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Abstract

We study the value function of an integer program (IP), which characterizes how the optimal objective
value changes as the right-hand sides vary. We show that the IP value function can be approximated to
any desired degree of accuracy using machine learning (ML) techniques. First, drawing on the well-known
equivalency between IP value functions and Chvátal-Gomory (CG) functions, we show that there exists a
neural network (NN) that approximates the IP value function to an arbitrary degree of accuracy and whose
size scales exponentially in the CG rank of the IP value function and logarithmically in the magnitude of
the data. This approach requires an explicit representation of the IP value function as a CG function,
which motivates our second NN architecture designed to emulate the fundamental operations comprising
CG functions. We show that 1) the function represented by the second architecture is monotonically
non-decreasing and superadditive, 2) approximations using the second architecture implicitly yield CG
inequalities of the IP, and 3) we can produce an exact representation of the IP value function by solving a
mixed-integer programming problem.

1 Introduction
Duality is a fundamental concept in optimization, and while linear and convex programming duality are
widely understood and critical for modern algorithms, less is known about integer programming (IP) duality.
It has been shown that the optimal solution of superadditive IP duality - a strong dual for IP - is the IP value
function [44]. The seminal work of Blair and Jeroslow characterized the value function of a maximization IP,
parameterized by its right-hand side, as a Chvátal-Gomory (CG) function, meaning that it can be constructed
recursively from the set of linear functions through the composition of addition, nonnegative multiplication,
minimization, and rounding down operations [9, 10, 12]. Despite its elegance, this result has a surprisingly
limited impact on IP computation.

The value function is crucial in solving large-scale linear or integer programs as it is a fundamental tool
for decomposition methods such as Benders’ decomposition [5, 35] or the Integer L-shaped Algorithm [14].
However, an effective method for finding the IP value function remains elusive. Recently, researchers have
computed it exactly over a bounded domain. Kong et al. [26] and Trapp et al. [40] computed the IP value
function on a bounded set of integral points and took advantage of IP duality to reduce computation at some
lattice points. In a similar line of work, Tavaslıoğlu et al. [39] extended the approach to the mixed-integer
program (MIP) value function. These approaches stored the value functions directly or indirectly at every
integral point in the bounded domain, thus limiting their applicability.
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Recently, machine learning (ML) has received interest in the area of mathematical optimization [7]. Current
research efforts in applying ML to discrete optimization often concentrate on enabling ML to make algorithmic
decisions, such as node and branching selection in branch-and-bound algorithms [2, 21], or cut identification
and classification [25, 37]. Alternatively, some research uses ML to directly estimate the solution of an
IP from its input parameters [13, 27, 28, 43]. Furthermore, deep learning has frequently been utilized to
approximate value functions for dynamic programming problems in reinforcement learning, neuro-dynamic
programming, or Markov decision processes [8, 40]. Neural Networks (NNs) have been recently shown to
be useful in approximating the mixed-integer programming (MIP) value function and heuristically solving
stochastic programs [17, 29, 34].

NNs are typically constructed through the recursive application of basic operations, such as affine transfor-
mations and piecewise linear activation functions (e.g., ReLU or max pooling). With sufficient layers and
neurons in each layer, NN are universal approximators, in the sense that they can closely approximate any
continuous function [4, 20, 22, 30]. Despite this, it is often of practical utility to introduce bias or special
architectures to a NN in certain applications, e.g., convolutional layers are used in image processing tasks
[31], a recurrent NN or attention layer is one of the main components in natural language processing [18, 38].

IP value functions represent a well-defined class of functions with distinct properties. These functions are
characterized by discontinuity, where small changes in input can lead to large changes in output; monotonicity,
and superadditivity, where the function’s value for the summation of vectors is at least the sum of its values
for each vector. These special features present a distinct modeling challenge. Hence, this raises an intriguing
question: Can NNs effectively model IP value functions? This paper answers this question affirmatively,
demonstrating that NNs can indeed capture the complex and nuanced characteristics of IP value functions.

1.1 Summary of Contributions
Blair and Jeroslow’s characterization of the IP value function exposes fundamental similarities between NNs
and CG operations, which we summarized in Table 1.

Operations CG Function Neural Network
Summation Linear Combination Affine Combination

Multivariate Nonlinearity Minimum over multiple inputs Max-Pooling
Univariate Nonlinearity Round-down ReLU

Table 1: Analogies between CG Functions and NN Operations.

In this work, inspired by the similarity between CG and NN operations, we introduce two representation
theorems that characterize how, and how well, NNs can approximate IP value functions.

Tree Representation Theorem. Consider an IP value function constructed using at most r CG op-
erations (see Table 1), defined on a bounded domain D. There exists a feed-forward ReLU NN whose
number of neurons grows exponentially with r and logarithmically with the input domain’s size and the coef-
ficients of the IP value function, that approximates the IP value function within given ϵ > 0 in L1-norm over D.

The Tree Representation Theorem offers valuable insights, primarily demonstrating the efficacy of NNs in
approximating IP value functions. The theorem links the complexity of these functions with the requisite
size of the NN needed for their approximation. Specially, CG rank gives a fundamentally different way to
characterize complexity than generic universal approximation results, and so might offer tighter bounds.
In contrast with modern ML models, which have proven to be universal approximators [4, 20, 22, 30],
the architecture in the Tree Representation Theorem only searches in the space of CG functions and can
potentially require less data for training [41]. However, a limitation of the Tree Representation Theo-
rem is that it depends on the number and order of the CG operations in an IP value function, in addition
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to bounded but unknown coefficients. The forthcoming second representation theorem aims to address this gap.

Block Representation Theorem. Any IP value function of rank r (see Definition 5) on a domain D (not
necessarily bounded) can be represented by a NN architecture with O(r) layers, each with a bounded number
of neurons (independent of r) with round-down activation functions.

The remainder of the paper is organized as follows. Section 2 provides structural results, which are the keys
to proving the two representation theorems. Section 3 proves the existence of a NN that can approximate
any IP value function within a given error tolerance via the Tree Representation Theorem. Section 4 gives
the formal statement and proof for the Block Representation Theorem, as well as demonstrates how the IP
value function and CG inequalities can be computed via a MIP problem.

2 Structural Results
The NN constructions are based on the three CG operations that can recursively construct the IP value
function [11]. The motivations for the models in later sections on computing IP value functions are inspired
by the analogy between a CG function and a NN as summarized in Table 1. Before stating the main theorems,
we spend this section describing results that support the NN Representation Theorems. One of our most
important contributions in this section is the construction of the IP value function based on CG inequalities.

2.1 Preliminaries
In this work, we demonstrate the ability of a NN to represent the IP value function of the form:

z(b) :=max cTx (1a)
Ax ≤ β (1b)
x ∈ Zn

+, (1c)

where c ∈ Rn is a fixed objective, and A ∈ Zm×n is a fixed integral constraint matrix with (a1, a2, . . . , an)
denoting its columns. Denote X(β) := {x ∈ Zn

+|Ax ≤ β} as the set of feasible points for a given β, and
D = {β ∈ Zm|X(β) ̸= ∅} as the set of right-hand side vectors that make a feasible IP. If for some right-hand
side vector β, the problem is unbounded from above, we let z(β) = +∞, while if the problem is infeasible, we
let z(β) = −∞. Throughout this paper, we use IP(β) to denote the IP with the right-hand side vector β,
and LP(β) to denote its LP relaxation, i.e., the LP obtained by relaxing the integral constraint (1c) into
x ≥ 0. We further assume that for every β ∈ D, IP(β) has a finite optimal solution. This is not a strong
assumption because if z(β) = +∞ for some right-hand side β, then there exists x∗ ∈ Zn

+ such that Ax∗ ≤ 0
and cTx∗ > 0, which means z(β) = +∞ for every β ∈ D [32].

Definition 1. [44] (CG inequality). For a fixed right-hand side vector b ∈ D. A CG inequality with respect
to the feasible region of IP(b) is an inequality generated by the following two CG steps, which are defined as
follows:

1. Select a non-negative vector u ∈ Rm
+ , known as the CG multiplier.

2. Construct a CG inequality
∑

j∈JnK⌊uaj⌋xj ≤ ⌊ub⌋.

Denote the convex hull of X(b) as S(b). When all the integer variables of IP(b) can be bounded, S(b) can be
described by a finite number of CG inequalities [36]. Furthermore, for every CG multiplier u, the inequality∑

j∈JnK⌊uaj⌋xj ≤ ⌊ub⌋ is satisfied by each x ∈ X(b). We also say that such an inequality is a valid inequality.
By adding CG inequalities once at a time, we can recursively apply the CG steps.

Definition 2. [44] (CG inequality rank). For a fixed right-hand side vector b ∈ D. The rank 0 CG
inequalities are the valid inequalities of the feasible region of LP(b), i.e., {x ∈ Rn

+|Ax ≤ b}. Let πbx ≤ πb
0 be
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a CG inequality of S(b). We say that πbx ≤ πb
0 is of rank r if πbx ≤ πb

0 is not equivalent to or dominated by
a non-negative linear combination of CG inequalities with rank smaller than r − 1, but is equivalent to or
dominated by a non-negative linear combination of CG inequalities obtained through applying r CG steps.

Characterizing solutions and complexity of IPs relies on CG inequalities and their rank. Another crucial
concept for understanding IPs is the CG function, which plays a key role in describing the superadditive dual
of an IP.

Definition 3. [9] (CG function). The class G of m-dimensional CG function is the smallest class of
functions that satisfies:

(i) If f(v) = λβ where λ ∈ Qm, then f ∈ G,

(ii) If f1, f2 ∈ G and µ1, µ2 ∈ Q+, then µ1f1 + µ2f2 ∈ G,

(iii) If f ∈ G, then ⌊f⌋ ∈ G,

(iv) If f1, f2 ∈ G, then min{f1, f2} ∈ G.

Definition 4. [9] Carriers of CG functions. For each function f ∈ G, we define C(f), named the carriers
set of f , inductively as follows:

(i) If f is linear, then f ∈ C(f).

(ii) If f can be written as µ1f1 + µ2f2 where µ1, µ2 ∈ Q+, f1, f2 ∈ G and f ′
1 ∈ C(f1), f ′

2 ∈ C(f2), then
µ1f

′
1 + µ2f

′
2 ∈ C(f).

(iii) If f ′ ∈ C(f) then f ′ ∈ C(⌊f⌋).

(iv) If f can be written as min{f1, f2} where f1, f2 ∈ G and f ′
1 ∈ C(f1), f ′

2 ∈ C(f2), then min{f ′
1, f

′
2} ∈ C(f).

By Blair and Jeroslow [9, Corollary 2.11], the carriers of CG functions contain exactly one element. Intuitively,
the carrier of a CG function is a piecewise linear function obtained by removing all round-downs. Without
loss of generality, we refer to this unique function as the carrier of a CG function. Since a carrier can be
written as a minimum of a finite number of linear functions, we use coefficients of a CG function to refer to
the coefficients of the linear function constructing its carrier. Another important aspect of a CG function,
similar to CG inequalities, is the rank of a CG function.

Definition 5. [9] (Pre-rank & Rank). A CG function f has pre-rank zero if it is a linear function. It has
pre-rank (r + 1) if there are functions f1, f2 of pre-rank r which satisfy at least one of these conditions:

(i) f = µ1f1 + µ2f2 for some µ1, µ2 ∈ Q+,

(ii) f = min{f1, f2},

(iii) f = ⌊f1⌋.

In general, a CG function can have several pre-ranks. Its rank is defined as its smallest pre-rank.

In the following subsection, we describe the mechanics of approximating the round-down function via a
piecewise linear continuous function. This result plays a vital role in approximating the IP value function
using NNs with continuous activation functions like ReLU. Next, we derive the connection between the CG
multipliers and the IP value function, which is the key result for our block NN architecture in Section 4.
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2.2 Approximation of the Floor Function
As we can see that the discontinuity of a CG function only comes from the round-down function, a natural
question is how we can effectively approximate the round-down function in the context of traditional NNs,
i.e., only using affine transformation and ReLU activation. Thus, we describe the mechanics we use to
approximate the round-down function in this section. For a real number ϵ ∈ (0, 1), we define a continuous
function hϵ which approximates the round-down operator ⌊·⌋.

hϵ(x) :=

{
⌊x⌋ if ⌊x⌋+ 1− ϵ ≤ x ≤ ⌊x⌋+ 1,
1
ϵx+ (1− 1

ϵ )(⌊x⌋+ 1) otherwise.
(2)

Lemma 1. For every ϵ ∈ (0, 1), hϵ is a continuous function. Furthermore, for every x ∈ R, we have

lim
ϵ→0

hϵ(x)− ⌊x⌋ = 0.

Lemma 2. Let l < u be two non-negative integers and 0 < ϵ < 1, then∫ u

l

∥hϵ(x)− ⌊x⌋∥dx = ϵ(u− l)/2.

Lemma 3 gives a natural extension of Lemma 2 for the approximation of a composition of round-down and
a piecewise linear function. For a piecewise linear function g : D ⊆ Rn

+ → R+ defined over a box domain
D := [l, u], we partition D into D = ∪i∈JtKDi, such that g is an affine function on each Di. For a box domain
D, and a function f defined on D, we define

∥f∥1 =

∫
D

|f(x)|dx.

Lemma 3. Let g : D ⊂ Rn → R be an affine piecewise function defined on a bounded box domain D, we have

lim
ϵ→0+

∥hϵ(g)− ⌊g⌋∥1 = 0.

Proof. We denote αix+ γi as the affine function of g(x) on domain Di, where ∪i∈JtKDi = D is a partition of
D. Assuming that, for some i ∈ JtK, αi

j ̸= 0 for every j ∈ JnK, we have∫
Di

|hϵ(g(x))− ⌊g(x)⌋|dx =

∫ u1

l1

· · ·
∫ un

ln

|hϵ(α
i · x+ γi)− ⌊αi · x+ γi⌋|dx

=

∫ αi
1u1

αi
1l1

· · ·
∫ αi

nun

αi
nln

|hϵ(1 · x+ γi)− ⌊1 · x+ γi⌋|dx

≤
∏
j

|αi
j(uj − lj)|

∫ αi·u

αi·l
|hϵ(t+ γi)− ⌊t+ γi⌋|dt

=
1

2

∏
j

|αi
j(uj − lj)|ϵ(αi · u− αi · l).

Thus, by applying this inequality for every piece of D, we derive∫
D

|hϵ(g(x))− ⌊g(x)⌋|dx =
∑
t∈JtK

∫
Di

|hϵ(g(x))− ⌊g(x)⌋|dx

≤ 1

2

∑
t∈JtK

∏
j

|αi
j(uj − lj)|ϵ(αi · u− αi · l)

≤ 1

2
ϵ
∑
t∈JtK

∏
j

|αi
j(uj − lj)|(αi · u− αi · l).

Thus, we derive that limϵ→0+ ∥hϵ(g)− ⌊g⌋∥1 = 0.
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Lemma 3 implies that for any piecewise affine function g, we can approximate the value of the round-down of
g over a bounded box domain using the continuous function hϵ.

2.3 Chvátal-Gomory Dual Function
For any fixed b ∈ D, there exists a finite set of CG inequalities multipliers {ub,i}ri=1 that describes the convex
hull of the integral solution of IP(b) [44]. We use the superscript b to emphasize that these CG multipliers
are derived from the IP with right-hand side vector b. In addition, by denoting b1 := b, bi+1 := [bi, ⌊uibi⌋]T ,
and A1 := A, Ai+1 := [Ai, ⌊uiAi⌋]T , we have that the optimal value of max{cTx|Ax ≤ b, x ∈ Zn

+} is equal to

max cTx

subject to Ax ≤ b

⌊ub,1A1⌋x ≤ ⌊ub,1b1⌋
⌊ub,2A2⌋x ≤ ⌊ub,2b2⌋

...

⌊ub,rAr⌋x ≤ ⌊ub,rbr⌋
x ≥ 0.

(3)

Assumption (Minimal CG Inequalities). In Equation (3), we assume that there are no redundant CG
inequalities in solving the problem IP(b), i.e., every face defined by a CG inequality is maximal and contains
an optimal solution.

Since (3) is an LP, by strong LP duality, we also derive that the optimal value of (3) is the same as the
following LP dual problem:

min pT b+ qT1 ⌊ub,1b1⌋+ · · ·+ qTr ⌊ub,rbr⌋
subject to pTA+ qT1 ⌊ub,1A1⌋+ · · ·+ qTr ⌊ub,rAr⌋ ≥ c

p, q1, . . . , qr ≥ 0.

(4)

Since b ∈ D, by its definition, the problem IP(b) must have a finite optimal solution. By our assumption on
the minimal CG inequalities, (3) has a finite optimal solution, and thus (4) also has a finite optimal solution.
Let pb, qb1, . . . , q

b
r be an optimal solution of (4), and consider the following function:

Definition 6. We say that fb(·) : D → R is a CG dual function with respect to the right-hand side vector
b ∈ D if for every β ∈ D,

fb(β) = (pb)Tβ + (qb1)
T ⌊ub,1β1⌋+ · · ·+ (qbr)

T ⌊ub,rβr⌋, (5)

with β1 = β, βi+1 = [βi, ⌊uiβi⌋]T , where ub, pb and qb are the CG multipliers described in (3) and optimal
solution of (4) for right-hand side b, respectively.

Certainly, for a given right-hand side b, there is more than one set of CG inequalities that lead to the solution
of IP(b). Hence, there can be multiple CG dual functions associated with a right-hand side b. Since, by
construction, a CG dual function is a CG function, and later in this section, we show that this class function
plays an essential role in deriving a novel representation theorem for the IP value function, we want to
dedicate a portion of this section to study the properties of CG dual functions. We first start with a simple
observation for a CG dual function.

Proposition 1. Given a CG dual function fb(·) : Rm
+ → R+ where b ∈ D, we have

fb(b) = z(b).
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Proof. This comes directly from how we construct the function fb. Since z(b) is the optimal value of the IP
max{cTx|Ax ≤ b, x ∈ Zn

+} and fb(b) gives the objective value of (4), by LP strong duality, we must have
fb(b) = z(b).

Proposition 1 says that the CG dual function gives the optimal objective at the corresponding right-hand
side. This is of limited practical use because according to the definition of a CG dual function, we are obliged
to incorporate all the necessary CG inequalities, thus constructing the CG dual function is as hard as solving
the IP itself. Another way to view the CG dual functions is that they incorporate cutting plane information.
This is a starting intuition for us to derive more interesting properties for this class of functions.

Proposition 2. Consider a CG dual function fb(·) : Rm
+ → R+. If LP(b) has an unique solution and

z(b) = zLP (b), we have
fb(tb) = zLP (tb), for every t ∈ R+.

Proof. We have
fb(b) = z(b) = zLP (b).

By our assumption on the minimal set of added CG inequalities and the uniqueness of the solution of LP(b),
there is a vector pb such that

fb(β) = (pb)Tβ.

Thus, we have that tfb(tb) = tfb(b) = tzLP (b) = zLP (tb) ∀ t ∈ R+.

Proposition 2 implies that for a right-hand side b where the LP(b) and IP(b) share the same solution, the
CG dual function fb is a linear function. It is because, in this case, pb is the optimal LP dual extreme point.

Proposition 3. For a fixed b ∈ D, its corresponding CG dual function fb is a feasible solution to the
superadditive dual of the IP max{cx|Ax ≤ b, x ∈ Zn

+}, i.e., fb is a feasible solution of

min f(b)

s.t f(aj) ≥ cj ∀j ∈ JnK,
f(0) = 0,

f is non-decreasing and superadditive.

(6)

Proof. Since the floor function is superadditive, the CG multipliers ub,i for i ∈ JrK along with the dual
variable pb and qbi for i ∈ JrK are non-negative, the CG dual function corresponding with the right-hand side
b is non-decreasing and superadditive. Moreover, by definition, we have fb(0) = 0. In addition, from the
constraint of (4), we have

fb(a
j) ≥ cj ∀j ∈ JnK.

Hence, the CG dual function fb is a feasible solution to the superadditive dual (6).

In a special case where the entries of the matrix A are non-negative, the dual problem can be written as an LP
where each variable can be interpreted as an upper bound of the optimal value of the IP when the right-hand
side vector is a certain integral vector. In particular, the following LP is equivalent to the superadditive dual
[44]:

min F (b)

s.t F (aj) ≥ cj ∀j ∈ JnK,
F (d1) + F (d2)− F (d1 + d2) ≤ 0 ∀d1, d2, d1 + d2 ∈ D(b),

F (0) = 0, F (d) ≥ 0 ∀d ∈ D(b),

(SDLP)

where D(b) := {d ∈ D|d ≤ b} and F is a |D(b)|-dimensional vector. By the feasibility of fb from Proposition
3, we have the following immediate connection between fb and the LP (SDLP).
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Corollary 1. Consider a CG dual function fb and let the vector Fb be such that Fb(d) = fb(d) for every
d ∈ D(b). Then Fb is a solution of (SDLP).

By Proposition 3, a CG dual function fb is a feasible solution of (6), it is an upper bound on the IP value
function z, i.e., fb(β) ≥ z(β) for every β ∈ B. Based on this property, we have the following observation
between CG dual functions and the IP value function z.

Proposition 4. Let z(β) be the optimal value of max{cTx|Ax ≤ β, x ∈ Zn
+}. Then

z(β) = min
b∈D

{fb(β)} ∀β ∈ D.

Proof. By Proposition 3, we have fb(β) ≥ z(β) for every b, β ∈ D, thus minb∈D fb ≥ z. Moreover, by
Proposition 1, we have fβ(β) = z(β). Therefore, z(β) = minβ∈D fb(β) ∀β ∈ D.

Certainly, it is not practical to solve an IP for every non-negative integral right-hand side. The only important
meaning that it conveys is taking a minimum of multiple CG dual functions can give a better approximation
of the value function z. However, we might not need an infinite number of CG dual functions to construct
the IP value function z, as observed in the following examples.

Example 1. : Consider the following integer knapsack (Figure 1):

z(b) = max 3x1 + x2

s.t 2x1 + x2 ≤ b

x1, x2 ∈ Z+.

(7)

Let b = 1 and solve the corresponding problem by adding a CG inequality with the multiplier u = 1/2. The
integer knapsack is now equivalent to

z(b) = max 3x1 + x2

s.t 2x1 + x2 ≤ 1

x1 ≤ 0

x1, x2 ≥ 0.

(8)

By solving the dual of (8), we construct the corresponding CG dual function f1 as

f1(β) = ⌊β + ⌊β
2
⌋⌋.

The plot of f1 is given Figure 1. Note that, in the definition of f1, we use one additional outer round-down
operation as compared to our definition of CG dual functions. This is because, in the definition of CG dual
functions, we assume every right-hand side vector b is integral, and the outer round-down operator in this
example is only used to cover the cases where b is not an integer. Interestingly, we can observe that the
function f1, constructed only by one right-hand side vector, is indeed the IP value function z(b).

Example 2. : Consider the following IP (Figure 2)

z(b) = max x1 + x2

s.t 2x1 + x2 ≤ b1

x1 + 2x2 ≤ b2

x1, x2 ∈ Z+.

(9)

We construct two CG dual functions, one corresponds with b = [2, 0]T and one corresponds with b = [0, 2]T .
The plot of the first function is in the leftmost, and the plot of the second function is in the middle of Figure
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optimal value

b

Figure 1: An illustration of a CG dual function in 1-dimensional space.
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Figure 2: An illustration of the CG dual functions in 2-dimensional space.

2. When taking the minimum of these two functions, we obtain the IP value function z in the rightmost.

As observed by these two examples, when constructing the IP value function, we might only need to take the
minimum of a finite number of CG dual functions. Next, we prove that this conjecture is indeed true for every
IP.

2.4 Constructing The Integer Programming Value Function
In this subsection, we derive a “pattern” property of an IP value function. Generally speaking, we show
that for any value function z, there exists a bounded domain B such that for any point β outside the
domain, we can compute z(β) based on the value of z over B. The pattern of IP value functions was
discussed in [19, Theorem 1]. However, in this theorem, the pattern property is only concerned with
right-hand side vectors that are far away from the boundaries of some cones. Later, Alfant et al. [1,
Proposition 3.2] also came up with a way to compute MIP (and thus applicable to IP) value functions
given known values of the function at some points β̂ < β using the optimal solutions of IP(β). However,
their result does not guarantee that the value function at every point in D can be computed using this property.

Let S := {(c1, a1), . . . , (cn, an), (0, e1), . . . , (0, em), (−1, 0m)} and C := cone(S) denote the polyhedral cone
generated by S; see Figure 3 for an illustration. Let F be the (finite) set of facets of the polyhedral cone C.
For each face F ∈ F , we have that the set of m extreme rays defining F is a subset of S [24, Lemma 3]. We
note that F can contain at most m facets whose extreme rays are (−1, 0m) and a set of m− 1 unit vectors in
the m-dimensional space. We denote the set of facets of C that excludes the facet containing (−1, 0m) by F ′.
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= max

(1,1,3)

(2,2,0)
(1,2,1)

LP relaxation

IP value

1 2 3

1

Figure 3: An illustration of cone C. We only show here the 3 relevant facets of C, while omitting the other 2
facets which contain the extreme rays (−1, 0, 0)T . Intuitively, for a given right-hand side b = (b1, b2), we move
upward as far as possible until we reach a point belonging to one of the faces of cone C, and the z-coordinate
of which is the optimal value of the LP-relaxation. The optimal value of z(b) is some point below the optimal
value of the LP relaxation.

Lemma 4. Let F ∈ F ′ be a facet of C, and let {(γF
1 , vF1 ), . . . (γ

F
m, vFm)} ⊂ S be the set of finite extreme rays

defining F . Then, for every non-negative integer ki for i ∈ JmK such that IP(k1v
F
1 + · · ·+ kmvFm) has a finite

optimal solution, we have:
z(k1v

F
1 + · · ·+ kmvFm) = k1γ

F
1 + · · ·+ kmγF

m.

Proof. Since F ∈ F ′, every vFi is either a column of A or a unit vector, and every γF
i is a component of the

objective c or is equal to 0. We have that z(k1v
F
1 + · · ·+ kmvFm) ≥ k1γ

F
1 + · · ·+ kmγF

m, as we can easily find
a feasible solution of z(k1vF1 + · · ·+ kmvFm) whose objective is equal to k1γ

F
1 + · · ·+ kmγF

m by setting the
value of the variable corresponds to the column vFj equal to kj . By contradiction, suppose that

z(k1v
F
1 + · · ·+ kmvFm)− (k1γ

F
1 + · · ·+ kmγF

m) > 0.

Let zLP (b) denote the LP relaxation value function of z(b). Take

ϵ := zLP (k1v
F
1 + . . . kmvFm)− (k1γ

F
1 + · · ·+ kmγF

m) > 0.

Let x∗ be the optimal primal solution of LP(k1v
F
1 + · · ·+ kmvFm); we have{

cTx∗ − ϵ = k1γ
F
1 + · · ·+ kmγF

m

Ax∗ + Ims∗ = k1v
F
1 + · · ·+ kmvFm,

where s∗ :=
∑m

i=1 kiv
F
i −Ax∗ ≥ 0. Hence we have that[

c
A

]
x∗ + ϵ

[
−1
0m

]
+

[
0
Im

]
s∗ = k1

[
γF
1

vF1

]
+ · · ·+ km

[
γF
m

vFm

]
. (10)

The right-hand side of (10) is a vector belonging to the facet F , while the left-hand side is a vector that does
not belong to F as ϵ > 0. Hence

z(k1v
F
1 + . . . kmvFm) = k1γ

F
1 + · · ·+ kmγF

m.
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For a set of vectors V of C, we denote its projection onto the space of the right-hand side b, which is Rm, by

ProjRm(V ) := {v ∈ Rm|∃ γ ∈ R+ s.t (γ, v) ∈ V }.

Lemma 5. Let F := cone((γ1, v1), . . . , (γm, vm)) ∈ F ′ be a facet of C and β ∈ ProjRm(F ) be represented as

β = k1v1 + · · ·+ kmvm + β̄,

where ki are non-negative integers and b̄ < vj ∀j ∈ JmK. Then, there exists non-negative integers K1, . . . ,Km

such that for any j ∈ JmK satisfying kj > Kj and γi > 0, we have z(β) = z(β − vj) + γj.

Proof. We only prove the existence of K1; the existence of K2, . . . ,Km can be proved similarly. We have
that zLP (β)− z(β) ≤ MA,c for every β ∈ D, where the constant MA,c only depends on the constraint matrix
A and the objective coefficient c [16, Corollary 2]. Therefore, we have that

z(β + v1)− z(β) ≤ zLP (β + v1)− z(β) (11a)
≤ zLP (β) + zLP (v1)− z(β) (11b)
= zLP (β)− z(β) + γ1 (11c)
≤ MA,c + γ1. (11d)

Inequality (11a) follows from the fact that z ≤ zLP . (11b) is based on the piecewise linear property of an LP
value function. Finally, zLP (v1) = γ1 because F is a facet of C.

Let xj∗ be the variable corresponding to the column of A that corresponds to v1. Let f0(β) be an optimal
value of the LP which is obtained by the relaxation of z(β) with an additional constraint xj∗ = 0, i.e.,

f0(β) := max cTx

Ax ≤ β

xj∗ = 0

x ≥ 0.

(12)

We have that zLP (v1) > f0(v1) because (γ1, v1) is an extreme ray of C. Let ϵ := zLP (v1) − f0(v1) and
K1 := ⌈MA,c+γ1

ϵ ⌉. We will prove that if β = k1v1 + · · ·+ kmvm + β̄ and k1 ≥ K1, then z(β) = z(β − v1) + γ1.
To do so, we show that there exists an optimal solution x̄ of z(β) for which x̄j∗ ≥ 1. By contradiction,
suppose that x̄j∗ = 0 in every optimal solution of IP(β), We have

z(β) ≤ f0(β) = f0(k1v1 + β̄) + f0(k2v2 + . . . kmvm)

= f0(k1v1 + β̄) + k2γ2 + . . . kmγm.

On the other hand, we also have

z(β + v1 − β̄) = z((k1 + 1)v1 + · · ·+ kmvm)

= (k1 + 1)γ1 + · · ·+ kmγm (by Proposition 2).

Hence, we have

z(β + v1 − β̄)− z(β) ≥ (k1 + 1)γ1 − f0(k1v1 + β̄)

≥ (k1 + 1)γ1 − f0((k1 + 1)v1)

= (k1 + 1)(γ1 − f0(v1))

>
MA,c + γ1

ϵ
× ϵ = MA,c + γ1,

which contradicts Equation (11) as z(β + v1 − β̄) ≤ z(β + v1). Hence, there exists a solution of z(β) where
xj∗ ≥ 1. Thus,

z(β) = z(β − v1) + γ1 ∀k1 > K1.

11



Suppose that for every face F ∈ F ′, we have a set of non-negative integers {KF
1 , . . . ,KF

m} corresponding
to each extreme ray of F . Let K := maxF∈F ′,i∈JmK ∥KF

i vFi ∥1. Since, for every vector β ∈ D where z(β)
is feasible, there exists a face F ∈ F ′ such that (zLP (β), β) ∈ F . If ∥β∥1 ≥ K and β is written in the
form of β = kF1 v

F
1 + · · ·+ kFmvFm + β̄, where β̄ ≤ vFi for every i ∈ JmK, there must exist i ∈ JmK such that

kFi > KF
i . Thus by Lemma 5, we have z(β) = z(β − (kFi −KF

i )vFi ) + (kFi −KF
i )γF

i . Given a vector β ∈ Rm
+ ,

to find a face F ∈ F ′, and represent as b = kF1 v
F
1 +· · ·+kFmvFm+b̄, we simply need to solve the relaxation LP(β).

We can interpret Lemma 5 as describing the pattern of the IP value function, i.e., when we have enough
point evaluation of z, we can use these values to determine the value of z at unevaluated points β without
solving an IP. On the other hand, as discussed earlier, for a fixed right-hand side vector β, there exists a set
of CG multipliers that gives the convex hull of the feasible domain of z(β). This observation and the pattern
property from Lemma 5 raises a natural question of whether we can reuse the same CG multiplier for z(β′)
for a different right-hand side β′ ̸= β.

Lemma 6. There exists a finite set L such that the function zl : D → R defined as zl(β) := minb∈B{fb(β)}
is a lower bound of the LP value function zLP , i.e.,

zl(β) ≤ zLP (β) ∀β ∈ D.

Proof. Since zLP , the value function of the LP relaxation is a concave function that is obtained by taking the
minimum of a finite set of linear functions, we denote

zLP (β) = min
i∈J|P|K

(pi)Tβ,

where P denotes the set of extreme points of {p ∈ Rm|pTA ≥ c, p ≥ 0}. For every extreme point pi

in P, let bi denote the right-hand side vector for which pi is the unique optimal solution to the dual of
LP (bi). Furthermore, for every i ∈ J|P|K, let Āi be an optimal basis of LP (bi). By strong duality, we
have zLP (|det(Āi)|bi) = (pi)T |det(Āi)|bi. Moreover, since the optimal basic variables of LP(|det(Āi)|bi) are
(Āi)−1|det(Āi)|b̄i where b̄i is sub-vector of bi corresponding to the basis Āi, we have that the solution are
integral. Thus, we derive that zLP (|det(Āi)|bi) = z(|det(Āi)|bi). Therefore, by letting L = {|det(Āi)|bi|∀i ∈
J|P|K}, we have zl(β) ≤ zLP (β) for every β ∈ Rm.

Now, we use Lemma 5 and Lemma 6 to derive the main theorem of this section. We construct a function that
is “sandwiched” between the LP relaxation zLP from above and the IP value function z from below. Then,
we rely on the property that the function z behaves in a pattern as described in Lemma 5: when our function
agrees with z for enough number points, it must agree with z everywhere else.

Theorem 1. There exists a finite set B ⊂ D such that

z(β) = min
b∈B

{fb(β)} ∀β ∈ D.

Proof. For every facet F of C, let bF := KF
1 vF1 + . . .KF

mvF1 , where KF
i and vFi are defined in Lemma 5, and

let L be the set of vectors that satisfies the condition stated in Lemma 6. Given the vectors bF for every facet
of F of C and L, we choose B = {b ∈ D|b ∈ L or ∃F ∈ facet(C) s.t b ≤ bF }. We will show that the function
f∗(β) := minb∈B{fb(β)} equals the IP value function z at every integral point by contradiction.

By definition, we must have f∗(β) = z(β) for every b ∈ B and f∗(β) ≥ z(β) for every b ∈ D since f∗(β)
is a feasible solution to the superadditive dual. By contradiction, suppose that there exists β̄ /∈ B and
ϵ := f∗(β̄)− z(β̄) > 0. By Lemma 5, since β̄ is outside B, we can decompose β̄ into sum of β1 and β2, where

12



β1 ∈ B, while β2 =
∑m

i=1 kiv
F
i for some facet F of C.

f∗(β̄)− z(β̄) > 0

⇔ f∗(β1 + β2)− z(β1 + β2) > 0

⇔ f∗(β1 + β2)− z(β1) + z(β2) > 0

⇔ f∗(β1 + β2)− f∗(β1) = zLP (β2) + ϵ.

(13)

Consider the CG functions g∗ : R → R defined as g∗(t) = f(β1 + tβ2) for t ∈ Z. Let c∗ be the carrier of
g∗ [11, Definition 2.9]. Since g∗ is univariate, g∗(0) = f∗(β1), and g∗ is non-decreasing, there must exist
α ≥ 0 such that c∗(t) = αt+ f∗(β1). We have 0 ≤ c∗(t) − g∗(t) ≤ r∗, where r∗ is the CG rank of g∗, and
γ∗(t) := c∗(t)− g∗(t) is periodic. Let T denote the periodicity of γ∗, we have

c∗(1 + T ) + Tγ∗(1) + Tf∗(β1) ≥ (1 + T )c∗(1) (14a)
⇔ c∗(1 + T )− γ∗(1 + T ) + Tf∗(β1) ≥ (1 + T )(c∗(1)− γ∗(1)) (14b)
⇔ f∗(β1 + Tβ2) + Tf∗(β1) ≥ (1 + T )f∗(β1 + β2) (14c)
⇔ f∗(β1 + (1 + T )β2)− f(β1) ≥ (1 + T )(f∗(β1 + β2)− f∗(β1)). (14d)

We have (14a) based on the linearity of c∗ and the fact that γ∗ is always non-negative. To derive (14b), we
subtract (1 + T )γ∗(1) from both sides and apply the periodic property. Intuitively, (14d) means that if we
increase the input of f∗ by Tβ2, the increase in f∗ will increase at least linearly. In combination with (13),
we have

f∗(β + (1 + τT )β2) ≥ (1 + τT )(f∗(β1 + β2)− f∗(β1)) + f∗(β1)

≥ (1 + τT )(zLP (β2) + ϵ) + f∗(β1).

However, this mean that, as τ → +∞, because ϵ > 0, f∗(β1+(1+τT )β2) will grow larger than the LP relaxation
value zLP (β1 + (1+ τT )β2), which contradicts our choice of L. Therefore, we have z(β) = f∗(β) ∀β ∈ D.

Corollary 2. For every IP value function z, there exists a CG function f whose carrier’s coefficients are
non-negative such that z = f .

Proof. Since each fb in Theorem 1 is a CG dual function, its coefficients are non-negative. From Theorem 1,
every IP value function can be written as a minimization of a finite number of CG dual functions. Therefore,
the coefficients of its carrier are non-negative.

3 Tree Representation Theorem of the IP Value Function
In this section, we derive a NN architecture that can approximate an IP value function. We respectively
denote the three CG operators as:

linear operator : Λµ1,µ2(f1, f2)(v) = µ1f(v) + µ2f(v),

round-down operator : ⌊f⌋(v) = ⌊f(v)⌋,
minimum operator : min(f1, f2)(v) = min{f1(v), f2(v)}.

In addition, we also denote H := {Λα,β(·, ·)|µ1, µ2 ∈ R+} ∪ {⌊·⌋,min{·, ·}} as the set of all CG operators on
a function in m-dimensional space. Finally, we use G to denote the class of CG functions whose input is
m-dimensional, and L∅ as the class of m-dimensional linear functions, i.e.,

L∅ := {f |∃λ ∈ Rm s.t f(v) = λT v ∀v ∈ Rm}.
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For a class of functions F , we define Fh to be the class of functions in F equipped with a operator h ∈ H to
be

Fh :=

{
F ∪ {h(f1, f2)|f1, f2 ∈ F}, if h ∈ {Λµ1,µ2 ,min},
F ∪ {⌊f⌋|f ∈ F}, if h = ⌊·⌋.

(15)

A class of functions can also be stacked with multiple CG operators. We define, inductively Fh1,...,hr to be
the class of functions Fh1,...,hr−1 equipped with the CG operator hr. Using this notation, we can derive a
simple representation for the class of rank r CG functions.

Proposition 5. Let Gr be the class of CG functions of rank at most r. We have

Gr =

{
∅, if r = 0,

∪(h1,...,hr)⊆HrLh1,...,hr
otherwise,

(16)

where Hr denotes the rth Cartesian product for the set of CG operators H.

Proof. If r = 0, then G0 is the set of linear functions. Hence G0 = L∅. By induction, suppose that the hypoth-
esis is true for r; we prove it is also true for r + 1. By definition of CG functions, we have Lh1,...,hr+1 ⊆ Gr+1.
Thus, we only need to show that Gr+1 ⊆ ∪Lh1,...,hr+1

.

If a function f ∈ Gr+1, then exactly one of the following must be true for the last CG operation of h:

1. f = ⌊f ′⌋ for some f ′ ∈ Gr. By the induction hypothesis f ′ ∈ ∪Lh1,...,hr , and thus f ∈ ∪Lh1,...,hr,⌊·⌋.

2. f = min{f1, f2} for some f1, f2 ∈ Gr. By the induction hypothesis f1, f2 ∈ ∪Lh1,...,hr
, thus f ∈

∪Lh1,...,hr,min.

3. f = µ1f1 + µ2f2 for some µ1, µ2 ∈ Q+ and f1, f2 ∈ Gr. By the induction hypothesis f1, f2 ∈ ∪Lh1,...,hr
,

thus f ∈ ∪Lh1,...,hr,Λµ1,µ2 .

Hence, Gr+1 = ∪Lh1,...,hr,hr+1 .

Now, we put the operators of the CG function in the context of NNs. In a NN, a neuron, also known as a
node or unit, is the fundamental computational unit. It receives one or multiple inputs, performs a weighted
summation of these inputs, adds an optimal bias term, and then applies an activation function to produce
an output (usually non-linear). A layer in a NN is a collection of neurons that process input data together.
Layers are organized in a hierarchical manner, where each layer receives input from the preceding layer and
sends its output to the subsequent layer [6]. There are three types of layers in a NN: Input Layers, Hidden
Layers, and Output Layers. The input layer receives input data, which could be features from a dataset or,
in our case, the right-hand side vector of the IPs. Hidden layers are intermediate layers between the input
and output layers. The output layer produces the network’s predictions or outputs based on the processed
information from the hidden layers. In the context of IP value functions, the dimension of the output layer is
one.

Theorem 2. Given a real number δ > 0, a bounded input domain B := {b ∈ D| ∥b∥1 ≤ K}, and a CG
function z(b) of rank r with its carrier’s coefficient bounded by a positive value M, there exists a NN f with
O(r log(mMK)) layers and O(2r+1 + r log(mMK)) neurons such that∫

B

|f(b)− z(b)|db < δ.

Proof. The proof is based on the construction of the function z. Certainly, when z is an affine function,
we can use a single neuron to model z as a NN exactly. Suppose the theorem is true for every CG func-
tion that uses r or fewer operations; we prove that it is also true for a CG function that contains r+1 operations.
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Case 1: Suppose z = µ1z1 + µ2z2, where µ1, µ2 ∈ R+ and z1, z2 are CG functions of rank smaller or equal
to r. By the induction hypothesis, there exist two NNs f1 and f2 such that∫

B

|f1 − z1| ≤
δ

2µ1
and

∫
B

|f2 − z2| ≤
δ

2µ2
.

We construct a NN representing f which contains f1, f2, and a final layer with one neuron whose input is the
output of f1, f2 and whose weight is (α, β) so that we have f = αf1 + βf2. Hence,∫

B

|f − z| ≤ µ1

∫
B

|f1 − z1|+ µ2

∫
B

|f2 − z2| ≤ δ.

Case 2: Suppose z = min{z1, z2}. By the induction hypothesis, there exist two NNs f1 and f2 such that∫
B

|f1 − z1| ≤
δ

2
and

∫
B

|f2 − z2| ≤
δ

2
.

We then construct a NN f , which contains f1, f2, and a final min layer. We have∫
B

|f − z| =
∫
B

|min{f1, f2} −min{z1, z2}| ≤
∫
B

|f1 − z1|+
∫
B

|f2 − z2| ≤ δ.

Case 3: Suppose z = ⌊z′⌋. Suppose we have a NN f ′ that approximates z′, and the NN f is constructed
from f ′ with a final layer equal to hϵ. By Lemma 3, we choose ϵ so that ∥hϵ(z

′)− ⌊z′⌋∥1 ≤ δ
2 . Furthermore,

we choose the NN f ′ such that ∥z′ − f ′∥1 ≤ δ
2 . We have∫

B

|f − z| =
∫
B

|hϵ(f
′)− hϵ(z

′) + hϵ(z
′)− ⌊z′⌋|

≤
∫
B

|hϵ(f
′)− hϵ(z

′)|+
∫
B

|hϵ(z
′)− ⌊z′⌋|

≤
∫
B

|f ′ − z′|+
∫
B

|hϵ(z
′)− ⌊z′⌋|.

(17)

Hence, we derive ∫
B

|f − z| ≤ δ

2
+

δ

2
= δ.

The number of piece in hϵ is bounded by mKM. By Montufar et al. [33, Corollary 5], there exists a NN with
O(log(mKM) that represent hϵ.

Constructing a NN based on Theorem 2 can be viewed as forming a balanced binary tree and then a fully
connected layer connecting the input with the tree’s leaves. For an illustration, see Figure 4. Knowing the
order of the CG operations used in the construction of z(b) allows us to assign each NN layer the corresponding
operations.

4 Block Representation Theorem of the IP Value Function
In the previous section, we have shown the existence of a NN with a bounded size that approximates an IP
value function to an arbitrarily small L1 error. However, this NN architecture does not guarantee that the
approximation is monotone or superadditive - both structural properties of an IP value function. In the next
sections, based on the structural results of Section 2, we derive another representation theorem. Using this
NN architecture, we can impose non-negativity constraints on the weights of the NN and replace ReLU with
round-down activation to enforce monotone and superadditive properties, while not hurting the ability of

15



dense layer

dense layer

Figure 4: An example of the NN with exponential size width and linear size depth with respect to CG
rank. Consider the function f(x1, x2) =

1
2 min{⌊ 3

4x1 +
7
5x2⌋, ⌊ 5

2x1 + x2⌋}+ 2
3⌊

1
2x1 +

1
3x2⌋. We can see that

f(x1, x2) ∈ L⌊·⌋,min,Λ1/2,2/3 . Based on the order of CG operations, we can construct a NN that models f(x1, x2)
top-down and in reverse order of the operation. In particular, starting from a single neuron corresponding to
the output of the net, we create two children nodes, which will be the next layer. And we keep “branching”
until we reach depth r, which is the rank of the CG function. The activation function for Λ1/2,2/3 is linear
and ⌊·⌋ is the round-down function, which can be approximated using a smaller network.

NNs to represent IP value function. In addition, the Block Representation Theorem allows a NN training
framework that guarantees an upper approximation of the IP value function.

We now construct a NN that can approximate the IP value function z(β) based on Theorem 1. Naturally, we
want to have a structure that can represent a function of the form as in Equation (5). In Figure 5, we have a
NN with k + 1 hidden neurons, where exactly one of them has no activation function, while the remaining k
has the floor operator as activation functions (or functions that approximate the floor function). Formally,
we denote z0, z1, . . . zk as outputs of the k + 1 neurons. Then, the output of a CG block with respect to an
input β is computed as follows:

output = z0 + q1z1 + · · ·+ qkzk

z0 = β · p,
zj = ⌊z1ūj

1 + · · ·+ zi−1ū
j
j−1 + β · ũj⌋ ∀j ∈ JkK,

(18)

where p, q, u are weights of the CG block. In particular, p is the weight of the neuron corresponding with z0,
and q is the weight of the output neuron. Since for each CG neuron, there are two types of weights - weights
for the input and weights for the previous CG neurons - we use ũ for the input weight and ū to denote the
previous CG neurons’ weights. We use the term “CG neuron” to refer to a neuron that takes the right-hand
side β and the outputs of all previous neurons as input. In addition, we call a NN consisting only of CG
neurons a CG block. When a NN is constructed by taking the minimum of multiple CG blocks, we call it a
CG Neural Network (CGNN).

Theorem 3. Given an IP value function z, there exists a CGNN with a finite number of CG blocks each
with a finite number of neurons that equals the IP value function z(β).

Proof. By Theorem 1, if each block is equal to a CG dual function fb(β) for every b ∈ B, then the entire
NN is exactly equal to the IP value function z(β). We define N := ∥B∥. In addition, since every CG dual
function requires a finite number of round-down operations, for each block i ∈ JNK, we only need a finite
number of ki neurons to represent the CG dual function.
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Element-wise Floor Function

dense layer

Figure 5: CGNN Architecture: (Left) An illustration of a CG block. (Right) An illustration of a CGNN
containing multiple CG blocks and a Min-Pooling Layer.

4.1 Mixed-Integer Formulation for Constructing IP Value Functions
Now, we discuss an MIP formulation that guarantees a superadditive function that upper bounds the IP
value function. Based on Theorem 3, an IP value function can be represented by a finite number of blocks,
where each block is parameterized by a finite set of weights. We first derive the following bilinear integer
formulation for the superadditive dual feasibility of one block with k CG neurons.

zij = ⌊zi1ū
j
i + · · ·+ zij−1ū

j
j−1 + ai · ũj⌋ ∀i ∈ JnK, j ∈ JkK, (19a)

ai·p+ q1z
i
1 + · · ·+ qkz

i
k ≥ ci ∀i ∈ JnK, (19b)

p, qi, ū
j
i , ũ

j ≥ 0, zij ∈ Z ∀i ∈ JnK, j ∈ JkK. (19c)

In (19), we use the variables zij for the post-activation values of CG neuron j with respect to input ai. In
addition to the variables z, by introducing variables p, q, ū, ũ for each block, where each block has kr CG
neurons, we can extend (19) for a superadditive dual feasible formulation to a CGNN with N blocks:

zij,r = ⌊zi1,rū
j
i,r + · · ·+ zij−1,rū

j
j−1,r + ai · ũj

r⌋ ∀i ∈ JnK, j ∈ JkrK, r ∈ JNK, (20a)

ai·pr + qr,1z
i
1,r + · · ·+ qr,krz

i
kr,r ≥ ci ∀i ∈ JnK, r ∈ JNK, (20b)

pr, qr, ū
j
i,r, ũ

j
r ≥ 0, zij,r ∈ Z ∀i ∈ JnK, j ∈ JkrK, r ∈ JNK. (20c)

Corollary 3. Let B be the finite set described in Theorem 1 so that that z(β) = minb∈B fb(β). Consider the
following problem:
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min
∑
b∈B

wb (21a)

s.t zij,r = ⌊zi1,rū
j
1,r + · · ·+ zij−1,rū

j
j−1,r + ai · ũj

r⌋ ∀i ∈ JnK, j ∈ JkrK, r ∈ JNK, (21b)

zbj,r = ⌊zb1,rū
j
1,r + · · ·+ zbj−1,rū

j
j−1,r + b · ũj

r⌋ ∀b ∈ JBK, j ∈ JkrK, r ∈ JNK, (21c)

ai·pr + qr,1z
1
i,r + · · ·+ qr,krz

kr
i,r ≥ ci ∀i ∈ JnK, r ∈ JNK, (21d)

min
r∈N

{b · pr + qr,1z
b
1,r + · · ·+ qr,kr

zbkr,r} = wb ∀b ∈ B, (21e)

pr, qr, ū
j
i,r, ũ

j
r ≥ 0, zij,r, z

b
j,r ∈ Z ∀i ∈ JnK, j ∈ JkK, r ∈ JNK, b ∈ B. (21f)

A solution of (21) yields the value of zIP for every b ∈ D.

We can eliminate the round-down function by replacing (21b) and (21c) with:

zij,r ≤ zi1,rū
j
i,r + · · ·+ zij−1,rū

j
j−1,r + ai · ũj

r,

zij,r ≥ z1i,rū
j
i,r + · · ·+ zij−1,rū

j
j−1,r + ai · ũj

r − 1,

zij,r ∈ Z ∀i ∈ JnK, j ∈ JkrK, r ∈ JNK.

(22)

Next, in all of equations (21b), (21c), (21d) and (21e), the bilinear terms coming from dot product between
p, q, ū, ũ and z introduce non-linearity into the formulation. Nevertheless, we can also linearize this bilinear
term relying on the boundedness of the variables z. For instance, given a lower bound and upper bound of
zij,r for i ∈ JnK, j ∈ JkrK, r ∈ JNK, we can model qr,jzij,r as a piecewise linear function [42]. Finally, we can
derive a MIP formulation for the minimum operator in (21e) following the approach in Anderson et al. [3,
Section 5].

4.2 Computing CG Multipliers
In addition to allowing us to derive a MIP formulation for finding an IP value function, the representation of
an IP value function via a CGNN can be viewed as a way of computing CG multipliers.

Corollary 4. Let CGB(β) : Rm → R be a function represented by a CG block with non-negative weights and
round-down activation functions. If CGB(ai) > ci ∀i ∈ JnK, then CGB(β) is an upper bound of the IP value
function z(β).

Hence, for a right-hand side b, finding the weights of a CG block that minimize CGB(b) gives us the optimal
value of IP(b). However, since each CG block represents one CG dual function, the weights of the CG block
will be the CG multipliers that derive the convex hull of IP(b). In general, we want to find the weight of a
CG block that minimizes:

min CGB(b)

s.t CGB(ai) ≥ ci ∀i ∈ JnK.
(23)

Even though solving (23) to optimality is difficult, obtaining any suboptimal solution where CGB(b) < zLP (b)
is meaningful because in this case, the weights of the CG block derive nontrivial CG inequalities.

4.3 Bounds on CG multipliers
In Theorem 3, we use the round-down operation as the activation function. When restricting the activation
functions to ReLU, or other piecewise affine activation functions that only have a finite number of pieces, e.g.,
Leaky ReLU, binarized, or quantized activation functions [23, 45], we can only approximate the IP value
function within a bounded domain. As the weight of a CGNN directly depends on the CG multipliers, bounds
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on the CG multipliers can derive bounds on the number of neurons in a CGNN with ReLU activation. Hence,
in this subsection, we discuss a possible upper bound of the CG multipliers.

Certainly, when the right-hand side vector b varies, we may need different CG multipliers to derive the convex
hull S(b). Hence, in Definition 2, we use the superscript b to signal the dependence of a CG inequality on b.
However, for the remaining of this subsection, we fix a right-hand side vector b and suppress the dependence
on b for notations simplicity. For a vector u ∈ Rm

+ , we define {u} := [{u1}, . . . , {um}]T also be a vector in
Rm

+ of the fractional part of every element in u, that is {u} = u− ⌊u⌋.

Lemma 7. For any k non-negative vectors u1, . . . , uk ∈ Rm
+ , we have P̄ := {x ∈ Rn

+|Ax ≤ b, ⌊(ui)TA⌋x ≤
⌊(ui)T b⌋ ∀i ∈ JkK} contains P̃ := {x ∈ Rn

+|Ax ≤ b, ⌊{ui}TA⌋x ≤ ⌊{ui}T b⌋ ∀i ∈ JkK}.

Proof. For the base case, we show that for u1 ∈ Rm
+ , P̄ 1 := {x ∈ Rn

+|Ax ≤ b, ⌊(u1)TA⌋x ≤ ⌊(u1)T b⌋} contains
P̃ 1 := {x ∈ Rn

+|Ax ≤ b, ⌊{u1}TA⌋x ≤ ⌊{u1}T b⌋}.

For any j ∈ JmK , we have

⌊(u1 − ej)
TA⌋x ≤ ⌊(u1 − ej)

T b⌋
⇔ ⌊(u1)TA−Aj⌋x ≤ ⌊(u1)T b− bj⌋

⇔ ⌊(u1)TA⌋x−Ajx ≤ ⌊(u1)T b⌋ − bj ,

(24)

where ej denotes the jth unit vector. We obtain the last inequality because Aj - the jth row of A - and bi are
integral. By taking sum of (24) and the ith row of Ax ≤ b, we derive that ⌊uTA⌋x ≤ ⌊uT b⌋ is valid for P̃ . By
applying this procedure ⌊u1

j⌋ times for every j ∈ JmK, we have P̃ 1 ⊆ P̄ 1. By applying the same argument
k > 1 times, we derive that P̃ ⊆ P̄ .
In this section, we use S to denote S(b) to suppress dependence on b when the context is clear. Since for
any non-negative CG multiplier u ∈ Rm

+ , we always derive a valid inequality for S, thus S ⊆ P̃ . Moreover,
Lemma 7 states that we can replace the multipliers of every rank 1 CG inequality by their fractional parts
and obtain a tighter relaxation. In what follows, we show that this still holds for higher-rank CG inequalities.
Suppose that the convex hull S requires up to rank r CG inequalities (r ∈ Z+), we denote

u1 = [u1
1, . . . , u

1
k1
] as multipliers corresponding to rank 1 CG inequalities,
...

ur = [ur
1, . . . , u

r
kr
] as multipliers corresponding to rank r CG inequalities,

where each ui is a matrix and ui
j is a vector for every j ∈ JkiK, i ∈ JrK, that defines linear constraints of

S. Whenever we add new CG inequalities, we obtain a new LP with an updated constraint matrix and an
updated right-hand side vector. Notationally, we let A0 := A, b0 := b, and

Ai =

[
Ai−1

⌊(ui)TAi−1⌋

]
, with bi =

[
bi−1

⌊(ui)T bi−1⌋

]
∀i ∈ JrK.

Similarly, we denote S0 := {x ∈ Rn
+|Ax ≤ b} and Si := {x ∈ Rn

+|Aix ≤ bi, } for i ∈ JrK. For every i ∈ JrK, Si

can be interpreted as the polyhedron where we add all rank i CG inequalities. Trivially, we have

S0 ⊇ S1 ⊇ · · · ⊇ Sr = S.

We let ũ1
i = {u1

i } for every i ∈ JK1K and S̃1
b = {x ∈ Rn

+|Ã1x ≤ b̃1}, where Ã1 and b̃1 are constructed from
A and b by introducing the CG inequalities corresponding to ũi for every i ∈ Jk1K. Based on Lemma 7,
we have that S̃1 ⊆ S1. The main idea of the following theorem is that we want to construct a sequence
S̃1 ⊇ S̃2 ⊇ · · · ⊇ S̃r such that S̃i ⊆ Si for every i ∈ JrK and thus S̃r = S.
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Lemma 8. For a positive integer i ≤ r, suppose we have a polyhedron S̃i that satisfies S̃i ⊆ Si. Then
we can construct a polyhedron S̃i+1 from S̃i by adding CG inequalities with multipliers in [0, 1] such that
S̃i+1 ⊆ Si+1.

Proof. Since S̃i
b ⊆ Si

b, for every k ∈ JkiK, there exists vik such that

(vik)
T Ãi = ⌊(ui

k)
TAi−1⌋.

Hence, we can write Ai as a non-negative linear combination of rows in Ãi, i.e., there exists V i such that
V iÃi = Ai. Moreover, by construction, we have that:

Ai+1 =


Ai

⌊(ui+1
1 )TAi⌋

...
⌊(ui+1

ki+1
)TAi⌋

 =


Ai

⌊(ui+1
1 )TV iÃi⌋

...
⌊(ui+1

ki+1
)TV iÃi⌋

 .

Let ũi+1
l = {(ui+1

l )TV i} for every l ∈ Jki+1K and apply Lemma 7, we have:

S̃i+1 := {x ∈ Rn
+|Ãix ≤ b̃i, ⌊ũi+1

k Ãi⌋x ≤ ⌊ũi+1
l b̃i⌋ ∀l ∈ Jki+1K} ⊆ Si+1

b .

By its construction, we have S̃1 ⊆ S1. We derive the following claim by applying Lemma 8. The following
result can also be proven as a corollary from Theorem 7.2 of [15] and Lemma 7.

Theorem 4. There exists a set of CG multipliers {ui
l|l ∈ ∥ki∥, i ∈ JrK} corresponding to valid inequalities

that defines S(b), where r is the CG rank of S(b), such that ∥ui
j∥∞ < 1 for every j ∈ JriK and i ∈ JrK.

Proof. This is a direct consequence of Lemma 8. Since every valid inequality of S(b) is a CG inequality, we
derive that the CG inequality is obtained by multipliers of value between 0 and 1.

5 Conclusion and Future Research
In this work, we have proved the existence of NNs that can approximate any IP value function within a desired
L1 tolerance. In addition to the NN Representation Theorems, our construction of IP value functions via CG
multipliers can be used to derive a MIP formulation for the IP value functions over a possibly unbounded
domain.

While we show that the set B in (21) contains a finite number of right-hand side vectors, obtaining every
element of B is computationally expensive as there can be any exponential number of element in B. We
can replace the set B with any set of right-hand side vectors to look for a good approximation of the IP
value function. The problem of finding good sub-optimal formulation for approximating the IP value function
remains a subject for future research.
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