43, 51.76]⊺

µ2 = [50.30, 61.87, 53.16, 41.79, 51.94, 62.14, 45.47, 45.26, 55.95, 55.95]⊺

Σ1 =



9.27 2.84 −0.07 1.19 −0.48 1.40 2.87 4.06 −1.40 −1.96

2.84 5.90 −2.83 0.21 2.27 −2.40 −0.89 4.22 3.43 2.78

−0.07 −2.83 5.48 −0.30 0.90 3.54 −4.51 −2.45 −2.91 −4.95

1.19 0.21 −0.30 7.99 −1.02 −1.27 −0.15 −1.55 −1.69 −0.36

−0.48 2.27 0.90 −1.02 9.48 −0.08 −3.69 2.71 −0.69 −0.34

1.40 −2.40 3.54 −1.27 −0.08 6.94 −1.26 −2.73 0.01 −5.19

2.87 −0.89 −4.51 −0.15 −3.69 −1.26 12.05 −0.16 −0.16 2.44

4.06 4.22 −2.45 −1.55 2.71 −2.73 −0.16 9.16 −0.77 1.94

−1.40 3.43 −2.91 −1.69 −0.69 0.01 −0.16 −0.77 7.41 2.24

−1.96 2.78 −4.95 −0.36 −0.34 −5.19 2.44 1.94 2.24 6.70



Σ2 =



6.32 2.99 −0.06 0.73 −0.33 1.36 1.55 2.51 −1.19 −1.75

2.99 9.57 −4.09 0.19 2.44 −3.60 −0.74 4.02 4.49 3.83

−0.06 −4.09 7.06 −0.25 0.86 4.74 −3.35 −2.08 −3.40 −6.08

0.73 0.19 −0.25 4.37 −0.64 −1.11 −0.07 −0.86 −1.29 −0.29

−0.33 2.44 0.86 −0.64 6.74 −0.08 −2.04 1.71 −0.60 −0.31

1.36 −3.60 4.74 −1.11 −0.08 9.65 −0.98 −2.41 0.01 −6.62

1.55 −0.74 −3.35 −0.07 −2.04 −0.98 5.17 −0.08 −0.10 1.72

2.51 4.02 −2.08 −0.86 1.71 −2.41 −0.08 5.12 −0.59 1.57

−1.19 4.49 −3.40 −1.29 −0.60 0.01 −0.10 −0.59 7.83 2.49

−1.75 3.83 −6.08 −0.29 −0.31 −6.62 1.72 1.57 2.49 7.83



ε ∼



U(−5.37, 26.27)

U(6.74, 14.16)

U(3.22, 17.68)

U(−7.48, 28.38)

U(−4.89, 25.79)

U(−0.21, 16.11)

U(−12.14, 32.99)

U(−7.74, 28.64)

U(0.77, 20.13)

U(2.13, 18.77)



.
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