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Abstract

Recent works have developed new projection-free first-order methods based on utilizing
linesearches and normal vector computations to maintain feasibility. These oracles can be
cheaper than orthogonal projection or linear optimization subroutines but have the drawback of
requiring a known strictly feasible point to do these linesearches with respect to. In this work, we
develop new theory and algorithms which can operate using these cheaper linesearches while only
requiring knowledge of points strictly satisfying each constraint separately. Convergence theory
for several resulting “multiradial” gradient methods is established. We also provide preliminary
numerics showing performance is essentially independent of how one selects the reference points
for synthetic quadratically constrained quadratic programs.

1 Introduction

Recently, several works [1–9] have proposed new projection-free first-order methods based on
often cheap linesearches and normal vector computations with the feasible region. Such methods
offer potential advantages in terms of their scalability over projected methods and conditional
gradient/Frank-Wolfe-type methods as reliances on quadratic or linear optimization oracles as
subroutines are avoided. Prior works based on such potentially cheaper linesearches have required
knowledge of a “good enough” strictly feasible point to use as a reference. In the line of work
by Grimmer [5, 6, 10], these methods are called radial methods as linesearches based at the origin
amount to searching along rays at each iteration. In this work, we circumvent the previous reliance
on a known “good enough” strictly feasible point by developing a new family of “MultiRadial
Methods”. These methods instead rely on a collection of reference points, each only required to be
feasible to one component of the problem’s constraints.

Our primary interest is in the development of methods for maximization problems

p∗ =
{

max f(x)
s.t. x ∈ Sj for all j = 1, . . . , m

(1.1)

with concave objective function f : E → R ∪ {−∞} and closed convex constraint sets Sj ⊆ E for
some finite dimensional Euclidean space E . No assumptions like Lipschitz continuity of f are made.
We focus on the development of first-order methods where f can be accessed through its function
value, its (sup)gradients, and one-dimensional linesearches. Mirroring these three operations, we will
only assume access to the sets Sj via checking membership, its normal vectors, and one-dimensional
linesearches.
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Alternative commonly utilized oracle models for the constraint sets Sj can incur higher per-
iteration computational costs. Orthogonal projections, commonly used in projected gradient methods,
require quadratic optimization over each Sj (or worse ∩Sj), which requires Sj to be sufficiently
simple this can be done in closed-form (or quickly approximated). Frank-Wolfe-type methods only
require linear optimization at each iteration, which is often cheaper than projections but may still
be prohibitive. Interior point-type methods are applicable when a self-concordant barrier function
for each Sj is available but require linear systems solves based at each iteration.

Lagrangian-type methods apply when the constraints take the functional form of Sj = {x |
gj(x) ≤ 0}, relying on first-order oracles for and the structure of each gj . If each gj is convex but
nonsmooth, a range of subgradient-type methods can be applied [11,12]. If each gj is smooth, nearly
optimal accelerated methods have been recently developed by Zhang and Lan [13]. An important
distinction should be drawn between using first-order evaluations of functional constraints gj and
our model of linesearches and normal vectors of Sj . Our oracle is independent of how one represents
the set Sj . In contrast, the above referenced methods for functionally constrained problems may
require careful preprocessing of constraints to perform well, as, for example, replacing gj(x) ≤ 0
with any positive rescaling λgj(x) ≤ 0 will change their algorithm’s trajectory.

Here we develop algorithms that access each constraint set Sj by linesearches and normal vector
computations. As linesearches, given some ej ∈ int Sj and x ̸∈ Sj , we assume one can find the
unique point on the boundary of Sj between ej and x. Even if this cannot be done in closed form,
given a membership oracle for Sj , bisection or a similar rootfinding procedure could be used to reach
a machine precision solution. Once a boundary point is produced, we assume a normal vector can
be computed, mirroring the role of computing (sub)gradients of the objective. These two operations
correspond to function evaluation and subgradient evaluation of the gauge of Sj with respect to ej ,
defined as

γSj ,ej (x) = inf
{

v > 0 | ej + x − ej

v
∈ Sj

}
.

(A formal introduction and discussion of gauges is deferred to Section 2.1.)
These two oracles are often much cheaper (and hence lead to more scalable algorithms) than

common alternatives. For example, consider any ellipsoidal constraint Sj = {x | ∥Ajx − bj∥2 ≤ 1}.
Here our assumed linesearch and normal vector can be cheaply computed with closed forms: the
one-dimensional linesearch is directly given by the quadratic formula and a normal vector follows
from one matrix multiplication with AT

j Aj . In contrast, linear optimization, projections, and interior
point method steps on ellipsoids all require at least solving a linear system.

A family of projection-free algorithms only utilizing these cheaper oracles was first developed
by Renegar [3, 4]. We introduce these ideas following their more general development as “radial
algorithms” of Grimmer [6, 10]. These methods reformulate (1.1) as the equivalent radially dual
problem1

min
y

max
j

{fΓ,e(y), γSj ,e(y)} (1.2)

provided f(e) > 0 and e ∈ int ∩ Sj . Here γS,e is the gauge of Sj with respect to e and fΓ,e is a
nonlinear transformation of f (again see Section 2.1 for formal definitions). This reformulation is
quite amenable to the application of first-order methods since (i) it is unconstrained minimization,
facilitating the use of projection-free methods, (ii) it only interacts with the constraints Sj through
their gauges, enabling the use of often cheaper oracles, and (iii) it is uniformly Lipschitz continuous,
removing the need to assume such structure. However, the applicability of prior radial algorithms
based on solving (1.2) is limited by the required knowledge of a common strictly feasible point e.

1Note this radial dual is fundamentally different from the similarly named gauge dual of Freund [14] as knowledge
of oracles for related conjugate functions and polar sets are avoided in the radial dual formulation.
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Indeed, the Lipschitz continuity of (1.2) depends on how interior e is to ∩Sj . So, a “good” reference
point is very much needed for prior methods to be effective.

Our Contributions The primary contribution of this work is generalizing the duality between
the primal problem (1.1) and radially dual problem (1.2) preserving the benefits (i)-(iii) above while
avoiding any usage of a common point e. Instead, we consider the MultiRadially Dual problem

min
y

max
j

{fΓ,e0(y), γSj ,ej (y)} (1.3)

which only relies on separate points e0 with f(e0) > 0 and ej ∈ int Sj for each constraint. More
generally, we develop theory relating (1.1) to any problem of the form miny max{fΓ,e0(y), φ(y)}
where φ : E → R is a convex function “identifying” the feasible region ∩Sj = {x ∈ E | φ(x) ≤ 1}.

1. MultiRadial Duality Theory We develop theory relating the optimal solutions of the primal
problem (1.1) to those of (1.3). Our Theorems 3.3 and 3.4 provide direct, algorithmically
useful bounds relating the primal and multiradial dual optimal values, controlled by a natural
geometric condition number. In the special case where p∗ = 1, these bounds become tight and
our Theorem 3.1 shows both problems have exactly the same solution sets.

2. MultiRadial Methods Based on this theory, we design and analyze new scalable, projection-
free “MultiRadial Methods”. For nonLipschitz nonsmooth convex optimization, our Corol-
lary 4.1 guarantees a MultiRadial Subgradient Method converges at the optimal O(1/ε2) rate
up to a log term, with each iteration computing at most one subgradient of f or one normal
vector of a constraint. When the objective and constraint sets are smooth, our Corollaries 4.2
and 4.3 show accelerated MultiRadial Smoothing and Generalized Gradient Methods converge
at rates O(1/ε) and O(1/

√
ε) up to a log term, where the latter relies on more expensive

per-iteration computations with respect to m.

Example - Convex Quadratically Constrained Quadratic Programming (QCQPs)
Throughout this work, we periodically utilize quadratic optimization problems as a concrete,
classic model to illustrate results. In particular, consider a convex QCQP

p∗ =
{

max f0(x) := r0 − qT
0 x − 1

2xT P0x

s.t. fj(x) := rj − qT
j x − 1

2xT Pjx ≥ 0 ∀j = 1 . . . m .
(1.4)

for any positive semidefinite matrices Pj and p∗ > 0.
For convex QCQPs, one natural selection for e0 is the maximizer of the objective f(x), given

by solving P0e + q0 = 0. Similarly, a natural selection of ej would be any solution of Pje + qj = 0.
Our approach applies for any selection of ej ’s with fj(ej) > 0. In Section 5, we numerically observe
that the typical numerical performance of our MultiRadial Methods tends to be independent of the
choice of centers ej . Consequently, it may suffice to cheaply approximate a solution of Pje + qj = 0.

Supposing each Pj is positive definite, these selections correspond to ej = −P −1
j qj for j =

0, . . . , m. Then the multiradial dual problem (1.3) of (1.4) takes the form

min
y

max
j=1...m

1 +
√

1 + 2f0(e0)(y − e0)T P0(y − e0)
2f0(e0) ,

√
(y − ej)T Pj(y − ej)

2fj(ej)

 . (1.5)
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More generally, for any positive semidefinite Pj and any selection of ej with fj(ej) > 0, the
multiradial dual problem (1.3) of (1.4) remains describable in closed form as

min
y

max
j=1...m

{
1 − ∇f0(e0)T (y − e0) +

√
(1 − ∇f0(e0)T (y − e0))2 + 2f0(e0)(y − e0)T P0(y − e0)

2f0(e0) ,

−∇fj(ej)T (y − ej) +
√

(∇fj(ej)T (y − ej))2 + 2fj(ej)(y − ej)T Pj(y − ej)
2fj(ej)

}
. (1.6)

In either case, each component of the objective and its gradient can be computed via one matrix-
vector multiplication. In this sense, we claim the resulting multiradial first-order methods are
“scalable” as many existing alternatives require at least a linear system solve each iteration. The
development of method’s only relying on matrix-vector multiplication has been a recent trend in
linear programming [15–18] and quadratic programming [19].

Outline Section 2 introduces needed preliminaries. Our theory in Section 3 relates our uncon-
strained “multiradial” reformulations to the original problem and discusses immediate algorithmic
consequences. Subsequently, in Section 4, we develop a parameter-free method based on approxi-
mately solving (rescalings of) these multiradial problems. Preliminary numerical results are presented
in Section 5 for QCQPs, validating our theory and highlighting one area where performance scales
better than our theory predicts.

2 Preliminaries

Our notations follow those of the initial development of radial duality [6,10], specialized to the convex
settings considered here. We consider any finite-dimensional Euclidean space E with a norm ∥ · ∥
induced by an inner product ⟨·, ·⟩. To apply previous radial theory, we restrict to consider objective
functions with values in the (extended) positive reals, which we denote by R++ = R++ ∪ {0, ∞}.
Here, R++ is the set of positive real numbers and 0, ∞ should be interpreted as the limit points of
R++, playing a similar role to ±∞ for the real numbers.

Throughout, we will primarily consider extended positive valued functions f : E → R++ ∪{0, ∞}.
We claim this restriction is minor: for any real-valued objective f̃ : E → R∪ {±∞} to be maximized,
one can equivalently maximize the extended positive valued function f(x) := max{f̃(x)−f̃(x0)+1, 0}
when given any x0 ∈ E with f(x0) ∈ R. For any extended real-valued function f , its effective domain,
epigraph, and hypograph are

dom f := {x ∈ E | f(x) ∈ R++}
epi f := {(x, u) ∈ E × R++ | f(x) ≤ u}

hypo f := {(x, u) ∈ E × R++ | f(x) ≥ u} ,

respectively. We denote the closure of dom f by S0. A function f : E → R++ is concave (convex) if
hypo f (epi f) is convex. We say f is upper (lower) semicontinuous at x ∈ E if lim supx′→x f(x′) =
f(x) (lim infx′→x f(x′) = f(x)) and say f is globally upper (lower) semicontinuous if this holds for
all x ∈ E . We abbreviate upper (lower) semicontinuity as u.s.c. (l.s.c.) at times.

Normals, Subdifferentials, and Smoothness. The inner product on E induces one on E × R
defined by ⟨(x, u), (x′, u′)⟩ := ⟨x, x′⟩ + u · u′. We use the same notation for both inner products as
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it will be clear from context which is being used. We say that a vector ξ is normal to a set S at
x if ⟨ξ, x′ − x⟩ ≤ 0 for all x′ ∈ S. The set of all normal vectors to S at x is denoted by NS(x). A
vector ζ ∈ E is a subgradient of convex function f at x ∈ E if (ζ, −1) ∈ Nepi f ((x, f(x)). The set of
all subgradients of f at x is denoted by ∂f(x) and referred to as the subdifferential of f at x. We
say ζ ∈ E is a supgradient of a concave function f at x ∈ E if (−ζ, 1) ∈ Nhypo f ((x, f(x)). If f is
continuously differentiable, these differentials are exactly the singleton {∇f(x)}.

We say a function f : E → R is M -Lipschitz continuous if |f(x) − f(y)| ≤ M∥x − y∥ for all
x, y ∈ E and a continuously differentiable function f is L-smooth if its gradient is L-Lipschitz
continuous on its domain. We say a set S is β-smooth if any two unit length normal vectors
ξi ∈ NS(xi) for i ∈ {1, 2} satisfy ∥ξ1 − ξ2∥ ≤ β∥x1 − x2∥. A more detailed discussion on smooth
sets is given in [9].

2.1 Minkowski Gauges and Radial Reformulations

For any set S ⊆ E , we define its gauge with respect to some e ∈ S as

γS,e(x) := inf
{

v > 0 | e + x − e

v
∈ S

}
. (2.1)

When e = 0, this is the Minkowski gauge, denoted by γS(y) = inf{v > 0 | e/v ∈ S}. Otherwise, γS,e

can be viewed as a translation of the Minkowski gauge γS−e. Note if S is convex and e ∈ int S, then
γS,e is convex, continuous and finite everywhere.

This gauge of a set has a close relationship to the following indicator function. Namely, consider
the nonstandard indicator function ι̂S : E → {0, ∞} defined as

ι̂S(x) :=
{

+∞ if x ∈ S

0 otherwise .
(2.2)

To relate these functions, observe that the hypograph of this indicator has a bijection to the epigraph
of the gauge of a closed convex S with respect to any e ∈ int S of

Γe(x, u) :=
(

e + x − e

u
,

1
u

)
. (2.3)

Namely,
hypo ι̂S = Γe(epi γS,e). (2.4)

This “radial transformation” Γe was introduced in [10], fixing e = 0.
The epigraph-hypograph bijection (2.4) motivates the following radial function transformation

of a generic function f : E → R++ with e ∈ E as2

fΓ,e(y) := sup {v > 0 | (y, v) ∈ Γe(epi f)} . (2.5)

Intuitively, one can view fΓ,e as the smallest function whose hypograph contains Γe(epi f). When
f = γS,e for a closed convex set S with e ∈ int S, this radial transformation exactly turns gauges
into indicator functions ι̂Γ,e

S = γS,e. Moreover, one can verify the reverse holds as well, ι̂S = γΓ,e
S,e . So

this transformation provides a bijection between indicator and gauge functions.
Expanding the definitions of Γe and epi f , one has fΓ,e(y) = sup

{
v > 0 | vf(e + y−e

v ) ≤ 1
}

.

When e = 0, we ease notation, writing fΓ = fΓ,0. From this, it becomes clear that fΓ,e = (f ◦te)Γ◦t−e

2If the set on the right of (2.5) is empty, we set fΓ,e(y) = 0 rather than −∞ to ensure the transformed function
also maps into the extended positive reals.
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where te(y) = e + y denotes a translation by e, and so this radial transformation is just a translation
of those proposed by Grimmer [6, 10]. In the following, we summarize their results relating f to
fΓ and (fΓ)Γ, emphasizing that fΓ can be replaced with fΓ,e for e ∈ E by the simple translation
argument noted above. For more exposition, we refer the reader to the relevant parts of [10] and [6].

The duality between indicators and gauges of convex sets carries over more generally to a wide
range of (potentially nonconvex) functions. In particular, we say f is upper radial with respect
to e if the translated perspective function fp,e(x, v) = vf(e + x−e

v ) is upper semicontinuous and
nondecreasing in v > 0 for all fixed x ∈ E . Theorem 1 of [10] establishes that this condition exactly
characterizes when the radial function transformation is dual: For any e ∈ E ,

(fΓ,e)Γ,e = f if and only if f is upper radial with respect to e . (2.6)

The condition that fp,e(x, ·) is nondecreasing for all x ∈ E is equivalent to hypo f being star-convex
with respect to (e, 0), cf. [10, Lemma 1]. This duality between functions extends to give a duality
between optimization problems as for any such objective: Proposition 24 of [10] ensures

(argmax f) × {max f} = Γe

((
argmin fΓ,e

)
×
{

fΓ,e
})

. (2.7)

Structural Properties of Gauges and Radial Reformulations. This work is primarily
concerned with concave objective functions f being maximized over convex sets Sj , for which the
above star-convexity condition is easily verified. In this case, we can ensure a strengthened version
of upper radiality holds: when f is upper radial with respect to e and fp,e(x, ·) is strictly increasing
on dom fp,e(x, ·) := {v > 0 | fp,e(x, v) ∈ R++} for every x ∈ E , we say f strictly upper radial with
respect to e. Then, it follows that all functions and sets considered here are well behaved as

f is concave and u.s.c. =⇒ f is strictly upper radial w.r.t. any e ∈ int dom f (2.8)
S is convex and closed =⇒ ι̂S is strictly upper radial w.r.t. any e ∈ int S . (2.9)

Given a bound on how interior e is to the domain of f (or to the constraint set S), we can further
guarantee the radial transformation (or gauge) with respect to e is well behaved, i.e., convex and
uniformly Lipschitz continuous. Denote the interior radius of S with respect to e and diameter by

Re(S) := inf {∥x − e∥ | x /∈ S}
D(S) := sup {∥x − y∥ | x, y ∈ S}

Then [10, Proposition 17] and [6, Proposition 1, Lemma 1] ensure the following

f is concave, u.s.c., and Re(S0) > 0 =⇒ fΓ,e is convex and 1/Re(S0)-Lipschitz , (2.10)
S is convex, closed, and Re(S) > 0 =⇒ γS,e is convex and 1/Re(S)-Lipschitz (2.11)

where S0 = cl dom f . Hence, provided “good” interior points to the domain of f and each constraint
are known, their transformations will be well-behaved and conditioned3. Moreover, when f is
L-smooth or S is β-smooth, this structure is preserved. Namely [6, Proposion 2] ensures for twice
continuously differentiable f with bounded domain, fΓ,e is O(L)-smooth and [9, Theorem 3.2]
ensures for β-smooth, compact S, γ2

S,e is O(β)-smooth. Both big-O statements above suppress
constants depending on the geometric radius and diameter quantities above.

3In the nonconvex development of these radial transformations of [6], these R constants are generalized to measure
how star-convex the given function’s hypograph is.
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Finally, we note three calculus/computational results of interest to our development. The
family of upper and strictly upper radial functions is closed under many common operations,
see [10, Propositions 12 and 13]: If f is (strictly) upper radial with respect to e, then so is λf for
all λ > 0 and

(λf)Γ,e = 1
λ

fΓ,e ◦ te ◦ λt−e . (2.12)

If f1, f2 are both (strictly) upper radial with respect to e, then so is min{f1, f2} and

(min {f1, f2})Γ,e = max
{

fΓ,e
1 , fΓ,e

2

}
. (2.13)

For any f that is strictly upper radial with respect to some e, the subgradients of fΓ,e are easily
computed from those of f as [10, Proposition 19] ensures

∂fΓ,e(y) =
{

ζ

⟨(ζ, δ), (x − e, u)⟩ | (ζ, δ) ∈ Nhypo f ((x, u)), ⟨(ζ, δ), (x − e, u)⟩ > 0
}

(2.14)

where (x, u) = Γe((y, fΓ,e(y))).

2.2 First-Order Methods Minimizing Finite Maximums

Instead of directly solving the primal problem (1.1), our proposed MultiRadial Methods will solve (a
sequence of) unconstrained convex minimization problems of the form (1.3). These reformulations
will always be minimizing a finite maximum of convex functions:

h⋆ = min
x

max{h0(x), . . . , hm(x)} . (2.15)

Let h(x) = max{h0(x), . . . , hm(x)} denote the whole objective being minimized. Depending on
the structure of f and Sj in (1.1), the multiradial dual will have components hj that are either
Lipschitz or smooth. Below we review three well-known families of first-order methods capable
of minimizing such objectives: first, the subgradient method for nonsmooth settings, and then
accelerated smoothing and generalized gradient methods for smooth settings with large or small
values of m, respectively.

Each first-order method fom considered maintains a sequence of iterates yi defined by two (simple)
procedures for initializing/restarting itself and for taking one step. We denote the initialization
process by y0 = fom.initialize(x, ε, h), where x ∈ E is an initial solution, ε > 0 is a target accuracy,
and h is the objective to minimize. For momentum methods, this procedure may involve initializing
auxiliary variable sequences as well. We denote taking one step of fom by yi+1 = fom.step(yi, ε, h),
although auxiliary variable sequences may be updated as well. The considered methods all have
convergence guarantees of the following form: If ∥y0 − y∗∥ ≤ D for some minimizer y∗ of h, then

Some i ≤ Kfom(D, ε, h) has h(yi) − h(y∗) ≤ ε . (2.16)

The Subgradient Method The subgradient method, dubbed subgrad, initializes simply with
y0 = x0 and iterates

yi+1 = yi − εgi/∥gi∥2, gi ∈ ∂h(yi) . (2.17)

Note a subgradient of h(xk) can be computed as any subgradient of some hj(xk) attaining the finite
maximum. Provided each hj is convex and M -Lipschitz, which implies h is convex and M -Lipschitz,
the convergence of this method is well studied, having Ksubgrad(D, ε, h) = M2D2/ε2.
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The (Accelerated) Smoothing Method Supposing instead that each hj is L-smooth and
M -Lipschitz, one can utilize the smoothing techniques of [20,21]. Given a target accuracy ε > 0, one
can approximate h by hθ(y) = θ log

(∑m
j=0 exp

(
hj(y)

θ

))
for θ = ε

2 log(m+1) . One can verify hθ has
|hθ − h| ≤ ε/2 and is Lθ = L + M2

θ -smooth. Then one can apply any accelerated gradient method
to minimize hθ. For example, Nesterov’s accelerated method initialized with z0 = y0, t0 = −1+

√
5

2
iterates {

yi+1 = zi − 1
Lθ

∇hθ(zi)
zi+1 = yi+1 + βi(yi+1 − yi)

(2.18)

where t2
i+1 = (1 − ti)t2

i and βi = ti(1− ti)/(t2
i + ti+1). We denote this method by smooth. Noting any

ε/2-minimizer of hθ is an ε-minimizer of h, the accelerated convergence of 2
√

LθD2/ε in [22, Theorem
2.2.3 ] gives a guarantee of the form (2.16)

Ksmooth(D, ε, h) = 2

√
2LD2

ε
+ 4M2D2 log(m + 1)

ε2 .

In our numerics, we will instead use the Universal Fast Gradient Method (UFGM) of Nesterov [23],
which avoids requiring knowledge of Lθ.

The (Accelerated) Generalized Gradient Method If, in addition to being L-smooth, the
number of terms in the finite maximum m is relatively small, one can utilize the generalized gradient
method as outlined in [22]. This method works by utilizing the generalized gradient mapping defined
as

G(y, α) = 1
α

argmin
y′

{
max

j=0,...,m

{
hj(y) + gT

j (y′ − y)
}

+ 1
2α

∥y′ − y∥2
}

, gj ∈ ∂hj(y),

and then applying any accelerated method with G(y, α) replacing the gradient, which we dub
genGrad. Computing G(y, α) corresponds to solving a quadratic program of dimension m + 1. This
limits the applicability of such methods to settings where this can be efficiently calculated, primarily
being useful when m is small. Theorem 2.3.5 of [22] ensures this method has a convergence guarantee
of the form (2.16) with KgenGrad(D, ε, h) = 2

√
LD2/ε.

3 MultiRadial Theory and Idealized Methods
We begin by developing our multiradial duality theory relating generic constrained maximization
problems (1.1) to the unconstrained multiradially dual problem (1.3). Throughout, we will discuss
immediate algorithmic implications by analyzing resulting simple multiradial algorithms. In the
following section, we will propose and analyze a more practical parameter-free multiradial method.

First, we introduce some notations to describe the primal and (multi)radial dual objectives
of (1.1) and (1.3). Let S :=

⋂m
j=1 Sj denote the primal feasible region and Ψ : E → R++ denote the

primal function
Ψ(x) := min {f(x), ι̂S(x)} . (3.1)

Maximizing Ψ(x) is exactly the original primal problem (1.1) provided some x ∈ S ∩ dom f exists,
so p∗ := maxx∈S f(x) = maxx∈E Ψ(x). For any e ∈ int (S ∩ dom f),

ΨΓ,e = max
{

fΓ,e, γS,e

}
(3.2)
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by equation (2.13) and the fact that γS,e = ι̂Γ,e
S . Thus the following duality relation holds

(argmax Ψ) × {max Ψ} = Γe

((
argmin ΨΓ,e

)
×
{

min ΨΓ,e
})

(3.3)

by (2.7). Requiring a point e interior to every constraint is a notable limitation to the design of
algorithms based on this relation. We address this by relaxing the dual objective function ΨΓ,e. We
instead consider the following dual function

Φ(y) = max{fΓ,e0(y), φS(y)} (3.4)

where φS : E → R is a l.s.c. convex function satisfying int S = {x ∈ E | φS(x) < 1}. We call
any such φS a convex identifier of S. Based on equation (3.2), a natural choice for an identifier is
φS = max{γS1,e1 , . . . , γSm,em} where ej ∈ int Sj for all j. This particular φS enables us to replace
e ∈ int (S ∩ dom f) with separate reference points for each functional component of the primal
objective (3.1). For this reason, we call Φ in (3.4) the multiradial dual function. We will at times
refer to max{γS1,e1 , . . . , γSm,em} as the canonical φS and we encourage the reader to keep it as a
concrete example of a convex identifier.

The primal problem and (multiradial) dual problem are then given by

p∗ := max
x∈E

Ψ(x) (3.5)

d∗ := min
y∈E

Φ(y) . (3.6)

We will show that, under suitable assumptions, Φ is indeed an appropriate replacement to the
radial dual ΨΓ,e given by using a single reference point. A condition analogous to (3.3) is derived in
Theorem 3.1 in a restricted case, with general relationships being given in Theorems 3.3 and 3.4.
Note that with the canonical φS , the multiradial dual problem is an unconstrained, convex, uniformly
Lipschitz minimization problem (and thus remains amenable to the direct application of many
first-order methods).

Our theory relies on four assumptions, ensuring (1.1) is concave maximization with a maximizer
and a Slater point, and that φS and fΓ,e0 are well defined.
Assumption A. f is concave and u.s.c. with bounded zero super-level set

D0 := D(S0) < ∞.

Assumption B. The constraint sets S1, . . . , Sm are convex and closed.
Assumption C. A convex identifier φS is known and a point e0 ∈ int S0 is known with

R0 := Re0(S0) > 0.

Assumption D. There exists x∗ ∈ S with f(x∗) = p∗ > 0 and xSL ∈ int S ∩ dom f such that

η := (1 − γS0,e0(x∗))(1 − φS(xSL)) > 0.

A few notes on these conditions. Firstly, under Assumptions A and B, Assumption C is satisfied
if points ej ∈ int Sj are known for each j = 0, 1, . . . , m. In this case, with R := min{Rej (Sj) |
j = 0, 1, . . . , m}, Φ with the canonical φS is 1/R-Lipschitz continuous. Note the multiradial
reformulation Φ can have a better Lipschitz constant than the radial dual (1.2) relying on knowing
a single e ∈ int ∩m

j=0 Sm which is 1/Re(∩m
j=0Sj)-Lipschitz. We leave the possibility of extending

our optimality relationships between the primal and multiradial dual to nonconvex optimization
to future works. Doing so would likely rely on replacing concavity assumptions by strictly upper
radiality as done in [10]. However, such nonconvex problems are beyond the scope of the algorithms
and analysis considered herein. Lastly, note that xSL will never be assumed to be known; it is only
used in our analysis.
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3.1 Exact MultiRadial Dual Optimality Relationships

These four assumptions suffice to show our primal and multiradially dual optimization problems
are closely related. Our first result to this end is Theorem 3.1, which states that the two problems
are equivalent when the optimal objective value is one, mirroring (3.3). This theorem is proved in
Section 3.3.3.

Theorem 3.1. Under assumptions A - D, if p∗ = 1 or d∗ = 1, then

argmax Ψ × {p∗} = argmin Φ × {d∗} .

Problems with any p∗ > 0 (not necessarily one) are still amenable to the application of this
result by considering the rescaled primal function Ψτ and its multiradially dual function Φτ , given
by

Ψτ (x) = min {τf(x), ι̂S(x)} (3.7)
Φτ (y) = max{(τf)Γ,e0(y), φS(y)} (3.8)

for τ > 0. We let p(τ) and d(τ) respectively denote

p(τ) := max
x∈E

Ψτ (x) (3.9)

d(τ) := min
y∈E

Φτ (y) . (3.10)

By Theorem 3.1, p(τ) = d(τ) = 1 whenever τ = 1
p∗ and these problems have the same set of solutions.

Since argmax Ψ = argmax Ψτ , the following duality relation holds.

argmax Ψ = argmin Φ1/p∗ . (3.11)

For algorithmic purposes, requiring knowledge of p∗ is often prohibitive. As one example where
such results are relevant, consider any minimization problem where strong duality holds. Then,
minimizing the duality gap has a known optimal value, zero. To be concrete, consider a generic
conic program over a closed convex cone K with dual cone K∗ where the primal problem minimizes
⟨c, x⟩ subject to Ax = b and x ∈ K and the dual problem maximizes ⟨b, y⟩ subject to c − A∗y ∈ K∗.
Then one can formulate seeking optimal primal-dual solutions as the following problem with p∗ = 1

1 =


max 1 + ⟨b, y⟩ − ⟨c, x⟩
s.t. Ax = b

x ∈ K
c − A∗y ∈ K∗ .

3.1.1 A Simple Method when the Optimal Value is Known When p∗ is known and
positive, (3.11) provides an alternative means to compute an approximate maximizer of the original
problem. Given an initial point x0 ∈ E and a given target accuracy ε > 0, one could iterate{

y0 = fom.initialize(x0, ε, Φ1/p∗)
yi+1 = fom.step(yi, ε, Φ1/p∗)

. (3.12)

Guarantees on this scheme’s convergence directly follow from the convergence rate Kfom(·) of the
given first-order method. The following theorem formalizes the primal objective gap and feasibility
convergence of the above multiradial dual iterates yi.
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Theorem 3.2. Under Assumptions A - D, the points zi = e0 + yi−e0
Φ1/p∗ (y0) , where yi is the sequence

(3.12), have
p∗ − f(zi)

p∗ ≤ ε and inf
x∈S0∩S

∥zi − x∥ ≤
[

φS(e0)D0
1 − φS(xSL)

]
ε

for some i ≤ Kfom(∥x0 − x∗∥, ε, Φ1/p∗).

Proof. Note some i ≤ Kfom(∥x0 − x∗∥, ε, Φ1/p∗) must have 0 ≤ Φ1/p∗(yi) − 1 ≤ ε. The claimed
objective bound on the corresponding zi follows as

1
p∗ f(zi) ≥ lim sup

v↘Φ1/p∗ (yi)

1
p∗ f

(
e0 + yi − e0

v

)
≥ 1

Φ1/p∗(yi)
= 1 −

Φ1/p∗(yi) − 1
Φ1/p∗(yi)

≥ 1 − ε

Φ1/p∗(yi)

where first inequality uses upper semicontinuity, the second uses the definition of (f/p∗)Γ,e0 , and
the third uses that yi is an ε-minimizer. The proof of our feasibility bound is deferred to Lemma 3.3
showing infx∈S0∩S ∥zi − x∥ ≤

[
φS(e0)D0

1−φS(xSL)

] Φ1/p∗ (yi)−1
Φ1/p∗ (yi) .

For example, consider the convex identifier φS = max{γSj ,ej } as the maximum of the gauges of
the constraint sets Sj with respect to ej . Noting each gauge is 1/Rej (Sj)-Lipschitz, the corresponding
multiradial problem is 1/R-Lipschitz where R = minj=0,...,m Rej (Sj). Consequently, a multiradial
subgradient method (that is, using the subgradient method (2.17) in the multiradial method (3.12))
requires at most

Ksubgrad(∥x0 − x∗∥2, ε, Φ1/p∗) = ∥x0 − x∗∥2

R2ε2

iterations to produce some point with p∗−f(zi)
p∗ ≤ ε and infx∈S0∩S ∥zi − x∥ ≤

[
φS(e0)D0

1−φS(xSL)

]
ε. Note

this result is in line with prior radial subgradient method guarantees [5], avoiding reliance on
Lipschitz constant assumptions and instead only depending on “geometric” radius and diameter-type
constants. Unlike these prior methods, a common e ∈ int ∩ Sj is not needed and as previously
noted, the value of R may be strictly larger.

3.2 General MultiRadial Dual Optimality Relationships

In the remainder of this section, we consider the relationship between p∗ and d∗ when p∗ is
unknown, so simply rescaling the objective to have optimal value one beforehand is not doable. Our
Theorems 3.3 and 3.4 bound the absolute and relative distance of p∗ and d∗ from the value one in
terms of each other. These theorems are proved in Section 3.3

Theorem 3.3. Under Assumptions A - D, if p∗ − 1 ≥ 0 then

1 − d∗ ≥ R0η

R0 + D0

p∗ − 1
p∗ .

Theorem 3.4. Under Assumptions A - D, if 1 − d∗ ≥ 0 then

p∗ − 1 ≥ R0
D0 + R0

1 − d∗

d∗ .

In fact, if y ∈ S satisfies fΓ,e0(y) ≤ 1, then f(y) − 1 ≥ R0
D0+R0

1−fΓ,e0 (y)
fΓ,e0 (y) .
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These two theorems provide bounds on the relative distance from the primal/dual optimal value
from one in terms of the dual/primal’s optimal value’s absolute gap from one. Such conversions
between absolute and relative accuracy have occurred throughout prior works on radial methods,
see Renegar [3,4]. For our multiradial theory, these relationships are primarily controlled by the
natural geometric condition number based on the objective function’s domain R0/(D0 + R0).

Consider applying these bounds to a rescaled problem with objective function τf for some
τ ≥ 1/p∗. Recall this rescaled problem’s maximum value is denoted by p(τ). In such rescaled
settings, bounding d∗ ≤ 1, we denote the two coefficients above as

ρ = R0
D0 + R0

and cτ = 1
p(τ)

R0
D0 + R0

η. (3.13)

This notation helps illuminate the following relation implied by our theory

cτ [p(τ) − 1] ≤ 1 − d(τ) ≤ 1
ρ

[p(τ) − 1] whenever p(τ) − 1 ≥ 0 or 1 − d(τ) ≥ 0. (3.14)

The following corollaries of Theorems 3.3 and 3.4 provide the basis for our algorithms.

Corollary 3.1. Let τ ≥ 1/p∗ > 0 and r ∈ [0, 1]. Under Assumptions A - D, any y with Φτ (y)−d(τ) ≤
(1 − r)[1 − d(τ)] has y ∈ S and τf(y) − 1 ≥ rρ[1 − d(τ)].

Proof. If Φτ (y) − d(τ) ≤ (1 − r)[1 − d(τ)], then 1 − Φτ (y) ≥ r[1 − d(τ)]. Since τ ≥ 1/p∗ implies
1 − d(τ) ≥ 0 by Theorem 3.3, it follows that y ∈ S as φS(y) ≤ Φτ (y) ≤ 1. Moreover, by Theorem 3.4,
τf(y) − 1 ≥ ρ[1 − Φτ (y)] ≥ rρ[1 − d(τ)].

Corollary 3.2. Let τ0 ≥ 1/p∗, δ ≥ 0, and µ ≥ 1. Under Assumptions A - D, if τ1 ≤ 1
1+δ τ0 and

1 − d(τ) ≤ µδ then
p(τ1) − 1 ≤ 1

1 + δ

(
1 − cτ

µ

)
[p(τ0) − 1].

Proof. Applying first that τ1 ≤ 1
1+δ τ0, second that 1 − d(τ0) ≤ µδ, and third Theorem 3.3, one has

p(τ1) − 1 ≤ 1
1 + δ

p(τ0) − 1 = 1
1 + δ

[p(τ0) − 1 − δ] ≤ 1
1 + δ

[
p(τ0) − 1 − cτ0

µ

1 − d(τ)
cτ0

]
≤ 1

1 + δ

(
1 − cτ0

µ

)
[p(τ0) − 1] .

3.2.1 A Simple Method when Rescaled Problems can be Solved Exactly To demonstrate
how to benefit algorithmically from Theorems 3.3 and 3.4, let τ0 ≥ 1/p∗ and consider the sequencey(k+1) ∈ argmin Φτk

τk+1 = 1
f(y(k+1)) .

(3.15)

With r = 1, Corollary 3.1 implies τk+1 ≤ 1
1+ρ[1−d(τk)]τk. Therefore, taking δk = ρ[1 − d(τk)] and

µ = 1/ρ, we have τk+1 ≤ 1
1+δk

τk and 1 − d(τk) ≤ µδk for all k ≥ 0. This implies p(τk+1) − 1 ≤
1

1+δk
(1 − ρcτk

)[p(τk) − 1] by Corollary 3.2. Noting cτk
≥ cτ0 since τk is decreasing and δk ≥ 0 yields

the following theorem.
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Theorem 3.5. Under Assumptions A - D, if τ0p∗ − 1 > 0, the ideal sequence (3.15) has

(1 − ρcτ0)k[τ0p∗ − 1] ≥ p(τk) − 1.

Hence for any ε > 0, all k ≥ 1
ρcτ0

log(p∗[τ0p∗ − 1]/ε) have

p∗ − f(y(k)) < ε and y(k) feasible.

3.2.2 A Simple Method when Rescaled Problems are Solved Inexactly The sequence (3.15)
will often not be practical to implement as it requires exact solutions to the multiradial dual problems
miny∈E Φτ (y). However, the linear convergence in Theorem 3.5 suggests that a good primal solution
may be obtained by approximately solving a (relatively) small number of dual problems. This is the
main motivation behind our general multiradial methods; we mimic the sequence (3.15), replacing
exact solutions with approximate ones.

Here we sketch a general family of methods of this form, with the drawback that determining
when an approximate solution is good enough still requires unrealistic problem-dependent knowledge.
We suppose an initial feasible point y(0) ∈ dom f ∩S is given and set τ0 = 1/f(y(0)). To approximate
the iteration (3.15), we apply a given fom to minimize Φτk

initialized at y(k), yielding iterates y
(k)
i .

Once a sufficient accuracy is reached at some iteration i of the subproblem optimization, we set
y(k+1) = y

(k)
i . One natural way to define sufficient accuracy is to require Φτk

(y(k)
i ) − d(τk) ≤ δk.

If d(τk) + δk ≤ 1, then such y
(k)
i will be feasible and Theorem 3.4 implies 1 + ρδk ≤ τkf(y(k)

i ).
Motivated by this observation, we bypass the ‘dual’ notion of accuracy and directly say y

(k)
i is

sufficiently accurate if (i) 1/f(y(k)
i ) ≤ 1

1+δk
τk and (ii) y

(k)
i ∈ ∩m

j=1Sj . This process is formalized in
Algorithm 1.

Algorithm 1 The MultiRadial Method
Require: (f, e0), x0 ∈ dom f ∩ S, a convex identifier φS , {δk}∞

k=0 , a first-order method fom
1: Set τ0 = 1/f(x0) and y

(0)
0 = fom.initialize(x0, δ0, Φτ0) and i = 0

2: for k = 0, 1, 2, . . . , do
3: repeat
4: y

(k)
i+1 = fom.step(y(k)

i , δk, Φτk
), i = i + 1 (fom takes one step)

5: until 1/f(y(k)
i ) ≤ 1

1+δk
τk and y

(k)
i is feasible

6: Set τk+1 = 1/f(y(k)
i ) (Restart fom once satisfied by y

(k)
i )

7: Set y
(k+1)
0 = fom.initialize(y(k)

i , δk+1, Φτk+1) and i = 0
8: end for

Selecting a sequence of stopping criteria δk for which Algorithm 1 has provably good performance
guarantees is nontrivial. As 1 − d(τk) decreases to 0, δk must decrease similarly for the condition
1/f(y(k)

i ) ≤ 1
1+δk

τk to be attainable; below we show that taking δk = ρ1−d(τk)
2 maintains the outer

linear convergence rate of (3.15).

Theorem 3.6. Suppose Assumptions A - D hold and let fom be given. Then, for all ε > 0,
Algorithm 1 with δk = ρ1−d(τk)

2 has

p∗ − f(y(k′)
0 ) ≤ ε and y

(k′)
0 feasible

for some k′ ≤ N := ⌈ 2
ρcτ0

log(p∗[τ0p∗−1]
ε )⌉. The total number of fom steps needed to find such y

(k′)
0 is

at most
∑N

k=1 Kfom(D, δk/ρ, Φτk
).
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Proof. Our proof is split into two parts. First, we bound the number of inner loop steps before the
stopping criterion is met using Corollary 3.1. Then, we bound the number of outer loop steps before
an ε-minimizer by a similar contraction as seen for the exact method (3.15) using Corollary 3.2.

By definition, the first-order method fom must have some iteration ik attain Φτk
(y(k)

ik
) − d(τk) ≤

δk/ρ with ik ≤ Kfom(∥y
(k)
0 − y

(k)
∗ ∥, δk/ρ, Φτk

) ≤ Kfom(D, δk/ρ, Φτk
). Since δk/ρ = 1−d(τk)

2 , Corol-
lary 3.1 implies y

(k)
ik

is feasible and τkf(y(k)
ik

) − 1 ≥ (1 − 1/2)ρ(1 − d(τk)) = δk (or equivalently,
1/f(y(k)

ik
) ≤ τk

1+δk
). Therefore, y

(k)
ik

would satisfy the stopping criteria for the inner loop of Al-
gorithm 1 and so, the inner loop at iteration k will always terminate within Kfom(D, δk/ρ, Φτk

)
steps.

Notice that the inner loop stopping criterion ensures that τk+1 ≤ 1
1+δk

τk, where 1 − d(τk) ≤ 2
ρδk.

Therefore, each outer loop contracts the (rescaled) objective gap towards one since

p(τk+1) − 1 ≤ 1
1 + δk

(
1 − ρcτk

2

)
[p(τk) − 1] ≤ 1

1 + δk

(
1 − ρcτ0

2

)
[p(τk) − 1]

≤
(

1 − ρcτ0

2

)
[p(τk) − 1],

where the first inequality used Corollary 3.2 and the second used that cτk
is increasing. As such,

the primal gap converges linearly with p(τk) − 1 ≤ (1 − ρcτ0
2 )k[τ0p∗ − 1] and consequently, some

k′ ≤ ⌈ 2
ρcτ0

log(p∗[τ0p∗−1]
ε )⌉ has a feasible y

(k′)
0 with p∗ − f(y(k′)

0 ) ≤ ε. Totalling the number of steps

executed by fom to find each y
(k)
0 gives the claim.

3.3 Proofs for MultiRadial Duality Theory Optimality Relationships

Below, we first prove Theorems 3.3 and 3.4, which bound the primal and dual difference from one
in terms of each other. From these, Theorem 3.1 is almost immediate.

Our proofs use the following two facts repeatedly. Under Assumptions A - D,

f(λx + (1 − λ)y) ≥ λf(x) + (1 − λ)f(y) ∀x, y ∈ S0, (3.16)

f(e0 + y − e0
v

) ≥ 1
v

for all positive v ≥ fΓ,e0(y). (3.17)

3.3.1 Proof of Theorem 3.3 This result primarily follows from the following bound on the
radial dual value at x∗

fΓ,e0(x∗) ≤ 1 − (1 − γS0,e0(x∗))p∗ − 1
p∗ . (3.18)

We delay the proof of this inequality to first show it suffices to prove the theorem. Consider
xλ = λxSL + (1 − λ)x∗ with λ = R0

R0+D0
(1 − γS0,e0(x∗))p∗−1

p∗ . This satisfies

fΓ,e0(xλ) ≤ fΓ,e0(x∗) + λ
D0
R0

≤ 1 − R0η

R0 + D0

p∗ − 1
p∗

where the first inequality uses the 1/R0-Lipschitz continuity of fΓ,e0 and that ∥xSL − x∗∥ ≤ D0,
and the second uses (3.18) and that (1 − γS0,e0(x∗)) ≥ η. From the convexity of φS , it follows that

φS(xλ) ≤ 1 − R0η

R0 + D0

p∗ − 1
p∗ .
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Combined, these two bounds prove the result as Φ(xλ) ≤ 1 − R0η
R0+D0

p∗−1
p∗ .

Now we return to prove (3.18). Consider v̂ ∈ (γS0,e0(x∗), 1) and let x̂ = e0 + x∗−e0
v̂ ∈ S0. For

any v ∈ [v̂, 1], note that e0 + x∗−e0
v = (1 − α)x̂ + αx∗ where α = 1 − v̂(1−v)

v(1−v̂) ∈ [0, 1]. Since x∗, x̂ ∈ S0,
it follows that

f

(
e0 + x∗ − e0

v

)
≥ αp∗ + (1 − α)f(x̂) ≥ αp∗ = v − v̂

v(1 − v̂)p∗

where the first inequality uses (3.16) and the second uses f(x̂) ≥ 0. In particular, for v ∈ [v̂ + [1 −
v̂]/p∗, 1], this ensures vf

(
e0 + x∗−e0

v

)
≥ 1. Hence fΓ,e0(x∗) ≤ 1 − (1 − v̂)(p∗ − 1)/p∗ since f is

strictly upper radial. Taking the limit as v̂ → γS0,e0(x∗) gives the claim.

3.3.2 Proof of Theorem 3.4 We separate the proof into two lemmas which are of interest in
their own right. The first lemma shows that the multiradial dual function has bounded level sets.
Since this function is convex and bounded below, the lemma guarantees that the function has global
minimizers. The second lemma establishes the inequality f(y) − 1 ≥ R0

R0+D0
1−fΓ,e0 (y)

fΓ,e0 (y) . Combining
these two lemmas immediately completes the proof.

Lemma 3.3. Under Assumptions A - D, if Φ(y) ≤ 1 + ε for ε ≥ 0, then yε = e0 + y−e0
1+ε has

inf
x∈S0∩S

∥yε − x∥ ≤ ε
1+ε

φS(e0)
1−φS(xSL)D0. In particular, ∥y − e0∥ ≤ D0 + ε

[
1 + φS(e0)

1−φS(xSL)

]
D0.

Proof of Lemma 3.3. Consider the point xλ = (1 − λ)xSL + λyε with λ = (1−φS(xSL))(1+ε)
(1−φS(xSL))(1+ε)+εφS(e0) ∈

[0, 1]. First, observe xλ ∈ S0 follows from convexity of S0 since xSL ∈ S0 by definition and yε ∈ S0
by (3.17) noting fΓ,e0(y) ≤ Φ(y) ≤ 1 + ε. Next, observe xλ ∈ S by our choice of λ as

φS(xλ) ≤ φS(xSL) + λ[φS(yε) − φS(xSL)]

≤ φS(xSL) + λ

[
1 + ε

1 + ε
φS(e0) − φS(xSL)

]
= 1

where the first inequality uses convexity of φS at xλ, and the second uses convexity of φS at yε and
that φS(y) ≤ Φ(y) ≤ 1 + ϵ. Together since xλ ∈ S0 ∩ S, we conclude

inf
x∈S0∩S

∥yε − x∥ ≤ ∥yε − xλ∥ = ε

1 + ε

φS(e0)
1 − φS(xSL)∥xλ − xSL∥.

Bounding ∥xλ − xSL∥ ≤ D0 gives the lemma’s first claim. The second claim follows similarly, noting
∥xλ − e0∥ ≤ D0 as well and applying the triangle inequality

∥y − e0∥ = (1 + ε)∥yε − e0∥ ≤ (1 + ε)(∥yε − xλ∥ + ∥xλ − e0∥)

≤ D0 + ε

[
1 + φS(e0)

1 − φS(xSL)

]
D0.

Lemma 3.4. Suppose hypo f is convex and f is globally upper semi-continuous. Then, for any
e0 ∈ dom f, 0 ≤ fΓ,e0(y) ≤ 1 implies f(y) − 1 ≥ (1−fΓ,e0 (y))R0

∥y−e0∥+fΓ,e0 (y)R0
. 4 In addition, if D0 := D(S0) <

∞, then f(y) ≥ 1 + R0
D0+R0

1−fΓ,e0 (y)
fΓ,e0 (y) .

4If R0 = ∞ this should be taken as f(y) ≥ 1 + 1−fΓ,e0 (y)
fΓ,e0 (y)
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Proof of Lemma 3.4. Fix y with 0 ≤ 1 − fΓ,e0(y) ≤ 1. If R0 = ∞ then f is strictly positive
and concave on E which is possible only if f is constant. If f is constant, then so is fΓ,e0 , hence
fΓ,e0(y) = fΓ,e0(e0) = 1

f(e0) . Therefore, if R0 = ∞ or y = e0, then f(y) = 1/fΓ,e0(y) = 1+ 1−fΓ,e0 (y)
fΓ,e0 (y) .

Suppose for the rest of the proof that y ̸= e0 and R0 < ∞. Let z = e0 − R0
y−e0

∥y−e0∥ ∈ S0. For any
positive v ≥ fΓ,e0(y), let w = e0 + y−e0

v and λ = v
(
1 + R0(1−v)

∥y−e0∥+R0v

)
. Then noting y = λw +(1−λ)z,

it follows that

f(y) = f(λw + (1 − λ)z) ≥ λf(w) + (1 − λ)f(z) ≥ λ

v
= 1 + R0(1 − v)

∥y − e0∥ + R0v

where the first inequality uses (3.16), and the second uses (3.17) and that f(z) ≥ 0. Taking the
limit as v → fΓ,e0(y) gives f(y) ≥ R0(1−fΓ,e0 (y))

∥y−e0∥+R0fΓ,e0 (y) . The second part of the lemma follows from

fΓ,e0(y) ≥ γS0,e0(y) ≥ 1
D0

∥y − e0∥,

where the first inequality follows from (3.17) and the second follows because if S0 ⊂ B(e0, D0) :=
{x ∈ E | ∥x − e0∥ ≤ D0} , then 1

D0
∥ · −e0∥ = γB(e0,D0),e0 ≤ γS0,e0 .

3.3.3 Proof of Theorem 3.1 Theorems 3.3 and 3.4 imply that p∗ = 1 if and only if d∗ = 1. It
remains to show that the two problems have the same solutions. To that end, suppose x∗ ∈ S and
f(x∗) = p∗ = 1. Since f is strictly upper radial, f(x∗) = 1 implies fΓ,e0(x∗) = 1. From x∗ ∈ S, we
get φS(x∗) ≤ 1, hence Φ(x∗) = fΓ,e0(x∗) = 1 = d∗. On the other hand, suppose Φ(y∗) = d∗ = 1.
Then, φS(y∗) ≤ 1 hence y∗ ∈ S and f(y∗) ≤ p∗ = 1. We also have fΓ,e0(y∗) ≤ 1 which, by the second
part of Theorem 3.4, implies f(y∗) ≥ 1 + R0

R0+D0
(1 − fΓ,e0(y∗)) ≥ 1. Therefore, f(y∗) = 1 = p∗, and

the proof is complete.

4 A Parameter-Free, Optimal, Parallel MultiRadial Method
The previously discussed multiradial method in Algorithm 1 required unrealistic knowledge to
compute the needed δk. In this section, we present a parameter-free adaption of this method, using
the parallel restarting ideas of [24], which we call the Parallel MultiRadial Method (||-MRM).

Conceptually, the ||-MRM can be thought of as consisting of N parallel, but not independent,
instances of Algorithm 1. In each l-th instance, Algorithm 1 is run with a constant accuracy
sequence

{
δ

(l)
k

}∞

k=0
=
{

δ(l)
}

. All instances start with the same initial data (f, e0), convex identifier
φS , feasible x0, and fom. With a slight abuse of notation, we denote each instance by fom(l). The
crucial part of ||-MRM is that the instances cooperate by sharing their feasible iterates with one
another. In particular, one instance, say fom(1), can use an iterate of another, say fom(2), to make
the update in step 6 of Algorithm 1, if such an iterate is sufficiently accurate for fom(1). In the
end, the best feasible iterate among all is returned as the solution. The number of instances N
and the respective target accuracy δ(l) for each instance can be treated as inputs to the method. A
concrete implementation of the ||-MRM is given in Algorithm 2. For simplicity, Algorithm 2 takes
b ≥ 2 and N as inputs and automatically sets δ(l) = b−l. Motivated by Theorem 3.6, we find that
setting N = O(logb(1/ε)) is sufficient to reach ε-accuracy.

More formally, Algorithm 2 produces iterates y
(l)
i , i = 0, 1, . . . , l = 1, . . . , N. For each l,

the next iterate y
(l)
i+1 is produced from the previous one by a single step of fom(l) = fom, i.e.,

y
(l)
i+1 = fom(l).step(y(l)

i , δ(l), Φ
τ

(l)
i

). These steps can be done in parallel or, as described in Algorithm 2,
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sequentially. Then the best iterate among all past and present feasible iterates, denoted ybest
i+1 ,

is computed. With τ best
i+1 = 1/f(ybest

i+1 ), each instance fom(l) for which ybest
i+1 meets their restarting

criteria (e.g., τ best
i+1 ≤ 1

1+δ(l) τ
(l)
i ), will set their τ

(l)
i+1 as τ best

i+1 and reinitialize fom(l) at ybest
i+1 . We refer

to this event as fom(l) restarting.

Algorithm 2 The Parallel MultiRadial Method (||-MRM)
Require: (f, e0), x0 ∈ dom f ∩ S, a convex identifier φS , b ≥ 2, N > 0, a first-order method fom

1: Set δ(l) = b−l for each l = 1, . . . , N

2: Set each τ
(l)
0 = 1/f(x0) and y

(l)
0 = fom(l).initialize(x0, δ

(l)
0 , Φ

τ
(l)
0

)
3: for i = 0, 1, 2, . . . , do
4: for l = 1 . . . N do
5: τ

(l)
i+1 = τ

(l)
i (Each fom(l) takes one step)

6: y
(l)
i+1 = fom(l).step(y(l)

i , δ(l), Φ
τ

(l)
i

)
7: end for
8: ybest

i+1 = argmin{1/f(y(l)
i′ ) | y

(l)
i′ is feasible and i′ ≤ i + 1} (Find the best iterate seen thus far)

9: τ best
i+1 = 1/f(ybest

i+1 )
10: for each l = 1 . . . N with τ best

i+1 ≤ 1
1+δ(l) τ

(l)
i do

11: Set τ
(l)
i+1 = τ best

i+1 (Restart fom(l) if satisfied by ybest
i+1 )

12: Set y
(l)
i+1 = fom(l).initialize(ybest

i+1 , δ(l), Φ
τ

(l)
i+1

)
13: end for
14: end for

4.1 Convergence Guarantees and Theory

For ease of exposition, we define a few additional quantities not explicitly used in ||-MRM: For each
instance of the first-order method l, we let i

(l)
0 < i

(l)
1 < i

(l)
2 < · · · < i

(l)
Kl

be the sequence of iterations
where a restart occurred (i.e., τ best

i
(l)
k

+1
≤ 1

1+δ(l) τ
(l)
i
(l)
k

). Note there must only be a finite number of such
events. Each restart has

τ
(l)
i
(l)
k

+1
≤ 1

1 + δ(l) τ
(l)
i
(l)
k

.

Inductively applying this and noting 1/f(ybest
i+1 ) ≥ 1/p∗, the total number of restarts by first-order

method instance l is at most Kl ≤ log(p∗/f(x0))/ log(1 + δ(l)). For each iteration i, we say the
critical first-order method instance li is the one with bδ(li)

ρ ≤ 1 − d(τ best
i ) < b2δ(li)

ρ .
The following three quantities are useful in formalizing our convergence rate guarantees for

Algorithm 2. They correspond to bounds on how long it takes for the instance l to be guaranteed
to reach a δ(l)-minimizer of any of its subproblem, the first parallel instance that could be critical,
and given some ε > 0, the last parallel instance that can be critical before an ε-minimizer is found.

K
(l)
fom := max

i≥0
Kfom(D0, δ(l)/ρ, Φ

τ
(l)
i

) (4.1)

l0 := min
{

l = 1, 2, · · · | bδ(l)

ρ
< 1

}
= ⌊logb(b2/ρ)⌋ (4.2)

Ñ(ε) := max
{

l = 1, 2, · · · | b2δ(l)

ρ
≥ cτ0ε

p∗

}
=
⌊

logb

(
b2p∗

cτ0ρε

)⌋
. (4.3)
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Based on these, we have the following convergence guarantee (proof deferred to Section 6),
establishing that ||-MRM needs a logarithmic number O(Ñ(ε)) of multiradial dual problem solves,
each requiring a number of steps controlled by the chosen first-order method, K

(l)
fom.

Theorem 4.1. Suppose Assumptions A - D hold and let fom be given. Then for all ε > 0,
Algorithm 2 with fom, b ≥ 2, and N ≥ logb( bp∗

cτ0 ρε) has

p∗ − f(ybest
i ) ≤ ε and ybest

i feasible

provided that5

i ≥ log(τ0p∗)
log(1 + ρ

b2 )K
(l0)
fom +

5b2(1 + ρ
b2 )

4ρcτ0

Ñ(ε)∑
l=l0+1

K
(l)
fom .

To illustrate the reach of this theorem, we present corollaries for three pairs of first-order methods
(previously introduced in Section 2) and appropriately chosen convex identifiers. Detailed proofs of
these corollaries are deferred to Appendix A. Suppose points ej ∈ int Sj are known. First, noting
that the gauges γSj ,ej are uniformly Lipschitz, one may reasonably consider

fom = subgrad and φS = max{γS1,e1 , . . . , γSm,em} . (4.4)

A projected subgradient method requires O(1/ε2) subgradient evaluations to minimize a generic
Lipschitz function. Applying Theorem 4.1, we find a parallel multiradial subgradient method also
only requires O(1/ε2) subgradient evaluations, up to a parallelizable factor of N = O(log(1/ε)).

Corollary 4.1. Let Assumptions A - D hold. If fom and φS are set as in (4.4), then, for all ε > 0,
Algorithm 2 with N ≥ logb( bp∗

cτ0 ρε) finds a feasible ε-minimizer within O(1/ε2) iterations.

Much like prior radial methods [3, 5], no Lipschitz continuity assumptions are needed and
projections are entirely avoided, instead just relying on linesearches and normal vectors. Unlike
these prior radial methods, the usage of a common reference point e ∈ int S is avoided. Instead,
separate centers are utilized, which also facilitates the potential for smaller Lipschitz constants for
each gauge.

If, additionally, the objective f is smooth and the sets Sj are smooth and compact, accelerated
methods can be applied. A set is β-smooth if its unit normal vectors are β-Lipschitz continuous on
the set’s boundary. Recently, [9, Corollary 3.2] showed every β-smooth compact set Sj has 1

2γ2
Sj ,ej

as
a O(β)-smooth function. Using this line of reasoning, one can also show that fΓ,e0 is O(β)-smooth
if f is β-smooth and dom f is compact. This motivates the usage of accelerated smoothing and
generalized gradient methods applied with gauges squared occurring in the identifier. We consider
the following two settings:

fom = smooth and φS = max{φS1 , . . . , φSm} (4.5)

where φSj (x) =
{

γSj ,ej (x) if γS,e(x) > 1
1
2γ2

Sj ,ej
(x) + 1

2 otherwise
,

fom = genGrad and φS = max
{

γ2
S1,e1 , . . . , γ2

Sm,em

}
. (4.6)

In both cases, up to a logarithmic term, these methods’ O(1/ε) and O(1/
√

ε) convergence rates are
preserved, now providing new accelerated projection-free methods. For ease, our corollaries assume
f is twice continuously differentiable. However, this assumption is not needed because, as pointed
out earlier, fΓ,e0 is smooth as long as f is smooth and dom f is compact.

5We use the convention that
∑b

l=a
K

(l)
fom = 0 if b < a.

18



Corollary 4.2. Let Assumptions A - D hold and f be twice continuously differentiable. If f is
β-smooth and each Sj is β-smooth and compact, and fom and φS are set as in (4.5), then, for all
ε > 0, Algorithm 2 with N ≥ logb( bp∗

cτ0 ρε) finds a feasible ε-minimizer within O(1/ε) iterations.

Corollary 4.3. Let Assumptions A - D hold and f be twice continuously differentiable. If f is
β-smooth and each Sj is β-smooth and compact, and fom and φS are set as in (4.6), then, for all
ε > 0, Algorithm 2 with N ≥ logb( bp∗

cτ0 ρε) finds a feasible ε-minimizer within O(1/
√

ε) iterations.

4.2 Practical Consideration

To apply ||-MRM with φS constructed from gauges (squared) requires three main ingredients, com-
puting the reference points ej each interior to the related constraint Sj , computing a feasible
initialization x0 and τ0 = 1/f(x0) > 0, and computing function values and subgradients of fΓ,e0

and γSj ,ej for the underlying first-order method. Below, we address these three computations and
provide an extension to allow affine constraints (which have no interior and so are beyond the scope
of Assumption A).

Computing Selection of ej Our multiradial duality theory avoids a reliance on knowing a good
reference point interior to ∩Sj (with the quality measured by Re(∩Sj)). Instead, points ej with
reasonably positive Rej (Sj) are needed. One natural choice of ej is the Chebyshev center, defined as
maximizing e 7→ Re(Sj). For generic convex Sj , computing this is a convex optimization problem.
For polyhedrons, this corresponds to an LP. For norm-type constraints {x | ∥Ajx − bj∥ ≤ 1}, its
center is given by any solution to Ajx = bj .

For our numerics, we consider QCQPs where the center is also given by a linear system solve.
Our results in Section 5 show that in this setting, the choice of centers has no observable effect
on convergence. Therefore, exact solutions to the systems Ajx = bj are not needed. One could,
for instance, compute the centers ej using only a few conjugate gradient steps. Note for a given
ej , computing or estimating Rej (Sj) is nontrivial. For convex QCQPs (1.4), this amounts to a
nonconvex QCQP.

Computing an initialization and rescaling τ0 Given a selection ej , ||-MRM still requires
knowledge of a sufficiently large τ0 such that p(τ0) ≥ 1. This can be done directly by finding any
x0 ∈ ∩m

j=0Sj and setting τ0 = 1/f(x0). Such a point can be found by minimizing the maximum of
the gauges of each Sj with respect to ej until a value less than one is reached (which the Slater point
ensures is possible). Noting that limτ→∞(τf)Γ,e0(y) = γS0,e0(y), computing an initial feasible point
in the domain of f can be viewed as approximately minimizing Φ∞(y) := limτ→∞ Φτ (y). Hence
the cost of adding such a first phase to bootstrap ||-MRM is comparable to the cost of approximately
minimizing one subproblem Φτ .

Computing fΓ,e0 and γSj ,ej (and their subgradients) Often fΓ and γS have closed forms
(see [6, Tables 1 and 2]) and their (sub)gradients can be directly computed from (sup)gradients
and normal vectors of f and S (see [10, Proposition 19 and 21]). For example, generic polyhedral
constraints {x | Ax ≤ b} or ellipsoidal constraints {x | ∥Ax − b∥2 ≤ 1} have closed forms for their
gauge, computable by a single matrix-vector multiplication, see (1.6).

If a closed form is not available, evaluating the radial transformation of a function or the gauge
of a set amounts to a one-dimensional linesearch. Given a function value oracle for f or membership
oracle for Sj , this can be computed by any root-finding methods (e.g., bisection). Algorithms based
on such inexact evaluations were developed by the works [7, 8].
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Reformulations with Affine Constraints As stated, our multiradial duality theory does not
directly apply to problems with affine constraints Ax = b among the set constraints x ∈ ∩m

j=1Sj since
the affine constraints have no interior (and hence cannot satisfy Assumption A). Such constraints
can be addressed separately from Sj by additionally requiring that each ej satisfies Aej = b, then
consider the affine constrained primal and multiradial dual functions

Ψ(x) =
{

f(x) if Ax = b, x ∈ S
0 otherwise

Φ(y) =
{

max{fΓ,e0(x), γSj ,ej (y)} if Ay = b

∞ otherwise .

Our Theorems 3.1, 3.3, and 3.4 directly generalize to this setting which restricts to the affine
subspace where Ax = b, relating maximizers of Ψ and minimizers of Φ. Consequently, given a
first-order method capable of minimizing a finite maximum over affine constraints, ||-MRM could
be applied to solve an affine-constrained primal. For example, by precomputing the projection
operator onto the affine space, a projected subgradient method could be applied, while remaining
projection-free with respect to the more sophisticated Sj constraints.

5 Numerical Validation
In this final section, we apply our theory to synthetically generated QCQP problems. Our primary
goal is to validate our theoretical guarantees for ||-MRM working in parameter-free fashion “out-of-
the-box” and highlight a surprising disconnect where performance outscales our theory’s predictions.
Our implementation is not state-of-the-art, and so we restrict our attention to understanding ||-MRM
rather than comparisons with other methods. We consider QCQPs of the form

p∗ =
{

max f0(x) := r0 − qT
0 x − 1

2xT P0x

s.t. fj(x) := rj − qT
j x − 1

2xT Pjx ≥ 0 ∀j = 1, . . . , m .
(5.1)

where the matrices Pj are symmetric and positive definite.
All our synthetic problems are constructed as follows. The matrices Pj take the form Pj =

GT
j Gj + λI for all j = 0, 1, . . . , m, where λ = 0.01, I ∈ Rn×n is the identity matrix, and each entry

of Gj ∈ Rn×n is sampled independently from the standard normal distribution. Each qj is drawn
independently from the normal distribution with mean 0 and covariance σjI. To avoid the trivial
case where the solution is interior to the constraints, we take σ0 = 10 and σj = 1 for j ≥ 1. Finally,
to guarantee a Slater point exists, we ensure fj(0) > 0 by selecting rj independently and uniformly
from [0.1, 1.1]. In all cases, E = R200 with the standard Euclidean norm. Code implementing these
experiments can be found at https://github.com/samaktbo/Parallel-MultiRadial-Method.

5.1 Performance of MRM with Varied Subproblem Solvers

First, we investigate how the ||-MRM method performs under different first-order solvers. Specifically,
for each fom ∈ {subgrad, smooth, genGrad} , and m ∈ {10, 100, 1000}, Figure 1 shows the relative
optimality gap p∗−f0(ybest

i )
p∗−f0(x0) varies as a function of real-time and the number of iterations. We initialize

each method with x0 = 0 and Algorithm 2 with b = 4.0 and N = 16 parallel instances. We select
the centers in an ideal fashion, i.e., we set ej = −P −1

j qj , for each j = 0, 1, . . . , m. We see that for
relatively small number of constraints (m ≤ 100), the generalized gradient method far outperforms
the theoretical per-iteration convergence rate of O(1/

√
ε). However, this method scales poorly since

each iteration requires a QP solve from Mosek, completing about 30 iterations in 3000 seconds for
m = 1000. On the other hand, the smoothing method and the subgradient method scale reasonably
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Figure 1: Performance of ||-MRM utilizing each of {subgrad, smooth, genGrad} in relative optimality
gap p∗−f0(ybest

T )
p∗−f0(x0) , plotted against real-time and number of iterations. The number of constraints is

m = 10, m = 100, and m = 1000, from left to right, respectively.

with m, even though their rate of convergence is slower. These method’s convergence matches their
theoretically predicted rates of O(1/ε) and O(1/ε2), respectively, after slower convergence in the
first hundred or so iterations, potentially corresponding to the K

(l0)
fom term in Theorem 4.1.

5.2 Effects of Multiradial Centers On Convergence

Next, we examine how the performance of Algorithm 2 is affected by the choice of centers
e0, e1, . . . , em for problems of the form (5.1). We utilize the same set of underlying first-order
methods and sample three QCQPs for the same selections of m as before. Then, for K = 300
target magnitudes of R ranging from 10−6 to 10−1, we randomly sample centers ej with controlled
Rej (Sj) (see full construction below). Surprisingly, Figure 2 shows the (relative) optimality gap of
the iterates of Algorithm 2 reached is essentially independent of the choice of centers ej and the
related constant R. Practically, this indicates one need not spend much computational effort to find
“good” centers to use. Conceptually, this indicates a gap between our theoretical bounds and actual
performance. This is true for all three solvers and across problem sizes.

Note for a given ej , computing Rej (Sj) is a nontrivial nonconvex optimization problem. To avoid
this difficulty, rather than randomly sampling ej and computing the resulting R, we generate the ej

in such a way that Rej (Sj) has a closed form. Namely for any xj with fj(xj) = 0 and 0 < α ≤ 1,

ej = xj + α
∥Pj∥∇fj(xj) has fj(ej) > 0 and Rej (Sj) = α

∥∇fj(xj)∥
∥Pj∥ since fj is ∥Pj∥-smooth. For each

of our K = 300 trials, we use this construction for ej , setting α uniformly between 0.01 and 1 (in
log-scale) and xj = ēj +

√
2f(ēj)P − 1

2
j uj where ēj = −P −1

j qj and uj is sampled uniformly from the

unit sphere. The scaling
√

2f(ēj) ensures that f(xj) = 0.

6 Deferred Analysis of Parallel MultiRadial Method

We begin by bounding the rate at which the dual gaps 1 − d(τ best
i ) decrease. Recall that fom(l) of

Algorithm 2 restarts at i ≥ 0 if τ best
i+1 ≤ 1

1+δ(l) τ
(l)
i and i

(l)
0 < i

(l)
1 < i

(l)
2 . . . denotes the sequence of
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Figure 2: Final relative optimality gap p∗−f0(ybest
T )

p∗−f0(x0) vs Lipschitz constant for three solvers:
subgrad (blue), smooth (orange), and genGrad (green). The number of constraints is m = 10,
m = 100, and m = 1000, from left to right. For m = 1000, genGrad was prohibitively costly to run.

iterations where the lth first-order method instance restarted.

Lemma 6.1. Under Assumptions A - D, if bδ(l)

ρ ≤ 1 − d(τ best
i ) at iteration i ≥ 0 of Algorithm 2

with b ≥ 2, then

1 − d(τ best
i′ ) <

bδ(l)

ρ
for all i′ > i + 1

log(1 + δ(l))
log

(
p(τ (l)

i )
1 + bδ(l)

)
K

(l)
fom.

Proof. It suffices to bound the number of iterations until p(τ best
i′ ) < 1 + bδ(l) holds since by

Theorem 3.4, this implies 1 − d(τ best
i′ ) < bδ(l)

ρ . Let i
(l)
k denote the first iteration after i where fom(l)

restarts and i
(l)
k̂

denote the first iteration with p(τ (l)
i
(l)
k̂

) < 1 + bδ(l). The restarting condition of fom(l)

ensures p(τ (l)
i
(l)
j+1

) ≤ (1 + δ(l))−1p(τ (l)
i
(l)
j

). Therefore

p(τ best

i
(l)
k̂

) ≤ p(τ (l)
i
(l)
k̂

) ≤ (1 + δ(l))−(k̂−k)p(τ (l)
i ) .

Hence after 1
log(1+δ(l)) log

(
p(τ (l)

i )
1+bδ(l)

)
restarts of fom(l), every iteration i′ must have p(τ best

i′ ) < 1 + bδ(l)

and hence 1 − d(τ best
i′ ) < bδ(l)

ρ .
All that remains to bound the number of iterations between consecutive restarts of fom(l) by K

(l)
fom.

Consider some pair of restart times i
(l)
k < i

(l)
k+1 with i

(l)
k ≥ i. If some first-order method instance

l′ ̸= l at an iteration i′ ≤ i
(l)
k + K

(l)
fom, finds an iterate improving τ best to be less than τ

(l)
i
(l)
k

/(1 + δ(l)),

then fom(l) will restart with i
(l)
k+1 ≤ i

(l)
k + K

(l)
fom. Otherwise, fom(l) proceeds without interruption

from other processes for at least K
(l)
fom iterations. Then, by definition, some i′ ≤ i

(l)
k + K

(l)
fom has y

(l)
i′

be a δ(l)/ρ-minimizer of Φ
τ

(l)
i

. Since δ(l)

ρ ≤ (1 − d(τ best
i ))/b ≤ (1 − d(τ (l)

i
(l)
k

))/b, Corollary 3.1 implies

y
(l)
i′ is feasible and τ

(l)
i
(l)
k

f(y(l)
i′ ) − 1 ≥ (1 − 1/b)ρ(1 − d(τ (l)

i
(l)
k

)) ≥ δ(l). Hence 1/f(y(l)
i′ ) ≤ 1

1+δ(l) τ
(l)
i
(l)
k

and

so i
(l)
k+1 ≤ i

(l)
k + K

(l)
fom.

6.1 Proof of Theorem 4.1

From Lemma 6.1, we arrive at the following.
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Theorem 6.1. Suppose Assumptions A - D hold and let fom be given. Then, for all ε̄ > 0,
Algorithm 2 with fom, b ≥ 2, and N = ⌈logb(1/ε̄)⌉ has

1 − d(τ best
i ) ≤ bε̄

ρ
for all i ≥ log(τ0p∗)

log(1 + ρ
b2 )K

(l0)
fom +

5b2(1 + ρ
b2 )

4ρcτ0

N∑
l=l0+1

K
(l)
fom

In fact, any such i has 1 − d(τ best
i ) ≤ bδ(N)

ρ .

Proof. Note that bδ(N)

ρ = b
bN ρ

≤ bε̄
ρ so that the second statement of the theorem implies the first.

Now, if 1 − d(τ0) ≤ bδ(N)

ρ then there is nothing to prove. We therefore assume for the rest of the
proof that b

bN ρ
< 1 − d(τ0) ≤ 1.

Considering the partition of [0, 1] given by
{

0, b
bN ρ

, b
bN−1ρ

, . . . , b
bl0 ρ

, 1
}

, Lemma 6.1 gives a bound
on how long 1 − d(τ best

i ) can remain in each sub-interval of ( b
bN ρ

, 1]. We get the number of iterations
needed to have 1 − d(τ best

i ) ≤ b
bN ρ

by summing the total number of iterations needed to move
1 − d(τ best

i ) out of each sub-interval of ( b
bN ρ

, 1].
Note that log(p(τ0))

log(1+ ρ

b2 )K
(l0)
fom ≥ 1

log(1+δ(l0)) log
(

p(τ0)
1+bδ(l0)

)
K

(l0)
fom since ρ ≤ b/bl0−1 by the definition of l0.

Therefore, if bδ(l0)

ρ < 1 − d(τ0), then 1 − d(τ best
i ) < bδ(l0)

ρ for all i > log(p(τ0))
log(1+ ρ

b2 )K
(l0)
fom , by Lemma 6.1.

Note that the restarting condition implies τ
(l)
i ≤ (1+δ(l))τ best

i . Thus, any i with 1−d(τ best
i ) ≤ b2δ(l)

ρ
has

p(τ (l)
i ) ≤ (1 + δ

(l)
i )p(τ best

i ) ≤ 1 + 1 − d(τ best
i )

cτbest
i

+ p(τ best
i )δ(l) ≤ 1 +

[
b2

ρcτbest
i

+ p(τ best
i )

]
δ(l)

≤ 1 +
[

b2

ρcτ0
+ p(τ0)

]
δ(l),

where the second inequality is by Theorem 3.3, the third is by assumption, and the fourth holds
because τ best

i ≤ τ0. Therefore,

1
log(1 + δ(l))

log
(

p(τ (l)
i )

1 + bδ(l)

)
= 1

ln(1 + δ(l))
ln
(

1 + p(τ (l)
i ) − 1 − bδ(l)

1 + bδ(l)

)

≤ 1
ln(1 + δ(l))

(
p(τ (l)

i ) − 1 − bδ(l)

1 + bδ(l)

)

≤ 1
ln(1 + δ(l))

[
b2

ρcτ0
+ p(τ0) − b

]
δ(l)

1 + bδ(l)

≤ δ(l)

ln(1 + δ(l))
b2

ρcτ0

[
1 + ρ

cτ0 [p(τ0) − 1]
b2

]
≤ 5b2

4ρcτ0

(
1 + ρ

b2

)
where the first inequality follows from ln(1 + x) ≤ x and the last follows because δ

ln(1+δ) ≤ 5
4 for

any δ ∈ (0, 1/2] and cτ0 [p(τ0) − 1] ≤ 1 by Theorem 3.3. As such, if bδ(l)

ρ < 1 − d(τ best
i ) ≤ b2δ(l)

ρ for

l > l0, then 1 − d(τ best
i′ ) ≤ bδ(l)

ρ for all i′ > i + 5b2(1+ ρ

b2 )
4ρcτ0

K
(l)
fom by Lemma 6.1. Summing everything

completes the proof.
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From this theorem, our originally claimed Theorem 4.1 follows directly: Given ε and i as in
Theorem 4.1, consider ε̄ = cτ0 ρε

bp∗ . Then the above result ensures

bε̄

ρ
≥ 1 − d(τ best

i ) [Theorem 6.1]

≥ cτbest
i

(τ best
i p∗ − 1) [Theorem 3.3]

≥ cτ0
p∗ − f(ybest

i )
f(ybest

i )
[cτ0 ≤ cτbest

i
]

≥ cτ0
p∗ − f(ybest

i )
p∗ .

Since ybest
i is always feasible, the proof is complete.
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A Proofs of Corollaries
Throughout this appendix, we let

D := max{D(Sj) | j = 0, 1, . . . , m} and R := min{Rej (Sj) | j = 0, 1, . . . , m},

where e1, . . . , em are the reference points defining γS1,e1 , . . . , γSm,em .

A.1 Proof of Corollary 4.1

Let ε̄ = cτ0 ρε
bp∗ and Ñ = ⌈logb( bp∗

cτ0 ρε)⌉. By Theorem 4.1, it suffices to show that K
(l0)
subgrad and∑Ñ

l=l0+1 K
(l)
subgrad are bounded by O(1/ε2). Since Φτ is 1/R-Lipschitz for all τ > 0, it follows that

K
(l)
subgrad ≤ (D0/R)2

(δ(l)/ρ)2 = (ρblD0/R)2. Now, we have bl0 ≤ b2/ρ by definition, hence K
(l0)
subgrad ≤ b4 D2

0
R2 is

constant with respect to ε. For l > l0, we have bl = b·bÑ−1

bÑ−l
≤ b

ε̄bÑ−l
= b

ρ

(
bp∗

cτ0

)
1

bÑ−l

1
ε . Therefore

Ñ∑
l=l0+1

K
(l)
subgrad ≤

b2
(

bp∗

cτ0

)2 Ñ∑
l=l0+1

1
b2(Ñ−l)

 D2
0

R2
1
ε2 = O

( 1
ε2

)
.
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A.2 Proof of Corollary 4.2

Let ε̄ = cτ0 ρε
bp∗ , Ñ = ⌈logb( bp∗

cτ0 ρε)⌉, and θ(l) = δ(l)

2 log(m+1) . By Theorem 4.1, it suffices to show that

K
(l0)
smooth and

∑Ñ
l=l0+1 K

(l)
smooth are bounded by O(1/ε). Recall that smooth(l) corresponds to Nesterov’s

accelerated method applied to the smoothed objective

Φ
τ

(l)
i ,θ(l)(y) := θ(l) log

exp
(

(τ (l)
i f)Γ,e0

θ(l)

)
+

m∑
j=1

exp
(

φSj (y)
θ(l)

) .

First, we observe that all of the components (τ (l)
i f)Γ,e0 , φS1 , . . . , φSm are all L-smooth and

M -Lipschitz where M = 1/R and L = max{(1 + D0
R0

)3τ0β, R+βD2

R3 }. The smoothness and Lipschitz
continuity of each identifier is verified below in Lemma B.1. The (1+D0

R0
)3τ0β-smoothness of (τ (l)

i f)Γ,e0

follows from [6, Corollary 1] and noting τ
(l)
i ≤ τ0. The 1/R-Lipschitz continuity of (τ (l)

i f)Γ,e0 follows
from (2.10). From these bounds, it follows that Φ

τ
(l)
i ,θ(l) is max{(1 + R0

D0
)3τ0β, R+βD2

R3 } + M2

θ(l) -smooth
(see Appendix B of [21]). Hence

Ksmooth ≤ 2
√

2LD2

δ(l)/ρ
+ 4M2D2 log(m + 1)

(δ(l)/ρ)2

≤ 2

√
2LD2

b
+ 4M2 log(m + 1)D2 ρ

δ(l)

where the second inequality uses that all l ≥ l0 have δ(l)

ρ < 1/b.

From this, it follows that K
(l0)
smooth ≤ 2

√
2LD2

b + 4M2 log(m + 1)D2 b2 is constant with respect
to ε as 1/δ(l0) ≤ b2/ρ. For l > l0, we have 1/δ(l) = bl ≤ b

ρ

(
bp∗

cτ0

)
1

bÑ−l

1
ε . Therefore, the total iteration

bound of Theorem 4.1 scales with ε as

Ñ∑
l=l0+1

K
(l)
smooth ≤ 2

√
2LD2

b
+ 4M2 log(m + 1)D2

[
b

(
bp∗

cτ0

) ∞∑
l=0

1/bl

]
1
ε

= O(1/ε).

A.3 Proof of Corollary 4.3

Note that γ2
S1,e1

, . . . , γ2
Sm,em

are all 2R+βD2

R3 -smooth by [9, Corollary 3.2]. In addition, (τ (l)
i f)Γ,e0 is (1+

R0
D0

)3τ
(l)
i β-smooth by [6, Corollary 1]. Noting τ

(l)
i ≤ τ0, it follows that (τ (l)

i f)Γ,e0 , γ2
S1,e1

, . . . , γ2
Sm,em

are all L = max{(1 + D0
R0

)3τ0β, 2(R+βD2)
R3 }-smooth. Therefore, Theorem 2.3.5 of [22] ensures that

K
(l)
genGrad ≤ 2

√
LD2

0 ·
√

ρ
δ(l) .

Since 1/δ(l0) ≤ b2/ρ, it follows that K
(l0)
genGrad ≤ 2

√
LD2

0 b is constant with respect to ε. Now, let
ε̄ = cτ0 ρε

bp∗ and Ñ = ⌈logb(1/ε̄)⌉. For l > l0, we have 1/δ(l) = bl ≤ b
ρ

(
bp∗

cτ0

)
1

bÑ−l

1
ε . Therefore, the total

iteration bound of Theorem 4.1 scales with ε as

Ñ∑
l=l0+1

K
(l)
genGrad ≤ 2

√
LD2

0

[
√

b

(
bp∗

cτ0

) 1
2 ∞∑

l=0
(
√

b)−l

]
1√
ε

= O(1/
√

ε).
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B Smoothness of the identifiers in Corollary 4.2
Lemma B.1. Let S be convex and e ∈ int S. Then φS : E → R, defined by

φS(x) :=
{

γS,e(x) if γS,e(x) > 1
1
2γ2

S,e(x) + 1
2 otherwise

,

is convex and 1/Re(S)-Lipschitz. If 1
2γ2

S,e is L-smooth, φS is L-smooth. In particular, if S is
β-smooth, then φS is Re(S)+βDe(S)2

Re(S)3 -smooth for De(S) := sup{∥x − e∥ | x ∈ S}.

Proof. We will show that φS(x) = 1
2 +infy∈E γS,e(y)+ 1

2γ2
S,e(e+x−y). Note that this will immediately

impy φS is convex and as smooth as 1
2γ2

S,e because infimal convolutions preserve convexity and
smoothness. Lipschitz continuity is also immediate as the subgradients of φS and γS,e are bounded
above by 1/Re(S).

It remains to show φS(x) = 1
2 + infy∈E γS,e(y) + 1

2γ2
S,e(e + x − y). We prove that for any µ > 0,

inf
y∈E

γS,e(y) + 1
2µ

γ2
S,e(e + x − y) =

{
γS,e(x) − µ

2 if γS,e(x) > µ
1

2µγ2
S,e(x) otherwise.

(B.1)

By the sum rule and chain rule, which apply as γS,e and γ2
S,e are convex and real-valued, the

necessary and sufficient condition to attain the infimum above is

0 ∈ ∂γS,e(y) − 1
µ

γS,e(e + x − y)∂γS,e(e + x − y).

The result in (B.1) holds because y = e or y = e+
[
1 − µ

γS,e(x)

]
(x−e) satisfies the sufficient condition

accordingly as γS,e(x) ≤ µ or γS,e(x) > µ. Indeed, since 0 ∈ ∂γS,e(e) and ∂γS,e(x) ⊂ ∂γS,e(e) for any
x, it follows from convexity of the subdifferential that 1

µγS,e(x)∂γS,e(x) ⊂ ∂γS,e(e) if γS,e(x) ≤ µ.
Therefore, y = e attains the infimum if γS,e(x) ≤ µ.

Now suppose γS,e(x) > µ and let y = e +
[
1 − µ

γS,e(x)

]
(x − e). Recall that for any α > 0, we have

γS,e(e+α(x−e)) = αγS,e(x) and ∂γS,e(e+α(x−e)) = ∂γS,e(x). Noting that e+x−y = e+ µ
γS,e(x)(x−e),

we conclude that

γS,e(e + x − y) = µ

γS,e(x)γS,e(x) = µ and ∂γS,e(y) = ∂γS,e(x) = ∂γS,e(e + x − y).

So, ∂γS,e(y) = 1
µγS,e(e + x − y)∂γS,e(e + x − y), and y satisfies the sufficient condition.

Plugging in the suitable minimizer y = e or y = e +
[
1 − µ

γS,e(x)

]
(x − e) accordingly into

γS,e(y) + 1
2µγ2

S,e(e + x − y) gives (B.1). Finally, if S is β-smooth and De(S) < ∞, then 1
2γ2

S,e is
Re(S)+βDe(S)2

Re(S)3 -smooth by [9, Corollary 3.2]. Therefore, φS is smooth with the same smoothness
constant.
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