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Abstract In a real Hilbert space domain setting, we study the convergence properties of the
stochastic Ravine accelerated gradient method for convex differentiable optimization. We consider
the general form of this algorithm where the extrapolation coefficients can vary with each itera-
tion, and where the evaluation of the gradient is subject to random errors. This general treatment
models a breadth of practical algorithms and numerical implementations. We show that, under a
proper tuning of the extrapolation parameters, and when the error variance associated with the
gradient evaluations or the step-size sequences vanish sufficiently fast, the Ravine method provides
fast convergence of the values both in expectation and almost surely. We also improve the conver-
gence rates from O(-) to o(-). Moreover, we show almost sure summability property of the gradients,
which implies the fast convergence of the gradients towards zero. This property reflects the fact
that the high-resolution ODE of the Ravine method includes a Hessian-driven damping term. When
the space is also separable, our analysis allows also to establish almost sure weak convergence of
the sequence of iterates provided by the algorithm. We finally specialize the analysis to consider
different parameter choices, including vanishing and constant (heavy ball method with friction)
damping parameter, and present a comprehensive landscape of the tradeoffs in speed and accuracy
associated with these parameter choices and statistical properties on the sequence of errors in the
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gradient computations. We provide a thorough discussion of the similarities and differences with
the Nesterov accelerated gradient which satisfies similar asymptotic convergence rates.

Keywords Ravine method - Nesterov accelerated gradient method - general extrapolation
coefficient - error terms - Hessian driven damping - convergence rates - Lyapunov analysis
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1 Introduction

Given a real Hilbert space H, our study concerns the fast numerical resolution of the convex
minimization problem

(P) min{f(z): z € H},

by the Ravine accelerated gradient method. We make the following standing assumptions:

{f :'H — R is differentiable, V f is L — Lipschitz continuous, S = argmin f # (. ()

(sk)pen 1s a positive sequence with s, L €]0,1].

The Ravine Accelerated Gradient algorithm ((RAG)., |for short) generates iterates (yx, w)cy
satisfying

wy, = yp — sV f(yr)
(RAG),,)

Y1 = W + vk (W — wg—1).-
Let us indicate the role of the different parameters involved in the above algorithm:

a) The positive parameter sequence (si) zen 18 the step-size sequence applied to the gradient based
update.

b) The non-negative extrapolation coefficients (vy),cy are linked to the inertial character of the
algorithm. They can be viewed as control parameters for optimization purposes.

¢) In order to inform about the practical performance of algorithms realizing this method in com-
mon capplications, we will analyze the convergence rates when the gradient terms are calculated
with stochastic errors. Formally, we consider Vf(yx) + e instead of Vf(yg) in where
el is a zero-mean stochastic error.

The Ravine method is often confused with Nesterov’s method, which is close in its formulation
and its convergence properties. This justifies an in-depth study of the Ravine method and its
comparison with Nesterov’s method.

1.1 Historical aspects

The Ravine method was introduced by Gelfand and Tsetlin [35] in 1961. It is a first-order method
which only uses evaluations of the gradient of f. It is closely related with the Nesterov accelerated
gradient method, with which it has often been confused. Recent research concerning the under-
standing of accelerated first-order optimization methods, seen as temporal discretized dynamic
systems, has made it possible to clarify the link between the two methods; see the recent work of
Attouch and Fadili [19].
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The Ravine method was introduced in [35] in the case of a fixed positive extrapolation coefficient
Y = v > 0. Recent research has shown the advantage of setting v, = 1 — %, which, for a > 3,
provides asymptotic convergence rates similar to the accelerated gradient method of Nesterov. The
Ravine method mimics the flow of water in the mountains which first flows rapidly downhill through
small, steep ravines and then flows along the main river in the valley, hence its name. A geometric
view of the Ravine Accelerated Gradient method is given in Figure

v

S = argmin f

Fig. 1 (RAG): Ravine Accelerated Gradient method

The Ravine method was a precursor of the accelerated gradient methods. It has long been
ignored but has recently appeared at the forefront of current research in numerical optimization, see
for example Polyak [46], Attouch and Fadili [19], Shi, Du, Jordan and Su [51]. It comes naturally into
the picture when considering the optimized first-order methods for smooth convex minimization,
see [32,3845]. The Ravine and Nesterov acceleration methods are both based on the operations
of extrapolation and gradient descent, but in a reverse order. Furthermore, up to a slight change
in the extrapolation coefficients, the two algorithms are associated with the same equations, each
of them describing the evolution of different variables, explaining how the two have been casually
confused in some of the literature.

The high resolution ODE of the two algorithms gives the same inertial dynamics with Hessian-
driven damping, providing a mathematical basis to explain the similarity of their convergence
properties. A significant difference is that in the Ravine method the discretized form of the Hessian
driven term comes explicitly, while in the Nesterov method it comes implicitly by applying a Taylor
formula. This results in different extensions of the two algorithms to the non-smooth case via the
corresponding proximal gradient algorithms, an ongoing research topic. We will see that a careful
adjustment of the extrapolation parameters (v;)geny provides fast convergence properties of the
Ravine algorithm resembling those of the Nesterov method. Taking a general coefficient v, gives
a broad picture of the convergence properties of this class of algorithms. Moreover, it shows the
flexibility of the method, the results being unchanged taking for example v;, = ,H_La instead of 1 ¢,
as one of the many variations of the method.
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1.2 Inertial stochastic gradient descent algorithms

Due to the importance of the subject in optimization, several works have been devoted to the
study of perturbations in second-order dissipative inertial systems and in the corresponding first
order algorithms (aka momentum methods). For deterministic perturbations, the subject was first
considered for the case of a fixed viscous damping (aka heavy ball method with friction [4847])
in [I836], then for the accelerated gradient method of Nesterov, and of the corresponding inertial
dynamics with vanishing viscous damping, see [I3|[I6}9,5055].

Stochastic gradient descent methods with inertia are widely used in applications and at the core
of optimization subroutines in many applications such as machine learning. Such algorithms are
the subject of an active research work to understand their convergence behaviour and were studied
in several works, focusing exclusively on stochastic versions of Nesterov’s method and the heavy
ball method; see [401[33]37.26128]56134.[41139,52].

1.3 Contributions

In this paper, in a real separable Hilbertian setting, we provide a unified analysis of the convergence
properties of the Ravine method subject to noise in the gradient computation over a large class
of the extrapolation sequence parameter settings beyond the standard ones for Nesterov’s method.
We will establish fast convergence rates in expectation and in the almost sure sense on the objective
values (both in O(-) and o(-)), on the gradient, and prove weak convergence of the sequence of iter-
ates. This latter aspect is overlooked by many existing works that focus exclusively on complexity
estimates. These results will highlight the trade-off between the decrease of the error variance and
fast convergence of the values and gradients. Our results cover some of those reviewed above as
special cases for the Nesterov and heavy ball method extrapolation coefficients. In fact, even for
these special cases, we complement the results of the literature with new ones. Moreover, we are
not aware of any such a work for the Ravine method nor with general extrapolation coefficients.

1.4 A model result

Taking v, = 1—% yields optimal convergence rate of the values and fast convergence of the gradients
towards zero. Specifically, let the sequence (yy) ren generated by the stochastic Ravine method with
constant step-size

wi =y — s(Vf(yr) +ex)
Yer1 = w4+ (1= ) (wp — wi—1),

where s €]0,1/L], (er)yen 18 a zero-mean stochastic noise. Let Fj be the sub-o-algebra generated

by yo and (w;)i<k—1. If o > 3, Eleg, | F] = 0 and ZZ‘:; kE [||ek|||2 |fk]1/2 < 4oo almost surely,
then according to Theorem and the following convergence properties hold:

flyw) — min f = o (%2) and Y k?||Vf(y)|? < +oo almost surely.
k

In addition, if # is also separabl(—ﬂ, then the sequence (yi) ren converges weakly almost surely to
a random variable valued in argmin(f). Our results in Section |5 will be established for a much

1 Separability is crucial for proving almost sure weak convergence of the sequence of iterates.
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larger lass of the extrapolation sequence beyond 1 — «/k. In particular, these results will emphasize
the trade-off between the decrease of the error variance and fast convergence of the values and
gradients.

1.5 Contents

In Section [2] we start by making the link between the Ravine and the Nesterov method. This is
instrumental because it makes it possible to transfer some known results of the Nesterov method.
Then, in Section [3| we show that the high resolution ODE of the Ravine method exhibits the
damping governed by the Hessian. Section [ is devoted to the study of the convergence properties
of the stochastic Ravine method, with as an important result the fast convergence in mean of the
gradients towards zero. Section [5| contains illustrations of our results for various special choices of
the extrapolation (inertial) sequence ~;. Finally we conclude and draw some perspectives.

2 Comparison of the Nesterov and Ravine methods

Let us first recall some basic facts concerning the Nesterov method.

2.1 Nesterov accelerated gradient method

The Nesterov Accelerated Gradient (NAG for short) method with general extrapolation coefficients
(k) pens @s studied in [13], reads

Yk = Tk + ap(Tp — Tp—1)
{ (NAG),,)
Tpr1 =Yk — 5K V. (Yk)-
Its central role in optimization is due to the fact that a wise choice of the coefficients (ay)
provides an optimal convergence rate of the values (in the worst case).
Specifically, taking oy = 1 — £ gives a scheme which, for o > 3, generates iterates (1),cy
satisfying

keN

f(xk)—rr%_i[nf:(’)<k—12) as k — +oo, (1)

and the fast convergence towards zero of the gradients (see [19])

SRV A () < +oc.
k

In addition, when a > 3,

f(:rk)fmq_ilnf:o(k%) as k — +oo, gk(f(xk)fngrilnf)<+oo (2)

and there is weak convergence of the iterates (z),cy to optimal solutions, see [16,11,12]24]/53].
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2.2 Passing from Nesterov method to Ravine method and vice versa

To avoid confusion between the two algorithms|(RAG), |and|(NAG),, | we use the subscript 7y for
the extrapolation coefficient in the Ravine method, and «;, for the extrapolation coefficient in the
Nesterov method. A remarkable fact is that the variable y;, which enters the definition of
follows the algorithm, with ~, = ag1. This generalizes the observation already made in
[19] for the specific choice a; = 1 — %. Although this is an elementary result, we give a detailed
account of it in the following theorem, due to its importance.

Theorem 2.1 (i) Let (zy),cy be the sequence generated by the Nesterov algorithm |((NAG), | Then

the associated sequence (yk)keN also follows the equations of the Ravine algorithm . with
Tk = k41

(i) Conversely, if (yx) ey 15 the sequence associated to the Ravine method|(RAG)., | then the sequence
(zx)pen defined by xpi1 = yp — sk Vf(yx) follows the Nesterov algorithm with ap =
Vk—1-

Proof (i) Suppose that (zj),cy follows According to the definition of vy,

Yht1 = Thi1 + g1 (Thg1 — Tp)
=yr — sk VI(y) + i1 (Z/k — stV f(yk) — (k-1 — Sk—1Vf(yk—1)))~
Set wy, = yr — 5xVf(yx) (which is nothing but xj,). We obtain that (yz),y follows
(RAG)ak+1’ i.e.

=yp — spV
(RAG) wy = Y — 5KV (k)

A41
Yk+1 = Wi + oy (W — wh—1) .

(ii) Conversely, suppose that (yz);cy follows the Ravine method According to the

definition of y;; and wy, we have

Yk1 = Uk — sV (Ur) + 7 (yk — sk VI(ye) — (Yp—1 — Skflvf(ykfl)))
By definition of zj 11 = yr — sV f(yx), we deduce that

Yk+1 = Th1 + Yk (Thp1 — Tx) -
Equivalently
Yk = T + V-1 (T — Tp—1) -

Putting together the above relations and the definition of 211 1, we obtain that (z1 ),y follows
(NAG),, |, ie.

Y = Tk + Yo—1(Th — Tp—1)

(NAG),, | {

This completes the proof. m]

Thyp1 = Yk — sk VI (Yk)-

Though the two methods are intimately linked as we have just seen, it is only recent advances
in the dynamical system interpretation of the two methods that revealed their close relationship
and also their differences. This is explained in the next section, where we consider the case of the
Ravine method with general extrapolation coefficients, hence generalizing the work of [19] beyond
the case a, = 1 — a/k.
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3 The Ravine method from a dynamic perspective

We consider the high resolution ODE of the Ravine method, and show that it exhibits damping
governed by the Hessian. This will explain the fast convergence towards zero of the gradients
satisfied by the Ravine method, a claim that we will prove in the next section.

3.1 Dynamic tuning of the extrapolation coefficients

Let us first explain how to tune the extrapolation coefficients in the Ravine method, in order
to obtain a dynamic interpretation of the algorithm. Critical to the understanding is the link
between the Ravine method and the Nesterov method, as explained in Section [2| and the dynamic
interpretation of the Nesterov method, due to Su, Boyd and Candes [53]. Consider the inertial
gradient system

B(t) + ()2 (t) + Vf(2(t) =0, (IGS),)
which involves a general viscous damping coefficient (-). The implicit time discretization of
with time step-size h > 0, 23, = z(7), and 7, = kh EI, gives

Tpq1 — 22, + Tp_1
n2

Tk

T — _
+ 'y(kh)% + Vi (zpg1) = 0.

Let s := h%. After multiplication by s, we obtain

(@1 — ) — (x — xp—1) + hy(kh) (z), — 2—1) + 5V f(2)41) = 0. 3)
Equivalently
Tp1 + sV f(@pg1) = o + (1 = hy(kh)) (z — 21-1), (4)
which gives
Tpq1 = proXgs (2 + (1 — hy(kh)) (z1 — 21-1)) - (5)

We obtain the inertial proximal algorithm

{yk =z + (1 = hy(kh)) (g — 2—1)

Tpq1 = ProXgs (yr) -

Following the general procedure described in [I9], which consists in replacing the proximal step by
a gradient step, we obtain with ap = 1 — hy(kh). Taking v(t) = &, we obtain
with aj, = 1 — ¢, which provides fast convergence results. Observe that Algorithm makes
sense for any arbitrarily given sequence of positive numbers (ay ), cy. But for this algorithm to be
directly connected by temporal discretization to the continuous dynamic it is necessary to
take ay, = 1 —hvy(kh). Note that the case v(t) = ¢ is special, since due to the homogeneity property
of v(+), in this case aj, does not depend on h.

Let us now use the relations established in Section [2] between the Nesterov and the Ravine
methods. Since (zy), oy satisfies iNAGiak with ap = 1 — hy(kh), we have that the associated
sequence (yi) ey follows |(RAG), [with v = ag11 =1 —hy((k + 1)h).

2 We take the 75, notation instead of the usual tj, because t; will be used with a different meaning, and it is
used extensively in the paper.
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3.2 High resolution ODE of the Ravine method

Let us now proceed with the high resolution ODE of the Ravine method [[RAG .} The idea is not
to let b — 0, but to take into account the terms of order h = /s in the asymptotic expansion,
and to neglect the term of order h? = s. The high resolution method is extensively used in fluid
mechanics, where physical phenomena occur at multiple scales. Indeed, by following an approach
similar to that developed by Shi, Du, Jordan, and Su in [5I], and Attouch and Fadili in [19], we
are going to show that the Hessian-driven damping appears in the associated continuous inertial
equation. Let us make this precise in the following result.

Theorem 3.1 The high resolution ODE with temporal step size h = /s of the Ravine method
with v, = hy((k + 1)h) gives the inertial dynamic with Hessian driven damping

70+ (14520 ) 0 + Vv )0 + (14 550 ) V60 =0 ©)
Proof Set vz = 1 — hy((k + 1)h). By definition of the Ravine method
Yrr1 = Yk — sV (yr) + 7k (yk = sVf(yk)) — (k-1 — SVf(yk—l)))-
Equivalently
(k1 —¥k) — (ke — ye—1) + (1 —7) (e — yu—1) + sV f(yk) + 7% (Vf(yk) - Vf(ykfl)) =0.
After dividing by s = h2, we obtain
Yk+1 — 2Yk + Yk—1

2 + (1 =) L 1 f () + e (VF () = V(1)) = 0. (7)

Notice then that
Yk — Yk—1 _ Ykt1 =Yk _ Ykt1 — 2Yk T Yk—1

h? h? h?
So, can be formulated equivalently as follows

-2 - —
p UL TSI TV () ML YR G () (V) ~ V(1)) =0, (8)

After dividing by ~, we get

Y41 — 2Yk + Yr—1 n 1— v, Y1 —
12 v I

Bt Y H) + (TS ) - TS e)) =0 (9)

Building on @, we use Taylor expansions taken at a higher order (here, order four) than for the
low resolution ODE. For each k € N, set 7, = (k + c)h, where c is a real parameter that will be
adjusted further. Assume that y; = Y (7) for some smooth curve 7+ Y (1) defined for 7 > ¢ > 0.
Performing a Taylor expansion in powers of h, when h is close to zero, of the different quantities
involved in @D, we obtain

Yo = Y (mh1) = Y () + WY () + G2V () + gh* ¥ () + O() (10)
vt = V() = Y (m) = BV () + 5h2F () = 548 () + O(hY). (1)

By adding and we obtain

Yk+1 — 2Yk + Yr—1

52 :Y(Tk)-i-(g(h?).
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Moreover, (10 gives

_ . 1. .
BELZIE — ¥ (1) + 5h¥ (m0) + O(h?).

By Taylor expansion of Vf we have

Vi(yr) = VI(ye—1) = hV2f(Y (7)Y Tk)+o(h2).

Plugging all of the above results into @D, we obtain

¥ (r) + 0] + L% [y (m) + Lhi () + 0h >}

h’y 2

+ %W(Y(Tk)) + [thf(y(Tk))Y(Tk) Lo (hz)} o

way

h .. . 1 . h h2 .
TV () + Y (1) + GhY (1) + 7= VI (1) + 7 V2 F(Y (7)Y () + O(h) = 0.
L= 2 1= 1=

Afterreduction of the terms involving Y (t;), we obtain

h(1 +’Yk)
2(1 =)

Multiplication by

hikak V2F(Y ()Y (1) + O(h®) = 0.

¥ (r) + ¥ () + T2V () + §

1

hgl—i-"/k; then yields

2 2h’yk

¥ () + 2020 () + Vi () +

A1+ 1) T 2F(Y (7)Y () + O(R®) = 0. (12)

According to v =1 — hy((k + 1)h), and 7, = (k + 1)k, we obtain

ﬂy/(%) + h;vf(y@. ) + hM

1~ by(m) 1~ §(m) 1= 37(m)

By neglecting the term of order s = h?, and keeping the terms of order h = /s, we obtain the
inertial dynamic with Hessian driven damping

V() + VAF(Y (1))Y (12,) + O(h?) =

70+ (1+ 5590 ) VO + 920070 + (14520 950r0) =
This completes the proof. ]

Remark 3.1 The high resolution ODE of the Ravine method exhibits Hessian driven damping. In
addition, it incorporates a gradient correcting term weighted with a coefficient of (1 + é’y(t))
This is in accordance with [19] and [51]. Surprisingly, there is also a correction which appears in the
viscosity term, the coefficient (1 + é'y(t)) in front of the velocity. Indeed as we already observed,

the Nesterov case is very specific. When y(t) = ¢, we have s = 1 —hy((k+1)h) = 1—

to , we have

lc+1 Returning

2(1-s) a

h(l+s) h(k+1-2)

Taking 7, = h(k+ 1 — §) gives v(-) as the viscosity coefficient of the limit equation.
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4 Convergence properties of the stochastic Ravine method

In this section, we analyze the convergence properties of the Ravine method with stochastic errors
in the eveluation of the gradients. We first examine the fast convergence of the values and the
convergence of iterates, then we show the fast convergence of the gradients towards zero. This
section considers the algorithmic and stochastic version of the results obtained by the authors for
the corresponding continuous dynamical systems with deterministic errors [20].

4.1 Values convergence rates and convergence of the iterates

We first start by proving the results for the Nesterov method before transferring them to the Ravine
method thanks to Theorem [2.1} In [I3], the Nesterov accelerated gradient method with a general
extrapolation coefficient aj and deterministic terms was studied. Here, we consider a stochastic
version which reads for k > 1

yr = x) + ag (T — Tp—1)
((SNAG),,)

Tpg1 = yr — sk(VF(yr) +ex)

where s;, €]0,1/L] is a sequence of step-sizes, (ey),cy is a sequence of H-valued random variables.

SNAG «,| 18 initialized with zo = x1, where z¢ a H-valued, squared integrable random variable.
aking the objective function f = 0 and e, = 0in|(SNAG) , |already reveals insights for choosing
the best parameters. In this case, the algorithm becomes g1 —zp — ag(z —xK_1) = 0.

This implies that for every k > 1,

k—1 1
T =1 + ZHaj (z1 — o).

i=1j=1

Therefore, (), cy converges if and only if Zj:lo H;:l a; < 4o00. We are naturally led to introduce
the sequence (t); oy defined by

+oo i
thi=14+Y ][] (13)
i=k j=k
The above formula may seem complicated at a first glance. In fact, the inverse transform, which
makes it possible to pass from ¢ to a; has the following, simpler form

oty —1

oy = (14)

thy1
Formula will ease the path of the analysis and we shall make regular use of it in the sequel.

From now on, we denote by (£2, F,P) a probability space. We assume that # is a real separable
Hilbert space endowed with its Borel o-algebra, B(#H). We denote a filtration on (§2, F,P) by
F = (]:k)keN where Fj, is a sub-o-algebra satisfying, for each k € N, Fj, C Fi 11 C F. Furthermore,
given a set of random variables {ao, ..., a;} we denote by o (ao, ..., ax) the o-algebra generated by
ao, . ..,ak. Finally, a statement (P) is said to hold (P-a.s.) if

P({w e 2: (P) holds}) = 1.

Using the above notation, we denote the canonical filtration associated to the iterates of algorithm
as .# with, for all k € N,

Fr =0 (z0,...,Tk)
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such that all iterates up to z; are completely determined by Fj.
For the remainder of the paper, all equalities and inequalities involving random quantities should
be understood as holding (P-a.s.) even if it is not explicitly written.

Definition 4.1 Given a filtration .#, we denote by ¢4 (.#) the set of sequences of [0, 4+oo[-valued
random variables (ay),cy such that, for each k € N, ay, is Fj-measurable. Then, for p €]0, 400, we
also define the following set of p-summable random variables,

E(F) = {(ak)keN €L (F): Y al <400 (P—a.s.)} .
keN
The set of non-negative p-summable (deterministic) sequences is denoted é’_;_.

The following theorem is a generalization of [I3, Theorems 3.1, 3.2 and 3.4] to the stochastic
setting.

Theorem 4.1 Assume that holds and the sequence (ak)keN satisfies

4o 1

VE>1, > ] es < +oo, (Ko)
i=k j=k

Ve > 1, i —th <tega (K1)

Consider the algorithm [(SNAG o, | Where sg €]0,1/L] is a non-increasing sequence and (ek)keN s a

sequence of stochastic errors such that
2
Elex | Fr] =0 (P-a.s.) and (sktkok)keN ey (F), (K2)
where o} =T [||ek|\2 | fk]. Then,
(i) we have the following rate of convergence in almost sure and mean sense:

f(z) —min f = O (i) (P-a.5.),

Skti

and

E[f(2z) — min f] < s1t3E [f(z0) — min f] + E [dist(zo, S)?] +4 3% s2t7E [|le;||”] .

Sktz
(it) Assume in addition that, for m € [0,1],
tiJrl —12 < mitgy1  for every k> 1, (K{)
then
. 2

Z Sktpr1(f(zg) —min f) < 400 and Ztk lzg — zp_1]]” < 400 (P-a.s.).

keN keEN
If moreover ZkeN t’;% = +o00, then

f(zr) —minf =o (%) and ||z —zp_1|| =0 (l) (P-a.s.).

klg 123
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(iii) If o, € [0,1] for every k > 1, infy, s > 0, (K;')) holds and (K3)) is strengthened to
Efey | Fx] =0 (P-a.s.) and (sptpor)pen € (), (KJ)

then the sequence (xy),cy converges weakly (P-a.s.) to an argmin(f)-valued random variable.

ke

Before delving into the proof, some remarks are in order.

Remark 4.1 From claim , we have, for s; constant and bounded away from 0, convergence at the
rate O(1/k?) in the objective if (thok)pen € (F). If just (k) pen € (% (F), then the step-size
must anneal at the rate sy ~ 1/t; for an objective value convergence rate O(1/t).

Now consider non-vanishing noise with bounded variance (i.e. limsupo; > 0, P — a.s. and
E[o?] — E[oy]? < B, 0 < B < 00). For the choice of ¢, = (k — 1)/(a — 1), setting the step-size to be
sp = 1/k'T° with § > 0, results in convergence with a rate is O(1/k°). If s, = 1/k and the noise
does not asymptotically vanish (a.s.), convergence can only be ensured to a noise dominated region.
On the other hand, if ¢, = (k'*% —1)/(a — 1) with 6 < 0, then s, = 1/k achieves a convergence
rate of O(1/k°) if there is vanishing noise. Continuing, we see that the O(1/k?) rate is achieved for
vanishing noise and sj, = 1/k(7%).

The last statement of claim can be modified to get the same rate as in the deterministic
case in [I3, Theorem 3.4] but only at the price of a stronger summability assumption on the noise.

Proof Our proof is based on a (stochastic) Lyapunov analysis with appropriately chosen energy
functionals.
Denote fi(z) := f(z) + {(ex, =) and recall S = argmin(f). Define the sequence

« 1..
Vi i= sitr(fu(zp) — fr(a®)) + idISt(zka S)? and zj, == ap_1 + by, (zg — Th_1) -

Since f is convex and L-smooth, so is fi. Let us apply (52)) in Lemma on fj, successively at
y =1y and = z}, then at y = y, and =z = 2* € S. We get

Fu@rsn) < Fulan) + (Vi) v — o) = 5 IVl (15)
Ful@rn) < ful@®) + (Vi) v —2*) = F IVl (16)

Multiplying by t+1 — 1 (which is non-negative by definition), then adding the (I€]), we derive
that

tea1 fe(@hgr) < (tegr — Dfr(ar) + fr(@®) + (Vfr(or), (terr — D vk — 21) + 90 — )

- %ktk_H IV fe(w)* . (17)

It is immediate to see, using and the definitions of y; and zj, that
(terr — D(yx — 2x) +yx = o + by (Y — 2x) = 21 + (1 + tryrax) (v — 2p-1)
=y +tp(Tg —Tp_1) = 2
Inserting this into and rearranging, we get
* * * Sk 2
tropr (e (@g1) — fe(2®)) < by — D (fr(@r) = fro(@) + (Vfilyr), 2 — ™) — 5tk IV i (yr)lI” -
(18)

Straightforward computation, using again ([14]) and the definition of y; and zj, can yield the ex-
pression,

Zhy1 — 2k = —Sktp41 Viie(y)- (19)
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Thus ) )
zhs1 — |7 = |2k — 2" = 2swtirs (Vulur), 26 — =) + sitin IV (i) I -

Dividing this by 2 and adding to , after multiplying the latter by sptr41, cancels all terms
containing V f(y,) and we arrive at

1 2 1 2
stirr (Fe(@re1) — fu(@™) + 3 llzkg1 — 2| < strgr (topr — D) (fe(zi) — fr(@®)) + 3 |2k — ="
(20)
Let us take z* as the closest point to zj, in S. Thus is equivalent to
1.. 1.
skthr (fr(@rg1) = fr(@®) + §d15t(2k+175)2 < sptrgr(terr — D (fe(zr) — fu(2™)) + §d15t(zk,5)2‘
(21)

Let us now isolate the error terms. Inequality (21)) is then equivalent to

. 1.. . 1..
sithir (f(zpq1) — min f) + §d18t(2k+175)2 < sptpyr(tegpr — D (f(zx) — min f) + §d1st(zk75)2
— 55 <€k7 thivr (@rg1 — %) = tgpr (teyr — 1) (zg — l’*)> - (22)

‘We have
i (@1 — @) = b1 (togr — 1) (2 — &%) = tpr (241 — ).

In turn, using also that s, is non-increasing, (22| becomes

sk1tig (f(zp1) — min f) + %diSt(zk-‘rlv S)? + si(th — tiyr + tey1)(f(zx) —min f) <
spti(f(zr) — min f) + %diSt(% S)? = sitirr (ens 2u41 — 7).
In view of the definition of V},, this is equivalent to
Virr < Vi + s (g — togr — 62)(f(zg) — min ) + sptpyr (er, 2pp1 — 27). (23)
Taking the expectation conditionally on F in , we obtain
E Vi1 | F] < Vi + s(tio — trepr — t0)(f(z) — min f) — st E [(eg, 2z — ™) | Fe] . (24)
We have

E [(ex, 2ze41 — =) | Fi] = E[(ex, 2kt1 — 2k} | Fi] + E [(er, 26 — 2*) | Fi
= —spti1E [(en, VIe(yr)) | Fi] = —seter1E [{ex, VI (y) + ex) | Fi]
= —sptp41E {HekHQ | fk] = —sithi10%,
where we used in the second equality, and conditional unbiasedness (first part of (K3)) in

both the second and last inequalities, together with the fact that vy, 2, and z* are deterministic
conditionally on Fj. Plugging this into yields

E[Vigr | Fi] £ Vi + Sk(ti+1 —lgg1 — t2)(f(z)) — min f) + SitiJrlUI%
< Vi + sk (ti1 — tegpa — t2) (f(zx) — min f) + 4sitior, (25)

where we used that assumption (K1) implies t5; < 2¢; see [13, Remark 3.3]. Using again (K1), the
second term in the rhs of is non-positive and can then be dropped. Now, thanks to the second
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part of (K3|), we are in position to apply Lemmato to see that Vj, converges (P-a.s.), and
in particular, it is bounded, i.e. there exists C' > 0 such that (P-a.s.), for all £ > 1,

sith(f(zr) —min f) < Vi < C.
Moreover, taking the total expectation in and iterating gives

k
SEE [f(w) — min f] < E[Vi] SE[Vi]+4 52K [Jles]?] <
i=1

+oo
. 17
S1E [f(z0) — min ] + SE [dlst(xo, 5)2} +43 $22E [ueiu?} < 400,
1=1

where we used in the last inequality that xo = z1 by assumption, and that the rhs is finite thanks
to Fubini-Tonelli’s Theorem together with (K2f). This proves the first claim in the Theorem.

Using 1} in , we get
E Vi1 | Fil < Vi = sp(1 = m)tgqr (f(z1) — min f) + dsitio.
We can again invoke Lemma to get that
> sktrgr (f(zx) — min f) < +oo (P-a.s.). (26)
E>1
Let 1
Wi = s (f(zx) — min f) + 5 |2y, — zp1|?.
Combining [I3| Proposition 2.1] with the fact that s, is non-increasing, we have that

—a2

1 2
W1 < Wy — llze — xp—1ll” — sk (ex, Thg1 — k) -

Taking the expectation conditionally on Fj, we obtain

*O‘i

1
E Wiyt | Fi] <Wp, — ek — 2e—1l” — skE [(er, Tpt1 — 2x) | Fil - (27)
We have
E[(ex; Tp41 — k) | F] = E[{en, o1 —ur) | F] = —skE (e, Vifie(yr)) | Fi] = —siE [H%HQ | ]:k] ,

where we used the algorithm update of z in the second inequality, and conditional unbiasedness
(first part of (K2f)) in the second and last inequalities together with xy, yr being conditionally
deterministic on Fy. Inserting this into (27]) yields

2
1—ak

EWkyq | Fr) < Wi — lzx, — zp—1|* + shok- (28)

Multiplying by ti 11 and rearranging entails

1—a?
2 2 2 2 2,2 2
E [tk-i-kaJrl | ]:k] <tpp Wi — tk+1Tk lzge — 2p—1ll” + skthy10%

2 2 2 . ti+1 - t% - ti+1(1 - 0‘%) 2 2,2 2
= Wi + sk (thyr — ) (f (zx) — min f) + 5 lzg — zp—1ll” + skthy10%

. t
< 3 Wy, + msytypq (f(zx) — min f) — gk 2y — zp—1]1* + dsitioq. (29)
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In the equality, we used the expression of Wy. In the second inequality we used ( and that
ty =14+ tpr104 and which gives

b1 =t —thpr(T—af) = (e = 1)* —th = =2t + 1 < —1,

as t, < 1. We have already proved above (see 26) that (sptpi1(f(zg) —minf)), n € Z+(ﬂ")
Combining this with the second part of allows us to invoke again Lemma ﬂ on (|29
deduce that

> ot llzk — zp—1])? < +oo (P-aus.). (30)
E>1

Moreover, Lemma also implies that ¢7 W}, converges (P-a.s.). On the other hand, we have

k+1

tht1 Wi = sktr1(f(zg) — min f) + ek — wp—1l1? < sptppr (f(@p) —min f) 4+t |z — 21,

and thus and (30) imply that

Z tpr1 Wi < +oo (P-as.).
E>1

In turn

t
Z ter1 Wi = Z i;‘ltiWk <400 (P-as.)
k>1 k>1 k

entailing that liminfy_, . t7W; = 0 (P-a.s.). This together with (P-a.s.) convergence of t; W}
shown just above gives that
1
Wi =o0 (t2)

Returning to the definition of Wy, proves the assertions.

(iii) The crux of the proof consists in applying Opial’s Lemma on a set of events of probability one.
Observe that implies . Thus Lemmaapplied to ensures also that tiWk converges
(P-a.s.). In particular, this implies that ¢ ||zx — zp_1|| is bounded (IP-a.s.). From the proof of claim
(i), we also know that (P-a.s.), V}, converges, hence (z1), ¢y is bounded. In view of the definition of
21, we obtain that (z1),cy is bounded (P-a.s.). Moreover, since t;, > 1 and s = infy s > 0, we get
from (ii) that (P-a.s.)

5> (f(wr) —min f) < spty (f(zg) —min f) < +oo,

E>1 E>1

and thus limy_, | o f(zr) =min f (P-a.s.).

Let 2 be the set of events on which the last statement holds and 2 on which boundedness
of (x1),cy holds. Both sets are of probability one. For any w € 2N 02, let (2g;(w));j>1 be any
converging subsequence, and Z(w) its weak cluster point.

Fa@) = Jim oy, (@) = Jm_ f(o(w)) = min f,

which means that Z(w) € S. This implies that (P-a.s.) each weak cluster point of (z});cy belongs
to S = argmin(f). In other words, the second condition of Opial’s lemma holds (P-a.s.).

Let z* € S and define h, := % |z — m*HQ. We now show that limy_, o, hy, exists (P-a.s.). For
this, we use a standard argument that can be found e.g. in [24][I3]. By [I3| Proposition 2.3], we
have

ap(l+ ag)

hiy1 — by — ap(hy — hi—1) 3 ey, — zp—1)1® = sk(fr(errr) — fr(a®)

IA

A

< lwg — 21 1? = s (f(@hg1) — min f) — s {eg, i — )

2
< log — ap—1lI* — sk (ers Tpgr — 7).
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In the second inequality we used that oy € [0, 1], and the last one minimality of z*. Almost sure
boundedness of zj, implies that 3C > 0 such that ||z — z*|| < C (P-a.s.). Thus

hig1 — hi — ag(hy — hy_1) < |z — 21 ||> + Csg [lex]| - (31)

Multiplying by tr4+1, taking the positive part and the conditional expectation, we end up
having

E[thrr(hrgr — ha)+ | Fr) < trppron(hr — hi—1)+ + tegr log — zp—1]® + CsptraE [llexl | Fel
1/2
< (b = 1)k = hr)+ + bt llok — 2|2 + 2054 [llewl” | Fi
=ty (hy — hi—1)+ — (hig — hg—1)+ + tipr llog — zp—1]]> + 2Csytyop.

where we used that ¢, = 1 + tx4104, that ¢4 < 2t; and Jensen’s inequality. As the last two
terms in the rhs are summable (P-a.s.), we get using Lemma that ((hy — hr—1)+)pen € €5 (F)
(P-a.s.). In turn, since hj is non-negative, we get by a classical argument that limy_, | o by exists.

Note that the set of events of probability on which limy_, ., h exists depends on z*. To make
this uniform on S we use a separability argument.

Indeed, we have just shown that there exists a set of events 2, (that depends on z*) such that
P(2;+) = 1 and for all w € 2+, (||zg(w) — 2||) ey converges. We now show that there exists a set
of events independent of z*, whose probability is 1 and such that the above still holds on this set
Since # is separable, there exists a countable set U C S, such that cl(U) = S. Let 2 =
Since U is countable, a union bound shows

P(2)=1-P (U Q) >1-) P =1

uelU uelU

uEU

For arbitrary z* € S, there exists a sequence (u;j)jen C U such that u; converges strongly to z*.
Thus for every j € N there exists 7; : £2,; — R such that

lim |jzg(w) — uj|| = 7j(w), Vw € 2. (32)

k——+o00

Now, let w € £2. Since 2 C 2y, for any j > 1, and using the triangle inequality and (32]), we obtain
that

(@) = [Juj =" < liminf |lay () — " < lmsuplog () = " < 75(w) + [Ju — 7]

Passing to j — 400, we deduce

limsup 7 (w) < hmlnf |2k (w) — 2*|| < limsup ||z (w) — 2*|| < lim inf 7;(w),
Jj—r+oo k—+o0 J—roo

whence we deduce that lim;_, | o 7j(w) exists for all w € 2. In turn, (P-a.s.), limg_, | oo |2 — ™|
exists and is equal to lim;_, o 7; for any «* € S.

We are now in position to apply Opial’s Lemma at any w € 2N §2 N (2, since IED(Q NNNR)=1,
to conclude. ]

Let us now return to the Ravine algorithm. A simple adaptation of the proof of Theorem [2-]]
applied to [(SNAG o (just replace f by f+ (e, -), and follow similar algebraic manipulations) gives

that the associated sequence (yi);cy defined by

Yk =z + ag (TR — 1),
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follows the stochastic Ravine accelerated gradient algorithm with v, = agyq, i.e. for all £ > 1

wy, =y — sk (Vf(yr) +ex)
((SRAG)

i)
Ykt1 = Wi + gy (W — wh—1) .

SRAG o |18 initialized with yo and w—_; = yo, where yg is a H-valued, squared integrable random
variable. According to this relationship between the Nesterov and the Ravine method highlighted
in in Theorem the results of Theorem can now be transposed to [(SRAG ap.,t FOT this,

we denote the canonical filtration associated to [((SRAG),, |as F = (Fi)pey with, VE > N, 7y =
U(y07 (wi)igkfl)'

Theorem 4.2 Assume the conditions presented in . Let (yk)keN be the sequence generated by

(SRAG),, . |where si €]0,1/L] is a non-increasing sequence, (a) ey C [0,1] satisfies (Kol and (o)

with ) ey “pr = +o00, and (ey)ycy s a sequence of stochastic errors satisfying (K]). Then, the
k

sequence (Y ) ey Satisfies

Z st (f(yr) —min f) < +oo  and f(yx) —minf =o ( 12> ask = +oo  (P-a.s.).
e H Sity,

Moreover, if infy, s, > 0, then the sequence (yy),ey converges weakly (P-a.s.) to an argmin(f)-valued
random variable.

Proof According to Theorem the sequence (z1),cy defined by

Try1 = Yk — sk (VF(yx) +ex) (33)
is equivalent to Algorithm It then follows from Theorem 1) that

F(@x) —min f = o (Sk%) and |z — 2] = o (l) (P-a.s.). (34)

k Uk

In addition, in view of condition |D we can apply Lemma with e = (sgptror),ey to infer

that
—+o0

> stk llexll < +oo  (P-as.), (35)
k=1

and thus

sl =o () (Pas). (36)

Rearrange the terms in (33]) to obtain the expression V f(y;) = _i(xk'*'l —yg) — eg. Using, succes-
sively, the convexity of f, the Cauchy-Schwartz inequality, and the triangle inequality, we obtain

. . 1
f(yr) —min f < f(zp) —min f + — (p41 — Y + Sper, Tk — Y
H H Sk
. 1
< flog) — H}_ltnf+ = (lzks1 — yell + sellexl) lzr — yxll

. 1
< flog) — min f + " (lzksr — zrll + llzr — vl + sellexl) lzx —yell.— (37)

Using again the link between |(SRAG)ak+1| and |(SNAG)ak|, we have

Yo = T+ ag (T — Tp—1) -
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Therefore, since ay, € [0, 1],
lye — zkll < llzg — zp—1]l- (38)

Combining , , and we obtain

. . 1
flyk) — min f < flay) - min f + o (lzkgr — 2l + 2k — 2p—1 [l + skllerll) llzn — 1|l

— (%1151%) (P-as.)

where we used that ¢;; < 2t; in the last equality. In addition, using Young’s inequality, that
(7k) ey is bounded (P-a.s.), and the summability claims of Theorem {.1{(ii), we get

D itk (f(yk)—min f) < sptppa (F () —min )+ tegalloepr—el*/243 D tillzg—zp |

keN keN keN kEN

+CY trspllerl < 400 (P-as.)
kEN

Now, from and , we also have |y — zi|| = o(%) (P-a.s.). Consequently, yr —
converges strongly (P-a.s.) to zero. Since the sequence (zy),cy converges weakly, it follows that
the sequence (y), oy converges weakly (P-a.s.) to the same limit as (z;),cy, and we know from
Theorem that the latter indeed converges weakly (P-a.s.) to an argmin(f)-valued random
variable. a

4.2 Fast convergence of the gradients towards zero

In this section, the previous results on the stochastic Ravine method are completed
in also showing the fast convergence towards zero of the gradients. This will necessitate a specific
and intricate Lyapunov analysisEl

Recall fi(z) := f(z)+(ex, ) from the proof of Theorem [4.1] The formula in Lemma[4.1] hereafter
will play a key role in our Lyapunov analysis, and will serve as the constitutive formulation of the
algorithm. It corresponds to the Hamiltonian formulation of the algorithm involving the discrete
velocities which are defined by, for each &k € N

v 1= %(yk — Yk—1) (39)
where we recall that h = /s.
Lemma 4.1 Let (yi),cy be generated by . Then, for all k € N
terr (v + AV 1 (ye—1)) — (b — D (vg—1 + AV fr—a(yr—2)) = —h(tx, = DV fr—1(yr—1).  (40)
Proof According to the algorithm recursion, we have
Ui = yk—1 — W*Vfr_1(ys—1) + o (ykq — BV fr1 (ye—1) — (yk72 - hQkaﬁ(yka)))

= yp_1 + ok (yh—1 — yp_2) — I’ (ka—1(yk—1) + oy (ka—1(yk—1) - ka—2(yk—2))) .

3 Observe that embarking from (T5)-(16]) and using the refined estimate in (52)) is not sufficient to get the result.
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Equivalently,

0= Yk —Yh-1) — k(Wh—1 —Yb—2) + B>V fr_1(yp_1) + WP ar (Vi1 (Wr—1) — Vira(yk_2))
(Y — Yo—1) — ok (We—1 — Yr—2) + (L — o) (e — yb—1) + B*V a1 (Y1)
+ B2 (V frm1(Yr—1) — Vfr—2(yr—2))-

Let us make vj, appear by multiplying this equality by 54-. We then get

1— oy

h
0= —vp—1 + v + afkvfkfl(ykfl) +h(Vr—1(Yr—1) = Vir—2(yr—2))

].—Oék

= (vp + AV fr_1(yr—1)) — (vk—1 + AV fr_2(yp_2)) + vg + aikvfk—l(yk—l)-

we arrive at

After multiplication by =&

k:’

« « h
0= ——"—(vx +hV fr1 (k1)) = 7= (0h—1 + AV fr—a(yr—2)) + vp + Vfr—1(yx-1)
1—ap 1—ap 1—q
e a
=14+ —E— ) (o + "V fr-1(yr-1)) — ——(Ve—1 + hV fr—2(Yr—2)) — BV fr—1(yk—1)
1-— 677 1- A
1= o V fi—1(yk—1)-
We thus obtain
1 « ha
1= ap (vk + AV 1 (yr-1)) = 7 _kak (k-1 + AV fra(yr—2)) = =7 Zk V fr—1(yr—1)-
Equivalently
(v +hV fre—1(y—1)) — ax(vp—1 + AV fr_2(yp—2)) = —harV fr—1(yp—1)- (41)
In view of , the last equality is also equivalent to . This completes the proof of the Lemma.
O

Recall the canonical filtration associated to |(SRAG | S F = (-Fk)keN with, Vk > N, F, =

o(yo, (wi)i<k—1)-

Theorem 4.3 Let us assume the conditions defined in . Let (yk)keN be the sequence generated by

(SRAG),, | where s, = s €]0,1/L], (i) ey C [0,1] satisfy (Ko and (Ki). Assume that (ey,) ey is
a sequence of stochastic errors subject to conditions 1' Then the sequence of gradients (Vf(yk))keN
converges to zero with

> V@) < 400 (Paus.).
keN

Proof Our Lyapunov analysis is based on the sequence (Ek)keN defined as
. 1..
Eg = h*(tjp1 — Dtgyr (f (Yp—1) — min f) + 5 dist (=g, S)?,
2z = Yk + h(tkt1 — 1) (Uk + thk—1(yk—1))-
Let 2* be the closest point to zj, in S. By definition of Ej,, we have
Bry1 — B < h2(tgpr — Ditgyr (F () — Fluk—1))

. 1 1
+ hQ((tkw — Dtgqo — (tryr — 1)tk+1)(f(yk) — min f) + §||Zk+1 — | - §|\Zk — "% (42)
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Let us compute this last expression with the help of the elementary inequality

1 w2 1 2 s 1 2

§\|Zk+1 -z " = §||Zk —z"|" = <Zk+1 — RksRk+1 — X > - §||Zk+1 — zi|l” (43)
Recall the constitutive equation given by that we write as follows

thg2(rpr + AV fr(yr)) = (teyr — Dk + 2V fie_1(ye—1)) = —h(tpr1 — DV fr(y)- (44)
Using successively the definition of z; and , we obtain
Zpp1 — 26 = (Y1 — Uk) + hltge — 1) (Uk+1 + hvfk(yk)) = h(tg+1 —1) (Uk + thk—l(yk—1))

= hors = h(vess + AV () =02 (terr = DVFe(n) = =h b1 V(o).

This together with the definition of z; yields
21 = 2 — WPt Vi (k) = v + bt — 1) (Ulc + hvfkfl(ykfl)) — W2t 1V i (yr)-

Plugging this into , we deduce that

1 1 1

Skt — 2P = Sllze — 2117 = =S MR 1V ()1

2 2 2

—hPtp <ka(yk),yk — " 4 h(tpyr — 1)(% + thkq(ykq)) - h2tk+1ka:(yk)>

1
= §h4ti+1‘|vfk(yk)”2 N <ka(yk),yk — " + h(tp1 — 1)(vk + thk—1(yk—1)>> .

Let us arrange the above expression so as to group the products of V fi(yx). For this, we use (40))
again, written as,

(tep1 — D(ve + AV fe—1(yr—1)) = tpgo(vpr1 + AV fr(yr)) + b(tepr — DV fr(ur)- (45)
Therefore,

Yk — 2" + bty — 1) (Uk + thk—l(yk—l))

=y — 2" + htg o (viir +hV i (yr) + B (e — 1)V fr(yr)
=y — 2"+ htgpovp i + 2 (tpyo + ey — 1)V fr(yr).

Collecting the above results we obtain

Sl =22 = Sllok = 2| = SH4E 0 IV Al
— B2ty <ka(yk)7yk — &+ htpiovpr1 + 2 (trg2 + toy1 — 1)ka(yk)> :
Inserting this in we get
Ers1 — By < B2 (tryr — Dtpgr (F (k) — F(up—1))
+ 1’ ((tk+2 — Dtggo — (trg1 — 1)tk+1) (f(yx) — min f) + %h4ti+1|\ka(yk)||2

— Pt <ka(yk)7yk — 2%+ htgyoVrr + 1 (tgo + teyr — 1)ka(yk)> : (46)
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In view of the basic gradient inequality for convex differentiable functions whose gradient is L-
Lipschitz continuous, we have

Fyk—1) > flyr) + (VF(Wr)s Yr—1 — &) + %va(yk) ~ Viye—)l*
min f > () + (VI ). 7" — ) + 5 [V F ) |2

Combining the above inequalities with , and using V fx(yx) = Vf(yr) + ex, we get

Bior = B € ~W2(tken = Dosr (V7 i) v — u) + 5 195 () = V()

+ 12 <(tk+2 — Dtpso — (s — 1)tk+1> (f(y) — min f) — h2tj41 (f(yx) — min f)

+ %h4t%+1”vfk(yk)”2 — B2ty <ka(yk)’ hth g2V + 07 (tega + tgr — 1)ka(yk)>

— 1Pt (yp —2*, er) (47)

Next rearrange the last inequality by grouping terms on the right hand side with common expres-
sions. To begin with, rewrite the second and third summand as follows:

h? <(tk+2 — Ditpgo — (thyr — 1)tk+1> (f(yx) — min f) — h2tk+1(f(yk) —min f) =
-1’ (t%-l-l - ti+2 + tk+2) (f(yx) — min f).

For the following expression grouping two of the summands above, we use the definition of v, for
the first equality, and the constitutive equation for the third,

= h? (b1 = Dtgs (VFWR): k-1 — Uk) — W7 tkgr (Vfk(Uk), ik s20kr1)

= W3 (thyr — Dtegr (V) vk) — B tkpatips (V fr(uk), vesn)

= Bt 1 (VF (W), (bep1 — 1)vk — tipovgr) — B2 tr oy Vg, ex)

= 3ty ( (V) =h(tryr = DV fe—1(yp—1) + h(tgrr +tppo — 1)ka(yk)>) — Wt g1ty (Vkyts ex)
= Wt tpr (5, ~(tgs = DVFro1) + (s + b2 = DVF () )

— Bt 1thrs (Vs er) +h e (bepr + b — 1) (VF (), en) — h* e (bepr — 1) (VF(uk), ex—1) -

In addition

1 1
§h4t%+1 IV fr (i) 1P = h* s (bt — DIV (i) 1? = —§h4tk+1(2tk+2 tpr1 =2V i (yr) I

Collecting the last three estimates and applying the inequalities to , we obtain
Eppy — Bp +1° (ti+1 — oo + tk+2) (f(yx) — min f)
h? 2
< _ﬁ(tk-i-l = Dteg1IVF(yr) = Vi (yr—1)|l
s (V£ ).~ (tipr = DVF @) + (s + tirz = DV w0)) )

1
- §h4tk+1(2tk+2 +tipr — 2V F(ur) + el
— 1Pt (er, y — 7)) — B2ty atign (Uggn, ex)
+ 2 g1 (gr + tiro — 1) (VF(un), en) — B ter (b — 1) (VS (yk), ex—1) -
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After developing the expression ||V f(y) + ex|?, we arrive at

Ejy1— Ex + 1 (t%“ —thao+ tk+2> (f(y) — min f)

2
< —;LL@W ~ Dtsa IV S (r) = VF (yr—1)I?

+ h4tk+1 ( (V) —(tkgr = DV F(yp—1) + (tpg1 +tpgo — 1)Vf(yk)>)

- %h4tk+1(2tk+2 +thpr — 2)(|\Vf(yk)\|2 + llexll® + 2 (V f(yx), ek))

— WPt (ery y — &) — B3ty atin (Ugir, ex)
+ Bt (b + tirs — 1) (VF(ur), en) — K tir (b — 1) (VF (yk)s ex—1) -

Taking the expectation conditionally on F;, and using conditional unbiasedness in 1) we get
that (P-a.s.)

E [Bri | Fil = B+ 0 (1 — a2 + tisa ) (f () — min f)
2
< o (ke — Dt IV T () = V)
+ Bt (V1 (0) = (b = DVF(io1) + (B + ey = DV () )
1
"3

s . ) 1/2
+ 0t thp2E | lopa I | Fr| o,

1
Wi (2thgo + tipr — 2) V£ ()l — §h4tk+1(2tk+2 + tg — 2)0

where we used Cauchy-Schwartz inequality in the last term. Now we rely on Theorem and in

particular on and to infer that

A

1 1 1 1
lvps1ll = E”yk+1 -yl < E”ykﬂ —xpq | + E”xk—&-l — x| + EHﬂ?k — k|l

2||Jc -z H+l||x —x ||*o< 1 >+o(l)*0< 1 ) (P-a.s.)
< Fllzkr — 2wl + Sllzk — 2p - W -

In the last equality we used again that 1} implies t; 1 < 2t. Therefore, there exists a constant
C > 0 such that

A

E [Ept1 | Fr] — Ex + h? (tiﬂ —thio+ tk+2) (f(y) — min f)
B2 5
< —ﬁ(tkﬂ — DitgpaIVF(ye) — VI (yr—1)ll

B tgs (V1 (k) —hlthsr = DV Fun1) + h(tigs + ties = DV () )

_ L

2h4tk+1(2tlc+2 +trr1 — 2V ()l + 4Ch%t oy,

where we used again that ¢; o < 4¢; and we discarded the term involving aﬁ since t;, > 1 and thus
2tg4o + g1 — 2 > 1. Equivalently,

E[Epsr | Fil = B+ (B = thyn + tisa) (Fyi) = min £) < —R(VS (1), VS () + 4CH tyor,
(48)
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where R is the quadratic form

R(X,Y) =1

2
1
ﬁ(tkﬂ — Dt |lY - X|1> + §h4tk-+1(2tk-+2 +tgp1 — 2V

— W2 tpa (Y, =h(tepr — DX + h(tigr + tepe — 1Y) . (49)
To conclude, we just need to prove that R is nonnegative. A standard procedure consists in com-

puting a lower-bound minx R(X,Y) for fixed Y. By taking the derivative of R with respect to X,
we obtain that the minimum is achieved at X with X —Y = —h2LY. Therefore,

. h?L o1
min R(X,Y) = == (tepr = Dte AYII7 + 5

— Wty (<Y: —h(thy1 = 1)1 = h’L)Y + h(tgg1 + thyo — 1)Y>) :

A1 2tirs + tir — 2)[| Y]

After reduction, we get

min B(X,¥) = "L (1 1)@ - k20 < 1) v (50)

According to assumption 1} the coefficient of f(yj) — min f in is positive. We therefore
discard this term in the rest of the proof. Combining (50) with (48)), we obtain

At

E[Exq1 | F] = Ex < — 5 ((tk+1 —1)(2-r’L) - 1) IV £ ()| + ACh*ty,04.

Since h? €]0,1/L] and t;, > 1, this can also be bounded as

Rty 4Ch
E[Epsr | Fil < B = "5 ((tegr = D@ = 0°L) = 1) IV i) P + =ty

2L L
< By — anﬂyk)ﬂg + ?tkak
= B = g )+ 2+ A,
< By, - thL“ 19 £l + 25201 (F ) — min ) + 2ty

where we used co-coercivity of Vf in the last inequality. The summability assumption in
together with the summability result in Theorem allow then to invoke Lemma to get the
claim. Observe that this also gives that FEj converges (P-a.s.) to a non-negative valued random
variable. ]

Remark 4.2 Since t;, > 1, a direct consequence of the gradient summability shown in Theorem
is that the gradient sequence (Vf(yr)) ey tends to zero (P-a.s.) at least as quickly as at the rate
o(1/tx). Observe also that this analysis gives another proof for the fast convergence of the function
values (just carry on the proof starting from without discarding the term involving the function
values).

Note that the above proof has been notably simplified by using the conclusions already obtained
in Theorem [4.2] and in particular to properly bound the terms involving vi, 1 (which are not in Fy).
Extending this proof to the case where the step-size sj is varying appears to be straightforward,
but comes at the price of tedious and longer computations. We avoid this for the sake of brevity.
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5 Application to Particular Parameter Choices

Let consider the theoretical guarantees obtained under the condition that there exists ¢ € [0,1]

such that, for every k > 1
1 1

1—Oék+1 _1—O¢k

<ec. (51)

This implies some important properties of ¢;. One significant observation is a trade-off between
stability to errors and fast convergence of . Some choices of oy, will be less stringent on
the required summability of the error variance Tor convergence, but will result in slower convergence
rate and vice-versa.

In presenting the details, let us start with the following results that were obtained in [12]
Proposition 3.3, 3.4]. The first one presents some general conditions on (aj) and c that ensure the

satisfaction of (Kol) and (K1) (resp. (K;))). The second one provides an explicit expression of ¢, as
a function of «y,.

Proposition 5.1 Let ¢ € [0,1] and let (ap),cy be @ sequence satisfying oy, € [0,1] together with
inequality (51)) for every k > 1. Then condition (Kol|) is satisfied. Moreover, we have for every k > 1,

S == o)

If ¢ < 1/3 (resp. ¢ < 1/3), then condition (K1) (resp. (K')) is fulfilled.

Proposition 5.2 Let (O‘k)keN be a sequence such that oy € [0,1] for every k > 1. Given c € [0,1],
assume that
. 1 1
lim -
k——+oo 1 — Q1 1- Qg

Then, we have
1

~ k .
tri1 1= o)(1—ap) as k — 400

Let us now consider several possible iterative regimes defining ay.

5.1 Case 1: akzl—%,a>0:
This corresponds to the choice made in the (deterministic) Nesterov and Ravine methods studied
n [19]. In this case, for every k > 1,

1 1 k+1 &

1
l—ak_,_l_l—aki ey a o
Therefore, condition is satisfied with ¢ = L. If @ > 3 (resp. a > 3), we have ¢ €]0,1/3] (resp.

«

¢ €]0,1/3[). According to Proposition we have for every k > 1,

k
a—1"

: 1 o«
LT 000 —ag) a-—1

k_
==

Indeed, one can easily show that the equality t;1 = % is satisfied. Moreover,

e /B = Ko = 1)/ (k=17 > (a = D/(k - 1) = 3 %51 = oo
ken 'k

Thus, specializing Theorem and Theorem we obtain the following statement.
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Corollary 5.1 Assume that holds. Let (yx)jen be the sequence generated by ((SRAG),, | with

ap =1— ¢ where a > 3, and s, €]0,1/L] is a non-increasing sequence. Assume that
Eler | Fx] =0 (P-a.s.) and (kspop)uen € (7).
Then, the following holds (P-a.s.):

(i) S() —ming f = o (h ) and llgy = yall =0 (}) 5

g . 2 .

()3 b (1(0) -~ min ) < +oo and 3" Ml el < oo
kEN kEN

(i) If moreover infy s, > 0, then D, oy E2|VI(yp)l|? < +oo and (Yk)pen converges weakly (P-a.s.)
to an argmin(f)-valued random variable.

Another possible choice would be aj = IchLa in which case we obtain exactly the same results
as in Corollary This corresponds to the popular choice of the the Nesterov extrapolation
parameter. For with this choice of oy, we recover and complete the results obtained in
the literature; see e.g., [26L28][39].

5.2 Case 2: aj, = 1 — %, a>0,r€]0,1[:
In this case, we have
1 1 1 1 k"

- = —(k 17,7—]{:7‘:* 1 lkrflwﬁkr_l 2 .
l—ap1  1—ay a( +1) o a(( +1/k) ) o -0 ask— 400

For each ¢ > 0, the condition 1/(1 — ay11) — 1/(1 — ay) < c is satisfied for k large enough. On
T

the other hand, we deduce from Proposition that ¢ ~ % as k — 4o0. This implies that
& 1

Zti ~—— k' as k — 4o0. Theorem
P a(l+r)

the following result.

and Theorem under this specification yields

Corollary 5.2 Assume that holds. Let (yx),ey be the sequence generated by !SRAG an 1‘ with

ap =1— & where a >0 and r €]0,1], and s, €]0,1/L] is an non-increasing sequence. Assume that

Eley | Fx] =0 (P-a.s.) and (K"spop)en € (7).
Then, the following holds (P-a.s.):

(i) Flge) —minge f = o (5w ) and flys = -l = o (%) ;

. r . T 2 .
(i) Y K si(f(yr) —min f) < +oo and D K" llyx — y—al|* < +oo ;
keN keN
(i) If moreover infy sy, > 0, then ), EX IV £ (yi) || < 400 and (Y ) pen converges weakly (P-a.s.)
to an argmin(f)-valued random variable.

It is clear from this result that this choice of ay, allows for a less stringent summability condition
on the stochastic errors, but this comes at the price of a slower convergence rate. We are not aware
of any such a result in the literature.
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5.3 Case 3: aj, constant:

This corresponds to the choice made in the Polyak’s heavy ball with friction method [48][47]. Since
ar = a € [0,1] for every k > 1, condition is clearly satisfied with ¢ = 0. In turn, ¢ = 1/(1 — «)
for all £ > 1. Applying Theorem and Theorem we get the following.

Corollary 5.3 Assume that holds. Let (yx)en be the sequence gemerated by ((SRAG),, | with

a = a €[0,1], and s, €]0,1/L] is an non-increasing sequence. Assume that
Eley | Fx] =0 (P-a.s.) and (sk0%)pen € (7).
Then, the following holds (P-a.s.):

i sk (f(yr) — min f) < 400 and ykfyk_12<—|—oo;
© 3 nliln) - ) > u
(i) If moreover infy, sy, > 0, then D ) oy IVf(yu)l|? < 400 and (Uk)gen converges weakly (P-a.s.) to
an argmin( f)-valued random variable.
For with this choice of «y, we recover and complete the results obtained in the
literature; see e.g., [56,B44TL52].

6 Conclusion, perspectives

In this paper we studied the convergence properties of the stochastic Ravine optimization algo-
rithm. We verified the intuition provided by recent analysis from the dynamics systems perspective
showing that the Ravine and Nesterov accelerated gradient methods behave similarly, with identi-
cal convergence properties. Specifically, we showed that the same asymptotic guarantees as well as
convergence rates apply with respect to function values, gradients and convergence of the iterates.

A Auxiliary lemmas

We here collect some important results that play a crucial role in the convergence analysis of [(SNAG)

Lemma A.1 (Convergence of non-negative almost supermartingales [49]) Given a filtration % =
(Ri)pen and the sequences of real-valued random variables (ry),cn € L+ (#), (ar)gen € €+ (#), and (21) e €

Z}r (%) satisfying, for each k € N
Elrgr1 | Re) — 7% < —ap + 2z (P-a.s.)
it holds that (ar)yen € é_IF (#) and (r),cn converges (P-a.s.) to a random variable valued in [0, 400l

The following lemma is a consequence of Lemma see also the discussion in [49] Section 3].

Lemma A.2 Given a filtration Z = (Ri) ey, let the sequence of random variables (ex) ey € £+ (%) such that
2 1/2 1 (g
(CIEE:)) )keN € 0L (#). Then

Z ep < +oo  (P-a.s.).
keN

2
Proof Let (, = e —E[er | Rek—1] and 7 = ( f:l Ci) . We obviously have E [(x+1 | R] = 0. Thus

k

e N2
E[rgt1 | Re] = (Z Ci) + > GE Gt | Rl +E [y | Ri]
im1

1=1
=rp+E[CE 1 | Re] =mp + Var [e2 1y | Ri] <ri +E e, | Ri] -
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It is easy to see that ((E [Ei | Rk_l])l/z)

1 cnli 2 1
. € £} (#) implies (IE [&k | Rk—l})keN € £} (%), and we can apply

Lemma (A.1) to get that

lim rg
k—+oo

exists and is finite (P-a.s.). Using Jensen’s inequality we have

k k k k
1/2
0<Y ei=Y G+Y Elei|Rica] < 7”,1/2 +> (E[ef | Riz1)) 2.
i=1 i=1 i=1 i=1
Passing to the limit using that <(IE [Ei | Rk,l])1/2>k N € €1+ (%) proves the claim. O
€

Lemma A.3 (Extended descent lemma) Let g : H — R be a convex function whose gradient is L-Lipschitz
continuous. Let s €]0,1/L]. Then for all (z,y) € H2, we have

6y — sV9(v)) < 9(2) + (Vo(v), y =) = - [Va@)I* = 3 [Va(2) = Va()*. (52)

See e.g. [14] Lemma 1]
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