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Abstract

In this work, we propose a novel black-box formulation of the impingement cooling system for a
nozzle in a gas turbine. Leveraging on a well-known model that correlates the design features of the
cooling system with the efficiency parameters, we develop NOZZLE, a new constrained black-box
optimization formulation for the jet impingement cooling design. Then we illustrate how to use
derivative-free algorithms for finding a solution of NOZZLE and validate the proposed model on
real-word test cases.

Keywords Cooling systems, gas turbine, simulation optimization, direct search algorithm.

1 Introduction

The improvement of the cooling system of an existing gas turbine model is a crucial issue for the
turbine design and maintenance process. For the time being, a generalized and rigorous approach to
this issue is not available and, in most cases, the matter is entrusted to the experience of the engineers
that are working at the moment on that particular machine. Moreover, whenever a new design for
the impingement insert is proposed, its expected performance has to be tested by a Computational
Fluid Dynamics and Thermodynamics simulation, also for checking that any violations of engineering
constraints are made. This kind of simulation often requires a huge computational effort.

The main purpose of this work is to present a fast and automatic methodology to improve the
efficiency of an impingement cooling system using tools from black-box and derivative-free optimization.
The term black-box optimization (BBO) refers to problems where the structure of the objective and
constraint functions cannot be exploited, as it is often the case when they are obtained through
numerical simulations; derivative-free optimization (DFO) refers to methods that do not use derivative
information, being in fact the most suitable approach for black-box problems, see e.g. [2, 6, 7, 21, 18].

Starting from the well-known model by Florschuetz et al. [17, 16], we develop NOZZLE, a numer-
ical model that simulates the functioning of an impingement cooling system in a fixed nozzle. The
simulation also includes the estimation of temperature distribution both on the internal and external
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wall of the nozzle by solving a steady Heat Equation, and the estimation of the outlet pressure. Once
the simulator is defined, we embed it in a BBO framework in order to optimize the design of the
impingement system so that the highest possible cooling efficiency is achieved.

In more detail, we look for an insert design that maximizes the Heat Transfer Coefficient (HTC)
hc of the coolant in the feasible set V ⊂ Rn defined by engineering constraints. If we identify the main
geometric variables that characterize the design of the impingement insert with the vector v ∈ Rn,
then the optimization problem takes the form:

max
v∈Rn

H(v) (1)

s.t. v ∈ V,

where the function H : Rn → R is a scalar valued function that models the correlation between the
geometric variables v and the value of the HTC hc. Specifically, since the HTC is a non constant
distribution within the cooling system, we chose H as the root mean square (RMS) of the HTC
distribution.

The numerical solution of (1) poses several challenges. Indeed, the overall BBO problem is a mixed
variable problem: some geometric variables are continuous and one is categorical, that is non-numeric,
unconstrained and implicitly unordered. Moreover, the feasible set V is determined by black-box
constraints. Taking into account the mentioned problem characteristics, various DFO solvers might
be used to solve it, e.g. [2] and references therein. Here we chose to use a new flexible and robust
penalized DFO approach that handles the constraints using an ℓ1-penalty function and the Brute Force
Optimizer (BFO) [19, 20] as inner solver. In our numerical experience, the proposed approach returned
solutions judged reliable by practitioners and was general enough to represent a basis for further model
for impingement cooling systems.

The main contributions of this work are the following:

• A new versatile BBO model for the optimization of the design of an impingement cooling system
for the nozzle of a gas turbine.

• NOZZLE, a simple but still fairly accurate numerical simulator. NOZZLE has been imple-
mented and validated and can be used by the scientific community as a test case for any
kind of BBO method. A standalone Matlab version of NOZZLE is available in the S2PMJ
[11] format on GitHub page https://github.com/GrattonToint/S2MPJ/blob/main/matlab_

problems/NOZZLEfp.m.

• A general DFO approach that, coupled with the use of our black-box function, defines an auto-
matic and reliable procedure for the optimization of the efficiency of a cooling system in a gas
turbine.

The paper is organized as follows. In Section 2 we develop the NOZZLE, a model for optimizing
the efficiency of an impingement cooling system in a nozzle as a constrained BBO problem. In details,
in Sections 2.1 and 2.2 the geometric variables v, the function H and the inequalities characterizing
the feasible set V in problem (1) are defined, while in Section 2.3 the construction of the function H

and of the constraints as black-box functions is described.
A DFO approach for solving the NOZZLE is proposed in Section 3. Finally, we numerically illustrate

in Section 4 that our strategy allows to automatically find an improved design for the cooling system
taking into account the main engineering requirements.
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Figure 1: Section of an impingement cooling system of a nozzle

2 NOZZLE: an optimization model for the impingement cooling sys-
tem

The cooling system of a gas turbine nozzle is broadly structured as shown in Figure 1. The nozzle is
surrounded by hot gas, characterized by a temperature Tg and a HTC hg, coming from the combustion
chamber. Inside, a duct, called the impingement insert, takes place. The coolant fluid flows inside the
insert at pressure pinc and temperature Tc and then exits the insert through orifices, hits the inner wall
of the nozzle plate and finally exits the nozzle through a gap at the tail of the nozzle with pressure
poutc .

When the cool fluid impinges on the inner wall of the nozzle, there is a heat exchange between the
surface and the fluid, whereby the cool air subtracts heat from the nozzle wall that has been heated by
the hot gas on the outside. Because of the thermal conductivity of the wall, the external wall of the
nozzle can be then cooled by subtracting heat from inside the nozzle. In this way, the damage caused
to the nozzle by the high temperature of the surrounding external gas is reduced.

The main component of an impingement cooling system is the impingement insert; in particular
its efficiency depends on the position of the insert inside the nozzle and on the size and disposition of
the orifices on its surface.

A fluid that is often used in turbine cooling systems is air, which is drawn in from the surrounding
environment. Most of this flow is used in the fuel combustion process, while a portion is diverted into
the cooling system. Throughout our discussion we assume that the cooling fluid used is air.

The air employed in the cooling system does not actively contribute to work generation by the gas
turbine engine. Moreover, coolant ejection in the main flow can generate secondary flows and mixing
losses which may reduce the aerodynamic efficiency of the airfoil [12]. This evidence demonstrates
the need to maximize the efficiency of cooling systems, i.e., obtain the desired cooling effect using the
minimum coolant mass flow rate.

2.1 The objective function

A major parameter for evaluating heat transfer coefficients is the nondimensional Nusselt number Nu,
which is the ratio of the heat flux exchanged by convection to that exchanged by conductivity, in this
way the measurement of the HTC is related only to the properties of the cooling air. The number Nu
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is related to the coolant HTC hc by the following relation:

Nu =
hcd

kc
; (2)

where the constant kc is the thermal conductivity of the cooling air and d is the diameter of the
orifices through which the coolant flow occurs. Therefore, once we get the distribution of Nu, hc can
be obtained by inverting (2), giving

hc =
kcNu
d

. (3)

Therefore, the core of the objective function H is a model that correlates the geometric parameters
and (the distribution of) the Nusselt number within the cooling system.

Given the wide use of impingement cooling systems, many mathematical models have been devel-
oped over time to describe their functioning and study the correlations between design features and
performance. An extensive collection of impingement heat transfer correlations can be found in the
work by Zuckerman and Lior [26].

The mathematical model we choose to build the objective function H is the experimental correlation
developed by L. W. Florschuetz et al. [15, 16, 17]. Such correlation is a relatively simple model, and
although it is not able to provide the level of detail of a more complex modeling approach (e.g. CFD)
it turns out to be sufficiently accurate because the component to be cooled down is a metal wall.
Thus the thermal conductivity of the material smooths down most of the nonuniformities of the heat
transfer distribution provided by the internal cooling system: as so, the most significant parameter to
be considered for the optimization is the area averaged heat transfer coefficient value over the whole
heat transfer surface, and thus a high level of detail is not required for this analysis. In this framework,
heat transfer correlations are the most suitable model to be employed, since they are usually capable
of providing very robust outcomes (accuracy within 10-20%), given that they are applied in the proper
validity range. At the same time, it is not granted that more detailed models are capable to significantly
improve the prediction of such parameter, thus nullifying their advantage in terms of spatial resolution.
Moreover, it was developed for an array of orifices placed on a single plate, which is the configuration
closest to that of our interest for the design of the impingement insert; in fact, the insert is made
from a metal plate that is drilled following the desired layout and then it is bent to obtain the final
shape (see Figure 1). In this case, referring to a plate to define a model for a bent geometry does
not cause a significant loss of accuracy. This is because, in actual gas turbine nozzles cooled via jet
impingement, the curvature radius of the outer surface is usually at least one order of magnitude larger
than the gap between the perforated wall and the target surface. As a consequence, the curved surface
can be suitably represented by a flat wall, since the discrepancy introduced by this approximation is
considered to be lower than the correlation accuracy (usually 10-20%).

Thus, the correlation by Florschuetz represents a good trade-off between low computational costs
and meaningful modeling of the impingement cooling system. This fact makes it suitable for its use
in an optimization procedure that requires the baseline model to be applied a large number of times.
On the other hand, using more complex models would likely exponentially increase the computational
cost of the overall procedure, making it useless for a practical application.
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2.1.1 Problem geometry and variables

Let us now introduce the geometry of the cooling system referred to in Florschuetz’s work. We refer
to [16, 17] for further details.

The geometry of the impingement cooling system studied by Florschuetz is schematically depicted
in Figure 2 and consists of a plate of jets of size Lx×Ly placed at a distance zn from the target surface.
We have set up the reference system as in Figure 2, i.e. such that the cooling air, once it leaves the
jets, flows out of the duct made by the impingement plate and the target surface in the direction of
the x-axis in our reference system. Because of this the x-direction is called stream-wise, while the
y−direction is called span-wise.

z y

x

yn
xn

d

zn

External nozzle wall

Internal nozzle wall

Impingement plate

Figure 2: Reference geometry of the impingement cooling system

On the plate, round orifices of diameter d are arranged to have distance between centers xn along
the direction of the abscissa and yn along the direction of the ordinate. The distances to the edges of
the first row are also imposed as xn

2 in the x direction and yn
2 in the y direction (see Figure 3).

Concerning the direction stream-wise, given two points A(xA, yA) and B(xB, yB) on the plate, A
is said to be ‘upstream of’ B if xA < xB and at the same time B is said to be ‘downstream of’ A.

Holes could be arranged in two different ways on the plate: inline or staggered. In both cases
we have Nx := ⌊Lx

xn
⌋ span-wise rows each containing Ny := ⌊Ly

yn
⌋ orifices. In the inline layout the

centers of the orifices on the same span-wise row have the same x−coordinate and the ones on the
same stream-wise row have the same y−coordinate (see Figure 3, left). Staggered layout derives from
inline layout by shifting by yn

2 the span-wise rows of even position, counting from upstream (see Figure
3, right).

d

xn

yn

yn
2

xn
2

d

xn

yn

ynyn
2

xn
2

Staggered layoutInline layout

Figure 3: The two possible layouts of the holes on the jet plate: inline (left) and staggered (right).

We are now ready to define the design variables as components of the input vector v of our objective
function H. These variables are

• d: the diameter of the impingement holes;

• xn: stream-wise distance between the centers jet holes;
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• yn: span-wise distance between the centers jet holes;

• zn: distance of the impingement plate from the target surface (meatus width);

• layout: specifies the hole pattern.

We must notice that, while d, xn, yn and zn are positive real continuous variables, layout is a non-ordinal
categorical variable that can take two values: inline and staggered 1.

2.1.2 Florschuetz correlation

The correlation between the design variables v = (xn, yn, zn, d, layout) of the impingement plate intro-
duced in the previous section and the stream-wise distribution of the Nusselt number Nu is defined by
the following equation:

Nu(xi) = AReαj (xi)Pr
1
3
c

(
1−B

(
zn
d

[
Gc(xi)

Gj(xi)

])β
)
, for xi = xn

(
i− 1

2

)
, with i = 1, ..., Nx; (4)

where xi is the x-coordinate of the centers of the holes of the i-th stream-wise row and Prc denotes
the Prandtl number of the coolant; the coefficients A, α, B e β depend on the geometric parameters
xn, yn, zn, d and layout according to the following relationship:

⋆(xn, yn, zn, d) = C⋆

(xn
d

)γ⋆x (yn
d

)γ⋆y (zn
d

)γ⋆z
, with ⋆ ∈ {A,α,B, β}; (5)

where the constants C⋆, γ⋆x, γ⋆y e γ⋆z were estimated empirically and are displayed in Table 1 (see
[16]). Note that the values of the constants presented in the table differ depending on the value taken
by the categorical variable layout (i.e. inline or staggered).

Inline pattern Staggered pattern
⋆ C⋆ γ⋆x γ⋆y γ⋆z C⋆ γ⋆x γ⋆y γ⋆z

A 1.18 -0.944 -0.642 0.169 1.87 -0.771 -0.999 -0.257
α 0.612 0.059 0.032 -0.022 0.571 0.028 0.092 0.039
B 0.437 -0.095 -0.219 0.275 1.03 -0.243 -0.307 0.059
β 0.092 -0.005 0.599 1.04 0.442 0.098 -0.003 0.304

Table 1: Coefficients A, α, B e β for (5)

The layout variable is also important in defining the feasible set V and this issue is covered in
Section 2.2.

Equation (4) involves the quantities Gj(xi), Gc(xi) and Rej(xi) distributed along the x-coordinate
and dependent on the geometric variables.

• Gj(xi) is the mass velocity (unit: kg · m−2 · s−1) of the flow of cooling air passing through a
single jet of abscissa xi referred to the area of the jet hole. In particular, let us consider that the
cooling system receives a certain flow rate ṁtot (unit: kg · s−1) of cooling air that is distributed

1We remark that in the current problem formulation, the layout variable can take two values and therefore it could be
treated as a binary variable. For the sake of generality, we prefer to treat it as a categorical variable as it is of engineering
interest to investigate models that admit orifice arrangements other than inline and staggered (see Remark 2.1).
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among the span-wise rows of jets. If a row having abscissa xi and Ny jets of area Aj has a mass
flow rate ṁj , then we have that

ṁj(xi) = Gj(xi)AjNy ⇒ Gj(xi) =
ṁj(xi)

AjNy
, xi = xn

(
i− 1

2

)
, for i = 1, ..., Nx; (6)

moreover, Gj is considered constant along the dimension y, so each span-wise row is characterized
by a single value of Gj .

• Gc is the crossflow mass velocity and it is thus related to the area of the cross section of the duct,
given by the product znLy. Therefore, if we have a transverse flow rate ṁc at x−coordinate xi

of a certain row of jets we have

ṁc(xi) = Gc(xi)Lyzn ⇒ Gc(xi) =
ṁc(xi)

Lyzn
, xi = xn

(
i− 1

2

)
, for i = 1, ..., Nx. (7)

We assume that Gc is constant along y−direction.

• Rej(xi) is the distribution of the Reynolds number of the cooling air flowing through an orifice in
position xi. The Reynolds number is the nondimensional ratio between inertia forces and internal
viscous forces of a fluid, and it is related with the jet mass velocity Gj(xi) by the relation

Rej(xi) =
Gj(xi)d

µc
, xi = xn

(
i− 1

2

)
, for i = 1, ..., Nx; (8)

where µc is the dynamic viscosity coefficient of the cooling air and d the diameter of the jet hole.
The coefficient µc depends on the coolant’s characteristics and mainly on its temperature Tc and
it can be estimated via interpolation, since the cooling fluid is air and it is known the behaviour
of µc with respect to temperature.

Remark that in (4) the distribution of the Nusselt number depends on the ratio[
Gc

Gj

]
(xi) :=

Gc(xi)

Gj(xi)
, xi = xn

(
i− 1

2

)
, for i = 1, ..., Nx. (9)

Therefore, in order to determine the Nusselt number distribution with (4) it necessary to estimate
the distributions of Gj , Gc and Rej .

The distribution of Gj can be derived directly from a mathematical model developed by Florschuetz
[16] for the stream-wise distribution of the ratio of the jet mass velocity Gj to the average jet mass
velocity Gj (see [16])

[
Gj

Gj

]
(xi) =

δNx cosh
(
δ xi
xn

)
sinh (δNx)

, xi = xn

(
i− 1

2

)
, for i = 1, ..., Nx; (10)

where δ is a constant defined by

δ =
CD

√
2

ynzn

πd2

4
=

CD

√
2Aj

ynzn
;

with CD being the discharge coefficient for every hole.
Note that Gj is constant and depends only on the total flow rate of cooling air ṁtot supplied to

the system and the sum of the areas of all jets on the plate Atot
j according to the relationship:
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Gj =
ṁtot

Atot
j

; (11)

where Atot
j = NxNyAj .

By substituting (11) in (10) we obtain the following analytical model for the distribution of the jet
mass velocity:

Gj(xi) =
ṁtot

Atot
j

δNx cosh
(
δ xi
xn

)
sinh (δNx)

, xi = xn

(
i− 1

2

)
, for i = 1, ..., Nx. (12)

To determine the mass velocity distribution of the transverse flow, one must refer to the geometry
in Figure 2. In this representation, the duct between the impingement plate and the target surface
is closed at one end; this implies that the crossflow has only one direction. Thus it is reasonable to
assume that the crossflow at a point of abscissa xi is due to the contribution of the flows passing
through all the jets upstream from xi; in particular, we can assume that the crossflow mass velocity
at xi is due to the sum of all the jet mass velocities coming from upstream, so for Gc we have

Gc(x1) = 0, Gc(xi) =
ṁc(xi)

Lyzn
=

1

Lyzn

i−1∑
k=1

ṁj(xk) =
AjNy

Lyzn

i−1∑
k=1

Gj(xk), for i = 2, ..., Nx. (13)

From the equations (12) and (13), we can estimate the distribution of the ratio Gc/Gj following
the simple procedure shown in Algorithm 1.

Algorithm 1 Estimation of the distribution of Gc/Gj

Initialization
1: Input: the variables v = (xn, yn, zn, d, layout) and the parameters Lx, Ly, ṁtot, CD.
2: Compute Nx = ⌊Lx

xn
⌋, Ny = ⌊Ly

yn
⌋ and Aj =

πd2

4 .
3: Define the vector xj =

1
2xn : xn : (Nx − 1

2 )xn of the x-coordinate of the centers of the span-wise rows.
Jet mass velocity distribution

4: Obtain the distribution Gj(xi) for i = 1, ..., Nx with (12).
Crossflow mass velocity distribution

5: Set Gc(x1) = 0, because there is no flow coming from upstream.
6: for i = 2, ..., Nx do
7: Using (13) obtain crossflow mass velocity

Gc(xi) =
1

Lyzn

i−1∑
k=1

ṁj(xk).

8: end for
Evaluation of the ratio Gc

Gj

9: for i = 1, ..., Nx do
10: Set [

Gc

Gj

]
(xi) =

Gc(xi)

Gj(xi)

11: end for

To finally determine the distribution of Nu we still need to derive the Prandtl number Prc and the
dynamic viscosity µc of the refrigerant fluid. Moreover, in order to use (3) to get the distribution of hc
we must estimate the thermal conductivity kc of the cooling air. These three coefficients depend mainly
on temperature Tc and fluid composition and can be easily estimated by nonlinear interpolation.

The overall procedure for determining the stream-wise distribution of HTC hc is outlined in Algo-
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rithm 2.

Algorithm 2 HTC stream-wise distribution
Initialization

1: Input: the variables v = (xn, yn, zn, d, layout) and the parameters Lx, Ly, Tc, Tg, hg, ṁtot, CD.
2: Compute Nx = ⌊Lx

xn
⌋, Ny = ⌊Ly

yn
⌋ and Aj =

πd2

4 .
3: Define the vector xj =

1
2xn : xn : (Nx − 1

2 )xn of the x-coordinate of the centers of the span-wise rows.
4: Calculate by nonlinear interpolation of µc := µc(Tc), Prc := Prc(Tc) and kc := kc(Tc) of the coolant fluid.

Mass velocity distributions
5: Estimate the distributions of Gj and Gc

Gj
using Algorithm 1.

Jet Reynolds number distribution
6: Compute the distributions of jet Reynolds number Rej(xi) using (8).

HTC hc distribution
7: Compute the stream-wise distribution of the Nusselt number Nu using (4) and (5).
8: Compute the distribution of hc with (3):

hc(xi) =
Nu(xi)kc

d
, i = 1, ..., Nx.

Algorithm 2 is straightforward; after receiving the input v = (xn, yn, zn, d, layout) and the parame-
ters derived from the boundary conditions, the number Nx of span-wise rows, the number Ny of holes
for every span-wise row and the area of a single hole Aj are computed; then the vector containing
the x−coordinate of the centers of the holes on the span-wise rows is computed (Step 1 - Step 3). In
Step 4 the inlet temperature Tc of the cooling air is used as a query point to interpolate the dynamic
viscosity coefficient µc, the Prandtl number Prc and the thermal conductivity kc. Step 5 computes
the distribution of the jet mass velocity Gj and of the ratio Gc

Gj
via Algorithm 1. Step 6 computes the

distribution of the jet Reynolds number Rej(xi) using (8). Finally, in Step 7 and Step 8 the algorithm
uses Florschuetz’s model (4) to get the distribution of the Nusselt number Nu and uses (3) to estimate
the distribution hc of the HTC of the cooling air.

Let us remark that Algorithm 2 returns a one-dimensional distribution of hc, so hc(v) ∈ RNx . In
order to define the scalar objective function H(v) we use the root mean square (RMS) of hc(v), then

H(v) := (hc(v))RMS =
∥hc(v)∥2√

Nx
. (14)

2.2 The constraints

The design of a cooling system, like many other industrial applications, is subject to constraints that
arise from the need to have solutions that are actually applicable in a real-world context or at least
retain a minimum of relevance to the physics of the problem we are solving.

In our setting, the constraints arise from several requirements. First, the cooling system must
be efficient enough to ensure a minimal durability of the nozzle, this means that the design of the
impingement insert must avoid configurations that can cause excessive damage to the nozzle walls.
Secondly, it is necessary that the system is actually manufacturable so, for example, the solution to
the problem cannot lead to an impingement plate with holes that are too small or too close. Finally,
since our objective function is derived from the empirically developed mathematical model (4), the
variables must be constrained in a space in which the model has been validated; this is because outside
that space the validity of the model is not guaranteed. All these requirements are represented by a set
of constraint functions that involves the design variables v = (xn, yn, zn, d, layout), the distributions of
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the temperatures on the internal and external nozzle walls and the (outlet) pressure of the cooling air.
In this section, the constraints necessary for the final formulation of the problem are defined and

explained.

2.2.1 Temperature constraints

To get an idea of the efficiency of the cooling system, we need to quantify how much it can cool the
inner and outer nozzle wall, so we need to estimate the stream-wise distributions of the internal and
external nozzle wall temperature, which we denote as Twi and Twe, respectively.

To do this, we can assume that heat transfer occurs from the external of the nozzle, where we have
the hot gas with temperature Tg and HTC hg, to the inside of the nozzle where we have the cool air
with temperature Tc and HTC hc. We can further assume that the heat transfer from the external
to the internal of the nozzle consists of three phases. In the first stage, heat from the external gas is
transferred by convection to the external wall of the nozzle, then heat is transferred to the inside of the
nozzle by thermal conductivity from the external wall to the inner one (not considering the thermal
conductivity that occurs perpendicularly to this direction), and finally heat is transferred from the
inside wall to the cooling fluid again by convection. This process is represented in Figure 4.

Twe

(conduction)

Twi

(convection)

(convection)

kw

(Tg, hg)

(Tc, hc)

∆s

Figure 4: Scheme of the heat transfer through the nozzle wall.

Given these assumptions, and having derived the heat transfer coefficient of the cooling air, we can
calculate the distributions of Twi and Twe by solving for every i = 1, ..., Nx the following linear systemhc(xi) (Twi(xi)− Tc) =

kw
∆s (Twe(xi)− Twi(xi))

kw
∆s (Twe(xi)− Twi(xi)) = hg (Tg − Twe(xi))

; (15)

where kw and ∆s are the respectively the thermal conductivity and the thickness of the nozzle wall.
This formulation comes from the time-independent heat equation

∇2Tin = 0 on Ω,

∂Tin
∂n = qg on Γg,

∂Tin
∂n = qc on Γc,

∂Tin
∂n = 0 on ∂Ω \ (Γg ∪ Γc) .

(16)

Here Tin is the temperature distribution inside the nozzle wall, the domain Ω is the rectangular section
of the nozzle wall with size Lx ×∆s, the boundaries Γg and Γc are the surfaces subject to convective
heat flow of the hot gas and cooling air respectively. The remaining boundary of Ω is supposed to
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be adiabatic [9]. If we discretize Ω in Nx rectangular elements of size xn ×∆s and we use the Finite
Differences (FD) method assuming that there is no heat flow between two contiguous elements we
obtain the system (15).

(Tin)1 (Tin)2 (Tin)Nx−1 (Tin)Nx· · ·
Γg

Γc

(Tc, hc)

(Tg, hg)

Figure 5: Discretization of the heat transfer on the nozzle wall.

A more accurate, but computationally more expensive, estimation of Twi and Twe can be obtained
in two steps. First we solve (16) with FD taking into account the heat transfer between adjacent
elements in order to obtain the one dimensional distribution of Tin which is the stream-wise temperature
distributions inside the nozzle wall (see Figure 5); then we substitute the distribution of Tin in system
(15), in particular we put Tin in place of Twe in the first equation and in place of Twi in the second
equation, obtaining two separate equations:

hc(xi) (Twi(xi)− Tc) =
kw
∆s

(Tin(xi)− Twi(xi)) (17)

kw
∆s

(Twe(xi)− Tin(xi)) = hg (Tg − Twe(xi)) . (18)

We use the distributions Twi and Twe to define two constraint functions. The first one means to
bound the external wall temperature Twe and it is defined as

(Twe(v))RMS ≤ Tmax
we . (19)

By setting this constraint we guarantee that the mechanical properties of the material are sufficient to
allow the component to reach the expected life span.

The second constraint function is defined to bound the temperature gradient between external and
internal wall; in our case it means to set a bound for the distribution of the difference between Twe

and Twi, thus
(∆T (v))RMS ≤ ∆Tmax; (20)

where ∆T (v) = Twe(v) − Twi(v). This constraint is necessary to prevent structural damage to the
nozzle wall caused by thermal deformation due to an excessive difference between the external and
internal temperatures on the wall.

2.2.2 Pressure constraints

Another factor that affects the performance of an impingement cooling system there is the pressure of
the cooling air. In particular in our case we consider the ratio of the outlet pressure poutc to the inlet
pressure pinc of the cooling air

rp :=
poutc

pinc
. (21)
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In our case rp ∈ (0, 1]. This is because, since fluids move in the opposite direction of the pressure
gradient, to have air flow there must be a pressure difference. If pinc = poutc , that is, if rp = 1, we have
no flow of cooling air through the system. It is not possible to have the case poutc > pinc , which means
rp > 1, because if so the flow would be in the opposite direction, and this is ruled out by the way
we have defined the model that simulates the impingement cooling. On the other hand rp > 0 since
pressure is strictly positive by definition.

The ratio rp is related to the flow rate of air through the cooling system and thus its velocity. The
lower rp, the higher the mass flow rate and the jet velocity. This is true until the velocity approaches
the speed of sound. In particular, if the flow becomes sonic in the nozzle the so-called choked condition
is reached, corresponding to the maximum flow rate: further reducing the discharge pressure does
not lead to an increase in coolant flow rate but results in an underexpanded supersonic jet. In this
regime, complex shock patterns and a recirculation pattern at the stagnation point occur, resulting in
a degradation of heat transfer performance [30].

In order to keep the ratio rp away from zero we set the following constraint

rp ≥ rmax; (22)

with rmax ∈ (0, 1). Recall that in the case of our interest the inlet pressure pinc of the cooling air is
constant and is given as a boundary condition, while the outlet pressure poutc is unknown, hence to
check constraint (22) it is necessary to estimate poutc with respect to the design variables vector v. We
assume that poutc (v) is equal to the outlet pressure at the most downstream row of orifices, i.e. the row
with centers of abscissa xNx . Focusing on this last row, from the theory of isentropic flow the pressure
ratio rp is related to the mass flow rate of cooling air through the last row ṁj (xNx) by the equation

ṁj (xNx) = NyAjCD

(
poutc

pinc

) 1
γ

√√√√ 2γ

γ − 1

pinc
ρinc

[
1−

(
poutc

pinc

) γ−1
γ

]
, (23)

where γ = cP
cV

is ratio of specific heats of the air, CD is the jet discharge coefficient, Aj = πd2/4 is the

surface of a single orifice, Ny is the number of holes in every row and ρinc = pinc
RTc

is the density of inlet
cooling air, with R being the ideal gas constant [30]. On the other hand we know from (6) that

ṁj (xNx) = AjNyGj(xNx); (24)

where the jet flow mass velocity Gj(xNx) for the last row can be evaluated using (12).
Thus, substituting (24) in (23) and simplifying we obtain the equation

Gj(xNx) = CD

(
poutc

pinc

) 1
γ

√√√√ 2γ

γ − 1

pinc
ρinc

[
1−

(
poutc

pinc

) γ−1
γ

]
. (25)

It is possible to estimate the value of poutc (v) for a given design vector v as the solution of a scalar non
linear equation

f(p) := p
1
γ

√
(pinc )

γ−1
γ − p

γ−1
γ (pinc )

γ−1
2γ − Gj(xNx)

CD

√
γ − 1

2γ
RTc = 0, (26)

where the function f :
[
0, pinc

]
→ R is derived from (25). It can be shown that problem (26) admits
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Figure 6: Graphical representation of the function f(p)/pinc , with f(p) defined in (26) in the interval
[
0, pinc

]
, for

pinc = 2 · 106 Pa.

two solutions in
(
0, pinc

)
with one in the open sub-interval (p∗, pinc ) (see e.g. Figure 6), where p∗ is the

critic pressure defined as

p∗ =

(
2

γ + 1

) γ
γ−1

pinc . (27)

We look for the solution in (p∗, pinc ), since for poutc ≤ p∗ supersonic flow surely occurs somewhere in the
cooling system. Once we have estimated poutc we can check the constraint (22), which can be rearranged
as a constraint on pressure difference in the following way

∆pc (v) := pinc − poutc (v) ≤ (1− rmax) p
in
c =: ∆pmax

c . (28)

2.2.3 Feasibility linear constraints

These constraints are meant to ensure a meaningful and applicable solution. We do not want to get
an uncraftable or physically meaningless design for an impingement plate. Some unacceptable designs
are, for example, one with holes too small, one with jet rows too close to each other or one with
overlapping holes. Most of these unwanted results can be avoided by setting suitable box constraints
for the continuous variables (xn, yn, zn, d), while the variable layout is "unconstrained", since it is a
non-ordinal categorical variable which admits only two values.

Moreover, the validity of Florschuetz’s model (4) has to be ensured then it is important to keep
the variables in a subspace where (4) has been validated. To this end, the following linear constraints

1 ≤zn
d

≤ 3, (29)

4 ≤yn
d

≤ 8, (30)

6.25 · 10−1 ≤xn
yn

≤ 3.75, (31)

5 ≤xn
d

≤

15 if layout = inline

10 if layout = staggered
. (32)

have to be satisfied. The coefficients and the form of the inequalities above were empirically defined in
[17, 16]. Note that the depending on the value of the variable layout, the constraint (32) changes. It is
easy to show that when constraints (29)-(32) are fulfilled, overlapping holes are avoided in the design
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Figure 7: Left: the current choice used to define NOZZLE with two layouts. Right: a hint for a (possible) new idea to
allow four layouts.

of the impingement plate, both for inline and staggered layout.

Remark 2.1. We remark that the Florschuetz model used to define our BBO model admits only two
values for the categorical variable layout. Therefore both the problem formulation and solution may
be considerably simplified. On the other hand, the possibility to explore, at least numerically, further
values for this variable represents an interesting new perspective for engineering design and motivates
our formulation of the problem.

Enlarging the number of values of layout requires overcoming the Florschuetz model, or at least, its
integration in order to exploit its simplicity and reliability. We present now an alternative manufac-
turable pattern layout under study that motivated our proposed general framework. Figure 7 displays
on the left a representation of the current NOZZLE version: we have the impingement plate where we
use Florschuetz’s model, thus we have only two possible layouts, inline and staggered. Alternatively,
the right Figure 7 shows the impingement plate split into two regions to allow one layout per region. In
this way, considering only the inline and staggered, we can have four possible layouts for the whole
plate given by the combinations of inline and staggered on every half-plate. As the figure shows,
we could apply Florschuetz’s model to the half of the plate that is upstream of the cooling air flow
(whose direction is represented by the blue arrow), while for the downstream half, it is necessary to find
another model. This is because downstream we are no longer in the exact configuration for which the
Florschuetz model was developed, in fact in the first row of jets we will have a nonzero crossflow mass
velocity since we will have the contribution coming from the upstream half. Recall that the Florschuetz
model was instead developed for a configuration such as that shown on the left in Figure 7, in which we
have no crossflow coming from upstream of the plate. Therefore, a different model needs to be applied
to the downstream half that is currently under study.

2.3 Black-box definition

In this section we merge all the ingredients defined in Sections 2.1 and 2.2 to present the black-box
formulation that models the impingement cooling system for a nozzle in a gas turbine. By black-box
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Figure 8: Flow chart for the structure of the black-box.

we mean a set of computational models for the optimization problem (objective and constraints) that
can be evaluated to simulate the cooling system under consideration.

The basic structure of the black-box is represented in the flow chart in Figure 8 and described with
more detail in Algorithm 3. The black-box takes as input the variable vector v = (xn, yn, zn, d, layout)
that defines the design of the impingement plate, and the fixed parameters given by assumptions and
boundary conditions: the inlet temperature Tc and pressure pinc of the cooling air, the total mass flow
ṁtot of cooling air coming from upstream of the cooling system, the temperature Tg and HTC hg of
the hot gas that surrounds the nozzle, the discharge coefficient CD of the holes and the sizes Lx and
Ly of the rectangular impingement plate (Step 1).

The inlet temperature Tc is used to interpolate the values of the dynamic viscosity µc, the thermal
conductivity kc and Prandtl number Prc for the cooling air (Step 4).

The design variables v, together with the dynamic viscosity µc and the parameters Lx, Ly, ṁtot

and CD are given as inputs to Algorithm 1 to estimate the stream-wise distributions at every row of
holes of the flow mass velocities to the jets Gj and to the cross section Gc and of the jet Reynolds
number Rej . Distributions of Gj and Gc are then used to estimate the outlet pressure poutc of the
cooling air by solving the non linear equation (26) (Steps 5-7).

The HTC distribution hc(v) of the cooling air is estimated using the variables v, the distributions
Gj , Gc and Rej and the coefficients kc and Prc with Florschuetz’s model (4) and (3) (Steps 8-10).

The HTC distribution hc(v) is then used to calculate the objective value H (v) = (hc(v))RMS and
to estimate the wall temperature distributions Twi (v) and Twe (v) using one of the two approaches
explained in Section 2.2.1 (Step 24).

The black-box returns as outputs the HTC distribution hc to obtain the objective value H (v) and
the temperature distributions Twi and Twe and the value of poutc to verify the constraints (19)-(20) and
(28) respectively.

We observe that the wall temperature distributions are not only used to define constraints. Indeed,
the distribution of Twi is also used for better estimation of the thermal conductivity kc of the cooling
air. As discussed in Section 2.1.2, the value of this coefficient is obtained by interpolation using Tc

as query value; however, assuming Tc as the temperature of the cooling air in the boundary layer
near the inner nozzle wall is quite inaccurate, because in that region the cooling air is affected by the
temperature of the wall, heated by conduction. So, as query value, we use the film temperature Tf

which is an approximation of the temperature of a fluid inside a convection boundary layer [17, 16],
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and it is defined as
Tf =

mean (Twi) + Tc

2
. (33)

After the a first interpolation of kc := kc(Tc) it is necessary to estimate again the distributions of
hc, Twi and Twe. We recall that kc is involved directly in (3) for the evaluation of the distribution hc

and consequently in (15) for the estimation of Twi and Twe. We include all this steps into a loop that
in every iterate generates new estimations hc, Twi and Twe and it ends when the relative error between
two subsequent estimations of hc is below a certain tolerance tolh, i.e.

∥hc − (hc)old∥2
∥(hc)old∥2

≤ tolh. (34)

This loop is described in Steps 9-23 of Algorithm 3. Note that this loop does not involve the
other coefficients µc and Prc, that is because in that case assuming Tc as query for the interpolation
is acceptable. Furthermore the loop does not involve directly the distribution of the external wall
temperature Twe.

We note that the evaluation of the feasibility constraints (29)-(32) is not included in Algorithm 3
as they can can be easily treated outside the black-box.

Finally, we note that the implementation of the black-box results in an evaluation cost of the
objective function and of the constraints that is rather cheap. This is due to the small number of
variables (four continuous and one categorical) and to the small size of the distributions handled by
the function (e.g. Twe, Twi, hc). Moreover, most of the auxiliary quantities and distributions needed
are obtained straightforwardly, with the only exception of the solution of the nonlinear equation (26) to
get the outlet pressure poutc , which uses an iterative method. Thus a single evaluation of the black-box
requires a small amount of computational time and memory.

3 Derivative-free optimization for the solution of NOZZLE

In this section we embed the NOZZLE model described in the previous sections in the DFO framework.
We therefore describe the main model features and propose a DFO based procedure for its minimization.

3.1 The overall constrained black-box optimization formulation

In Section 2.1 we have described the formulation of the objective function H(v) while in Section 2.2 we
have defined and motivated the constraint functions on wall temperature distributions Twi(v), Twe(v),
on the outlet pressure poutc (v) and on the design variables v = (xn, yn, zn, d, layout). We can gather all
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Algorithm 3 HTC stream-wise distribution with film temperature loop
Initialization

1: Input: the variables v = (xn, yn, zn, d, layout) and the parameters Lx, Ly, Tc, Tg, hg, ṁtot, CD.
2: Compute Nx = ⌊Lx

xn
⌋, Ny = ⌊Ly

yn
⌋ e Aj =

πd2

4 .
3: Define the vector xj =

1
2xn : xn : (Nx − 1

2 )xn of the x-coordinate of the centers of the span-wise rows.
4: Calculate by nonlinear interpolation of µc := µc(Tc), Prc := Prc(Tc).

Mass velocity distributions
5: Estimate the distributions of Gj and Gc

Gj
using Algorithm 1.

Jet Reynolds number distribution
6: Compute the distributions of jet Reynolds number Rej(xi) using (8).

Outlet pressure estimation
7: Estimate poutc as a solution of (26).

Nu distribution
8: Using (4) and (5), obtain the stream-wise distribution of the Nusselt number Nu.

First interpolation of kc and first evaluation of hc, Twi and Twe

9: Calculate by nonlinear interpolation of (kc)old := kc(Tc) of the coolant fluid.
10: Compute the distribution of (hc)old using (3):

(hc)old (xi) =
Nu(xi) (kc)old

d
, i = 1, ..., Nx.

11: Estimate of the distribution of (Twi)old and (Twe)old via solving (15).
Film temperature loop

12: for it = 1, 2, ... do
13: Set

Tf =
(Twi)old + Tc

2
.

14: Interpolate kc := kc(Tf ).
15: Evaluate

hc(xi) =
Nu(xi)kc

d
, i = 1, ..., Nx.

16: Estimate new distribution Twi and Twe via solving (15) using hc.
17: Compute the relative error εrel as

εrel =
∥hc − (hc)old∥2

∥(hc)old∥2
.

18: if εrel ≤ tolh then
19: Break.
20: else
21: Set

(hc)old = hc;

(Twi)old = Twi;

(Twe)old = Twe.

22: end if
23: end for

Objective value
24: Set H = (hc)RMS

Outputs
25: Return H, Twi, Twe and poutc .
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the functions defined so far to formulate the NOZZLE as a standard minimization problem as follows.

min
v

−H(v)

s.t. c1(v) := (Twe(v))RMS − Tmax
we ≤ 0;

c2(v) := (∆T (v))RMS −∆Tmax ≤ 0;

c3(v) := ∆pc(v)−∆pmax
c ≤ 0;

c4(v) := 1− zn
d

≤ 0;

c5(v) :=
zn
d

− 3 ≤ 0;

c6(v) := 4− yn
d

≤ 0;

c7(v) :=
yn
d

− 8 ≤ 0;

c8(v) :=
xn
yn

− 3.75 ≤ 0;

c9(v) := 6.25 · 10−1 − xn
yn

≤ 0;

c10(v) := 5− xn
d

≤ 0;

c11(v) :=

xn
d − 15 ≤ 0 if layout = inline
xn
d − 10 ≤ 0 if layout = staggered

;

(xn, yn, zn, d) ∈ B ⊂ R4
>0; layout ∈ {inline, staggered} .

(35)

Formulation (35) represents a constrained black-box optimization problem, where the objective −H(v)

is the negative RMS of the HTC distribution hc defined in (14) and it is returned as one of the outputs
of the black-box function defined in Section 2.3. The other outputs of the black-box are used to define
the constraint functions c1(v), c2(v), c2(v) which are respectively derived from (19), (20) and (28).
The constraint functions ci(v) with i = 4, ..., 11 are derived directly from the feasibility constraints
(29)-(32).

Referring to the black-box optimization constraint taxonomy presented in [32] we can identify two
kinds of constraint functions in (35). Functions c1, c2 and c3 are black-box simulation based, thus any
kind of (sub-)gradient is unavailable, and they are also relaxable, since an impingement plate design
that violates these constraints is still meaningful and can be post-processed. Remaining functions,
from c4 to c11, are algebraic since they are expressed in an explicit form but they also are unrelaxable
because, as we explained in Section 2.2.3, they describe the validity space of Florschuetz’s model used
to define the black-box.

3.2 DFO solution framework

The structure of NOZZLE as optimization problem in (35) clearly calls for DFO tools. Two main issues
influences the choice of the DFO approach: the presence of black-block constraints and the presence
of mixed variables, that is continuous and categorical variables.

Focusing on DFO for constrained black-box optimization, three different approaches can be found
in the literature: filter approaches, model-based approaches and penalty approaches. For a more
complete overview refer to [13].

Filter methods aim to address black-box constraints, and also algebraic constraints, by concur-
rently minimizing both the objective and constraint violation. Audet and Dennis introduced in [3] a
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pattern-search technique for general constrained optimization that accepts steps that improve either
the objective or the violation of black-box constraints. Further approaches can be found in [25, 34].

Model-based approaches defines a surrogate problem by building models to replace the simulation-
based functions (objective and constraints). Powell in [24] develops a direct search method for con-
strained optimization which approximates the objective and constraint functions using linear models
defined over a simplex. Bürmen et al. in [1] presented a version of Mesh Adaptive Direct Search
(MADS) applied to a surrogate problem defined using strongly convex quadratic model for the objec-
tive function and linear models for the constraints. In [27], a trust-region method employing fully linear
models of both constraint and objective functions was developed. An alternative method employs in-
terpolating radial basis function surrogates of the objective and constraint functions (CONORBIT)
[29]. Finally, in [8] a simplex-gradient-based approach is considered for approximating normal cones
when the black-box constraints are quantifiable.

Regarding penalty methods, Audet and Dennis [4] propose a progressive-barrier method within
MADS method with quadratic penalty for relaxable black-box constraints and an extreme-barrier
penalty for unrelaxable ones; in [31], an extreme-barrier penalty is used again to handle unrelaxable
constraints, while an exact penalty is used for relaxable ones, everything within a Directional Direct
Search (DDS) framework; the paper [10] proposes a line-search method with a sequence of quadratic
penalty functions to address non-differentiable constraint and objective functions; Sampaio and Toint
propose a derivative-free variant of trust-funnel method to deal equality constraints without using
neither merit functions nor filters, see [28]. Finally, an augmented Lagrangian framework was developed
in [35] where the merit function is defined using Gaussian process models of the objective and constraint
functions.

The literature comprising DFO algorithms that handles mixed variables is not very extensive.
Papers by Audet and Dennis [5], by Lucidi et al. [33] and by Abramson [23] consider the presence of
categorical variables. In particular, the work [23] extends the MADS algorithms for solving constrained
mixed variable optimization problems. These algorithms have been successfully applied to relevant
engineering applications, see e.g. [18, 22]. Finally, we mention the recent work [20] where the pattern
search method Brute Force Optimizer (BFO) proposed in [19] for solving problems with continuous
and discrete variables, has been extended to handle categorical variables. More details on BFO are
postponed to next section.

3.3 Our DFO proposal: the ℓ1−penalty BFO method

We propose a new DFO penalty methods leveraging on the general ℓ1−penalty method for derivative-
based optimization, see e.g. [14]. Indeed we consider problem (35), and define the penalty function
ϕ1(v, ε) as

ϕ1(v, ε) = −H(v) + εC (v) , (36)

where ε > 0 is the penalty parameter and the constraint violation function gathers all the constraint
functions C (v) as follows

C (v) :=
11∑
j=1

max {0, cj(v)} . (37)
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By choosing an increasing sequence of penalty parameters {εk}k∈N such that εk → ∞ we define a
sequence of unconstrained minimization problems of the form

min
v

ϕ1(v, εk) = −H(v) + εkC (v)

s.t. (xn, yn, zn, d) ∈ B ⊂ R4
>0, layout ∈ {inline, staggered} ,

(38)

where we penalize constraint violations more severely, thereby forcing the minimizer of the penalty
function closer to the feasible region for problem (35). Then, we use a derivative-free algorithm for
solving (38) for every value of εk. In particular, our choice for the inner solver is the Brute Force
Optimizer (BFO) [19, 20].

BFO is a simple random pattern search algorithm specifically designed for black-box optimization
as it can deal bound-constrained optimization problems without any regularity or convexity assumption
on the objective function. In particular, BFO is suitable for the minimization of the nonsmooth black-
box function (36).

As a pattern search method, for every iterate v BFO creates a polling set of directions P that
defines a finite local mesh around v, BFO searches for any improvement of the objective function
on this mesh by evaluating all the points on the mesh and if it succeed in finding a better value for
the objective function at a new point v̂ the iterate is updated; otherwise if BFO fails in finding an
improvement on the local mesh, the mesh is refined (i.e. a new mesh is defined closer to v) and a new
search is performed.

BFO can handle different types of variables as continuous, integer, discrete, mixed or categorical.
If the optimization problem has mixed variables, e.g. continuous and categorical variables, the search
phase is more articulated and is called tree-search strategy, see further details in [19, 20]. In fact,
the search phase is firstly performed involving only the continuous components of the iterate v while
the discrete ones are kept fixed, then, if there are no improvements on the continuous mesh, instead
of refining the mesh a further search is performed by exploring the meshes defined around an iterate
defined by fixing successively each of the non-continuous variables to a value neighboring that present in
v. As an example let us consider the vector of the design variables v =

(
xn, yn, zn, d, staggered

)
; at first

the the mesh is build around the continuous part
(
xn, yn, zn, d

)
while keeping fixed layout = staggered,

if BFO fails in finding an improvement another search is done on the same mesh for the continuous
part but setting layout = inline. 2

The overall proposed algorithm is detailed in Algorithm 4.

Algorithm 4 The ℓ1−penalty BFO scheme
1: Given vs

0, ε0 > 0, ν > 1, τ > 0, kmax > 0
2: for k = 0, 1, ..., kmax do
3: Use BFO to find an approximate minimizer vk of ϕ1(v, εk), starting from vs

k.
4: if C(vk) ≤ τ then
5: Stop and return vk.
6: end if
7: Set εk+1 = νεk.
8: Set vs

k+1 = vk.
9: end for

At the beginning, an initial guess vs
0 and an initial value ε0 > 0 for the penalty parameter are

chose. Also the update coefficient ν > 1 to increase the penalty, the tolerance τ > 0 for the constraint
2Although problem (38) might be solved by interpreting the categorical variable as a binary one, thus considerably

simplifying the problem solution, we chose to treat it as truly categorical for the sake of generality (see Remark 2.1).
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violation and a maximum number of iteration kmax are set. At every kth iteration BFO is called to
find an approximate minimizer of the penalty function ϕ1(v, εk), where the penalty parameter is kept
fixed, returning a point vk. Then the value of the constraint violation function C(vk) is checked and
if C(vk) ≤ τ then vk is accepted as an acceptable solution and the procedure stops. Otherwise the
penalty parameter εk+1 is increased by a factor ν and the new starting point vs

k+1 is set equal to the
minimizer just found vk and a new iteration starts. The update strategy for the new starting point
at Step 8 is motivated by the fact that with a good choice of the initial penalty parameter ε0, it is
possible to obtain from the first iteration an approximate minimizer that does not excessively violate
the constraints, so it will be sufficient to search for an admissible solution in a neighborhood of the
last minimizer found, having chosen an appropriate parameter ν for the penalty update.

4 Experimental results

In this section we numerically solve the NOZZLE model formulated as problem (35) by exploiting
the the black-box functions described in the previous sections and by employing the ℓ1−penalty BFO
algorithm.

Recalling that we aim to find "better" geometric variables xn, yn, zn, d and layout that define
the design for an impingement plate for a fixed nozzle of a gas turbine, we consider two different
problem settings obtained considering two different sets of boundary conditions. The first, called here
the "laboratory case", represents a situation that is encountered on a laboratory test bench, that is
conditions similar to those under which Florschuetz and collaborators carried out the experiments to
derive the model (4) (see [17]) are reproduced. The second has boundary conditions that reflect the
typical values of an actual gas turbine and, for this reason, it will be referred as the "industrial case"3.
The boundary conditions and the upper bounds for both experimental cases are gathered in Table
2. At the moment we emphasize that for both situations we use the same value for the discharge
coefficient CD and mass flow rate ṁtot. In addition, the upper limit for the pressure difference ∆pmax

c

is also somewhat the same, specifically the two values for ∆pmax
c are chosen such that the ratio of

the pressure difference to the inlet pressure has as an upper limit equal to 0.04, i.e. we look for a
configuration that allow a pressure difference lower than the 4% of pinc .

For the evaluation of the distributions of the wall temperature we solve the general problem defined
in (16) using finite differences as described in Section 2.2.1.

All the experiments have been carried out using Matlab R2023a on a Intel(R) Core(TM) i7-9750H
CPU @ 2.60GHz machine with 16 GB RAM and the new release 2.0 of the Matlab BFO package
available at https://github.com/m01marpor/BFO. Default parameters have been set for BFO while
ε0 = 1.5, ν = 10, τ = 10−3 and kmax = 15 have been set in Algorithm 4.

4.1 Laboratory case

Referring to the third column of Table 2, the temperature Tg of the hot gas is around 100◦C with low
HTC hg while the inlet temperature of the cooling air Tc is around 50◦C and inlet pressure pinc is about
twice the atmospheric pressure. The impingement plate is nearly square with approximately 12 cm
per side, and the target surface is 1 cm thick with good thermal conductivity. In this experiment, we
start from an initial guess vs

0 chosen with xn = 1.75 · 10−2 m, yn = 8.40 · 10−3 m, zn = 6.30 · 10−3 m,
3The black-box functions implementing the industrial case are available at https://github.com/GrattonToint/

S2MPJ/blob/main/matlab_problems/NOZZLEfp.m
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Parameter name Description [Unit] Laboratory case value Industrial case value
Lx Plate stream-wise length [m] 1.27 · 10−1 5 · 10−2

Ly Plate span-wise length [m] 1.22 · 10−1 5 · 10−2

Tc Cooling air inlet temperature [K] 2.93 · 102 7.73 · 102

pinc Cooling air inlet pressure [Pa] 2.03 · 105 1.01 · 106

Tg External hot gas temperature [K] 3.73 · 102 1.27 · 103

hg External hot gas HTC [W m−2K−1] 1 · 102 1 · 103

ṁtot Cooling air mass flow rate [Kg s−1] 1.00 · 10−2 1.00 · 10−2

CD Jet discharge coefficient [-] 0.85 0.85

kw Wall thermal conductivity [W m−1K−1] 1 · 102 2 · 101

∆s Wall thickness [m] 1.00 · 10−2 3.00 · 10−3

∆Tmax Upper bound for Twe − Twi [K] 3.00 · 101 6.00 · 101

Tmax
we Upper bound for Twe [K] 3.43 · 102 1.07 · 103

∆pmax
c Upper bound for pinc − poutc [Pa] 8.11 · 103 4.04 · 104

Table 2: Parameters for boundary conditions and bounds for black-box constraints for laboratory (3rd column) and
industrial (4th column) cases.

d = 2.10 · 10−3 m and layout = staggered as it shown in Figure 9. The initial guess has a value for
the objective value H (vs

0) = 2.03 · 102W m−2K−1. In this way vs
0 satisfies the algebraic constraints

(29)-(32) and the box constrains defined by the set B ⊂ R4
>0

B :=

{
(xn, yn, zn, d) ∈

[
Lx

30
,
Lx

2

]
×
[
Ly

30
,
Ly

5

]
×
[
10−3m, 10−2m

]
×
[
2 · 10−3m,

Ly

2

]}
. (39)

This definition of B allows a very simple design for the impingement plate. After only one iteration of
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Figure 9: 2-D representation of the initial guess for the laboratory case.

ℓ1−penalty BFO method and 346 evaluations of the black-box the procedure converges to a solution
ṽ such that C (ṽ) ≤ τ . In particular the geometric variables of this solution are xn = 2.54 · 10−2 m,
yn = 1.53 · 10−2 m, zn = 4.60 · 10−3 m, d = 2.00 · 10−3 m and layout = inline with a corresponding
objective value H (ṽ) = 4.16 · 102W m−2K−1; in Figure 11 (right) we show in 2-D the resulting layout.

In Figures 10 and 11 there are some plots to show the distribution of the HTC of the cooling air hc
(Figure 10, left), the distributions of the wall temperatures (Figure 10, right) and the distribution of
the wall temperature difference (Figure 11, left). This last plot shows very low values for the difference
between external and internal temperature, and this is due to the thickness of the wall combined
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Figure 10: Laboratory case: On the left the 1-D distribution of the HTC hc of the cooling air. On the right the 1-D
distribution of the internal and external wall temperature distributions.
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Figure 11: Laboratory case: On the left the 1-D distribution of the difference between external and internal wall
temperatures. On the right a 2-D representation of the final layout of the impingement plate.

with its thermal conductivity. From the other plots it is possible to see that there are no violation in
temperature constraints.

4.2 Industrial case

In this case the temperatures are significantly higher. In fact the temperature Tg of the external hot
gas is 1000◦C and the inlet temperature Tc is 500◦C. From the 4th column of Table 2, we can see
that also the HTC of the hot gas hg is higher and that the inlet pressure pinc of the cooling air is ten
times the atmospheric pressure. On the other hand we are considering a smaller impingement plate (a
square with with 5cm-long side) and a thinner target surface (only 3mm thick) with a lower thermal
conductivity. Since the boundary conditions change, the upper bounds for the temperature constraints
must be increased (see Table 2, 4th column). Since the plate is smaller, also the box constraints B are
changed a bit, in particular we allow the diameter d to be smaller, thus d ∈

[
5 · 10−4m,

Ly

2

]
.

The initial guess vs
0 has values xn = 5.00 · 10−3 m, yn = 4.00 · 10−3 m, zn = 3.00 · 10−3 m,

d = 1.00 ·10−3 m and layout = staggered and has an objective value of H (vs
0) = 1.01 ·103W m−2K−1.

The initial layout is shown in Figure 12.
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Figure 12: 2-D representation of the initial guess for the industrial case.

Again, with only one iteration of ℓ1−penalty BFO method and 252 evaluations of the black-box
the procedure converges to a solution ṽ with H (ṽ) = 2.71 · 103W m−2K−1. The geometric variables
have the following values xn = 6.28 · 10−3 m, yn = 3.87 · 10−3 m, zn = 1.46 · 10−3 m, d = 5.00 · 10−4

m and layout = inline. The resulting layout is shown in Figure 14 (right).
In Figure 13 are plotted the distribution of HTC hc (left) and the distributions of the wall temper-

atures (right); in Figure 14, on the left, we have the distribution of the temperature difference on the
target wall. Also in this case there is no violation of the temperature constraints.
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Figure 13: Industrial case: On the left the 1-D distribution of the HTC hc of the cooling air. On the right the 1-D
distribution of the internal and external wall temperature distributions.

4.3 Comments on the numerical results

Summarizing, in both the problem settings, our DFO approach allows to compute solutions that
improve the performance of the cooling system with low computational effort (only a few hundred
function evaluations). In particular, we improve the RMS heat transfer hc from 2.03 · 102W m−2K−1

to 4.16 ·102W m−2K−1 for the "laboratory case" and from 1.01 ·103W m−2K−1 to 2.71 ·103W m−2K−1

for the "industrial case". In addition, the behavior of the temperature distributions shown in Figures
10, 11, 13 and 14 are consistent with the studies previously done (see [17, 16]). Let us notice that both
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Figure 14: Laboratory case: On the left the 1-D distribution of the difference between external and internal wall
temperatures. On the right a 2-D representation of the final layout of the impingement plate.

the computed solutions are not "far" from the initial guesses, that is because the procedure described
in Algorithm 4 is a local optimization strategy, i.e. the algorithm strongly depends on the choice of
the initial guess. On the other hand, we remark the switch in the value of the categorical layout from
staggered to inline.

5 Conclusions and further developments

In this work, we defined a black-box function implementing a simple model for the the design of an
impingement cooling system. This function simulates the functioning of the cooling system inside
a turbine nozzle and returns as output the parameters to evaluate its efficiency. As a result, we
proposed NOZZLE, a formulation of the problem of maximizing this efficiency in the form of a mixed
variable constrained black-box optimization problem and we numerically validate the model using DFO
algorithms. The overall proposed procedure allows for the design of an efficient impingement cooling
system and for its improvement without having to rely on the operator’s experience and also reduces
the time required with respect to the standard procedure.

The obtained preliminary results form the basis for future developments involving both the black-
box function formulation and the optimization method. The black-box function can be improved by
starting from a problem with different boundary conditions. In particular, instead of knowing the
total mass flow rate ṁtot provided to the cooling system we impose a fixed value for the outlet pressure
of the cooling air poutc . This change would allow us to remove the constraint on the pressure (28)
so we do not need to solve the non linear equation (26), saving some computational effort. Another
improvement of the simulator is to allow the layout variable to assume more than two values, so that
it can be considered a true categorical variable and so that the possible choices for an improved design
can be increased (see also Remark 2.1).

Regarding the optimization method, we observed in Section 4 that the ℓ1−penalty BFO method
returned reliable local solutions. On the other had, practitioners often need a global solution. There-
fore, next step will be devoted to the implementation a global optimization strategy that is suitable
for the problem under consideration.
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