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Abstract Preconditioning is a powerful approach for solving ill-conditioned problems in opti-
mization, where a preconditioning matrix is used to reduce the condition number and speed up
the convergence of first-order method. Unfortunately, it is impossible to capture the curvature
of all objective functions with a single preconditioning matrix in multiobjective optimization.
Instead, second-order methods for multiobjective optimization problems (MOPs) use different
matrices for objectives in direction-finding subproblems, leading to a prohibitive per-iteration
cost. To balance per-iteration cost and better curvature exploration, we propose a precondi-
tioned Barzilai-Borwein descent method for MOPs (PBBMO). In the direction-finding subprob-
lems, we employ a scale matrix to explore the curvature of an implicit scalarization function.
The Barzilai-Borwein method is then applied to the matrix metric to tune the gradients of the
objective functions, which can also be considered as an extra diagonal preconditioner based on
the scale matrix for each objective, and mitigates the effect of imbalances among objectives.
From a preconditioning perspective, we use BFGS update formula to approximate a trade-off of
Hessian matrices. Under mild assumption, we give a simple convergence analysis for the Barzilai-
Borwein quasi-Newton method. Finally, comparative numerical results confirm the efficiency of
the proposed method, even when applied to large-scale and ill-conditioned problems.
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1 Introduction

An unconstrained multiobjective optimization problem can be stated as follows:

min
x∈Rn

F (x), (MOP)

where F : Rn → Rm is a continuously differentiable function. In multiobjective optimization,
the primary goal is to simultaneously optimize multiple objective functions. In general, finding a
single solution that optimizes all objectives is infeasible. Therefore, optimality is defined by Pareto
optimality or efficiency. A solution is considered Pareto optimal or efficient if no objective can be
improved without sacrificing the others. As society and the economy advance, the applications of
this type of problem have expanded into various domains, including engineering [24], economics
[17], management science [13], and machine learning [36], among others.

Solution strategies play a pivotal role in the realm of applications involving multiobjec-
tive optimization problems (MOPs). Over the past two decades, multiobjective gradient descent
methods have garnered increasing attention within the multiobjective optimization community.
These methods generate descent directions by solving subproblems, eliminating the necessity
for predefined parameters. Subsequently, line search techniques are employed along the descent
direction to ensure sufficient improvement for all objectives. Attouch et al. [3] highlighted an
appealing characteristic of this method in fields such as game theory, economics, social science,
and management:it improves each of the objective functions. As far as we know, the study of
multiobjective gradient descent methods can be traced back to the pioneering works by Mukai
[27]. and Fliege and Svaiter [15]. The later clarified that the multiobjective steepest descent
direction reduces to the steepest descent direction when dealing with a single objective. This
observation inspired researchers to extend ordinary numerical algorithms for solving MOPs (see,
e.g., [2, 4, 5, 14, 16, 18, 23, 25, 31, 35] and references therein).

1.1 First-order methods

Fliege and Svaiter [15] introduced the steepest descent method for MOPs (SDMO). The steepest
descent direction is the optimal solution of the following subproblem:

min
d∈Rn

max
i=1,2,...,m

〈∇Fi(x), d〉+
1

2
‖d‖2.

This subproblem can be reformulated as a quadratic problem and efficiently solved through its d-
ual [36]. Subsequently, Graña Drummond and Iusem extended this method to constrained MOPs,
proposing the projected gradient method for MOPs. For multiobjective composite optimization
problems, Tanabe et al. [39] extended the proximal gradient method to MOPs. Analogous to most
first-order methods for single-objective optimization problems (SOPs), these MOP counterparts
enjoy cheap per-step computation cost but suffer slow convergence, especially for ill-conditioned
problems. In response to this challenge, some classic methods were extended to MOPs, includ-
ing Barzilai-Borwein’s method [26], nonlinear conjugate gradient method [23], and Nesterov’s
accelerated method [37, 38, 40]. In addition to issues stemming from ill-conditioning, another
inherent challenge arises from imbalances among objective functions. Chen et al. [7] highlighted
that even when all objective functions are not ill-conditioned, imbalances among them can lead
to slow convergence of first-order methods for MOPs. To address this issue, Chen et al. [7] applied
Barzilai-Borwein’s method to alleviate the impact of imbalances. They demonstrated that the
Barzilai-Borwein proximal gradient method [8] converges at a rate of

√
1− min

i=1,2,...,m
{µi/Li},
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where µi and Li are the constants of strong convexity and smoothness of fi, respectively. It is
worth noting that the performance of this type of method also depends on the conditioning of
problems.

1.2 Second-order methods

For ill-conditioned problems, Newton’s method is much more efficient. Fliege et al. [14] proposed
Newton’s method for MOPs (NMO). The Newton direction is the optimal solution of

min
d∈Rn

max
i=1,2,...,m

〈∇Fi(x), d〉+
1

2

〈
d,∇2Fi(x)d

〉
.

It has been proven that NMO possesses desirable properties [14], including local superlinear and
quadratic convergence under standard assumptions. Furthermore, quasi-Newton methods have
garnered considerable attention [31, 33–35] and demonstrate local superlinear convergence. While
these methods for MOPs are superior in capturing the local geometry of objective functions and
offering rapid convergence, the per-step cost is computationally expensive. In contrast to their
single-objective problem counterparts, the high per-step computation cost arises not only from
the computation of Hessian matrices and their inverses but also from the costly subproblems.1 In
order to reduce the computational cost of the subproblem, Ansary and Panda [1] utilized a single
quasi-Newton approximation to approximate all Hessian matrices. Subsequently, this idea was
adopted by Chen et al. [6] and Lapucci and Mansueto [22]. While efficient subproblem solving
is possible with this approximation, Chen et al. [6] identified a limitation: The monotone line
search cannot accept a unit step size, thereby hindering superlinear convergence.

In summary, the slow convergence observed in first-order methods for MOPs can be primarily
attributed to the ill-conditioning and imbalances among objective functions. Meanwhile, second-
order methods for MOPs fail to strike the right balance between per iteration cost and overall
performance. This leads us to a natural and compelling question: Can we devise an algorithm
that maintains an affordable per-step computation cost and is not sensitive to conditioning and
imbalances?

1.3 Our contributions

To address this issue, this paper is devoted to the development of a preconditioned Barzilai-
Borwein method for MOPs (PBBMO), the main contributions of the paper can be summarized
in the following points:

• To achieve a low per-step cost, we use a single preconditioning matrix to capture the local
geometry of an implicit scalarization function. In particular, the Barzilai-Borwein rule relative
to the matrix metric is embedded to tune the gradients in the direction-finding subproblem,
capturing the local geometry of each objective and effectively mitigating the imbalances among
objective functions.

• To capture the problem’s geometry more effectively, we employ the BFGS update formula
to approximate a trade-off Hessian for the multiobjective Newton-type method. This provides a
new insight into preconditioning of MOPs. Meanwhile, we emphasize that the Barzilai-Borwein

1 The subproblems of second-order methods for MOPs can only be solved by reformulating into quadratic con-
strained problems, see [6], or the prime minimax problems. Solving these problems is much more time-consuming
than quadratic dual problems of first-order methods for MOPs.
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rule is indispensable in the quasi-Newton method, although the two approaches are rarely used
simultaneously in SOPs.

The paper is organized as follows. In section 2, we introduce necessary notations and defini-
tions that will be used later. Section 3 revisits several multiobjective gradient descent methods.
Section 4, we propose a generic PBBMO and investigate the choice of Barzilai-Borwein param-
eters and preconditioning matrix. A Barzilai-Borwein quasi-Newton method for MOPs (BBQN-
MO) and its convergence analysis are described in section 5. The numerical results are presented
in section 6, demonstrating the efficiency of BBQNMO. Finally, we draw some conclusions at the
end of the paper.

2 Preliminaries

Throughout this paper, the n-dimensional Euclidean space Rn is equipped with the inner product
〈·, ·〉 and the induced norm ‖ · ‖. Denote Sn++(Sn+) the set of symmetric (semi-)positive definite
matrices in Rn×n. We denote by JF (x) ∈ Rm×n the Jacobian matrix of F at x, by ∇Fi(x) ∈ Rn
the gradient of Fi at x and by ∇2Fi(x) ∈ Rn×n the Hessian matrix of Fi at x. For a positive
definite matrix H, the notation ‖x‖H =

√
〈x,Hx〉 is used to represent the norm induced by H

on vector x. For simplicity, we denote [m] := {1, 2, ...,m}, and

∆m :=

λ :
∑
i∈[m]

λi = 1, λi ≥ 0, i ∈ [m]


the m-dimensional unit simplex. To prevent any ambiguity, we establish the order � (≺) in Rm
as follows:

u � (≺)v ⇔ v − u ∈ Rm+ (Rm++),

and in Sn as follows:
U � (≺)V ⇔ V − U ∈ Sn+(Sn++).

In the following, we introduce the concepts of optimality for (MOP) in the Pareto sense.

Definition 2.1 A vector x∗ ∈ Rn is called Pareto solution to (MOP), if there exists no x ∈ Rn
such that F (x) � F (x∗) and F (x) 6= F (x∗).

Definition 2.2 A vector x∗ ∈ Rn is called weakly Pareto solution to (MOP), if there exists no
x ∈ Rn such that F (x) ≺ F (x∗).

Definition 2.3 A vector x∗ ∈ Rn is called Pareto critical point of (MOP), if

range(JF (x∗)) ∩ −Rm++ = ∅,

where range(JF (x∗)) denotes the range of linear mapping given by the matrix JF (x∗).

From Definitions 2.1 and 2.2, it is evident that Pareto solutions are always weakly Pareto
solutions. The following lemma shows the relationships among the three concepts of Pareto
optimality.

Lemma 2.1 (See Theorem 3.1 of [14]) The following statements hold.
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(i) If x ∈ Rn is a weakly Pareto solution to (MOP), then x is Pareto critical point.
(ii) Let every component Fi of F be convex. If x ∈ Rn is a Pareto critical point of (MOP), then

x is weakly Pareto solution.
(iii) Let every component Fi of F be strictly convex. If x ∈ Rn is a Pareto critical point of (MOP),

then x is Pareto solution.

Definition 2.4 A differentiable function h : Rn → R is L-smooth if

‖∇h(y)−∇h(x)‖ ≤ ‖y − x‖

holds for all x, y ∈ Rn. And h is µ-strongly convex if

〈∇h(y)−∇h(x), y − x〉 ≥ µ ‖y − x‖2

holds for all x, y ∈ Rn.

L-smoothness of h implies the following quadratic upper bound:

h(y) ≤ h(x) + 〈∇h(x), y − x〉+
L

2
‖y − x‖2 for all x, y ∈ Rn.

On the other hand, µ-strong convexity yields the quadratic lower bound:

h(y) ≥ h(x) + 〈∇h(x), y − x〉+
µ

2
‖y − x‖2 for all x, y ∈ Rn.

When the Euclidean distance is replaced by ‖ · ‖B , where B is a positive definite matrix, then h
is L-smooth and µ-strongly convex relative to ‖ · ‖B .

3 Gradient descent methods for MOPs

In this section, we revisit some gradient descent methods for MOPs.

3.1 Steepest descent method

For x ∈ Rn, the steepest descent direction [15] is defined as the optimal solution of the following
subproblem:

min
d∈Rn

max
i∈[m]

〈∇Fi(x), d〉+
1

2
‖d‖2. (1)

Since d 7→ 〈∇Fi(x), d〉 + 1
2‖d‖

2 is strongly convex for i ∈ [m], then (1) has a unique minimizer.
We denote by dSD(x) and θSD(x) the optimal solution and optimal value of (1), respectively.
Hence,

θSD(x) = min
d∈Rn

max
i∈[m]
〈∇Fi(x), d〉+

1

2
‖d‖2, (2)

and

dSD(x) = arg min
d∈Rn

max
i∈[m]
〈∇Fi(x), d〉+

1

2
‖d‖2. (3)
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Indeed, problem (1) can be equivalently rewritten as the following smooth quadratic problem:

min
(t,d)∈R×Rn

t+
1

2
‖d‖2, (QP)

s.t. 〈∇Fi(x), d〉 ≤ t, i ∈ [m].

As described in [7], by KKT conditions, we have

dSD(x) = −
∑
i∈[m]

λSDi (x)∇Fi(x), (4)

where λSD(x) ∈ ∆m is the solution to the dual problem:

−min
λ

1

2

∥∥∥∥∥∥
∑
i∈[m]

λi∇Fi(x)

∥∥∥∥∥∥
2

(DP)

s.t. λ ∈ ∆m.

The KKT conditions also give

θ(x) = −1

2

∥∥∥∥∥∥
∑
i∈[m]

λSDi (x)∇Fi(x)

∥∥∥∥∥∥
2

= −1

2
‖dSD(x)‖2, (5)

〈∇Fi(x), dSD(x)〉 ≤ −‖dSD(x)‖2, i ∈ [m], (6)

and
〈∇Fi(x), dSD(x)〉 = tSD(x) = −‖dSD(x)‖2, i ∈ ASD(x), (7)

where
ASD(x) := {i : λSDi (x) > 0, i ∈ [m]}

the set of active constraints at x. The following lemma shows that direction dSD(x) can be used
to characterize Pareto critical points of problem (MOP).

Lemma 3.1 (Lemma 1 of [15]) Let dSD(x) be defined as (3), then the following statements
hold.

(i) If x is Pareto critical, then dSD(x) = 0.
(ii) If x is not Pareto critical, then dSD(x) < 0.

(iii) The mapping x 7→ dSD(x) is continuous.

3.2 Newton-type methods

Similar to its counterparts for SOPs, SDMO is sensitive to problem’s conditioning. In response
to this challenge, Fliege et al. [14] proposed Newton’s method for MOPs. Newton’s direction is
the optimal solution to the following subproblem:

min
d∈Rn

max
i∈[m]

〈∇Fi(x), d〉+
1

2
‖d‖2∇2Fi(x). (8)
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The dual problem can be expressed as

−min
λ

1

2

∥∥∥∥∥∥
∑
i∈[m]

λi∇Fi(x)

∥∥∥∥∥∥
2

[ ∑
i∈[m]

λi∇2Fi(x)

]−1

s.t. λ ∈ ∆m.

Denote λN (x) ∈ ∆m the optimal solution of the dual problem, then

dN (x) = −

∑
i∈[m]

λNi ∇2Fi(x)

−1∑
i∈[m]

λNi (x)∇Fi(x)

 ,

and

〈∇Fi(x), dN (x)〉 = θN (x)− 1

2
‖dN (x)‖2∇2Fi(x) for all i ∈ AN (x). (9)

Since Hessian matrices are not readily available, Qu et al. [35] and Povalej [31] adopted BFGS
formulation to approximate the Hessian matrices, namely, replacing ∇2Fi(x) by Bi(x) in (8)
for i ∈ [m]. While Newton-type methods offer attractive convergence properties like locally
superlinear convergence [14, 31], the high per-step computational cost counteracts the efficiency
of outer iterations, resulting in suboptimal performance from a computational perspective.

3.3 Modified quasi-Newton method

In order to balance per-step cost and better curvature exploration, Ansary and Panda [1] u-
tilized a single positive matrix to approximate all the Hessian matrices. They developed the
following modified quasi-Newton method, which represents the optimal solution of the following
subproblem:

min
d∈Rn

max
i∈[m]

〈∇Fi(x), d〉+
1

2
‖d‖2B(x), (10)

where B(x) is a positive definite matrix. The subproblem can be efficiently solved via its dual:

−min
λ

1

2

∥∥∥∥∥∥
∑
i∈[m]

λi∇Fi(x)

∥∥∥∥∥∥
2

B(x)−1

s.t. λ ∈ ∆m.

Denote λMQN (x) ∈ ∆m an optimal solution of the dual problem, then

dMQN (x) = −B(x)−1

∑
i∈[m]

λMQN
i (x)∇Fi(x)

 ,

and
〈∇Fi(x), dMQN (x)〉 = −‖dMQN (x)‖2B(x) for all i ∈ AMQN (x). (11)

For each iteration k, once the unique descent direction dkMQN 6= 0 is obtained, the classical
Armijo technique is employed for line search.
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Algorithm 1: Armijo line search

Data: xk ∈ Rn, dkMQN ∈ Rn, JF (xk) ∈ Rm×n, σ, γ ∈ (0, 1), tk = 1

1 while F (xk + tkd
k
NQM )− F (xk) 6� σtkJF (xk)dkMQN do

2 Update tk := γtk
3 end
4 return tk

Next, we give the lower and upper bounds of stepsize along with dkVM .

Proposition 3.1 Assume that Fi is Lki -smooth and µki -strongly convex relative to ‖ · ‖Bk , i ∈
[m]. Then the stepsize along with dkMQN satisfies min

{
1, 2γ(1−σ)

Lkmax

}
≤ tk ≤ min

{
2(1−σ)
µkmax

, 1
}

, where

Lkmax := max{Lki : i ∈ [m]}, µkmax := max{µki : i ∈ AMQN (xk)}.

Proof The proof is similar to that in [7, Lemmas 3,4], we omit it here.

Remark 3.1 The stepsize along with dkMQN can be relatively small when Lkmax has a significant

value, even if Fi is not ill-conditioned relative to ‖ · ‖Bk (a relatively small value of Lki /µ
k
i ).

This small stepsize hampers the local superlinear convergence of MQNMO and leads to inferior
performance.

Remark 3.2 In [6], an aggregated line search was employed to achieve larger stepsizes, resulting
in local superlinear convergence for MQNMO. However, it is essential to note that the aggregated
line search cannot guarantee that all objective functions decrease in each iteration, and the global
convergence of MQNMO with the aggregated line search approach remains unestablished.

3.4 Barzilai-Borwein descent method

As described in [7], imbalances among objective functions lead to small stepsize in SDMO,
which decelerates the convergence. This is primarily due to equation (6), where the steepest
descent direction results in a similar decrease in objective values for different objectives between
two consecutive iterations. Observe the equation (11), imbalances among objective functions
also decelerate the convergence of MQNMO. It is worth noting that Newton’s direction achieves
distinctive inner products for different objectives, as shown in (9). This explains why Newton-type
methods accept larger stepsize and have the potential to alleviate imbalances among objective
functions.

To achieve distinctive inner products between descent direction and gradients for a first-
order method, Chen et al. [7] devised the Barzilai-Borwein descent direction, which is the optimal
solution of the following subproblem:

min
d∈Rn

max
i∈[m]

{
〈∇Fi(xk), d〉
αi(xk)

+
1

2
‖d‖2

}
, (12)
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where α(xk) ∈ Rm++ is given by Barzilai-Borwein method:

αi(x
k) =



max

{
αmin,min

{
〈sk−1, yk−1

i 〉
‖sk−1‖2

, αmax

}}
, 〈sk−1, yk−1

i 〉 > 0,

max

{
αmin,min

{∥∥yk−1
i

∥∥
‖sk−1‖

, αmax

}}
, 〈sk−1, yk−1

i 〉 < 0,

αmin, 〈sk−1, yk−1
i 〉 = 0,

(13)

for all i ∈ [m], where αmax is a sufficient large positive constant and αmin is a sufficient small
positive constant, sk−1 = xk − xk−1, yk−1

i = ∇Fi(xk) − ∇Fi(xk−1), i ∈ [m]. In this case, the
dual problem can be written as

−min
λ

1

2

∥∥∥∥∥∥
∑
i∈[m]

λi∇Fi(xk)

αi(xk)

∥∥∥∥∥∥
2

s.t. λ ∈ ∆m.

Denote λBB(xk) an optimal solution of the dual problem. Similarly, we have

dkBB = −
∑
i∈[m]

λBBi (xk)∇Fi(xk)

αi(xk)
,

and
〈∇Fi(xk), dkBB〉 = −αi(xk)‖dkBB‖2 for all i ∈ ABB(xk). (14)

It is evident that 〈∇Fi(xk), dkBB〉 6= 〈∇Fj(xk), dkBB〉 for all i, j ∈ ABB(xk) due to the objective-
based αi(x

k). We establish the following bounds for the stepsize along the Barzilai-Borwein
descent direction.

Lemma 3.2 (See Proposition 2 of [7]) Assume that Fi is Li-smooth and µi-strongly convex
for i ∈ [m], and let σ ≤ 1

2 in line search. Then the stepsize along with dkBB satisfies min{1, t̄min} ≤
tk ≤ 1, where t̄min := min

{
2γ(1−σ)µi

Li
: i ∈ [m]

}
.

Remark 3.3 The Barzilai-Borwein descent method for MOPs (BBDMO) can attain relatively
large stepsizes as long as all objective functions are not ill-conditioned. Recently, Chen et al. [8]
demonstrated that BBDMO can mitigate interference and imbalances among objectives, resulting
in improved convergence rates compared to SDMO. However, it is essential to note that BBDMO
remains sensitive to conditioning, as observed from a theoretical perspective [8].

4 Preconditioned Barzilai-Borwein method for MOPs

This section attempts to develop a method that enjoys cheap per-step cost and is not sensitive to
imbalances and conditioning. Before presenting the method, let us summarize the characteristics
of the methods discussed in the previous section.

Naturally, we aim to leverage the strengths of both MQNMO and BBDMO in the develop-
ment of the descent direction:

dk := arg min
d∈Rn

max
i∈[m]

{
〈∇Fi(xk), d〉

αki
+

1

2
‖d‖2Bk

}
, (15)
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Algorithm
cheap per-step

cost
not sensitive
to imbalances

not sensitive
to conditioning

SDMO 3 7 7

NMO 7 3 3

MQNMO 3 7 3

BBDMO 3 3 7

Table 1: The characteristics of SDMO, NMO, VMMO, and BBDMO.

where αk � 0 mitigates the imbalances among objective functions, and Bk � 0 is applied to
better capture the local geometry of the problem. We denote by θ(xk) the optimal value of (15),
hence

θ(xk) := min
d∈Rn

max
i∈[m]

{
〈∇Fi(xk), d〉

αki
+

1

2
‖d‖2Bk

}
.

Notably, the subproblem (15) can also be efficiently solved via its dual:

−min
λ

1

2

∥∥∥∥∥∥
∑
i∈[m]

λi∇Fi(xk)

αki

∥∥∥∥∥∥
2

B−1
k

s.t. λ ∈ ∆m,

(16)

provided that B−1
k can be efficiently evaluated. Denote λk an optimal solution of the dual prob-

lem. It is evident that

dk = −B−1
k

∑
i∈[m]

λki∇Fi(xk)

αki

 , (17)

and
〈∇Fi(xk), dk〉 = −αki ‖dk‖2Bk for all λki > 0. (18)

Denote

Dαk(xk, dk) := max
i∈[m]

〈
∇Fi(xk)

αki
, dk
〉
,

It can be reformulated as
Dαk(xk, dk) = −

∥∥dk∥∥2

Bk
. (19)

Remark 4.1 Given that αki is objective-based, equation (18) implies that different objective
functions achieve distinct descent along dk.

Next, we will present several properties of dk.

Proposition 4.1 Assume that 0 ≤ αl ≤ αki ≤ αu, aI � Bk � bI(a > 0) for all k ≥ 0, i ∈ [m].
Let dk be defined as (15), then the following statements hold.

(i) the following assertions are equivalent:
(a) The point xk is non-critical;
(b) dk 6= 0;
(c) dk is a descent direction.

(ii) If there exists a convergent subsequence xk
K−→ x∗ such that dk

K−→ 0, then x∗ is Pareto
critical.
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Proof (i) The assertions can be obtained by using the same arguments as in the proof of [31,
Lemma 3.2].

(ii) By the definition of dk, we have

−

∥∥dk∥∥2

Bk

2
= min
d∈Rn

max
i∈[m]

{
〈∇Fi(xk), d〉

αki
+

1

2
‖d‖2Bk

}
≤ min
d∈Rn

max
i∈[m]

{
〈∇Fi(xk), d〉

αu
+
b

2
‖d‖2

}
=

1

bα2
u

min
d∈Rn

max
i∈[m]

{
〈∇Fi(xk), bαud〉+

1

2
‖bαud‖2

}
=

1

bα2
u

min
d∈Rn

max
i∈[m]

{
〈∇Fi(xk), d〉+

1

2
‖d‖2

}
= − 1

2bα2
u

∥∥dkSD∥∥2
,

(20)

Since dk
K−→ 0, it follows by the latter inequality and the uniformly positive definiteness of Bk

that dkSD
K−→ 0. This, together with the continuity of dSD(·) and the fact that xk

K−→ x∗, implies
dSD(x∗) = 0. Therefore, x∗ is Pareto critical.

A first natural question that arises is how to select αk and Bk to preserve the benefits of
MQNMO and BBDMO.

4.1 Barzilai-Borwein method with variable metric

Firstly, we consider how to select an appropriate αk to accelerate convergence. From the pre-
conditioning perspective, the metric matrix Bk in (15) is selected to make a change of variable

x̂ = Px where P = B
1/2
k . By denoting gi(x̂) = Fi(x) = Fi(P

−1x̂), i ∈ [m], in contrast to
BBDMO, here we approximate the secant equation relative to gi by setting

αki =

〈
∇gi(x̂k+1)−∇gi(x̂k), x̂k+1 − x̂k

〉
‖x̂k+1 − x̂k‖2

.

Note that x̂ = Px and ∇gi(x̂) = P−1∇Fi(x), the last equation can be rewritten as

αki =

〈
∇Fi(xk+1)−∇Fi(xk), xk+1 − xk

〉
‖xk+1 − xk‖2Bk

.

In general, we set αk ∈ Rm++ as follows:

αki =



max

{
αmin,min

{
〈sk−1, yk−1

i 〉
‖sk−1‖2Bk

, αmax

}}
, 〈sk−1, yk−1

i 〉 > 0,

max

{
αmin,min

{ ∥∥yk−1
i

∥∥
‖Bksk−1‖

, αmax

}}
, 〈sk−1, yk−1

i 〉 < 0,

αmin, 〈sk−1, yk−1
i 〉 = 0.

(21)

Thus, the descent direction dk is a preconditioned Barzilai-Borwein descent direction for MOPs.
We also give the lower and upper bounds of stepsize along with dk.
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Proposition 4.2 Assume that Fi is Lki -smooth and µki -strongly convex relative to ‖ · ‖Bk , i ∈
[m], and let σ ≤ 1

2 in line search. Then the stepsize along with dk satisfies min{1, tmin} ≤ tk ≤ 1,

where tmin := min
{

2γ(1−σ)µki
Lki

: i ∈ [m]
}

.

Proof From the relative Lki -smoothness and µki -strong convexity of Fi, we derive that

µki ≤ αki ≤ Lki .

Then, the lower and upper bounds can be obtained by the similar argument as presented in the
proof of Proposition 3.1.

Remark 4.2 If Fi is not ill-conditioned relative to ‖ · ‖Bk , then line search along with dk can
achieve a relatively large stepsize.

Up to now, we do not specify explicitly how we calculate Bk, then a generic preconditioned
Barzilai-Borwein method for MOPs is described as follows.

Algorithm 2: Generic Preconditioned Barzilai-Borwein method for MOPs

Data: x0 ∈ Rn, B0 � 0, τ > 1
1 Choose x−1 in a small neighborhood of x0

2 for k = 0, ... do
3 Update αki as (21), i ∈ [m]

4 Compute λk a solution of (16)

5 Update dk as (17)

6 if θ(xk) = 0 then
7 return Pareto critical point xk

8 else
9 repeat

10 for i = 1, ...,m do

11 if Fi(x
k + dk)− Fi(xk) >

〈
∇Fi(xk), dk

〉
+

αki
2

∥∥dk∥∥2

Bk
then

12 Update αki := ταki
13 end

14 end

15 Compute λk a solution of (16)

16 Update dk as (17)

17 until Fi(x
k + dk)− Fi(xk) ≤

〈
∇Fi(xk), dk

〉
+

αki
2

∥∥dk∥∥2

Bk
, ∀i ∈ [m];

18 Update xk+1 := xk + dk

19 Update Bk+1 � 0

20 end

21 end

Remark 4.3 In Algorithm 2, the repeat loop estimates the local smoothness parameter for
Fi, i ∈ [m]. If Fi is Lki -smooth relative to ‖ · ‖Bk , i ∈ [m], then the repeat loop of Algorithm 2
terminates in a finite number of iterations, and αki < τLki , i ∈ [m].
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4.2 Metric selection

In order to improve the gradient direction, the scale matrix Bk plays the role of a preconditioner,
which should adjust the method to the right geometry of the problem. Naturally, a remaining
question is: How do we choose Bk to enhance performance?

As already said, each iteration of the preconditioned Barzilai-Borwein descent method can
be interpreted as the corresponding one of BBDMO for problem with transformed variable x̂ =

B
1/2
k x. From the perspective of preconditioning, we estimate the performance of the generic

algorithm without specifying explicitly how to select Bk. For simplicity, we fix the matrix Bk = B.

Theorem 4.1 Assume that Fi is LBi -smooth and µBi -strongly convex relative to ‖ · ‖B, i ∈ [m].
Let {xk} be the sequence generated by Algorithm 2. Then, the following statements hold.

(i) {xk} converges to some Pareto solution x∗.

(ii) ‖xk+1 − x∗‖B ≤
√

1− min
i∈[m]

{
µBi
τLBi

}
‖xk − x∗‖B .

Proof The proof is analogous to that in [8, Theorem 4.6], we omit it here.

In the realm of SOPs, preconditioned methods work well with good metric matrix for
which the transformed problem has moderate condition number. A powerful approach is to set
Bk = ∇2F (xk), which corresponds to Newton’s method. Similarly, the results in Theorem 4.1
also suggest that we choose an appropriate Bk to reduce the largest condition number. However,
especially when the Hessian matrices are different, we cannot use a single matrix to simultane-
ously approximate all the Hessian matrices for MOPs. The following example shows that the
largest condition number for multi-objective problems cannot be reduced by preconditioning.

Example 4.1 Consider the multiobjective optimization problem

min
x

(x2
1 + 1000x2

2, 1000x2
1 + x2

2)T .

By direct calculation, we have

∇2f1(x) =

(
2 0
0 2000

)
, ∇2f2(x) =

(
2000 0

0 2

)
.

Then κ1 = κ2 = 1000. For any positive definite matrix

B =

(
B11 B21

B12 B22

)
,

there exist M1,M2,m1,m2 > 0 such that κ̂1 = M1/m1, κ̂2 = M2/m2, m1B � ∇2f1(x) � M1B
andm2B � ∇2f2(x) �M2B. Multiplied by eigenvectors (1, 0)T and (0, 1)T , we have the following
equations 

m1B11 ≤ 2 ≤M1B11,

m2B11 ≤ 2000 ≤M2B11,

m1B22 ≤ 2000 ≤M1B22,

m2B22 ≤ 2 ≤M2B22.
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The equations can be reformulated as
m1 ≤ 2/B11 ≤M1,

m2 ≤ 2000/B11 ≤M2,

m1 ≤ 2000/B22 ≤M1,

m2 ≤ 2/B22 ≤M2.

We use the equations to obtain

κ̂1 =
M1

m1
≥ max{2/B11, 2000/B22}

min{2/B11, 2000/B22}
, κ̂2 =

M2

m2
≥ max{2000/B11, 2/B22}

min{2000/B11, 2/B22}
.

By distinguishing three cases, it is easy to verify that max{κ̂1, κ̂2} ≥ 1000 = max{κ1, κ2}, and
the equality can hold when B11 = B22.

Remark 4.4 The vanilla gradient direction is optimal when the contour of objective function
is a hyper-sphere. For general functions, the efficiency of the vanilla gradient direction in the
transformed space can be improved by appropriate scale matrix to make the transformed con-
tour closer to a hyper-sphere, which is what the preconditioning actually does. However, if the
contours of the objectives are distinct hyper-ellipsoids in MOPs, there is no preconditioner that
simultaneously makes the transformed contours closer to hyper-spheres.

Based on the above discussion, can we claim that preconditioning plays no role in multiob-
jective optimization? It is worth noting that the worst-case convergence guarantees for gradient
methods obtained by considering only the largest and smallest eigenvalues of the Hessian may
be too pessimistic. In what follows, we show that one possible way to speed up convergence is to
approximate the aggregated Hessian rather than any single one.

From a scalarization perspective, SDMO can be interpreted as an implicit gradient descent
method with adaptive scalarization (where the weight vector is an optimal solution of the dual
problem). Similarly, NMO can also be interpreted as an implicit Newton method with adaptive
scalarization:

−

∑
i∈[m]

λNi (xk)∇2Fi(x
k)

−1∑
i∈[m]

λNi (xk)∇Fi(xk)

 .

Recall that the Barzilai-Borwein descent direction with variable metric is

−B−1
k

∑
i∈[m]

λki
αki
∇Fi(xk)

 .

Intuitively, a judicious choice for Bk is to approximate the variable aggregated Hessian, i.e.,

Bk ≈
∑
i∈[m]

λki
αki
∇F 2

i (xk). (22)

In the following, we attempt to confirm the efficiency of the metric selection from a theoretical
perspective.

Theorem 4.2 Assume that Fi is Lki -smooth (Lki ≤ L) and µki -strongly convex (µki ≥ µ > 0)
relative to ‖·‖Bk , i ∈ [m], aI � Bk � bI(a > 0). Let {xk} be the sequence generated by Algorithm
2. Then, the following statements hold.
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(i) {xk} converges to some Pareto solution x∗.

(ii) ‖xk+1 − x∗‖Bk ≤

√√√√
1−

‖xk−x∗‖2 ∑
i∈[m]

λk
i
∇2Fi(x̄

k)

αk
i

‖xk−x∗‖2Bk
‖xk − x∗‖Bk .

Proof (i) By the relatively strong convexity of Fi and the uniformly positive definiteness of Bk,
we conclude that Fi is strongly convex. Using the line search condition, we have

Fi(x
k+1)− Fi(xk) ≤

〈
∇Fi(xk), dk

〉
+
αki
2

∥∥dk∥∥2

Bk
≤ −α

k
i

2

∥∥dk∥∥2

Bk
≤ −aµ

2

∥∥dk∥∥2
. (23)

It follows that {F (xk)} is monotone decreasing, which, together with the strong convexity of
Fi, implies the compactness of {x : F (x) � F (x0)} and there exists F ∗ such that F ∗ � F (xk).
Taking the sum of the inequality (23), we obtain∑

k≥0

aµ

2

∥∥dk∥∥2 ≤
∑
k≥0

(Fi(x
k)− Fi(xk+1)) ≤ Fi(x0)− F ∗i <∞.

Therefore, dk → 0. On the other hand, since {xk} is a subset of the compact {x : F (x) � F (x0)},
there exists an infinite index setK such that xk

K→ x∗. This, together with dk → 0 and Proposition
4.1(ii), implies that x∗ is a Pareto critical point. Since F is strongly convex, we conclude that x∗

is a Pareto solution, and the latter limit is enough to prove that {xk} converges to x∗.

(ii) Given the twice continuity of Fi, we use Newton-Leibniz formula to get

Fi(b)− Fi(a) =

〈∫ 1

0

∇Fi(a+ t(b− a))dt, b− a
〉
. (24)

Again using the Newton-Leibniz formula for the average gradient, we have∫ 1

0

(∇Fi(a+ t(b− a))−∇Fi(a))dt =

∫ 1

0

∫ 1

0

∇2Fi(a+ st(b− a))ds(t(b− a))dt.

Plugging this into (24) gives

Fi(b)− Fi(a) = 〈∇Fi(a), b− a〉+

〈
b− a,

∫ 1

0

∫ 1

0

∇2Fi(a+ st(b− a))ds(t(b− a))dt

〉
. (25)

By substituting b = x, a = xk into (25), we have

Fi(x
k+1)− Fi(x)

= (Fi(x
k+1)− Fi(xk)) + (Fi(x

k)− Fi(x))

≤
(〈
∇Fi(xk), xk+1 − xk

〉
+
αki
2
‖xk+1 − xk‖2Bk

)
+
〈
∇Fi(xk), xk − x

〉
−
〈
x − xk,

∫ 1

0

∫ 1

0

∇2Fi(x
k + st(x − xk))ds(t(x− xk))dt

〉
=
〈
∇Fi(xk), xk+1 − x

〉
+
αki
2
‖xk+1 − xk‖2Bk

−
〈
x − xk,

∫ 1

0

∫ 1

0

∇2Fi(x
k + st(x − xk))ds(t(x− xk))dt

〉
.

(26)
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It follows that∑
i∈[m]

λki
Fi(x

k+1)− Fi(x)

αki

≤

〈∑
i∈[m]

λki
∇Fi(xk)

αki
, xk+1 − x

〉
+

1

2
‖xk+1 − xk‖2Bk

−

〈
x − xk,

∫ 1

0

∫ 1

0

∑
i∈[m]

λki
∇2Fi(x

k + st(x − xk))

αki
ds(t(x− xk))dt

〉

=
〈
Bk(xk − xk+1), xk+1 − x

〉
+

1

2
‖xk+1 − xk‖2Bk

−

〈
x − xk,

∫ 1

0

∫ 1

0

∑
i∈[m]

λki
∇2Fi(x

k + st(x − xk))

αki
ds(t(x− xk))dt

〉

=

(
1

2
‖xk − x‖2Bk −

1

2
‖xk+1 − x‖2Bk −

1

2
‖xk+1 − xk‖2Bk

)
+

1

2
‖xk+1 − xk‖2Bk

−

〈
x − xk,

∫ 1

0

∫ 1

0

∑
i∈[m]

λki
∇2Fi(x

k + st(x − xk))

αki
ds(t(x− xk))dt

〉

=
1

2
‖xk − x‖2Bk −

1

2
‖xk+1 − x‖2Bk

−

〈
x − xk,

∫ 1

0

∫ 1

0

∑
i∈[m]

λki
∇2Fi(x

k + st(x − xk))

αki
ds(t(x− xk))dt

〉
.

By substituting x = x∗, there exists x̄k ∈ [xk, x∗] (line segment between xk and x∗) such that

0 ≤
∑
i∈[m]

λki
Fi(x

k+1)− Fi(x∗)
αki

≤ 1

2
‖xk − x∗‖2Bk −

1

2
‖xk+1 − x∗‖2Bk −

1

2
‖xk − x∗‖2∑

i∈[m]

λki
∇2Fi(x̄

k)

αk
i

.

Hence,

‖xk+1 − x∗‖Bk ≤

√√√√√
1−

‖xk − x∗‖2∑
i∈[m]

λki
∇2Fi(x̄

k)

αk
i

‖xk − x∗‖2Bk
‖xk − x∗‖Bk .

This completes the proof.

Remark 4.5 Instead of the lower quadratic bound with strong convexity, we use the exact
Newton-Leibniz formulation in (26), which is more accurate in most cases. Although Theorem
4.2(ii) cannot be treated as a basis for linear convergence directly, it confirms that the algorithm
enjoys a fast global convergence with appropriate preconditioning.

Interestingly, Theorem 4.2(ii) also shows that optimizing multiple objective functions simul-
taneously can be easier than optimizing any single one.

Remark 4.6 As a by-product, Theorem 4.2(ii) also shows that BBDMO enjoys fast linear con-
vergence in a region of the Pareto front. For the BBDMO, we have Bk = I. Assume that
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µi � ∇2Fi(x) � Li, i ∈ [m], we use Theorem 4.2(ii) to get

‖xk+1 − x∗‖ ≤

√√√√√
1−

‖xk − x∗‖2∑
i∈[m]

λki
∇2Fi(x̄

k)

αk
i

‖xk − x∗‖2
‖xk − x∗‖

≤

√√√√√
1−

‖xk − x∗‖2∑
i∈[m]

λki
∇2Fi(x̄

k)

Lmax

‖xk − x∗‖2
‖xk − x∗‖

≤
√

1− λmin(
∑
i∈[m]

λki∇2Fi(x̄k))/Lmax‖xk − x∗‖.

Interestingly, even if each of the objective functions is ill-conditioned, the following example
shows that BBDMO can enjoy fast linear convergence. Consider the problem in Example 4.1, by
simple calculation, for any xk, we have

∥∥xk+1 − x∗
∥∥ ≤√1− min{1000λk1 + λk2 , λ

k
1 + 1000λk2}

1000

∥∥xk − x∗∥∥
=

√
1− min{999λk1 + 1, 1000− 999λk1}

1000

∥∥xk − x∗∥∥ .
Then, in the region with λk1 6= 0, 1, BBDMO enjoys fast linear convergence.

For a generic case, we further explain the choice of Bk by the following asymptotic conver-
gence result.

Theorem 4.3 Let xk+1 = xk + tkd
k, dk be denoted as (15), suppose that the following assump-

tions hold:

(a) {xk} converges to some Pareto solution x∗ and F (x∗) � F (xk),
(b) tk = 1 for sufficiently large k,

(c)
{∑

i∈[m]
λki
αki

}
is bounded,

(d) aI � lim
k→∞

∑
i∈[m]

λki
αki
∇2Fi(x

∗) � bI, (a > 0),

(e) lim
k→∞

∇2Fi(x
k) = ∇2Fi(x

∗) for all i ∈ [m],

(f) lim
k→∞

∥∥∥∥∥(Bk−
∑
i∈[m]

λki
αk
i

∇2Fi(x
k))sk

∥∥∥∥∥
‖sk‖ = 0.

Then, {xk} converges to x∗ superlinearly.
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Proof By substituting b = xk+1, a = xk and b = x∗, a = xk into (25), respectively, we have

0 ≤ Fi(xk+1)− Fi(x∗)
= (Fi(x

k+1)− Fi(xk))− (Fi(x
∗)− Fi(xk))

=
〈
∇Fi(xk), xk+1 − xk

〉
+

〈
xk+1 − xk,

∫ 1

0

∫ 1

0

∇2Fi(x
k + st(xk+1 − xk))ds(t(xk+1 − xk))dt

〉
+
〈
∇Fi(xk), xk − x∗

〉
−
〈
x∗ − xk,

∫ 1

0

∫ 1

0

∇2Fi(x
k + st(x∗ − xk))ds(t(x∗ − xk))dt

〉
=
〈
∇Fi(xk), xk+1 − x∗

〉
+

〈
xk+1 − xk,

∫ 1

0

∫ 1

0

∇2Fi(x
k + st(xk+1 − xk))ds(t(xk+1 − xk))dt

〉
−
〈
x∗ − xk,

∫ 1

0

∫ 1

0

∇2Fi(x
k + st(x∗ − xk))ds(t(x∗ − xk))dt

〉
.

Then there exist x̄k1 ∈ [xk, xk+1] (line segment between xk and xk+1) and x̄k2 ∈ [xk, x∗] such that

0 ≤
〈 ∑

i∈[m]

λki
αk
i

∇Fi(x
k), xk+1 − x∗

〉
+

1

2

∥∥∥xk+1 − xk
∥∥∥2∑
i∈[m]

λk
i
αk
i

∇2Fi(x̄
k
1 )
−

1

2

∥∥∥xk − x∗∥∥∥2∑
i∈[m]

λk
i
αk
i

∇2Fi(x̄
k
2 )

=
〈
−Bkd

k, xk+1 − x∗
〉

+
1

2

∥∥∥xk+1 − xk
∥∥∥2∑
i∈[m]

λk
i
αk
i

∇2Fi(x̄
k
1 )
−

1

2

∥∥∥xk − x∗∥∥∥2∑
i∈[m]

λk
i
αk
i

∇2Fi(x̄
k
2 )

=
〈
Bk(xk − xk+1), xk+1 − x∗

〉
+

1

2

∥∥∥xk+1 − xk
∥∥∥2∑
i∈[m]

λk
i
αk
i

∇2Fi(x̄
k
1 )
−

1

2

∥∥∥xk − x∗∥∥∥2∑
i∈[m]

λk
i
αk
i

∇2Fi(x̄
k
2 )

=
〈
Bk(xk − xk+1), xk+1 − x∗

〉
+

1

2

∥∥∥xk+1 − xk
∥∥∥2∑
i∈[m]

λk
i
αk
i

∇2Fi(x̄
k
1 )
−

1

2

∥∥∥xk − xk+1 + xk+1 − x∗
∥∥∥2∑
i∈[m]

λk
i
αk
i

∇2Fi(x̄
k
2 )

=

〈Bk −
∑

i∈[m]

λki
αk
i

∇2Fi(x̄
k
2)

 (xk − xk+1), xk+1 − x∗
〉

+
1

2

∥∥∥xk+1 − xk
∥∥∥2∑
i∈[m]

λk
i
αk
i

∇2Fi(x̄
k
1 )

−
1

2

∥∥∥xk+1 − xk
∥∥∥2∑
i∈[m]

λk
i
αk
i

∇2Fi(x̄
k
2 )
−

1

2

∥∥∥xk+1 − x∗
∥∥∥2∑
i∈[m]

λk
i
αk
i

∇2Fi(x̄
k
2 )
,

where the second equality follows by tk = 1 for sufficient large k. Without loss of generality, for
any ε > 0, there exists kε such that, for all k ≥ kε and j ∈ {1, 2},∥∥∥∥∥∥

∑
i∈[m]

λki
αki
∇2Fi(x̄

k
j )−Bk

 sk

∥∥∥∥∥∥ ≤ ε‖sk‖, (27)

and ∥∥∥∥∥∥
∑
i∈[m]

λki
αki
∇2Fi(x̄

k
1)−

∑
i∈[m]

λki
αki
∇2Fi(x̄

k
2)

 sk

∥∥∥∥∥∥ ≤ ε‖sk‖, (28)
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where (27) is given by assumptions (c), (e) and (f), (28) follows by (c) and (e). Then, we use
relations (27) and (28) to get∥∥xk+1 − x∗

∥∥2∑
i∈[m]

λk
i
αk
i

∇2Fi(x̄k2 )

≤ 2

〈Bk − ∑
i∈[m]

λki
αki
∇2Fi(x̄

k
2)

 (xk − xk+1), xk+1 − x∗
〉

+

〈∑
i∈[m]

λki
αki
∇2Fi(x̄

k
1)−

∑
i∈[m]

λki
αki
∇2Fi(x̄

k
2)

 (xk+1 − xk), xk+1 − xk
〉

≤ 2ε ‖sk‖
∥∥xk+1 − x∗

∥∥+ ε ‖sk‖2 .

(29)

On the other hand, by assumptions (c), (d) and (e), we have∥∥xk+1 − x∗
∥∥2∑
i∈[m]

λk
i
αk
i

∇2Fi(x̄k2 )
≥ a

∥∥xk+1 − x∗
∥∥2
.

Rearranging and substituting the above relation into (29), we obtain

a
∥∥xk+1 − x∗

∥∥2 − 2ε
∥∥xk+1 − x∗

∥∥ ‖sk‖ − ε ‖sk‖2 ≤ 0.

Dividing by ‖sk‖2, it is easy to get∥∥xk+1 − x∗
∥∥

‖sk‖
∈

[
ε−
√
ε2 + aε

a
,
ε+
√
ε2 + aε

a

]
.

By the arbitrary of ε > 0, it follows that

lim
k→∞

∥∥xk+1 − x∗
∥∥

‖sk‖
= 0.

Notice that ‖sk‖ ≤
∥∥xk+1 − x∗

∥∥+
∥∥xk − x∗∥∥, then

0 ≤ lim
k→∞

∥∥xk+1 − x∗
∥∥

‖xk+1 − x∗‖+ ‖xk − x∗‖
≤ lim
k→∞

∥∥xk+1 − x∗
∥∥

‖sk‖
= 0.

Therefore,

lim
k→∞

∥∥xk+1 − x∗
∥∥

‖xk − x∗‖
= 0,

and hence the rate of convergence is superlinear.

5 Barzilai-Borwein quasi-Newton method for MOPs

A specific approach to achieving the idea in (22) is explored in this section.
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5.1 Trade-off of quasi-Newton approximation

In general λk

αk
6∈ ∆m, but there exists a λ̄k := λk

αk
/(
∑
i∈[m]

λki
αki

) ∈ ∆m such that

dk ≈ −

∑
i∈[m]

λ̄ki∇2Fi(x
k)

−1∑
i∈[m]

λ̄ki∇Fi(xk)

 .

As a result, the selected Bk can be perceived as the trade-off among Hessian matrices, with the
weight vector being adaptively updated in each iteration. Unfortunately, λk is unavailable before

computing the subproblem, and αk is determined using Bk. As an alternative, we can replace λk

αk

with λk−1

αk−1 . However, two remaining shortcomings exist with Bk =
∑
i∈[m]

λk−1
i

αk−1
i

∇2Fi(x
k): Hessian

matrices are not readily available, and obtaining the inverse of Bk is computationally expensive.
To address the issues, we attempt to update Bk by using BFGS method. In terms of (16) and
(17), we directly update

B−1
k+1 =

(
I − ρkskyTk

)
B−1
k

(
I − ρkyksTk

)
+ ρksks

T
k , (30)

where sk = xk+1 − xk, yk =
∑
i∈[m]

λki
αki

(∇Fi(xk+1)−∇Fi(xk)), and

ρk =


1/ 〈sk, yk〉 , 〈sk, yk〉 > 0,

1/(Dαk(xk+1, sk)−
∑
i∈[m]

λki
〈
∇Fi(xk)/αki , sk

〉
), otherwise, (31)

By taking the inverse of (30), we obtain the update formula for Bk+1:

Bk+1 = Bk −
ρ−1
k Bksks

T
kBk

(ρ−1
k − sTk yk)2 + ρ−1

k sTkBksk

+
sTkBkskyky

T
k

(ρ−1
k − sTk yk)2 + ρ−1

k sTkBksk

+ (ρ−1
k − s

T
k yk)

yks
T
kBk +Bksky

T
k

(ρ−1
k − sTk yk)2 + ρ−1

k sTkBksk

(32)

Remark 5.1 The BFGS-type updating (30) and (32) are similar to (15) and (17) in [33].

The Barzilai-Borwein BFGS method for MOPs is described as follows:

Remark 5.2 In SOPs, when Dennis-Moré condition holds, the Barzilai-Borwein parameter

lim
k→∞

αk = lim
k→∞

〈
∇F (xk + sk)−∇F (xk), sk

〉
sTkBksk

= lim
k→∞

sTk∇2F (xk)sk
sTkBksk

= 1.

From a preconditioning perspective, if the preconditioner Bk is not good enough, the Barzilai-
Borwein method can be seen as diagonal preconditioning based on the metric ‖ · ‖Bk . The
Dennis-Moré condition states that Bk is good enough as a preconditioner if xk belongs to a
small neighborhood of the optimal solution. For this reason, the two approaches are rarely used
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Algorithm 3: Barzilai-Borwein quasi-Newton method for MOPs

Data: x0 ∈ Rn, 0 ≺ B0, 0 < σ1 ≤ σ2 < 1
1 Choose x−1 in a small neighborhood of x0

2 for k = 0, ... do
3 Update αki as (21), i ∈ [m]

4 Compute λk a solution of (16)

5 Update dk as (17)

6 if θ(xk) = 0 then
7 return Pareto critical point xk

8 else
9 Compute a stepsize tk that satisfies

(Fi(x
k + tdk)− Fi(xk))/αki ≤ σ1tDαk(xk, dk), ∀i ∈ [m], (33)

Dαk(xk + tdk, dk) ≥ σ2Dαk(xk, dk). (34)

10 Update xk+1 := xk + tkd
k

11 Update B−1
k+1 as (30)

12 Update Bk+1 as (32)

13 end

14 end

simultaneously in SOPs. In MOPs, as we described in Remark 4.4, there is no precondition-
er that simultaneously captures the correct geometry for different objective functions, so the
Barzilai-Borwein parameters (21) serve as preconditioners for different objective functions.

To ensure the Algorithm 3 is well-defined, we require the following assumption.

Assumption 1 For any z ∈ Rn, the level set LF (z) = {x : F (x) � F (z)} is bounded.

Proposition 5.1 Suppose that Assumption 1 holds and that dk is a descent direction, 0 < σ1 ≤
σ2 < 1. Then, there exists an interval [tl, tu], with 0 < tl < tu < 1, such that for all t ∈ [tl, tu]
equations (33) and (34) hold.

Proof The proof is similar to that in [22, Proposition 2], we omit it here.

The following result shows that Algorithm 3 is well-defined without convexity assumption.

Proposition 5.2 If the stepsize tk is obtained by Wolfe line search (33) and (34), then ρk in
(31) is positive. Moreover, the metric matrix Bk is positive definite.

Proof The assertions are obvious, we omit the proof here.

5.2 Global convergence

This section presents the global convergence results for Algorithm 3. Notably, Algorithm 3 ter-
minates with a Pareto critical point in a finite number of iterations or generates an infinite
sequence of noncritical points. In the sequel, we will assume that Algorithm 3 produces an infi-
nite sequence of noncritical points. Before presenting the global convergence of Algorithm 3, we
state the following convexity assumption, which is also required in [22, 33].
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Assumption 2 (i) ∇2Fi is Lipschitz continuous with constant Li > 0 for i ∈ [m]. (ii) The level
set LF (x0) = {x : F (x) � F (x0)} is convex and there exist constants a, b > 0, i ∈ [m], such that

a ‖z‖2 ≤
〈
z,∇2Fi(x)z

〉
≤ b ‖z‖2 , ∀i ∈ [m], (35)

for all z ∈ Rn and x ∈ LF (x0).

Under the Assumption 2, 〈sk, yk〉 > 0 and hence ρk = 1/ 〈sk, yk〉 for all k ≥ 0. In this case,
we have

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
.

We denote

cosβk =
sTkBksk

‖sk‖ ‖Bksk‖
,

so that βk the angel between sk and Bksk. The following lemma shows that a subsequence of
{cosβk} is uniformly bounded away from 0 .

Lemma 5.1 Suppose that Assumption 2 holds. Let {xk} be the sequence generated by Algorithm
3. Then, there exist a constant δ > 0 and a subsequence of indices K such that

cosβk ≥ δ, ∀k ∈ K. (36)

Proof The proof is similar to that in [29, Theorem 8.5], we omit it here.

Before presenting the global convergence of Algorithm 3, we establish the following bound.

Lemma 5.2 Suppose that Assumption 2 holds. Let {xk} be the sequence generated by Algorithm
3. Then, for all k ≥ 0,

Dαk(xk, dk) ≤ −cosβk

αmax

∥∥dk∥∥∥∥dkSD∥∥ . (37)

Proof By the definition of cosβk, we have

cosβk =
sTkBksk

‖sk‖ ‖Bksk‖
=

dTkBkdk
‖dk‖ ‖Bkdk‖

.

This, together with relation (19), gives

Dαk(xk, dk) = −
∥∥dk∥∥2

Bk

= − cosβk
∥∥dk∥∥∥∥Bkdk∥∥

= − cosβk
∥∥dk∥∥

∥∥∥∥∥∥
∑
i∈[m]

λki
αki
∇Fi(xk)

∥∥∥∥∥∥
= − cosβk

∥∥dk∥∥
∑
i∈[m]

λki
αki

∥∥∥∥∥∥
∑
i∈[m]

λ̄ki∇Fi(xk)

∥∥∥∥∥∥
≤ −

∑
i∈[m]

λki
αki

 cosβk
∥∥dk∥∥ ∥∥dkSD∥∥

≤ −cosβk

αmax

∥∥dk∥∥∥∥dkSD∥∥ ,

(38)
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where λ̄ki =
λki
αki
/(
∑
i∈[m]

λki
αki

), the first inequality follows by λ̄k ∈ ∆m and the definition of dkSD,

and the last inequality is given by λ̄k ∈ ∆m and αki ≤ αmax, i ∈ [m].

We are now in a position to establish a global convergence for the Algorithm 3.

Theorem 5.1 Suppose that Assumption 2 holds. Let {xk} be the sequence generated by Algo-
rithm 3. Then, {xk} converges to a Pareto solution x∗ of (MOP).

Proof By (34) and Assumption 2, we have

(σ2 − 1)Dαk(xk, dk) ≤ Dαk(xk + tkd
k, dk)−Dαk(xk, dk)

≤ max
i∈[m]

〈
∇Fi(xk + tkd

k)−∇Fi(xk)

αki
, dk
〉

≤ b

αmin
tk
∥∥dk∥∥2

.

Since Dαk(xk, dk) < 0 and
∥∥dk∥∥ 6= 0, we obtain

D2
αk(xk, dk)

‖dk‖2
≤ tk

Dαk(xk, dk)

σ2 − 1
. (39)

We use the relation (33) to deduce that {Fi(xk)} is monotone decreasing and that

Fi(x
k+1)− Fi(xk) ≤ αminσ1tkDαk(xk, dk).

It follows that {xk} ⊂ LF (x0). Observe the strong convexity of Fi on LF (x0), then LF (x0) is
compact, and there exists F ∗i such that∑

k≥0

−αminσ1tkDαk(xk, dk) ≤ Fi(x0)− F ∗i <∞.

Plugging the bound into (39) gives ∑
k≥0

D2
αk(xk, dk)

‖dk‖2
<∞. (40)

By substituting (36) and (37) into (40), we have∑
k∈K

δ2

α2
max

∥∥dkSD∥∥2
<∞,

and hence
lim
k∈K

dkSD = 0. (41)

Observe the compactness of LF (x0), then there exists an infinite index set K′ ⊂ K and a point
x∗ such that limk∈K′ x

k = x∗. This, together with (41) and the continuity of dSD(·), implies that
x∗ is a Pareto critical point. Since F is strongly convex on LF (x0), we conclude that x∗ is a
Pareto solution, and the latter limit is enough to prove that {xk} converges to x∗.

In the remainder of this subsection, we investigate the linear convergence of BBQNMO.
Before presenting the main result, we start with the following technique result.



24 Jian Chen et al.

Lemma 5.3 Suppose that Assumption 2 holds. Let {xk} be the sequence generated by Algorithm
3 and x∗ be as in Theorem 5.1. Then, for all k ≥ 0, the following statements hold.

(i)
∥∥xk − x∗∥∥ ≤ 2

a

∥∥dkSD∥∥.

(ii)
∥∥sk∥∥ ≥ (1−σ2)αmin

bαmax
cosβk

∥∥dkSD∥∥ .
Proof (i) The assertion can be obtained by using the same arguments as in the proof of [33,
Lemma 4.5]

(ii) By Assumption 2, the mean value theorem gives∥∥Fi(xk+1)−∇Fi(xk)
∥∥ =

∥∥∇2Fi(x̄
k)(xk+1 − xk)

∥∥ ≤ b∥∥sk∥∥ ,
where x̄k ∈ [xk, xk+1]. We use the latter bound and relation (34) to obtain

(σ2 − 1)Dαk(xk, dk) ≤ Dαk(xk+1, dk)−Dαk(xk, dk)

≤

〈∑
i∈[m]

λki
αki
∇Fi(xk+1), dk

〉
−

〈∑
i∈[m]

λki
αki
∇Fi(xk), dk

〉

≤
∑
i∈[m]

λki
αki

∥∥∇Fi(xk+1)−∇Fi(xk)
∥∥∥∥dk∥∥

≤
∑
i∈[m]

λki
αki
b
∥∥sk∥∥∥∥dk∥∥

≤ b

αmin

∥∥sk∥∥∥∥dk∥∥ ,
where the last inequality is due to the facts that λk ∈ ∆m and αki ≥ αmin, i ∈ [m]. This, together
with (37) and the fact that σ2 < 1, implies

(1− σ2)
cosβk

αmax

∥∥dk∥∥∥∥dkSD∥∥ ≤ b

αmin

∥∥sk∥∥∥∥dk∥∥ .
This concludes the proof.

Theorem 5.2 Suppose that Assumption 2 holds. Let {xk} be the sequence generated by Algo-
rithm 3. Then, {xk} converges R-linearly to a Pareto solution x∗ of (MOP). Furthermore, we
have ∑

k≥0

∥∥xk − x∗∥∥ <∞.
Proof The proof is similar to that in [22, Proposition 5], we omit it here.

5.3 Superlinear convergence

In the following, we consider the local superlinear convergence of Algorithm 3 under Assumption
2. As described in Theorem 4.3, to ensure the superlinear convergence of the proposed algorithm,
the remaining assumptions are (b) and (f). First, we present a sufficient condition for assumption
(f).
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Proposition 5.3 Suppose that {λk/αk} is convergent and Assumption 2 holds, then

lim
k→∞

∥∥∥∥∥(Bk −
∑
i∈[m]

λki
αki
∇2Fi(x

k))sk

∥∥∥∥∥
‖sk‖

= 0,

i.e., assumption (f) in Theorem 4.3 holds.

Proof Observe the continuity of {λk/αk}, the assertion can be obtained by using the similar

arguments as in the proof of [29, Theorem 8.6] by regarding
∑
i∈[m]

λki
αki
∇2Fi(x

k) as a whole.

The remaining assumption is how to ensure the unit stepsize.

Proposition 5.4 Suppose that {λk/αk} is convergent and Assumption 2 holds, then (34) holds
with tk = 1 for sufficient large k.

Proof By Proposition 5.3, we conclude that the assumption (f) holds. Without loss of generality,
for a sufficiently small ε > 0, there exists Kε such that, for all k ≥ Kε,

Dαk(xk + dk, dk) ≥

〈∑
i∈[m]

λki
∇Fi(xk + dk)

αki
, dk

〉

≥

〈∑
i∈[m]

λki
∇Fi(xk)

αki
, dk

〉
+
∥∥dk∥∥2∑

i∈[m]

λki
∇2Fi(x

k)

αk
i

− ε
∥∥dk∥∥2

= −
∥∥dk∥∥2

Bk
+
∥∥dk∥∥2∑

i∈[m]

λki
∇2Fi(x

k)

αk
i

− ε
∥∥dk∥∥2

≥ −2ε‖dk‖2

≥ −σ2‖dk‖2Bk
= σ2Dαk(xk, dk),

where the second inequality follows by the continuity of ∇2Fi, the third inequality is given by
assumption (f) and the last inequality is due to assumption (f), strong convexity of Fi and the
fact that ε > 0 is sufficiently small. This concludes the proof.

Remark 5.3 Although relation (34) accepts unit stepsize for sufficiently large k, unit stepsize
may not hold for relation (33) due to the Barzilai-Borwein parameter αk. As is well known,
the Barzilai-Borwein method without line search does not guarantee convergence. Therefore, to
guarantee the unit stepsize in Wolfe line search (33)-(34), one possible way is to use line search
as the repeat loop in Algorithm 2. However, each repeat loop in Algorithm 2 requires solving a
subproblem, then the efficiency of the proposed method may be hampered by the line search.
Notably, the Barzilai-Borwein method often achieves unit stepsize in numerical experiments [7].

6 Numerical results

In this section, we present numerical results to demonstrate the performance of BBQNMO for
various problems, where the variable metric is the trade-off of quasi-Newton approximation. We
also compare BBQNMO with QNMO with Wolfe line search [33], MQNMO [1, 6, 22] with Wolfe
line search and BBDMO [7] to show its efficiency. All numerical experiments were implemented
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in Python 3.7 and executed on a personal computer with an Intel Core i7-11390H, 3.40 GHz
processor, and 16 GB of RAM. For BBDMO and BBQNMO, we set αmin = 10−3 and αmax = 103

to truncate the Barzilai-Borwein’s parameter. We use the Wolfe line search as in algorithm 3 in
[22], and set σ1 = 10−4, σ2 = 0.1 in Wolfe line search. We use Bki = I, i ∈ [m] in QNMO,
and Bk = I in MQNMO and BBQNMO. To ensure that the algorithms terminate after a finite
number of iterations, we use the stopping criterion |θ(x)| < 10−8 for all tested algorithms. We
also set the maximum number of iterations to 500. For each problem, we use the same initial
points for different tested algorithms. The initial points are randomly selected within the specified
lower and upper bounds. The subproblem of QNMO is solved by scipy.optimize, a Python-
embedded modelling language for optimization problems. Based on the Frank-Wolfe method, our
codes solve the subproblems of MQNMO, BBDMO, and BBQNMO. The recorded averages from
the 200 runs include the number of iterations, the number of function evaluations, and the CPU
time.

6.1 Ordinary test problems

The tested algorithms are executed on several test problems, and the problem illustration is given
in Table 2. The dimensions of variables and objective functions are presented in the second and
third columns, respectively. xL and xU represent lower bounds and upper bounds of variables,
respectively.

Problem n m xL xU Reference
BK1 2 2 (-5,-5) (10,10) [20]
DD1 5 2 (-20,...,-20) (20,...,20) [10]
Deb 2 2 (0.1,0.1) (1,1) [11]
Far1 2 2 (-1,-1) (1,1) [20]
FDS 5 3 (-2,...,-2) (2,...,2) [14]
FF1 2 2 (-1,-1) (1,1) [20]
Hil1 2 2 (0,0) (1,1) [19]
Imbalance1 2 2 (-2,-2) (2,2) [7]
Imbalance2 2 2 (-2,-2) (2,2) [7]
JOS1a 50 2 (-2,...,-2) (2,...,2) [21]
JOS1b 100 2 (-2,...,-2) (2,...,2) [21]
JOS1c 100 2 (-50,...,-50) (50,...,50) [21]
JOS1d 100 2 (-100,...,-100) (100,...,100) [21]
LE1 2 2 (-5,-5) (10,10) [20]
PNR 2 2 (-2,-2) (2,2) [32]
VU1 2 2 (-3,-3) (3,3) [20]
WIT1 2 2 (-2,-2) (2,2) [41]
WIT2 2 2 (-2,-2) (2,2) [41]
WIT3 2 2 (-2,-2) (2,2) [41]
WIT4 2 2 (-2,-2) (2,2) [41]
WIT5 2 2 (-2,-2) (2,2) [41]
WIT6 2 2 (-2,-2) (2,2) [41]

Table 2: Description of all test problems used in numerical experiments.
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(a) QNMO (b) MQNMO (c) BBDMO (d) BBQNMO

Fig. 1: Numerical results in value space for problems DD1, VU1 and PNR.

(a) QNMO (b) MQNMO (c) BBDMO (d) BBQNMO

Fig. 2: Numerical results in variable space and value space obtained by the tested algorithms for
problems WIT1-6.

For each test problem, the number of average iterations (iter), number of average function
evaluations (feval), and average CPU time (time(ms)) of the different algorithms are listed in
Table 3. The problems DD1, Deb, FDS, Imbalance1-2, VU1 and WIT1-2 involve imbalanced
objective functions, such as higher-order and exponential functions, leading to poor MQNMO
performance. In contrast to MQNMO, the other methods perform well on these problems, demon-
strating their ability to alleviate objectives’ imbalances. Nevertheless, BBDMO and BBQNMO
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require much less CUP time, particularly for high-dimensional problems, than QNMO. The
BBDMO and BBQNMO exhibit superior performance for the test problems due to the good
conditioning.

Problem QNMO MQNMO BBDMO BBQNMO
iter feval time iter feval time iter feval time iter feval time

BK1 1.00 2.00 4.02 1.00 2.00 0.39 1.00 1.00 0.40 1.00 1.00 0.55
DD1 11.74 12.81 40.04 43.14 163.92 10.77 6.06 6.20 1.41 8.22 16.72 3.20
Deb 5.37 10.58 9.00 55.14 350.18 16.50 3.74 5.85 0.99 3.36 4.70 1.51
Far1 9.24 13.05 16.29 39.13 193.53 20.71 49.26 49.76 11.37 7.73 18.76 4.04
FDS 10.68 16.87 59.00 169.66 1132.75 242.12 4.23 4.47 3.08 4.66 6.07 5.22
FF1 3.88 5.31 6.97 16.00 61.75 4.40 4.28 5.50 1.17 3.57 5.32 1.51
Hil1 5.78 9.58 9.60 12.87 49.58 4.34 10.11 10.93 2.66 4.46 8.64 2.05
Imbalance1 2.51 5.14 6.52 53.43 212.21 13.03 2.57 3.50 0.79 2.50 7.37 1.18
Imbalance2 1.51 5.38 4.71 227.05 1587.22 61.53 1.00 1.00 0.39 1.00 1.00 0.55
JOS1a 2.47 6.85 33.38 2.51 6.88 0.79 1.00 1.00 0.39 1.00 1.00 0.55
JOS1b 2.65 7.96 70.40 2.85 8.19 1.10 1.00 1.00 0.39 1.00 1.00 0.64
JOS1c 3.16 8.73 129.75 3.36 8.94 1.34 1.00 1.00 0.39 1.00 1.00 0.61
JOS1d 3.37 9.03 187.07 3.67 9.32 1.34 1.00 1.00 0.39 1.00 1.00 0.57
LE1 3.66 5.85 6.48 7.54 17.61 1.98 3.86 6.11 1.10 3.99 6.14 1.74
PNR 2.55 5.12 6.11 7.68 19.83 1.92 3.47 3.75 0.94 3.58 4.59 1.41
VU1 36.12 37.32 65.04 332.61 2713.48 93.35 13.98 14.03 3.50 8.32 13.49 3.16
WIT1 2.52 5.39 6.31 48.57 248.86 12.53 3.06 3.14 0.79 2.93 3.39 1.17
WIT2 3.85 9.04 9.58 76.10 382.56 20.10 3.42 3.52 1.11 3.22 3.37 1.34
WIT3 3.83 7.81 9.28 35.08 131.15 8.91 4.39 4.48 1.12 4.10 4.20 1.63
WIT4 2.98 5.05 7.08 6.90 13.71 1.84 4.56 4.61 1.13 4.28 4.35 1.68
WIT5 3.05 4.59 6.82 4.87 8.45 1.32 3.61 3.63 0.94 3.55 3.59 1.78
WIT6 1.05 2.00 3.29 1.00 2.00 0.56 1.00 1.00 0.40 1.00 1.00 0.57

Table 3: Number of average iterations (iter), number of average function evaluations (feval), and
average CPU time (time(ms)) of QNMO, MQNMO, BBDMO, and BBQNMO implemented on
different test problems.

6.2 Quadratic ill-conditioned problems

In this subsection, we test the algorithm on ill-conditioned problems. We consider a series of
quadratic problems defined as follows:

Fi(x) =
1

2
〈x,Aix〉+ 〈bi, x〉 , i = 1, 2,

where Ai is a positive definite matrix. We set Ai = HiDiH
T
i , where Hi is a random orthogonal

matrix and Di = Diag(d1
i , d

2
i , ..., d

n
i ) with maxj d

j
i/minj d

j
i = κi. The problem illustration is

given in Table 4. The second and third columns present the objective functions’ dimension and
condition numbers, respectively. While xL and xU represent the lower and upper bounds of the
variables, respectively.

Problem n (κ1, κ2) xL xU
QPa 10 (10, 10) 10[-1,...,-1] 10[1,...,1]
QPb 10 (102, 102) 10[-1,...,-1] 10[1,...,1]
QPc 100 (102, 102) 100[-1,...,-1] 100[1,...,1]
QPd 100 (103, 103) 100[-1,...,-1] 100[1,...,1]
QPe 500 (103, 103) 500[-1,...,-1] 500[1,...,1]
QPf 500 (104, 104) 500[-1,...,-1] 500[1,...,1]
QPg 100 (105, 102) 100[-1,...,-1] 100[1,...,1]

Table 4: Description of quadratic problems.



Preconditioned Barzilai-Borwein Methods for Multiobjective Optimization Problems 29

(a) QNMO (b) MQNMO

(c) BBDMO (d) BBQNMO

Fig. 3: Numerical results in value space for problem QPc.

(a) QPd (b) QPe (c) QPf (d) QPg

Fig. 4: Numerical results in value space obtained by MQNMO (top), BBDMO (middle) and
BBQNMO for problems QPd, QPe, QPf, and QPg.
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Problem QNMO MQNMO BBDMO BBQNMO
iter feval time iter feval time iter feval time iter feval time

QPa 16.44 32.44 122.56 16.03 34.61 3.77 12.95 14.45 2.92 10.19 14.58 3.67
QPb 19.30 38.56 156.21 27.31 81.60 6.93 46.08 74.38 9.92 21.63 41.78 7.65
QPc 89.99 414.92 31355.87 109.59 648.34 44.16 57.44 89.41 12.38 36.78 69.93 15.55
QPd – – – 140.64 804.35 56.43 195.52 388.28 44.40 45.41 93.64 19.24
QPe – – – 458.18 4140.66 5792.92 196.19 369.88 133.19 68.94 117.23 795.10
QPf – – – 473.45 4203.23 6039.30 456.93 1217.09 456.13 121.86 291.31 1378.27
QPg – – – 226.40 1457.88 96.50 464.46 2933.31 190.53 80.61 172.28 35.37

Table 5: Number of average iterations (iter), number of average function evaluations (feval), and
average CPU time (time(ms)) of QNMO, MQNMO, BBDMO, and BBQNMO implemented on
quadratic problems.

Table 5 presents the number of average iterations (iter), number of average function evalua-
tions (feval), and average CPU time (time(ms)) over 200 experimental runs for every quadratic
problem. All the tested methods exhibit convergence for well-conditioned and low-dimensional
problems (QPa-b), except that QNMO requires significantly more CPU time due to the expensive
per-step cost. The CPU time required by QNMO increases substantially for problem QPc, making
it impractical for high-dimensional problems. For ill-conditional and high-dimensional problems
(QPd-f), QNMO fails to converge (this is mainly due to the solver of the subproblems.), while
BBQNMO significantly outperforms MQNMO and BBDMO. It is worth noting that MQNMO
and BBQNMO are second-order methods which have the potential to capture the local curva-
ture for ill-conditioned problems. However, MQNMO can not handle the imbalances among the
objectives, resulting in biased solutions (see Fig. 4). On the other hand, BBDMO is a first-order
method that can cope with weakly ill-conditioned problems (QPb-e) due to the Barzilai-Borwein
rule, but fails to converge on extremely ill-conditioned problems(QPf). In summary, the primary
experiment results confirm that for ill-conditional and high-dimensional MOPs, the proposed B-
BQNMO can better balance the curvature exploration and per-step cost than QNMO, MQNMO
and BBDMO.

7 Conclusions

In this paper, we proposed a preconditioned Barzilai-Borwein descent method for MOPs that
enjoys cheap per-step cost and is not sensitive to imbalances and conditioning. Theoretical anal-
ysis indicates that this method can effectively mitigate imbalances among objectives and achieve
rapid convergence with appropriate metric selection. Our numerical results validate the supe-
riority of the proposed method, incorporating the trade-off of quasi-Newton approximation. It
significantly outperforms QNMO, MQNMO, and BBDMO, particularly in the case of large-scale
and ill-conditioned problems. In addition, this paper provides a new insight into preconditioning,
and highlights the essential role of the Barzilai-Borwein method for preconditioning in multiob-
jective optimization.

From a methodological perspective, it may be worth considering the following points:

– Prudent and Souza [34] studied the global convergence of the BFGS-type algorithm for non-
convex MOPs, it is worth considering the global convergence of BBQNMO. Note that we
update a common matrix Bk, then the Dennis-Moré condition and asymptotic convergence
hold without all objectives being locally convex.

– To balance the per-iteration cost and better curvature exploration, we choose a preconditioner
from the perspective of implicit scalarization, and the Barzilai-Borwein method is embedded
in the preconditioning method. This paves the way for the development of efficient high-order
[12] and high-order regularized methods [28] for MOPs.
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– Chen et al. recently [9] established superlinear convergence of the Newton-type proximal
method for MOPs. Consequently, it is meaningful to extend PBBMO for solving ill-conditioned
multiobjective composite problems. Given the potential for expensive proximal operators with
non-diagonal matrices, exploring approaches that capture the local geometry using diagonal
matrices, such as diagonal Barzilai-Borwein stepsize [30] is practical.
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