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Abstract. This paper is devoted to study the convergence rates of a second-order

dynamical system and its corresponding discretizations associated with a nonsmooth

bilinearly coupled convex-concave saddle point problem. We derive the convergence rate of

the primal-dual gap for the second-order dynamical system with asymptotically vanishing

damping term. Based on the implicit discretization, we propose a primal-dual algorithm and

show the non-ergodic convergence rate under a general setting for the inertial parameters

when one objective function is a continuously differentiable convex function and another

one is a proper, convex and lower semicontinuous function. We present the O
(
1/k2

)
convergence rate under three classical rules proposed by Nesterov, Chambolle-Dossal and

Attouch-Cabot without the strong convexity, which is compatible with the results of the

continuous-time dynamic system. We further present a primal-dual algorithm based on

the explicit discretization when both objective functions are continuously differentiable

convex functions. We show the corresponding non-ergodic convergence rate and prove that

the sequence of iterates generated by the primal-dual algorithm weakly converges to a

primal-dual optimal solution.
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1 Introduction

Let X ,Y be two real Hilbert spaces equipped with inner products ⟨·, ·⟩X , ⟨·, ·⟩Y (abbreviated ⟨·, ·⟩) and norms

∥ · ∥X = ⟨·, ·⟩
1
2

X , ∥ · ∥Y = ⟨·, ·⟩
1
2

Y (abbreviated ∥ · ∥). The mapping A : X → Y is a continuous linear operator

with induced norm

∥A∥ = max {∥Ax∥ : x ∈ X with ∥x∥ ≤ 1} .
∗To whom all correspondences should be addressed: t.v.phan@soton.ac.uk
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In this paper, we consider the following bilinearly coupled convex-concave saddle point problem

min
x∈X

max
y∈Y

L(x, y) ≡ f(x) + ⟨Ax, y⟩ − g(y), (1.1)

which is naturally associated with the following convex optimization problem

min
x∈X

f(x) + g∗(Ax),

where f : X → R is a continuously differentiable convex function and g : Y → R∪{+∞} is a proper, convex

and lower semicontinuous function, and g∗ : Y → R ∪ {+∞} is the Fenchel conjugate of g. Here we call

⟨Ax, y⟩ the bilinear coupling term. Saddle point problems arise regularly in determining primal-dual pairs

of constrained convex optimisation problems, recently they have been studied widely due to many relevant

and challenging applications in the field of imaging processing [13, 16], reinforcement learning [18, 34] and

generative adversarial networks [8, 12].

A pair (x∗, y∗) ∈ X × Y is called a saddle point of the function L(x, y) if for every (x, y) ∈ X × Y,

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗).

We denote by S the set of saddle points of problem (1.1). We assume that problem (1.1) has at least one

optimal solution (x∗, y∗), which also satisfies the following KKT conditions{
▽f(x∗) +A∗y∗ = 0,

Ax∗ − ∂g(y∗) ∋ 0,
(1.2)

where A∗ is the adjoint operator of A. Define the operator TL : X × Y → X × Y as

TL(x, y) =

(
▽xL(x, y)

∂yL(x, y)

)
=

(
▽f(x) +A∗y

∂g(y)−Ax

)
. (1.3)

It is obvious that the optimality condition (1.2) can be reformulated as TL(x∗, y∗) ∋ 0 and S can be viewed as

the set of zeros of the operator TL. Since f (resp. g) is convex and continuously differentiable (resp. convex

and lower semicontinuous) and A (resp. A∗) is a linear operator, it is obvious that TL(x, y) is maximally

monotone (see Corollary 20.28 in [6]). Moreover, we note that S can be interpreted as the set of zeros of the

maximally monotone operator TL and so S is closed and convex.

We recall some significant primal-dual algorithms for the saddle point problem (1.1). Chambolle and

Pock [13] showed an ergodic convergence rate O (1/k) of their celebrated first-order primal-dual algorithm

for the primal-dual gap of problem (1.1) with f and g are proper, convex and lower semicontinuous. The

authors showed that their primal-dual algorithm has strong connections with other well-known methods,

such as the extra-gradient method [25], the Douglas-Rachford splitting method [28] and the preconditioned

ADMM method [19]. When either f or g is strongly convex (the partially strongly convex case), they proved

the ergodic convergence rate O
(
1/k2

)
of an accelerated primal-dual algorithm. Additionally, an ergodic

linear convergence rate has been shown when both f and g are strongly convex (the strongly convex case).

By employing the Bregman distance, Chambolle and Pock [14] established the ergodic convergence rates with

simpler proofs for a more general case in which f has a nonsmooth plus smooth composite structure. Based

on the primal-dual algorithm described in [13], He et al. [20] proposed a generalized primal-dual algorithm

and relax the condition for ensuring its convergence, and obtain the convergence rate O (1/k) in both the

ergodic and pointwise sense. With the assumption that f is a convex and Fréchet differentiable function

2



with Lf -Lipschitz continuous gradient and g is proper, convex and lower semicontinuous, Chen et al. [16]

presented an ergodic convergence rate of O
(
Lf/k

2 + ∥A∥/k
)
for the primal-dual gap of problem (1.1). Jiang

et al. [24] provided an accelerated O
(
1/k2

)
rate and linear convergence for the strongly convex case and

partially strongly convex case, respectively. When both f and g exhibit a nonsmooth plus smooth composite

structure, He et al. [23] showed a non-ergodic convergence rate O (1/k) under convexity assumptions, a non-

ergodic convergence rate of O
(
1/k2

)
for the partially strongly convex case, and an ergodic linear convergence

rate for the strongly convex case. Under the assumption that both f and g are smooth, Kovalev et al. [26]

proposed an accelerated primal-dual gradient method for solving the saddle point problem and showed linear

convergence when the objective function is strongly convex-concave, convex-strongly concave, or even just

convex-concave. Thekumparampil et al. [34] developed a lifted primal-dual first order algorithm and show

a lower complexity bound under the assumption that f and g are both strongly convex smooth functions.

More results regarding (1.1) can be found in [13, 14, 16, 17, 20] and references therein.

1.1 Fast primal-dual algorithm via dynamical system

Recently, continuous-time dissipative dynamical systems have been extensively studied in the context of

solving various optimization problems. A decisive step was taken by Su et al. in [33], where, for the mini-

mization of a continuously differentiable convex function Φ : X → R, the authors considered the following

second order inertial dynamic with asymptotic vanishing viscous damping

ẍ(t) +
α

t
ẋ(t) + ▽Φ(x(t)) = 0, t > 0. (1.4)

The authors successfully link the inertial dynamic (1.4) with the accelerated gradient method of Nesterov

[7, 31] in the case α = 3. Moreover, Attouch et al. [3] showed that any trajectory of (1.4) weakly converges

to a minimizer of Φ when α > 3 and established strong convergence properties for various practical settings.

In addition, Attouch and Peypouquet [4] and May [29] showed that the asymptotic convergence rate of (1.4)

is o
(
1/k2

)
when α > 3.

Subsequently, the inertial dynamic method has been generalized to linear equality constrained convex

optimization problems by employing the augmented Lagrangian approach. Attouch et al. [2] introduced a

second-order continuous dynamical system with viscous damping, extrapolation, and temporal scaling for

linear equality constrained convex optimization problems and paved the way for developing the corresponding

accelerated alternating direction method of multipliers (ADMM) algorithms via temporal discretization.

Boţ and Nguyen [9] discussed the convergence behavior of the primal-dual gap, the feasibility measure, the

objective function value and trajectory for a second-order dynamical system with asymptotically vanishing

damping term. Recently, Boţ et al. [10] presented the corresponding numerical optimization algorithm

originating from the second-order dynamical system in [9]. They were the first to provide convergence

results regarding the sequence of iterates generated by a fast primal-dual algorithm for linearly constrained

convex optimization problems without additional assumptions such as strong convexity.

It thus seems natural to employ the dynamical system framework to study bilinearly coupled convex-

concave saddle point problems. It is worth mentioning here that Li et al. [27] provided a novel first order algo-

rithm based on continuous-time dynamical systems for a smooth bilinearly coupled strongly-convex-concave

saddle point problem and showed matching polynomial convergence behavior in discrete time. Motivated

by the works described above, we consider the following second order primal-dual dynamical system with
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asymptotically vanishing viscous damping:
ẍ(t) + α

t ẋ(t) + ▽xL (x(t), y(t) + θtẏ(t)) = 0,

ÿ(t) + α
t ẏ(t)− ∂yL (x(t) + θtẋ(t), y(t)) ∋ 0,

(x(t0), y(t0)) = (x0, y0) and (ẋ(t0), ẏ(t0)) = (ẋ0, ẏ0),

(1.5)

where t0 > 0, α > 0, θ > 0 and (x0, y0), (ẋ0, ẏ0) ∈ X × Y. If g is differentiable, we have only made minor

adjustments by replacing the symbols “∂” and “∋” with “▽” and “=” in the second line of (1.5) respectively.

By unfolding the expressions of the gradients of L(·, ·) in the dynamical system (1.5), we have the following

reformulation of system (1.5):
ẍ(t) + α

t ẋ(t) + ▽f(x) +A∗ (y(t) + θtẏ(t)) = 0,

ÿ(t) + α
t ẏ(t)−A (x(t) + θtẋ(t)) + ∂g(y(t)) ∋ 0,

(x(t0), y(t0)) = (x0, y0) and (ẋ(t0), ẏ(t0)) = (ẋ0, ẏ0).

In this paper, we design two numerical algorithms based on the discretization of the second-order dynamical

system (1.5) to solve problem (1.1). Our main contributions are as follows:

(a) We show a convergence rate of O
(
1/t2

)
for the primal-dual dynamical system (1.5) with asymptoti-

cally vanishing viscous damping term and present the corresponding inertial algorithm based on the implicit

discretization when f is a continuously differentiable convex function with Lipschitz continuous gradient

and g is a proper, convex and lower semicontinuous function. A general setting has been considered for the

inertial parameters which covers three classical rules proposed by Nesterov [31], Chambolle-Dossal [15] and

Attouch-Cabot [1]. We obtain a non-ergodic convergence rate of O
(
1/k2

)
for the primal-dual gap under

these rules which improves the ergodic convergence rate O
(
Lf/k

2 + LA/k
)
rate derived in [16]. In contrast

to [14, 23, 24], we obtain the rate O
(
1/k2

)
without the assumption of strongly convexity.

(b) We also develop a primal-dual algorithm based on explicit discretization when both f and g are

two continuously differentiable convex functions with Lipschitz continuous gradients. For smooth bilinearly

coupled convex-concave saddle point problems, our non-ergodic O
(
1/k2

)
convergence rate of the primal-dual

gap under the three classical rules of the inertial parameters improves the ergodic O (1/k) rate for general

smooth saddle problems described in [30]. In addition, we show that the sequence of iterates generated

by our algorithm weakly converges to a primal-dual solution in a general setting which covers the rules of

Chambolle-Dossal [15] and Attouch-Cabot [1]. This algorithm, based on the discretization of a continuous

energy function, is different from the one descried in Boţ et al. [10]. Our main result can be seen as an

extension of their result for linear equality constrained convex optimization problems.

This paper is organized as follows. We focus on an analysis of the second-order dynamical system with

asymptotically vanishing damping term in Section 2. In Section 3, we present a primal-dual algorithm

derived from the implicit discretization of the dynamical system and derive the convergence rate of the

primal-dual gap within a general setting for the inertial parameters. In Section 4, we present the numerical

primal-dual algorithm and the convergence of the sequence of iterates when both f and g are smooth, before

we summarize the results in Section 5.

2 The primal-dual dynamical system

In this section, we suppose f is a convex continuously differentiable function with Lf−Lipschitz continuous

gradient and g is a proper, convex and lower semicontinuous function. To derive the asymptotic behavior
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of the dynamical system (1.5), we note that the standard way to analyse such systems is based on energy

(Lyapunov) functions. Many energy functions have been proposed to study dynamcial systems with various

damping terms and time scaling terms, see e. g. [2, 3, 32, 33], and choosing an appropriate one is crucial.

Motivated by the one introduced in Attouch et al. [3] and Boţ and Nguyen [9], we define the following energy

function Eα,θ : [t0,+∞) → R as

Eα,θ(t) = E0 + E1 + E2 (2.1)

with

E0(t) = θ2t2(L(x(t), y∗)− L(x∗, y(t))),

E1(t) =
1

2
∥(x(t)− x∗) + θtẋ(t)∥2 + ξ

2
∥x(t)− x∗∥2,

E2(t) =
1

2
∥(y(t)− y∗) + θtẏ(t)∥2 + ξ

2
∥y(t)− y∗∥2,

where ξ = θα− θ − 1 ≥ 0.

Theorem 2.1. Let (x(t), y(t)) be a solution of dynamical system (1.5) and (x∗, y∗) ∈ S. Suppose α ≥ 3 and
1

α−1 ≤ θ ≤ 1
2 , it holds

L(x(t), y∗)− L(x∗, y(t)) ≤ Eα,θ(t0)
θ2t2

, (2.2)

(1− 2θ)

∫ +∞

t0

t(L(x(t), y∗)− L(x∗, y(t)))dt ≤ Eα,θ(t0)
θ

< +∞, (2.3)

(θα− θ − 1)

∫ +∞

t0

t
(
∥ẋ(t)∥2 + ∥ẏ(t)∥2

)
dt ≤ Eα,θ(t0)

θ
< +∞. (2.4)

Moreover, if 1
α−1 < θ ≤ 1

2 , then ∥ẋ(t)∥ = O( 1t ), ∥ẏ(t)∥ = O( 1t ).

Proof. Differentiating Ei(t) with respect to t, i = 0, 1, 2, we have

Ė0(t) = 2θ2t(L(x, y∗)− L(x∗, y)) + θ2t2 (⟨▽f(x), ẋ⟩+ ⟨Aẋ, y∗⟩ − ⟨Ax∗, ẏ⟩+ ⟨η, ẏ⟩) ,

Ė1(t) = ⟨(x− x∗) + θtẋ, (1 + θ)ẋ+ θtẍ⟩+ ξ⟨x− x∗, ẋ⟩

= ⟨(x− x∗) + θtẋ, (θ(1− α) + 1)ẋ− θt▽f(x)− θtA∗ (y + θtẏ)⟩+ ξ⟨x− x∗, ẋ⟩

= −θt⟨x− x∗,▽f(x)⟩ − θt⟨x− x∗, A∗y⟩ − θ2t2⟨x− x∗, A∗ẏ⟩

+θ(1 + θ − θα)t∥ẋ∥2 − θ2t2⟨ẋ,▽f(x)⟩ − θ2t2⟨ẋ, A∗(y + θtẏ)⟩,

Ė2(t) = −θt⟨y − y∗, η⟩+ θt⟨y − y∗, Ax⟩+ θ2t2⟨y − y∗, Aẋ⟩

+θ(1 + θ − θα)t∥ẏ∥2 − θ2t2⟨ẏ, η⟩+ θ2t2⟨ẏ, A(x+ θtẋ)⟩,

where η ∈ ∂g(y). Combining these terms, we arrive at

Ėα,θ(t) = 2θ2t(L(x, y∗)− L(x∗, y)) + θ(1 + θ − θα)t
(
∥ẋ∥2 + ∥ẏ∥2

)
−θt (⟨x− x∗,▽f(x)⟩ − ⟨x∗, A∗y⟩+ ⟨y − y∗, η⟩+ ⟨Ax, y∗⟩)

≤ 2θ2t(L(x, y∗)− L(x∗, y)) + θ(1 + θ − θα)t
(
∥ẋ∥2 + ∥ẏ∥2

)
+θt (f(x∗)− f(x) + ⟨x∗, A∗y⟩+ g(y∗)− g(y)− ⟨Ax, y∗⟩)

= θ(2θ − 1)t(L(x, y∗)− L(x∗, y)) + θ(1 + θ − θα)t
(
∥ẋ∥2 + ∥ẏ∥2

)
, (2.5)
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where the inequality follows from the convexity of f and g. From the assumption, we obtain Ėα,θ(t) ≤ 0 and

so Eα,θ(t) is nonincreasing on [t0,+∞). For every t ≥ t0, it holds that

Eα,θ(t) = θ2t2(L(x(t), y∗)− L(x∗, y(t))) +
1

2
∥(x(t)− x∗) + θtẋ(t)∥2 + θα− θ − 1

2
∥x(t)− x∗∥2

+
1

2
∥(y(t)− y∗) + θtẏ(t)∥2 + θα− θ − 1

2
∥y(t)− y∗∥2

≤ Eα,θ(t0), (2.6)

which yields (2.2). For every t ≥ t0, by integrating (2.5) from t0 to t, we have

θ(1− 2θ)

∫ t

t0

s(L(x(s), y∗)− L(x∗, y(s)))ds+ θ(θα− θ − 1)

∫ t

t0

s
(
∥ẋ(s)∥2 + ∥ẏ(s)∥2

)
ds ≤ Eα,θ(t0).

All items inside the integrals are nonnegative. Thus, we arrive at (2.3) and (2.4) by passing t → +∞. From

(2.6), we arrive at

∥ẋ(t)∥ ≤ 1

θt
(∥(x(t)− x∗) + θtẋ(t)∥+ ∥x(t)− x∗∥) ≤ 1

θt

(
1 +

1

θα− θ − 1

)√
2Eα,θ(t0),

which yields ∥ẋ(t)∥ = O( 1t ). Similarly we have ∥ẏ(t)∥ = O( 1t ).

We have shown a O
(
1/t2

)
convergence rate of the primal-dual gap for the dynamic system (1.5). More-

over, it is not difficult to prove that the primal-dual trajectory of the second-order dynamical system (1.5)

asymptotically weakly converges to a primal-dual optimal solution of the original saddle point problem (1.1)

when α > 3 and both f and g are continuously differentiable convex functions with Lipschitz continuous

gradient. In this paper we mainly focus on the convergence rates of numerical algorithms that are derived

from discretizations of the dynamic system (1.5). Next, we will describe two primal-dual algorithms that also

exhibit the corresponding O
(
1/k2

)
convergence rates, which is compatible with the results in the continuous

case. For this, in the following we always suppose α ≥ 3 and 1
α−1 ≤ θ ≤ 1

2 to achieve fast convergence rates.

3 A primal-dual algorithm based on the implicit discretization

In order to provide a reasonable time discretization of the dynamical system (1.5), we follow the techniques

described in Attouch et al. [3], Boţ et al. [10], and He et al. [21]. Let{
u := x+ t

α−1 ẋ,

v := y + t
α−1 ẏ,

and

{
uγ := γ (x+ θtẋ) = γx+ t

α−1 ẋ = u+ (γ − 1)x,

vγ := γ (y + θtẏ) = γy + t
α−1 ẏ = v + (γ − 1)y,

where γ := 1
θ(α−1) ∈

[
2

α−1 , 1
]
. Then, the dynamical system (1.5) can be reformulated as the following

first-order dynamical system: 

u̇ = − t
α−1▽f(x)−

t
γ(α−1)A

∗vγ ,

u = x+ t
α−1 ẋ,

uγ = γx+ t
α−1 ẋ,

v̇ ∈ t
γ(α−1)Auγ − t

α−1∂g(y),

v = y + t
α−1 ẏ,

vγ = γy + t
α−1 ẏ.

(3.1)
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Since f and g in system (3.1) do not necessarily have the same degree of smoothness, we consider two

different time steps for them respectively. Let σ > 0. For x we consider the time step

σk := σ

(
1 +

α− 1

k

)
, (3.2)

and set x(
√
σkk) ≈ xk+1, u(

√
σkk) ≈ uk+1 and uγ(

√
σkk) ≈ uγ

k+1, which follows from the fact that
√
σkk is

closer to
√
σ(k + 1) than

√
σk. The first three lines of (3.1) at time t :=

√
σkk for x, u, uγ then give

uk+1−uk√
σk

= −
√
σkk

α−1 ▽f(zk)−
√
σkk

γ(α−1)A
∗vγk+1,

uk+1 = xk+1 +
√
σkk

α−1
xk+1−xk√

σk
,

uγ
k+1 = γxk+1 +

√
σkk

α−1
xk+1−xk√

σk
,

(3.3)

where zk is chosen by the construction of the proximal operator. To be specific, the second line of (3.3)

yields

xk+1 =
α− 1

k + α− 1
uk+1 +

k

k + α− 1
xk, (3.4)

and consequently we take the following choice for zk:

zk =
α− 1

k + α− 1
uk +

k

k + α− 1
xk. (3.5)

Employing the second line of (3.3) again, we get

zk =
α− 1

k + α− 1

(
xk +

k − 1

α− 1
(xk − xk−1)

)
+

k

k + α− 1
xk = xk +

k − 1

k + α− 1
(xk − xk−1). (3.6)

In addition, by (3.4) and (3.5), we arrive at

uk+1 − uk =
k + α− 1

α− 1
(xk+1 − zk). (3.7)

Consequently, (3.3) can be reformulated as follows:
xk+1 = zk − σ▽f(zk)− σ

γA
∗vγk+1,

zk = xk + k−1
k+α−1 (xk − xk−1),

uγ
k+1 = γxk+1 +

k
α−1 (xk+1 − xk).

(3.8)

Now, for every k ≥ 1, set t̄k = k, yk = y(t̄k), λk = v(t̄k) and vγk = vγ(t̄k). We then take the follow

discretization scheme for the last three lines in (3.1),
ṽk+1 − vk ∈ k

γ(α−1)Auγ
k+1 −

k
α−1∂g(yk+1),

vk+1 = yk+1 +
k

α−1 (yk+1 − yk),

vγk+1 = γyk+1 +
k

α−1 (yk+1 − yk),

(3.9)

where we replace vk+1 with a suitable term ṽk+1 to obtain a reasonably executable iterative scheme. This

approach also has been taken by Boţ et al. [10] in which the authors strive to derive an easily implementable

numerical algorithm from their discretization of a second order dynamical system for a linear equality con-

strained convex optimization problem. They focus on an improvement on the dual variable term vγk+1, while

here we want to choose a suitable ṽk+1 such that ṽk+1 − vk+1 → 0 as k → +∞. To be specific, we choose

ṽk+1 = vk+1 − α−1
k+α−1 (vk+1 − vk). We then have ṽk+1 − vk+1 → 0 when k → +∞ as long as vk+1 − vk is
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bounded for every k ≥ 1. Actually, from the following Proposition 3.1, vk+1 − vk is bounded under some

mild conditions. Then, we can reformulate the first line in (3.9) as

vk+1 − vk ∈ k + α− 1

γ(α− 1)
Auγ

k+1 −
k + α− 1

α− 1
∂g(yk+1). (3.10)

Following Attouch and Cabot [1] and Boţ et al. [10] for general iterative schemes, we use the following

change of variables for every k ≥ 1:

tk = 1 +
k − 1

α− 1
=

k + α− 2

α− 1
,

which yields tk+1 − 1 = k
α−1 and tk−1

tk+1
=

k−1
α−1

1+ k
α−1

= k−1
k+α−1 . Therefore, combing (3.8), (3.9), (3.10) and the

definition of tk, we arrive at the following discretization scheme of dynamical system (1.5):

xk+1 = zk − σ▽f(zk)− σ
γA

∗vγk+1,

zk = xk + tk−1
tk+1

(xk − xk−1),

uγ
k+1 = γxk+1 + (tk+1 − 1)(xk+1 − xk),

vk+1 − vk ∈ tk+1

γ Auγ
k+1 − tk+1∂g(yk+1),

vk+1 = yk+1 + (tk+1 − 1)(yk+1 − yk),

vγk+1 = γyk+1 + (tk+1 − 1)(yk+1 − yk).

(3.11)

By the relations given in (3.11), we have

vk+1 − vk = tk+1(yk+1 − yk)− (tk − 1)(yk − yk−1) (3.12)

and

Auγ
k+1 = (tk+1 + γ − 1)Axk+1 − (tk+1 − 1)Axk

= (tk+1 + γ − 1)A (zk − σ▽f(zk))− (tk+1 − 1)Axk − σ

γ
(tk+1 + γ − 1)AA∗vγk+1

= ξk − σ

γ
(tk+1 + γ − 1)

2
AA∗

(
yk+1 −

tk+1 − 1

tk+1 + γ − 1
yk

)
, (3.13)

where ξk = (tk+1 + γ − 1)A (zk − σ▽f(zk))− (tk+1 − 1)Axk. Substituting (3.12) and (3.13) into the fourth

line of (3.11), we arrive at

0 ∈ ∂g(yk+1) + yk+1 − yk − (tk − 1)

tk+1
(yk − yk−1)−

1

γ
ξk +

σ

γ2
(tk+1 + γ − 1)

2
AA∗

(
yk+1 −

tk+1 − 1

tk+1 + γ − 1
yk

)
.

Now we are in a position to present our first algorithm:

Algorithm 1 Choose γ, σ,m > 0 such that

0 < max{m,σLf} ≤ γ ≤ 1. (3.14)

Choose {tk}k≥1 as a nondecreasing sequence such that

t1 ≥ 1 and t2k+1 −mtk+1 − t2k ≤ 0, ∀ k ≥ 1. (3.15)
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Given x0 = x1, y0 = y1. For every k ≥ 1, we set

zk := xk +
tk − 1

tk+1
(xk − xk−1),

ξk := (tk+1 + γ − 1)A (zk − σ▽f(zk))− (tk+1 − 1)Axk,

ȳk := yk +
(tk − 1)

tk+1
(yk − yk−1),

sk+1 :=
σ

γ2
(tk+1 + γ − 1)

2
,

ζk :=
tk+1 − 1

tk+1 + γ − 1
yk,

yk+1 := argmin
y∈Y

{
g(y) +

1

2
∥y − ȳk∥2 +

sk+1

2
∥A∗(y − ζk)∥2 +

1

γ
⟨ηk, y⟩

}
,

vγk+1 := γyk+1 + (tk+1 − 1)(yk+1 − yk),

xk+1 := zk − σ▽f(zk)−
σ

γ
A∗vγk+1.

The subproblem in Algorithm 1 determining yk+1 has a special splitting structure which can be solved by

some classical splitting methods such as the proximal method and the corresponding accelerated scheme of

FISTA [5, 7]. We notice that we would obtain a simplified version of Algorithm 1 when γ = 1, and this

version enjoys the same convergence rate as the case γ < 1. In what follows we still consider the general case

γ ≤ 1, since some results for γ ≤ 1 will be crucial in the analysis of Algorithm 3 in the following section.

3.1 Convergence analysis of Algorithm 1

Before discussing the convergence properties of Algorithm 1, we first introduce the following equations which

will be used repeatedly

2⟨a, b⟩ = ∥a+ b∥2 − ∥a∥2 − ∥b∥2, (3.16)

1

s+ t
∥sa+ tb∥2 = s∥a∥2 + t∥b∥2 − st

s+ t
∥a− b∥2. (3.17)

where a, b lie in a Hilbert space and s, t ∈ R such that s+ t ̸= 0. Next, we provide some useful inequalities.

Lemma 3.1. Let {(xk, yk)}k≥0 be the sequence generated by Algorithm 1 and (x∗, y∗) ∈ S. Then for every

k ≥ 1 the following inequalities hold

L(xk+1, y
∗)− L(x∗, y∗) (3.18)

≤ − 1

γ

〈
A∗ (vγk+1−γy∗

)
, xk+1−x∗〉+ 1

σ
⟨zk−xk+1, xk+1−x∗⟩+ Lf

2
∥xk+1 − zk∥2−

1

2Lf
∥▽f(zk)−▽f(x∗)∥2,

and

L(xk+1, y
∗)− L(xk, y

∗) (3.19)

≤ − 1

γ

〈
A∗ (vγk+1−γy∗

)
, xk+1−xk

〉
+

1

σ
⟨zk−xk+1, xk+1−xk⟩+

Lf

2
∥xk+1 − zk∥2−

1

2Lf
∥▽f(zk)−▽f(xk)∥2.

Proof. Since f(x) is a convex continuously differentiable function with Lf -Lipschitz continuous gradient, by

the Descent Lemma we obtain

f(xk+1) ≤ f(zk) + ⟨▽f(zk), xk+1 − zk⟩+
Lf

2
∥xk+1 − zk∥2,
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and

f(zk) ≤ f(x) + ⟨▽f(zk), zk − x⟩ − 1

2Lf
∥▽f(zk)− ▽f(x)∥2.

Summing the above two inequalities yields

f(xk+1)− f(x) (3.20)

≤ ⟨▽f(zk), xk+1 − x⟩+ Lf

2
∥xk+1 − zk∥2 −

1

2Lf
∥▽f(zk)− ▽f(x)∥2

= − 1

γ
⟨A∗vγk+1, xk+1 − x⟩+ 1

σ
⟨zk − xk+1, xk+1 − x⟩+ Lf

2
∥xk+1 − zk∥2 −

1

2Lf
∥▽f(zk)− ▽f(x)∥2,

where the last equation follows from the first line of (3.11). By taking inequality (3.20) with x := x∗ and

adding ⟨xk+1 − x∗, A∗y∗⟩ on both sides, we obtain

f(xk+1) + ⟨A(xk+1 − x∗), y∗⟩ − f(x∗) (3.21)

≤ − 1

γ

〈
A∗ (vγk+1−γy∗

)
, xk+1−x∗〉+ 1

σ
⟨zk−xk+1, xk+1−x∗⟩+ Lf

2
∥xk+1 − zk∥2−

1

2Lf
∥▽f(zk)−▽f(x∗)∥2.

Similarly, by taking inequality (3.20) with x := xk and adding ⟨xk+1 − xk, A
∗y∗⟩ on both sides, we have

f(xk+1) + ⟨A(xk+1 − xk), y
∗⟩ − f(xk) (3.22)

≤ − 1

γ

〈
A∗ (vγk+1−γy∗

)
, xk+1−xk

〉
+

1

σ
⟨zk−xk+1, xk+1−xk⟩+

Lf

2
∥xk+1 − zk∥2−

1

2Lf
∥▽f(zk)−▽f(xk)∥2.

By recalling the definition of L(x, y), we complete the proof.

For every (x∗, y∗) ∈ S and every k ≥ 1, we introduce the following energy function:

E(k) := tk+1(tk+1 − 1) (L(xk, y
∗)− L(x∗, yk)) + E1(k) + E2(k),

where

E1(k) :=
1

2σ
∥uγ

k − γx∗∥2 + γ(1− γ)

2σ
∥xk − x∗∥2 and E2(k) :=

1

2
∥vγk − γy∗∥2 + γ(1− γ)

2
∥yk − y∗∥2.

It is obvious that E(k) ≥ 0 for every (x∗, y∗) ∈ S and every k ≥ 1. Next we show two important

inequalities for E1(k) and E2(k) which will play a significant role in the following analysis.

Lemma 3.2. Let {(xk, yk)}k≥0 be the sequence generated by Algorithm 1 and (x∗, y∗) ∈ S. Then for every

k ≥ 1 the following inequalities hold

E1(k + 1)− E1(k) (3.23)

≤ −γtk+1 (L(xk+1, y
∗)− L(x∗, y∗))− tk+1(tk+1 − 1) (L(xk+1, y

∗)− L(xk, y
∗))

− tk+1

γ

〈
A∗ (vγk+1 − γy∗

)
, uγ

k+1 − γx∗〉− (1− γ)

σ
(tk+1 − 1) ∥xk+1 − xk∥2 −

γtk+1

2Lf
∥▽f(zk)−▽f(x∗)∥2

− tk+1

2σ

(
(γ − Lfσ)tk+1 + (1− γ)Lfσ

)
∥xk+1 − zk∥2 −

tk+1(tk+1 − 1)

2Lf
∥▽f(zk)− ▽f(xk)∥2,

and

E2(k + 1)− E2(k) (3.24)

≤ γtk+1(L(x
∗, yk+1)− L(x∗, y∗)) + tk+1(tk+1 − 1)(L(x∗, yk+1)− L(x∗, yk))

+
tk+1

γ

〈
A
(
uγ
k+1 − γx∗) , vγk+1 − γy∗

〉
− (1− γ)(tk+1 − 1 +

γ

2
)∥yk+1 − yk∥2 −

1

2
∥vγk+1 − vγk∥

2.

10



Proof. For a better understanding of the constructed inequalities, we firstly deal with the inequality associ-

ated with g. Suppose ηk+1 ∈ ∂g(yk+1). According to the last three lines of (3.11) and (3.16), we have

1

2
∥vγk+1 − γy∗∥2 − 1

2
∥vγk − γy∗∥2 (3.25)

= ⟨vγk+1 − vγk , v
γ
k+1 − γy∗⟩ − 1

2
∥vγk+1 − vγk∥

2

= ⟨vk+1 − vk + (γ − 1)(yk+1 − yk), γ(yk+1 − y∗) + (tk+1 − 1)(yk+1 − yk)⟩ −
1

2
∥vγk+1 − vγk∥

2

= tk+1⟨
1

γ
Auγ

k+1 − ηk+1, γ(yk+1 − y∗) + (tk+1 − 1)(yk+1 − yk)⟩

+(γ − 1)γ⟨yk+1 − yk, yk+1 − y∗⟩+ (γ − 1)(tk+1 − 1)∥yk+1 − yk∥2 −
1

2
∥vγk+1 − vγk∥

2

= −γtk+1⟨ηk+1 −Ax∗, yk+1 − y∗⟩ − tk+1(tk+1 − 1)⟨ηk+1 −Ax∗, yk+1 − yk⟩+
tk+1

γ
⟨A
(
uγ
k+1 − γx∗) ,

vγk+1 − γy∗⟩+ (γ − 1)γ⟨yk+1 − yk, yk+1 − y∗⟩+ (γ − 1)(tk+1 − 1)∥yk+1 − yk∥2 −
1

2
∥vγk+1 − vγk∥

2,

in which,

⟨yk+1 − yk, yk+1 − y∗⟩ = −1

2

(
∥yk − y∗∥2 − ∥yk+1 − y∗∥2 − ∥yk+1 − yk∥2

)
, (3.26)

and

−γtk+1⟨ηk+1 −Ax∗, yk+1 − y∗⟩ − tk+1(tk+1 − 1)⟨ηk+1 −Ax∗, yk+1 − yk⟩

≤ −γtk+1 (g(yk+1)− g(y∗)− ⟨Ax∗, yk+1 − y∗⟩)− tk+1(tk+1 − 1) (g(yk+1)− g(yk)− ⟨Ax∗, yk+1 − yk⟩)

= γtk+1(L(x
∗, yk+1)− L(x∗, y∗)) + tk+1(tk+1 − 1)(L(x∗, yk+1)− L(x∗, yk)), (3.27)

where the inequality comes from the convexity of the function g(·) − ⟨Ax∗, ·⟩. Combining (3.25), (3.26)

and (3.27), we have

E2(k + 1)− E2(k)

=
1

2
∥vγk+1 − γy∗∥2 − 1

2
∥λγ

k − γy∗∥2 + γ(1− γ)

2

(
∥yk+1 − y∗∥2 − ∥yk − y∗∥2

)
≤ γtk+1(L(x

∗, yk+1)− L(x∗, y∗)) + tk+1(tk+1 − 1)(L(x∗, yk+1)− L(x∗, yk))

+
tk+1

γ
⟨A
(
uγ
k+1 − γx∗) , vγk+1 − γy∗⟩ − (1− γ)(tk+1 − 1 +

γ

2
)∥yk+1 − yk∥2 −

1

2
∥vγk+1 − λγ

k∥
2,

which is nothing else than (3.24). On the other hand, in accordance with the coefficients of the primal-dual

gap in (3.24), by multiplying (3.18) with γtk+1 and (3.19) with tk+1(tk+1 − 1), we arrive at

γtk+1 (L(xk+1, y
∗)− L(x∗, y∗)) + tk+1(tk+1 − 1) (L(xk+1, y

∗)− L(xk, y
∗)) (3.28)

≤ − tk+1

γ
⟨A∗vγk+1 − γy∗, γ(xk+1 − x∗) + (tk+1 − 1)(xk+1 − xk)⟩

+
tk+1

σ
⟨zk − xk+1, γ(xk+1 − x∗) + (tk+1 − 1)(xk+1 − xk)⟩

+
Lf (tk+1 − 1 + γ) tk+1

2
∥xk+1 − zk∥2−

γtk+1

2Lf
∥▽f(zk)−▽f(x∗)∥2 − tk+1(tk+1 − 1)

2Lf
∥▽f(zk)− ▽f(xk)∥2

= − tk+1

γ
⟨A∗ (vγk+1 − γy∗

)
, uγ

k+1 − γx∗⟩+ tk+1

σ
⟨zk − xk+1, u

γ
k+1 − γx∗⟩

+
Lf (tk+1 − 1 + γ) tk+1

2
∥xk+1 − zk∥2−

γtk+1

2Lf
∥▽f(zk)−▽f(x∗)∥2 − tk+1(tk+1 − 1)

2Lf
∥▽f(zk)− ▽f(xk)∥2.
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We notice that

tk+1(zk − xk+1) = tk+1(xk − xk+1) + uγ
k − uγ

k+1 + (1− tk+1)(xk − xk+1)− γ(xk − xk+1)

= uγ
k − uγ

k+1 + (γ − 1)(xk+1 − xk),

which we combine with the third line of (3.11) and (3.16) to see that

tk+1

σ
⟨zk − xk+1, u

γ
k+1 − γx∗⟩

=
1

σ

(
⟨uγ

k − uγ
k+1, u

γ
k+1 − γx∗⟩ − (1− γ)(tk+1 − 1)∥xk+1 − xk∥2 + (1− γ)γ⟨(xk − xk+1), (xk+1 − x∗)⟩

)
= − 1

2σ
∥uγ

k − uγ
k+1∥

2 − 1

2σ
∥uγ

k+1 − γx∗∥2 + 1

2σ
∥uγ

k − γx∗∥2 − (1− γ)(tk+1 − 1)

σ
∥xk+1 − xk∥2

− (1− γ)γ

2σ
∥xk − xk+1∥2 −

(1− γ)γ

2σ
∥xk+1 − x∗∥2 + (1− γ)γ

2σ
∥xk − x∗∥2 (3.29)

holds. We notice that all summands of E1(k+1)−E1(k) can be found in (3.29). Combining this obervation

with (3.28), we obtain

E1(k + 1)− E1(k) (3.30)

=
1

2σ
∥uγ

k+1 − γx∗∥2 − 1

2σ
∥uγ

k − γx∗∥2 + γ(1− γ)

2σ
∥xk+1 − x∗∥2 − γ(1− γ)

2σ
∥xk − x∗∥2

= − tk+1

σ
⟨zk − xk+1, u

γ
k+1 − γx∗⟩ − (1− γ)

σ

(
tk+1 − 1 +

γ

2

)
∥xk+1 − xk∥2 −

1

2σ
∥uγ

k − uγ
k+1∥

2

≤ −γtk+1 (L(xk+1, y
∗)− L(x∗, y∗))− tk+1(tk+1 − 1) (L(xk+1, y

∗)− L(xk, y
∗))

− tk+1

γ
⟨A∗ (vγk+1 − γy∗

)
, uγ

k+1 − γx∗⟩ − (1− γ)

σ

(
tk+1 − 1 +

γ

2

)
∥xk+1 − xk∥2 −

1

2σ
∥uγ

k − uγ
k+1∥

2

+
Lf (tk+1−1 + γ) tk+1

2
∥xk+1 − zk∥2−

γtk+1

2Lf
∥▽f(zk)−▽f(x∗)∥2 − tk+1(tk+1 − 1)

2Lf
∥▽f(zk)− ▽f(xk)∥2.

By (3.7), the third line of (3.11), and (3.17), we deduce

− 1

2σ
∥uγ

k+1 − uγ
k∥

2 = − 1

2σ
∥uk+1 − uk + (γ − 1)(xk+1 − xk)∥2

= − γ

2σ
∥uk+1 − uk∥2 +

γ(1− γ)

2σ
∥xk+1 − xk∥2 −

1− γ

2σ
∥uk − uk+1 − xk+1 + xk∥2

≤ −
γt2k+1

2σ
∥xk+1 − zk∥2 +

γ(1− γ)

2σ
∥xk+1 − xk∥2. (3.31)

And finally, by substituting (3.31) into (3.30), we obtain (3.23).

Theorem 3.1. Let {(xk, yk)}k≥0 be the sequence generated by Algorithm 1 and let (x∗, y∗) ∈ S. Then the

sequence {E(k)}k≥1 is nonincreasing and the following inequalities hold

(γ −m)
∑
k≥1

tk+1 (L(xk+1, y
∗)− L(x∗, yk+1)) < +∞, (3.32)

∑
k≥1

tk+1

(
(γ − Lfσ)tk+1 + (1− γ)Lfσ

)
∥xk+1 − zk∥2 < +∞, (1− γ)

∑
k≥1

(tk+1 − 1)∥xk+1 − xk∥2 < +∞,

∑
k≥1

∥vγk+1 − vγk∥
2 < +∞, (1− γ)

∑
k≥1

(tk+1 − 1)∥yk+1 − yk∥2 < +∞,

∑
k≥1

tk+1∥▽f(zk)− ▽f(x∗)∥2 < +∞,
∑
k≥1

tk+1(tk+1 − 1)∥▽f(zk)− ▽f(xk)∥2 < +∞.
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Proof. From Lemma 3.2, we conclude that

E(k + 1)− E(k)

= (tk+2(tk+2 − 1)− tk+1(tk+1 − 1)) (L(xk+1, y
∗)− L(x∗, yk+1)) + E1(k + 1)− E1(k)

+tk+1(tk+1 − 1) ((L(xk+1, y
∗)− L(xk, y

∗))− (L(x∗, yk+1)− L(x∗, yk))) + E2(k + 1)− E2(k)

≤
(
t2k+2 − t2k+1 − tk+2 + (1− γ)tk+1

)
(L(xk+1, y

∗)− L(x∗, yk+1))−
(1− γ)

σ
(tk+1 − 1) ∥xk+1 − xk∥2

− tk+1

2σ

(
(γ − Lfσ)tk+1 + (1− γ)Lfσ

)
∥xk+1 − zk∥2−

γtk+1

2Lf
∥▽f(zk)−▽f(x∗)∥2

− tk+1(tk+1 − 1)

2Lf
∥▽f(zk)− ▽f(xk)∥2 − (1− γ)(tk+1 − 1 +

γ

2
)∥yk+1 − yk∥2 −

1

2
∥vγk+1 − vγk∥

2. (3.33)

Due to γ −Lfσ ≥ 0 and 0 < γ ≤ 1 in (3.14), it follows that (γ −Lfσ)tk+1 + (1− γ)Lfσ ≥ 0. According

to (3.15), we have

t2k+2 − t2k+1 − tk+2 + (1− γ)tk+1 ≤ (m− 1)tk+2 + (1− γ)tk+1 ≤ (m− γ)tk+1 ≤ 0. (3.34)

Thus, all the coefficients in the right-hand side of (3.33) are nonpositive, it follows that the sequence

{E(k)}k≥1 is nonincreasing for every k ≥ 1. We complete the proof of (3.32) via Lemma A.4.

For every h := (x, y), h′ := (x′, y′) ∈ X × Y, we define the inner product ⟨h, h′⟩W = ⟨(x, y), (x′, y′)⟩W =
1
σ ⟨x, x

′⟩X + ⟨y, y′⟩Y and the corresponding norm ∥h∥W =
√

1
σ∥x∥2 + ∥y∥2 for all h := (x, y) ∈ X ×Y. Next,

we show the boundedness of the sequence generated by Algorithm 1 and an O (1/tk) convergence rate for

the sequences ∥xk − xk−1∥ and ∥yk − yk−1∥.

Proposition 3.1. Let {(xk, yk)}k≥0 be the sequence generated by Algorithm 1. Suppose that

τ := inf
k≥1

tk
k

> 0. (3.35)

Then, the sequences {xk}k≥1, {yk}k≥1, {tk(xk − xk−1)}k≥1 and {tk(yk − yk−1)}k≥1 are bounded.

Proof. Let (x∗, y∗) ∈ S be fixed. We denote

h∗ := (x∗, y∗) ∈ S, and hk := (xk, yk) ∈ X × Y, ∀ k ≥ 1.

By the third line of (3.11) and (3.17), for every k ≥ 1, we see that

∥uγ
k − γx∗∥2 = ∥(tk − 1 + γ)(xk − x∗)− (tk − 1)(xk−1 − x∗)∥2

= γ(tk − 1 + γ)∥xk − x∗∥2 − γ(tk − 1)∥xk−1 − x∗∥2 + (tk − 1 + γ)(tk − 1)∥xk − xk−1∥2

holds. Similarly, we have

∥vγk − γy∗∥2 = γ(tk − 1 + γ)∥yk − y∗∥2 − γ(tk − 1)∥yk−1 − y∗∥2 + (tk − 1 + γ)(tk − 1)∥yk − yk−1∥2,

and so the energy function can be rewritten as

E(k) = tk+1(tk+1 − 1) (L(xk, y
∗)− L(x∗, yk)) +

γ

2
tk∥hk − h∗∥2W − γ

2
(tk − 1)∥hk−1 − h∗∥2W

+
1

2
(tk − 1 + γ)(tk − 1)∥hk − hk−1∥2W . (3.36)
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From the fact that E(k) is nonincreasing, for every k ≥ 1 we get

γ

2
tk∥hk − h∗∥2W − γ

2
(tk − 1)∥hk−1 − h∗∥2W ≤ E(k) ≤ E(1).

It follows that

γ

2
tk∥hk − h∗∥2W ≤ γ

2
(tk − 1)∥hk−1 − h∗∥2W + E(1) ≤ γ

2
tk−1∥hk−1 − h∗∥2W + E(1), (3.37)

where the second inequality follows from the fact tk+1 − tk < 1 in Lemma A.1. After summing up (3.37)

from 1 to k, we have for every k ≥ 1

γ

2
tk∥hk − h∗∥2W ≤ kE(1) +

γt0
2

∥h0 − h∗∥2W ,

and so

∥hk − h∗∥2W ≤ 2k

γtk
E(1) +

t0
tk
∥h0 − h∗∥2W ≤ 2

γτ
E1(x∗, y∗) + ∥h0 − h∗∥2W < +∞.

With this, we conclude that {xk}k≥1, {yk}k≥1 are bounded. In addition, by the definitions of uγ
k and vγk in

(3.11), we have

tk(xk − xk−1) = uγ
k − γx∗ + (1− γ)(xk − x∗)− (xk−1 − x∗),

tk(yk − yk−1) = vγk − γy∗ + (1− γ)(yk − y∗)− (yk−1 − y∗),

which yields that the sequences {tk(xk − xk−1)}k≥1 and {tk(yk − yk−1)}k≥1 are also bounded.

By the definition of vk, it is obvious that vk+1 − vk is bounded. Note that condition (3.35) in Proposi-

tion 3.1, which is crucial for the following analysis of weak convergence of sequence of iterates, has also been

proposed in [5, 10]. Actually, we can show that the boundedness of the sequences considered in Proposi-

tion 3.1 can also be guaranteed with γ < 1. By Theorem 3.1, the sequence {E(k)}k≥1 is nonincreasing and

so E(k) ≤ E(1), which yields

1

2σ
∥uγ

k − γx∗∥2 + 1

2
∥vγk − γy∗∥2 + γ(1− γ)

2σ
∥xk − x∗∥2 + γ(1− γ)

2
∥yk − y∗∥2 ≤ E(1) < +∞.

We obtain that the sequences {uγ
k}k≥1 and {vγk}k≥1 are bounded. In addition, if γ < 1, the sequences

{xk}k≥1 and {yk}k≥1 also are bounded and consequently {tk(xk−xk−1)}k≥1, {tk(yk−yk−1)}k≥1 are bounded,

in other words, ∥xk − xk−1∥ = O (1/tk) and ∥yk − yk−1∥ = O (1/tk).

Remark 3.1. If A = 0 and f = 0 or g = 0, then problem (1.1) becomes an unconstrained optimization

problem. On the one hand, when f = 0, consider y0 = y1 and a nondecreasing sequence {tk}k≥1 which

satisfies (3.15) for every k ≥ 1. Then Algorithm 1 reduces to the following proximal scheme:

ȳk := yk +
tk − 1

tk+1
(yk − yk−1),

yk+1 := argmin
y∈Y

{
g(y) +

1

2
∥y − ȳk∥2

}
= proxg(ȳk).

On the other hand, if g = 0, suppose x0 = x1 and consider a nondecreasing sequence {tk}k≥1 which satisfies

(3.15) for every k ≥ 1. We can then reformulate Algorithm 1 as the following accelerated gradient scheme:

zk := xk +
tk − 1

tk+1
(xk − xk−1),

xk+1 := zk − σ▽f(zk).
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3.2 Fast convergence rate

The aim of this section is to show a fast convergence rate of the primal-dual gap of the bilinearly coupled

convex-concave saddle point problem (1.1) as well as a fast convergence rate of the primal-dual gap, the

feasibility measure and the objective function value for nonsmooth convex optimization problems with linear

constraints.

For every k ≥ 1, the sequence {E(k)}k≥1 is nonincreasing, which yields E(k) ≤ E(1). This we have

L(xk, y
∗)− L(x∗, yk) ≤

E(1)

tk+1(tk+1 − 1)
. (3.38)

Boţ et al. [10] presented several prominent choices for the sequence {tk}k≥1, i. e. Nesterov’s rule [31], the

Chambolle-Dossal rule [15], and the Attouch-Cabot rule [1] (here this rule requires k ≥ [α] + 1). These rules

all satisfy the conditions (4.5) in Algorithm 1. Next, we consider convergence rates under several classical

construction of {tk}k≥1. First, we consider Nesterov’s rule as proposed in Nesterov [31]:

t1 := 1 and tk+1 :=
1 +

√
1 + 4t2k
2

,∀k ≥ 1.

This sequence {tk}k≥1 is strictly increasing. In our case, from (3.15) we have
m+

√
m2+4t2k
2 ≥ tk+1 =

1+
√

1+4t2k
2 ,, and we recover Nesterov’s rule by setting m := 1. In addition, tk ≥ k+1

2 holds for every

k ≥ 1 and so τ ≥ 1
2 (see, for instance, Lemma 4.3 in [7]). Since tk+1(tk+1 − 1) ≥ (k+2)k

4 ≥ k2

4 , we arrive at a

convergence rate for the primal-dual gap of

L(xk, y
∗)− L(x∗, yk) ≤ O

(
1

k2

)
.

Second, the Chambolle-Dossal rule [15] is given by

t1 := 1 and tk := 1 +
k − 1

α− 1
,∀k ≥ 1,

where α ≥ 3. Let us set m := 2
α−1 , with which we arrive at τ = 2

α−1 (see, for instance, Example 3.15 in [10]).

With tk+1(tk+1 − 1) =
(
1 + k

α−1

)
k

α−1 ≥ k2

(α−1)2 , we see that

L(xk, y
∗)− L(x∗, yk) = O

(
1

k2

)
holds. Finally, we have tk := k−1

α−1 in the Attouch-Cabot rule for every k ≥ [α] + 1. We can thus obtain the

same convergence rate by a similar analysis.

Consider now the case f(x) = −⟨x, b⟩ with b ∈ X fixed. Then problem (1.1) can be reformulated as

−miny∈Y maxx∈X −L(x, y) ≡ g(y)− ⟨x,A∗y − b⟩ and is therefore equivalent to the following linear equality

constrained optimization problem:

min
y∈Y

g(y), (3.39)

s.t. A∗y = b.

where g is a proper, convex and lower semicontinuous function. Recently, He et al. [22] obtained a conver-

gence rate of O
(
1/k2

)
for the primal-dual gap, feasibility measure and the objective function value for this

type of nonsmooth case. In our case, by ▽f = −b we can choose Lf = γ and σ = 1 to satisfy (3.14) and
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obtain the following simplified Algorithm 2 with γ = 1 that also achieves a convergence rate of O
(
1/k2

)
for

the three general choices of tk discussed above.

Algorithm 2 Choose 0 < m ≤ 1 and {tk}k≥1 as a nondecreasing sequence such that t1 > 1 and t2k+1 −
mtk+1 − t2k ≤ 0, ∀ k ≥ 1. Given x0 = x1, y0 = y1. For every k ≥ 1, we set

ξk := tkAxk − (tk − 1)Axk−1 + tk+1Ab,

ȳk := yk +
(tk − 1)

tk+1
(yk − yk−1),

yk+1 := argmin
y∈Y

{
g(y) +

1

2
∥y − ȳk∥2 +

t2k+1

2

∥∥∥∥A∗
(
y − tk+1 − 1

tk+1
yk

)∥∥∥∥2 + ⟨ξk, y⟩

}
,

vγk+1 := yk+1 + (tk+1 − 1)(yk+1 − yk),

xk+1 := xk +
tk − 1

tk+1
(xk − xk−1)− (A∗yk+1 − b)− (tk+1 − 1)A∗(yk+1 − yk).

It is not difficult to verify that Algorithm 2 with tk = 1+ k−2
α−1 is different from the Algorithm 1 in [22]. Next,

we will show a fast convergence rate of the feasibility measure and the objective function value for problem

(3.39).

Theorem 3.2. Let {(xk, yk)}k≥0 be the sequence generated by Algorithm 2 and (x∗, y∗) ∈ S. Then, for every
k ≥ 1, we have

∥A∗yk − b∥ ≤ t22∥A∗y2 − b∥+ 2C

t2k
, (3.40)

|g(yk)− g(y∗)| ≤ (t22∥A∗y2 − b∥+ 2C)∥x∗∥
t2k

+
E(1)

tk+1(tk+1 − 1)
. (3.41)

where C := t21∥A∗y1 − b∥+ supk≥1 ∥tk+1(xk+1 − xk)∥+ ∥t1(x1 − x0)∥+ supk≥1 ∥xk∥+ ∥x0∥.

Proof. From the last line of Algorithm 2, we obtain

xk+1 − xk − tk − 1

tk+1
(xk − xk−1) = −tk+1(A

∗yk+1 − b) + (tk+1 − 1)(A∗yk − b). (3.42)

Reformulating (3.42) yields

−tk+1(xk+1 − xk) + tk(xk − xk−1)− (xk − xk−1) = δk+1 − (1− ak)δk, (3.43)

where δk+1 = t2k+1(A
∗yk+1 − b) and ak = 1 − t2k+1−tk+1

t2k
. By tk > 1 and t2k+1 − tk+1 ≤ t2k+1 −mtk+1 ≤ t2k ,

we have 0 ≤ ak < 1, for every k ≥ 1. By telescoping (3.43), we arrive at∥∥∥∥∥δk+1 +

k∑
i=1

aiδi

∥∥∥∥∥ = ∥δ1 − tk+1(xk+1 − xk) + t1(x1 − x0)− (xk − x0)∥

≤ C,

where the last inequality follows from the boundedness of xk and tk+1(xk+1−xk). By Lemma A.3, for every

k ≥ 1, we have

∥A∗yk+1 − b∥ ≤ t21∥A∗y1 − b∥+ 2C

t2k+1

,

which yields (3.40). Finally, by (3.38) and |g(yk)− g(y∗)| ≤ ∥L(xk, y
∗)− L(x∗, yk)∥+ ∥x∗∥∥(A∗yk − b)∥, we

arrive at (3.41), which completes the proof.
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We can consider some special cases. With Nesterov’s rule [31], the Chambolle-Dossal rule [15], or the

Attouch-Cabot rule [1] for the sequence {tk}k≥1 we obtain a convergence rate of O
(
1/k2

)
for the primal-dual

gap, the feasibility measure and the objective function value. This is an improvement to the convergence

rate o (1/k) derived in [11]. However, note that their o (1/k) convergence rate for ∥yk − yk−1∥ is better than

our convergence rate of O (1/k).

4 A primal-dual algorithm based on explicit discretization

In this section, we suppose that both f and g are continuously differentiable convex functions and ▽f ,

▽g are Lf -, Lg-Lipschitz continuous, respectively. When α ≥ 3 and 1
α−1 ≤ θ ≤ 1

2 , we can obtain the

same convergence properties of dynamical system (1.5) for smooth f and g in a way similar to the proof

of Theorem 2.1. In the following, we will investigate a numerical algorithm that is derived directly from

an explicit discretization of the dynamical system (1.5). Fast gradient algorithms originating from various

second order dynamical systems in the spirit of Nesterov’s accelerated gradient method have been proposed

in [3, 10, 33]. In our approach we will use the time step σk defined in (3.2) for the variable x. Suppose ρ > 0.

For y, we then take the time step

ρk := ρ

(
1 +

α− 1

k

)
for every k ≥ 1. (4.1)

We have y(
√
ρkk) ≈ yk+1, v(

√
ρkk) ≈ vk+1 and vγ(

√
ρkk) ≈ vγk+1. By considering the same construction

of a smooth function as in (3.11) for f and using a similar approach for g, we obtain the following explicit

discretization of the smooth scheme (3.1):

xk+1 = zk − σ▽f(zk)− σ
γA

∗vγk+1,

zk := xk + tk−1
tk+1

(xk − xk−1),

uγ
k+1 = γxk+1 + (tk+1 − 1)(xk+1 − xk),

yk+1 = λk − ρ▽g(λk) +
ρ
γAuγ

k+1,

λk := yk + tk−1
tk+1

(yk − yk−1),

vγk+1 = γyk+1 + (tk+1 − 1)(yk+1 − yk),

(4.2)

where we can see that zk and λk are obtained by the application of a proximal operator. By the relations

given in (4.2),

A∗vγk+1 = (tk+1 + γ − 1)A∗yk+1 − (tk+1 − 1)A∗yk

= (tk+1 + γ − 1)A∗ (λk − ρ▽g(λk))− (tk+1 − 1)A∗yk +
ρ

γ
(tk+1 + γ − 1)A∗Auγ

k+1

= ξ̄k +
ρ

γ
(tk+1 + γ − 1)

2
A∗A

(
xk+1 −

tk+1 − 1

tk+1 + γ − 1
xk

)
, (4.3)

where ξ̄k = (tk+1 + γ − 1)A∗ (λk − ρ▽g(λk))− (tk+1 − 1)A∗yk. Substituting (4.3) into the first line of (4.2),

we arrive at

0 =
1

σ
(xk+1 − zk) + ▽f(zk) +

1

γ
ξ̄k +

ρ

γ2
(tk+1 + γ − 1)

2
A∗A

(
xk+1 −

tk+1 − 1

tk+1 + γ − 1
xk

)
.

Now we are in a position to present the following algorithm for the smooth case:

Algorithm 3 Choose γ, σ, ρ,m > 0 be such that

0 < max{m,σLf , ρLg} ≤ γ ≤ 1. (4.4)
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Choose {tk}k≥1 as a nondecreasing sequence such that

t1 ≥ 1 and t2k+1 −mtk+1 − t2k ≤ 0, ∀ k ≥ 1. (4.5)

Given x0 = x1, y0 = y1. For every k ≥ 1, we set

zk := xk +
tk − 1

tk+1
(xk − xk−1),

λk := yk +
tk − 1

tk+1
(yk − yk−1),

ξ̄k = (tk+1 + γ − 1)A∗ (λk − ρ▽g(λk))− (tk+1 − 1)A∗yk,

s̄k+1 :=
ρ

γ2
(tk+1 + γ − 1)

2
,

x̄k :=
tk+1 − 1

tk+1 + γ − 1
xk,

xk+1 := arg min
x∈X

{
1

2σ
∥x− zk∥2 +

sk+1

2
∥A(x − x̄k)∥2 + ⟨▽f(zk), x⟩+

1

γ
⟨ξ̄k, x⟩

}
,

uγ
k+1 := γxk+1 + (tk+1 − 1)(xk+1 − xk),

yk+1 := λk − ρ▽g(λk) +
ρ

γ
Auγ

k+1.

Compared with Algorithm 1 for the nonsmooth case, the subproblem in Algorithm 3 does not rely on the

structure of f or g. Although the choice of γ = 1 gives a simplified version of Algorithm 3 without affecting

the fast convergence rates, we will see that the condition of γ < 1 is an indispensable part of the weak

convergence of iterate (xk, yk) to a primal-dual optimal solution. This phenomenon can also be found in

corresponding continuous and discrete schemes for unconstrained optimization problems. Fast convergence

can be shown for α ≥ 3, while the weak convergence of the trajectory or the sequence of iterate holds only

for α > 3. By recalling the definition of γ, it is obvious that γ < 1 holds only for α > 3.

For every (x∗, y∗) ∈ S and every k ≥ 1, we introduce the following energy function:

E(k) = tk+1(tk+1 − 1) (L(xk, y
∗)− L(x∗, yk)) + E1(k) + E2(k),

where

E1(k) =
1

2σ
∥uγ

k − γx∗∥2 + γ(1− γ)

2σ
∥xk − x∗∥2 and E2(k) =

1

2ρ
∥vγk − γy∗∥2 + γ(1− γ)

2ρ
∥yk − y∗∥2.

Proposition 4.1. Let {(xk, yk)}k≥1 be the sequence generated by Algorithm 3 and (x∗, y∗) ∈ S. Then, for

every k ≥ 1, the sequence {E(k)}k≥1 is nonincreasing and we have the following statements:

(γ −m)
∑
k≥1

tk+1 (L(xk, y
∗)− L(x∗, yk)) < +∞, (4.6)

∑
k≥1

tk+1

(
(γ − Lfσ)tk+1 + (1− γ)Lfσ

)
∥xk+1 − zk∥2 < +∞, (1− γ)

∑
k≥1

(tk+1 − 1)∥xk+1 − xk∥2 < +∞,

∑
k≥1

tk+1

(
(γ − Lgρ)tk+1 + (1− γ)Lgρ

)
∥yk+1 − λk∥2 < +∞, (1− γ)

∑
k≥1

(tk+1 − 1)∥yk+1 − yk∥2 < +∞,

∑
k≥1

tk+1∥▽f(zk)− ▽f(x∗)∥2 < +∞,
∑
k≥1

tk+1(tk+1 − 1)∥▽f(zk)− ▽f(xk)∥2 < +∞,

∑
k≥1

tk+1∥▽g(λk)− ▽g(y∗)∥2 < +∞,
∑
k≥1

tk+1(tk+1 − 1)∥▽g(λk)− ▽g(yk)∥2 < +∞.
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Proof. In a way similar to the proof of (3.23), we can show that

E2(k + 1)− E2(k)

≤ γtk+1 (L(x
∗, yk+1)− L(x∗, y∗)) + tk+1(tk+1 − 1) (L(x∗, yk+1)− L(x∗, yk))

tk+1

γ
⟨A∗ (vγk+1 − γy∗

)
, uγ

k+1 − γx∗⟩ − (1− γ)

ρ
(tk+1 − 1) ∥yk+1 − yk∥2 −

γtk+1

2Lg
∥▽g(λk)−▽g(y∗)∥2

− tk+1

2ρ

(
(γ − Lgρ)tk+1 + (1− γ)Lgρ

)
∥yk+1 − λk∥2 −

tk+1(tk+1 − 1)

2Lg
∥▽g(λk)− ▽g(yk)∥2.

Combining with (3.23), we arrive at

E(k + 1)− E(k)

= (tk+2(tk+2 − 1)− tk+1(tk+1 − 1)) (L(xk+1, y
∗)− L(x∗, yk+1)) + E1(k + 1)− E1(k)

+tk+1(tk+1 − 1) ((L(xk+1, y
∗)− L(xk, y

∗))− (L(x∗, yk+1)− L(x∗, yk))) + E2(k + 1)− E2(k)

≤
(
t2k+2 − t2k+1 − tk+2 + (1− γ)tk+1

)
(L(xk+1, y

∗)− L(x∗, yk+1))−
(1− γ)

σ
(tk+1 − 1) ∥xk+1 − xk∥2

− tk+1

2σ

(
(γ − Lfσ)tk+1 + (1− γ)Lfσ

)
∥xk+1 − zk∥2−

γtk+1

2Lf
∥▽f(zk)−▽f(x∗)∥2

− tk+1(tk+1 − 1)

2Lf
∥▽f(zk)− ▽f(xk)∥2 −

(1− γ)

ρ
(tk+1 − 1) ∥yk+1 − yk∥2 −

γtk+1

2Lg
∥▽g(λk)−▽g(y∗)∥2

− tk+1

2ρ

(
(γ − Lgρ)tk+1 + (1− γ)Lgρ

)
∥yk+1 − λk∥2 −

tk+1(tk+1 − 1)

2Lg
∥▽g(λk)− ▽g(yk)∥2. (4.7)

By the assumptions (4.4), (4.5), and inequality (3.34), all the coefficients in the right-hand side of (4.7) are

nonpositive and so E(k + 1)− E(k) ≤ 0. We complete the proof of (4.6) via Lemma A.4.

Remark 4.1. Compared to the energy function in [10], which is equipped with an auxiliary term ∥xk+1−xk∥2,
our energy function E(k) is exactly the discretization of the continuous energy function (2.1). In addition,

we do not use any additional update in the discretization process as in [10], where vγk+1 is replaced by ṽγk+1 :=

vγk+1+(1−γ)(λk+1−λk). Only in the nonsmooth case we replaced vγk+1 by ṽk+1 = vk+1− α−1
k+α−1 (vk+1− vk)

to obtain an easily implementable iterative scheme.

However, we can replace vγk+1 with ṽγk+1 := vγk+1 + (1 − γ)(λk+1 − λk) in the first line of explicit dis-

cretization scheme (4.2) and introduce the following energy function:

E ′
k := tk(tk + γ − 1) (L(xk, y

∗)− L(x∗, yk)) +
1

2σ
∥uγ

k − γx∗∥2 + 1

2ρ
∥vγk − γy∗∥2

+
γ(1− γ)

2σ
∥xk − x∗∥2 + γ(1− γ)

2ρ
∥yk − y∗∥2 + (1− γ)(tk − 1)

2ρ
∥yk − yk−1∥2,

for every (x∗, y∗) ∈ S and every k ≥ 1. By an analysis similar to Proposition 4.1 and Proposition 3.9 in [10],

we then obtain that the sequence {E ′
k}k≥1 is nonincreasing and we have the following statements:

(γ −m)
∑
k≥1

tk (L(xk, y
∗)− L(x∗, yk)) < +∞,

∑
k≥1

tk+1 (tk+1 (γ − Lfσ) + (1− γ)Lfσ) ∥xk+1 − zk∥2 < +∞, (1− γ)
∑
k≥1

(tk+1 − 1)∥yk+1 − yk∥2 < +∞,

∑
k≥1

tk+1 (tk+1 (γ − Lgρ) + (1− γ)Lgρ) ∥yk+1 − λk∥2 < +∞, (1− γ)
∑
k≥1

(tk+1 − 1)∥xk+1 − xk∥2 < +∞,

∑
k≥1

tk+1∥▽f(zk)− ▽f(x∗)∥2 < +∞,
∑
k≥1

tk+1(tk+1 − 1)∥▽f(zk)− ▽f(xk)∥2 < +∞,

(γ − ρLg(1− γ))
∑
k≥1

tk+1∥▽g(λk)− ▽g(y∗)∥2 < +∞,
∑
k≥1

tk+1(tk+1 − 1)∥▽g(λk)− ▽g(yk)∥2 < +∞.
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Compared with (4.6), one can see that the coefficient tk of term
∑

k≥1 tk (L(xk, y
∗)− L(x∗, yk)) is one step

behind the corresponding one in (4.6). Moreover, the condition
∑

k≥1 tk+1∥▽g(λk) − ▽g(y∗)∥2 < +∞ is

guaranteed by requiring γ − ρLg(1− γ) > 0.

Since {E(k)}k≥1 is nonincreasing for every k ≥ 1, we again arrive at L(xk, y
∗)−L(x∗, yk) ≤ E(1)

tk+1(tk+1−1) .

We notice that the classical three schemes for tk, i. e. Nesterov’s rule [31], the Chambolle-Dossal rule [15], and

the Attouch-Cabot rule [1] (with the additional requirement k ≥ [α] + 1) all still satisfy the conditions (4.5)

in Algorithm 3. As such, a convergence rate of O
(
1/k2

)
for the primal-dual gap follows in the same way as

before.

4.1 Convergence of the iterates

In this section, we provide some important estimates which will be useful for the proof of the convergence

of the sequence {(xk, yk)}k≥1 generated by Algorithm 3 for the smooth case.

Proposition 4.2. Let {(xk, yk)}k≥0 be the sequence generated by Algorithm 3 and (x∗, y∗) ∈ S. Assume

that 0 < m < γ ≤ 1 holds. Then we have the following statements:∑
k≥1

tk ∥A∗ (yk − y∗)∥2 < +∞, (4.8)

∑
k≥1

tk+1(tk+1 − 1)2 ∥A∗ (yk+1 − yk)∥2 < +∞, (4.9)

∑
k≥1

tk ∥A (xk − x∗)∥2 < +∞, (4.10)

∑
k≥1

tk+1(tk+1 − 1)2 ∥A (xk+1 − xk)∥2 < +∞. (4.11)

Moreover, there exists an M > 0 such that

∥A∗ (yk − y∗)∥ ≤ M

tk
and ∥A (xk − x∗)∥ ≤ M

tk
.

Proof. From the first line of (4.2), we have

A∗
(
1

γ
vγk+1 − y∗

)
=

1

σ
(zk − xk+1)− ▽f(zk)−A∗y∗ =

1

σ
(zk − xk+1)− (▽f(zk)− ▽f(x∗)) .

By Proposition 4.1 and tk > 0 for every k ≥ 1, it follows that∑
k≥1

tk+1

∥∥∥∥A∗
(
1

γ
vγk+1 − y∗

)∥∥∥∥2 ≤ 2

σ2

∑
k≥1

tk+1∥zk − xk+1∥2 + 2
∑
k≥1

tk+1∥▽f(zk)− ▽f(x∗)∥2 < +∞.

According to the last line of (4.2) and (3.17), for every k ≥ 1 we have

A∗
(
1

γ
vγk+1 − y∗

)
= A∗

(
yk+1 +

tk+1 − 1

γ
(yk+1 − yk)− y∗

)
=

(
1 +

tk+1 − 1

γ

)
A∗ (yk+1 − y∗)− tk+1 − 1

γ
A∗ (yk − y∗) ,

which yields∥∥∥∥A∗
(
1

γ
vγk+1 − y∗

)∥∥∥∥2 =

(
1 +

tk+1 − 1

γ

)
∥A∗ (yk+1 − y∗)∥2 − tk+1 − 1

γ
∥A∗ (yk − y∗)∥2

+
tk+1 − 1

γ

(
1 +

tk+1 − 1

γ

)
∥A∗ (yk+1 − yk)∥2 .
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But by (4.5), we see that

tk+1(tk+1 − 1)

γ
− tk

(
1 +

tk − 1

γ

)
=

1

γ

(
t2k+1 − tk+1 − t2k + tk − γtk

)
(4.12)

≤ 1

γ
((m− 1)tk+1 − (γ − 1)tk)

≤
(
m

γ
− 1

)
tk,

where the last inequality follows from the fact that
(
1− 2

γ

)
< 0 and {tk} is nondecreasing. Therefore,

tk+1

(
1 +

tk+1 − 1

γ

)
∥A∗ (yk+1 − y∗)∥2

= tk

(
1 +

tk − 1

γ

)
∥A∗ (yk − y∗)∥2 + tk+1

∥∥∥∥A∗
(
1

γ
vγk+1 − y∗

)∥∥∥∥2
+

(
tk+1(tk+1 − 1)

γ
− tk

(
1 +

tk − 1

γ

))
∥A∗ (yk − y∗)∥2

− tk+1(tk+1 − 1)

γ

(
1 +

tk+1 − 1

γ

)
∥A∗ (yk+1 − yk)∥2

≤ tk

(
1 +

tk − 1

γ

)
∥A∗ (yk − y∗)∥2 + tk+1

∥∥∥∥A∗
(
1

γ
vγk+1 − y∗

)∥∥∥∥2
−
(
1− m

γ

)
tk ∥A∗ (yk − y∗)∥2 − tk+1(tk+1 − 1)2

γ2
∥A∗ (yk+1 − yk)∥2 .

Let us set

ak := tk

(
1 +

tk − 1

γ

)
∥A∗ (yk − y∗)∥2 ≥ 0,

bk :=

(
1− m

γ

)
tk ∥A∗ (yk − y∗)∥2 + tk+1(tk+1 − 1)2

γ2
∥A∗ (yk+1 − yk)∥2 ≥ 0,

dk := tk+1

∥∥∥∥A∗
(
1

γ
vγk+1 − y∗

)∥∥∥∥2 ≥ 0

for every k ≥ 1. By employing Lemma A.4 and m < γ, we obtain∑
k≥1

tk ∥A∗ (yk − y∗)∥2 < +∞,
∑
k≥1

tk+1(tk+1 − 1)2 ∥A∗ (yk+1 − yk)∥2 < +∞,

and the sequence
{
tk

(
1 + tk−1

γ

)
∥A∗ (yk − y∗)∥2

}
is convergent and bounded. Similarly, we obtain (4.10),

(4.11) and the fact that tk

(
1 + 1

γ (tk − 1)
)
∥A∗ (xk − x∗)∥2 is convergent. Since tk ≤

(
1 + 1

γ (tk − 1)
)

for

every k ≥ 1, we arrive at

t2k ∥A∗ (yk − y∗)∥2 ≤ tk

(
1 +

1

γ
(tk − 1)

)
∥A∗ (yk − y∗)∥2 ≤ M2,

where M > 0. Then, ∥A∗ (yk − y∗)∥ ≤ M
tk
. Similarly, we obtain ∥A (xk − x∗)∥ ≤ M

tk
.

Next, we will show the weak convergence of the sequence {(xk, yk)}k≥0.

Lemma 4.1. Let {(xk, yk)}k≥0 be the sequence generated by Algorithm 3, (x∗, y∗) ∈ S and 0 < m < γ < 1.

Then, the limit limk→+∞
1
σ∥xk − x∗∥2 + 1

ρ∥yk − y∗∥2 exists.
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Proof. Denote ak := γ
2σ∥xk − x∗∥2 + γ

2ρ∥yk − y∗∥2. By considering a reformulation of E(k) similar to (3.36)

and the fact that E(k + 1) ≤ E(k) for every k ≥ 1, we obtain

tk+2(tk+2 − 1) (L(xk+1, y
∗)− L(x∗, yk+1)) + tk+1ak+1 − (tk+1 − 1)ak

+
1

2
(tk+1 − 1 + γ)(tk+1 − 1)

(
1

σ
∥xk+1 − xk∥2 +

1

ρ
∥yk+1 − yk∥2

)
≤ tk+1(tk+1 − 1) (L(xk, y

∗)− L(x∗, yk)) + tkak − (tk − 1)ak−1

+
1

2
(tk − 1 + γ)(tk − 1)

(
1

σ
∥xk − xk−1∥2 +

1

ρ
∥yk − yk−1∥2

)
(4.13)

and so

tk+1

(
tk+2(tk+2 − 1)

tk+1
(L(xk+1, y

∗)− L(x∗, yk+1)) +
1

2
(tk+1 − 1 + γ)

(
1

σ
∥xk+1 − xk∥2

+
1

ρ
∥yk+1 − yk∥2

))
+ tk+1 (ak+1 − ak)

≤ (tk − 1)

(
tk+1(tk+1 − 1)

tk
(L(xk, y

∗)− L(x∗, yk)) +
1

2
(tk − 1 + γ)

(
1

σ
∥xk − xk−1∥2

+
1

ρ
∥yk − yk−1∥2

))
+ (tk − 1) (ak − ak−1)

+
tk+1(tk+1 − 1)

tk
(L(xk, y

∗)− L(x∗, yk)) +
1

2
(tk+1 − 1 + γ)

(
1

σ
∥xk+1 − xk∥2 +

1

ρ
∥yk+1 − yk∥2

)
≤ (tk − 1)

(
tk+1(tk+1 − 1)

tk
(L(xk, y

∗)− L(x∗, yk)) +
1

2
(tk − 1 + γ)

(
1

σ
∥xk − xk−1∥2

+
1

ρ
∥yk − yk−1∥2

))
+ (tk − 1) (ak − ak−1)

+tk+1 (L(xk, y
∗)− L(x∗, yk)) +

1

2
(tk+1 − 1 + γ)

(
1

σ
∥xk+1 − xk∥2 +

1

ρ
∥yk+1 − yk∥2

)
, (4.14)

where the last inequality follows from tk+1 − 1 ≤ tk, whicl in turn holds due to Lemma A.1. Denote

βk :=
tk+1(tk+1 − 1)

tk
(L(xk, y

∗)− L(x∗, yk)) +
1

2
(tk − 1 + γ)

(
1

σ
∥xk − xk−1∥2

+
1

ρ
∥yk − yk−1∥2

)
+ (ak − ak−1),

dk := tk+1 (L(xk, y
∗)− L(x∗, yk)) +

1

2
(tk+1 − 1 + γ)

(
1

σ
∥xk+1 − xk∥2 +

1

ρ
∥yk+1 − yk∥2

)
≥ 0.

From these definitions, it is obvious that ak+1 ≤ ak+βk+1. By (4.14) we arrive at tk+1βk+1 ≤ (tk−1)βk+dk.

In addition, from Proposition 4.1, we notice that
∑

k≥1 dk < +∞ if 0 < m < γ < 1. Thus, by Lemma A.5,

we conclude that {ak} is convergent which completes the proof.

Theorem 4.1. Let {(xk, yk)}k≥0 be the sequence generated by Algorithm 3 and (x∗, y∗) ∈ S. Assume further

that {tk}k≥1 is chosen to satisfy (3.35) and 0 < m < γ < 1 holds. Then, we have

∥▽f(xk)− ▽f(x∗)∥ = o
(
1/
√
k
)
, ∥▽g(yk)− ▽g(y∗)∥ = o

(
1/
√
k
)
,

∥Axk −Ax∗∥ = o
(
1/

√
k
)
, ∥A∗yk −A∗y∗∥ = o

(
1/
√
k
)
.

Consequently,

∥▽xL(x, y)∥ = o
(
1/
√
k
)
, ∥▽yL(x, y)∥ = o

(
1/
√
k
)
.
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Proof. From the results of Proposition 4.1, we see that

lim
k→+∞

tk+1∥▽f(zk)− ▽f(x∗)∥2 = 0, lim
k→+∞

tk+1(tk+1 − 1)∥▽f(xk)− ▽f(zk)∥2 = 0

holds. By (3.35), it follows that

lim
k→+∞

√
k∥▽f(zk)− ▽f(x∗)∥ = 0, lim

k→+∞

√
k∥▽f(xk)− ▽f(zk)∥ = 0,

and so

lim
k→+∞

√
k∥▽f(xk)− ▽f(x∗)∥ ≤ lim

k→+∞

√
k∥▽f(zk)− ▽f(x∗)∥+ lim

k→+∞

√
k∥▽f(xk)− ▽f(zk)∥ = 0,

which further gives ∥▽f(xk) − ▽f(x∗)∥ = o
(
1/
√
k
)
. Similarly, ∥▽g(yk) − ▽g(y∗)∥ = o

(
1/
√
k
)
holds. By

(3.35) and (4.8), we obtain ∥A∗(yk − y∗)∥ = o
(
1/
√
k
)
which yields ∥▽xL(x, y)∥ = o

(
1/
√
k
)
. Similarly, we

have ∥▽yL(x, y)∥ = o
(
1/
√
k
)
. This completes the proof.

Theorem 4.2. Let {(xk, yk)}k≥0 be the sequence generated by Algorithm 3 and (x∗, y∗) ∈ S. Assume further

that {tk}k≥1 is chosen to satisfy (3.35) and that 0 < m < γ < 1 holds. Then, the sequence {(xk, yk)}k≥1

weakly converges to a primal-dual optimal solution of the bilinearly coupled saddle point problem (1.1).

Proof. Suppose (x̄, ȳ) is an arbitrary weak sequential cluster point of (xk, yk) as k → +∞, and so there

exists a sequence (xkn , ykn) such that (xkn , ykn) → (x̄, ȳ) as n → +∞. By Theorem 4.1, we get

▽f(xkn
) +A∗ykn

→ 0 and ▽g(ykn
)−Axkn

→ 0, as n → +∞,

respectively. Since the graph of the operator TL in (1.3) is sequentially closed (see Proposition 20.38 from [6]),

we conclude that

▽f(x̄) +A∗ȳ → 0 and ▽g(ȳ)−Ax̄ → 0, as n → +∞,

which means that (x̄, ȳ) ∈ S. From Lemma 4.1 we notice that the limit limk→+∞
1
σ∥xk −x∗∥2+ 1

ρ∥yk − y∗∥2

exists for every (x∗, y∗) ∈ S. With this, we complete the proof via Opial’s Lemma as given in Lemma A.2.

Remark 4.2. When we chose the Chambolle-Dossal rule or the Attouch-Cabot rule for the sequence {tk}k≥1

with α > 3, m = 1
α−2 < γ < 1, σ ≤ 1

Lf
and ρ ≤ 1

Lg
, then by Theorem 4.2, the sequence {(xk, yk)}k≥0

generated by Algorithm 3 converges weakly to a primal-dual optimal solution of problem (1.1). If the sequence

{tk}k≥1 is chosen to take the Nesterov rule with m = γ = 1, although the fast convergence rate still holds,

however, we can not obtain the convergence of the sequence since the conditions in Theorem 4.2 require

m < γ < 1.

5 Conclusion and perspectives

As a brief review of the main result, the inertial primal-dual dynamics (1.5) allow us to construct two first-

order algorithms for a bilinearly coupled saddle point problem. These algorithms not only maintain the fast

convergence rate for primal-dual values as found in several classical accelerated algorithms, but also possess

additional exciting properties, such as the convergence of gradients towards zero, and global convergence

of the iterates to optimal saddle points. By recalling the main ideas of the proof of (2.6), we obtain the
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convergence rate O
(
1/t2

)
of the primal-dual gap for (1.5) without assuming continuous differentiability

of all functions. In light of this, it would be interesting to design a new discretization of (1.5) with the

objective of achieving the O
(
1/k2

)
rate when both f and g are two convex lower semicontinuous and

proper function. Additionally, it would be worth considering (1.5) in a more general context, which includes

situations involving general viscous damping, Hessian-driven damping, and temporal rescaling.

Appendix

Lemma A.1. Let 0 < m ≤ 1 and {tk}k≥1 a nondecreasing sequence fulfilling

t1 ≥ 1 and t2k+1 −mtk+1 − t2k ≤ 0, ∀ k ≥ 1.

Then for every k ≥ 1 we have that tk+1 − tk < m ≤ 1 holds.

Proof. Let k ≥ 1. From the assumption, we get

tk+1 ≤
m+

√
m2 + 4t2k
2

=
m+

√
(m+ 2tk)2 − 4mtk

2
< m+ tk,

and so tk+1 − tk < m ≤ 1.

Opial’s Lemma which is used for the proof of the weak convergence of the trajectory of dynamical system

to a primal-dual solution of the original optimization problem has received much popularity recently. A

discrete version of the lemma can be found in Theorem 5.5 of [6].

Lemma A.2. Let S be a nonempty subset of X and {xk}k≥1 be a sequence in X . Assume that

(i) for every y∗ ∈ S, the limit limk→+∞ ∥xk − x∗∥ exists;

(ii) every weak sequential cluster point of the trajectory {xk}k≥1 as k → +∞ belongs to S.

Then {xk}k≥1 converges weakly to a point in S as k → +∞.

Lemma A.3. Let {gk}k≥k0
be a sequence in X and {ak}k≥k0

be a sequence in [0, 1), where k0 ≥ 1. For

every k ≥ k0, assume ∥∥∥∥∥∥gk+1 +

k∑
j=k0

ajgj

∥∥∥∥∥∥ ≤ C,

then,

sup
k≥k0

∥gk∥ ≤ ∥gk0∥+ 2C.

Proof. The proof is similar to the one of Lemma 4 in [21], so we omit it here.

The following lemma can be found as Lemma 1.1 of [10]:

Lemma A.4. Let {ak}, {bk} and {dk} be sequences of real numbers for every k ≥ 1. Assume that {ak}
is bounded from below, and {bk} and {dk} are nonnegative such that

∑
k≥1 dk < +∞. Suppoose further

that for every k ≥ 1 it holds

ak+1 ≤ ak − bk + dk.
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Then the following statements are true

(1) the sequence {bk} is summable, namely
∑

k≥1 bk < +∞;

(2) the sequence {ak} is convergent.

The following lemma can be founded as Lemma 4.1 of [10]:

Lemma A.5. Let {θk}k≥1, {ak}k≥1 and {tk}k≥1 be real sequences such that {ak}k≥1 is bounded from

below and {tk}k≥1 is nondecreasing and bounded from below by 1. Let {dk}k≥1 be a nonnegative sequence

such that for every k ≥ 1

ak+1 ≤ ak + θk,

tk+1θk+1 ≤ (tk − 1)θk + dk.

If
∑

k≥1 dk < +∞, then the sequence {ak}k≥1 is convergent.
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[9] R.I. Boţ and D.K. Nguyen, Improved convergence rates and trajectory convergence for primal-dual

dynamical systems with vanishing damping, J. Differ. Equations, 303(2021), pp. 369-406.
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