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Abstract

We study the value function of an integer program (IP) by characterizing how its optimal value
changes as the right-hand side varies. We show that the IP value function can be approximated
to any desired degree of accuracy using machine learning (ML) techniques. Since an IP value
function is a Chvátal-Gomory (CG) function, we first propose a neural network (NN) architecture
as a universal approximator, which requires an explicit construction of the IP value function. We
then derive a connection between CG cuts and the IP value function, which resulted in another
NN architecture that does not require any information about the CG operations of the IP value
function. Our novel NN architecture draws the relation between the weights of the NN and CG
multipliers and inspired methods to derive a valid bound of the IP value function.

1 Introduction

Duality is a fundamental concept in optimization. While linear and convex programming duality are
widely understood and critical for modern algorithms, less is known about integer programming (IP)
duality. The seminal work of Blair and Jeroslow in the 1970s characterized the value function of
a maximization IP, parameterized by its right-hand side, as a Gomory function, meaning that it
can be constructed recursively from a set of linear functions through the composition of addition,
nonnegative multiplication, minimization, and rounding down operations [7, 8, 9]. Despite its
elegance, this result had a surprisingly limited impact on the computation of IP value function.

When discussing the approximation of functions, Machine Learning (ML) is widely recognized for
its proficiency in this domain. As might be expected, ML has also received interest in the area of
mathematical optimization [5]. Current research efforts in applying ML in discrete optimization
primarily concentrate on developing policies that enable ML to make algorithmic decisions, such as
node selection and branching decisions in branch-and-bound algorithms, or cut identification and clas-
sification [2, 16, 20, 27]. Alternatively, some research uses ML to directly estimate the solution of an
IP from its input parameters [10, 21, 22, 30]. Furthermore, deep learning has frequently been utilized
to approximate value functions for dynamic programming problems in the context of reinforcement
learning, neuro-dynamic programming, or Markov Decision Processes [6, 29]. Typically, NNs - the
primary models used in deep learning - are constructed through the recursive application of basic
operations, such as affine transformations and piecewise linear activation functions (e.g., ReLU or
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max pooling). With sufficient layers and neurons in each layer, an NN can give a good approximation
of any continuous function [4, 15, 17, 23]. While NNs have the universal approximation property,
introducing bias or special architectures to an NN helps in certain applications, e.g., convolutional
layers are typically used in image processing tasks [24], a recurrent NN or attention layer is one of
the main component in natural language processing [13, 28]. In addition, certain constraints on
the weights and architecture of an NN enforce that the NN always returns a convex function [3].
Based on these observations, a question arises: How can NN best be used to model IP value functions?

Blair and Jeroslow’s characterization of the IP value function exposes fundamental similarities
between NNs and CG functions, which we have identified and summarized in Table 1.

Operations CG Function Neural Network
Summation Linear Combination Affine Combination

Multivariate Non-linearity Minimum over multiple inputs Max-Pooling
Univariate Non-linearity Round-down ReLU, sign, etc

Table 1: Analogies between CG Functions and NN Construction.

In this work, inspired by the similarity between CG and NN operations, we introduce two represen-
tation theorems showing the possibility of NNs in approximating IP value functions:

T‘ree Representation Theorem. Given an IP value function with at most k CG operations,
defined on a bounded domain D; Then, there exists a feed-forward NN of depth O(k) and width
O(2k) with ReLU activation function that approximates the IP value function within given ϵ > 0 in
the bounded domain D.

One issue with the first representation theorem is that, while the coefficients of an IP value function
are bounded, we usually do not know them in advance. The second representation theorem will
address this issue:

Block Representation Theorem. Any rank r IP value function on a domain D (not necessarily
bounded) can be represented by a feed-forward NN of depth O(r) and bounded width (independent
of the IP rank) with round-down activation functions.

The remainder of the paper is organized as follows. Section 2 provides structural results, which are
the keys to proving the two representation theorems. Section 3 proves the existence of an NN that
can approximate any IP value function within a given ϵ. Section 4 shows that the IP value function
can be constructed via the CG cuts of a set of finite IPs. This result helps us derive the second NN
architecture and method for obtaining the upper bound CG function of the true IP value function.

2 Structural Results

The NN construction is based on three CG operations that recursively construct the IP-value function.
The motivations for the models in later sections on computing IP value functions are primarily based
on the analogy between a CG function and an NN as pointed out in Table 1. Before stating the
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main theorems, we describe results that support the main NN Representation Theorems. The main
contribution in this section is the construction of the IP Value Function based on CG cuts.

2.1 Preliminaries

We demonstrate the ability of a NN to represent the IP value function of the form:

z(b) := max cTx

s.t Ax ≤ b

x ∈ Zn
+,

(1)

where c ∈ Rn is a fixed objective, A ∈ Zm×n is a fixed integral constraint matrix with (a1, a2, . . . , an)
denoting its columns. We denote X(b) := {x ∈ Zn

+|Ax ≤ b} and b can vary and take any value in
D = {b ∈ Zm|X(b) ̸= ∅} - the set of feasible right-hand sides. If for some right-hand side vector
b, the problem is unbounded above, we let z(b) = +∞, while if the problem is infeasible, we let
z(b) = −∞. Throughout this paper, we use IP(b) to denote the IP with the right-hand side vector
b, and LP(b) to denote its LP relaxation. We further assume that for every b ∈ D, IP(b) has a finite
optimal solution. This is not a strict assumption as if z(b) = +∞ for some right-hand side b, then
there exists x∗ such that Ax∗ ≤ 0 and cTx∗ > 0, which means z(b) = +∞ for every b ∈ D [25].

Definition 1. (CG inequality). [31] A CG inequality with respect to the feasible region of IP(b)
is an inequality generated by the following two CG steps, which are defined as follows:

1. Select a non-negative vector u ∈ Rm
+ , known as a CG multiplier.

2. Construct a CG inequality
∑

j∈JnK⌊uaj⌋xj ≤ ⌊ub⌋.

When all the integer variables of IP(b) can be bounded, the convex hull of X(b), denoted as Sb,
can be described by a finite number of CG inequalities [26]. The inequality

∑
j∈JnK⌊uaj⌋xj ≤ ⌊ub⌋

can be added to the original set of constraints Ax ≤ b without changing the integral feasible region.
Thus, we can apply the CG steps recursively again to obtain other CG inequalities.

Definition 2. (CG inequality rank). [31] Since every valid inequality of Sb is a CG inequality
[26], inductively, we say that a valid inequality πbx ≤ πb

0 of Sb is of rank r if πbx ≤ πb
0 is not

equivalent to or dominated by a non-negative linear combination of CG inequalities with rank smaller
than r− 1, but is equivalent to or dominated by a non-negative linear combination of CG inequalities
obtained through applying r CG steps. The rank 0 CG inequalities are the valid inequalities of the
feasible region of LP(b), i.e., {x ∈ Rn

+|Ax ≤ b}.

In the following subsection, we describe the mechanics of approximating the round-down function
via piecewise linear continuous functions. This result plays a vital role in approximating the IP value
function using NN with continuous activation functions like ReLU. Next, we derive the connection
between the CG multipliers and the IP value function, which will be the key result for our block NN
architecture.

2.2 Approximation of the Floor Function

As we can see that the discontinuity of a CG function only comes from the round-down function,
a natural question is how we can effectively approximate the round-down function in the context
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of traditional NNs, i.e., only using affine transformation and ReLU activation. Thus, we describe
the mechanics we use to approximate the round-down function in the following. For a real number
ϵ ∈ (0, 1), we define a continuous function hϵ which approximates the round down operator ⌊·⌋.

hϵ(x) :=

{
⌊x⌋ if ⌊x⌋+ 1− ϵ ≤ x ≤ ⌊x⌋+ 1,
1
ϵx+ (1− 1

ϵ )(⌊x⌋+ 1) otherwise.
(2)

Lemma 1. For every ϵ ∈ (0, 1), hϵ(x) is a continuous function. Furthermore, for every x ∈ R, we
have

lim
ϵ→0

hϵ(x)− ⌊x⌋ = 0.

Lemma 2. Let l < u be two non-negative integers and 0 < ϵ < 1, then∫ u

l
∥hϵ(x)− ⌊x⌋∥dx = ϵ(u− l)/2.

Lemma 3 gives a natural extension of Lemma 2 for the approximation for a composition of round
down and a piecewise linear function. For a piecewise linear function g : D ⊆ Rn

+ → R+ defined
over a box domain D := [l, u], we partition D into D = ∪i∈JtKDi, such that g is an affine function on
each Di. For a box domain D, and a function f defined on D, we define

∥f∥1 =
∫
D
f(x)dx.

Lemma 3. Let g : D ⊂ Rn → R be an affine piecewise function defined on a bounded box domain
D, we have

lim
ϵ→0+

∥hϵ(g)− ⌊g⌋∥1 = 0.

Proof. We denote αix + γi as the affine function of g(x) on domain Di, where ∪i∈JtKDi = D is a
partition of D. Assuming that, for some i ∈ JtK, αi

j ̸= 0 for every j ∈ JnK, we have∫
Di

|hϵ(g(x))− ⌊g(x)⌋|dx =

∫ u1

l1

· · ·
∫ un

ln

|hϵ(αi · x+ γi)− ⌊αi · x+ γi⌋|dx

=

∫ αi
1u1

αi
1l1

· · ·
∫ αi

nun

αi
nln

|hϵ(1 · x+ γi)− ⌊1 · x+ γi⌋|dx

≤
∏
j

|αi
j(uj − lj)|

∫ αi·u

αi·l
|hϵ(t+ γi)− ⌊t+ γi⌋|dt

=
1

2

∏
j

|αi
j(uj − lj)|ϵ(αi · u− αi · l).

Thus, by applying this inequality for every piece of D, we derive∫
D
|hϵ(g(x))− ⌊g(x)⌋|dx =

∑
t∈JtK

∫
Di

|hϵ(g(x))− ⌊g(x)⌋|dx

1

2
≤

∑
t∈JtK

∏
j

|αi
j(uj − lj)|ϵ(αi · u− αi · l)

1

2
≤ ϵ

∑
t∈JtK

∏
j

|αi
j(uj − lj)|(αi · u− αi · l).
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Thus,
lim
ϵ→0+

∥hϵ(g)− ⌊g⌋∥1 = 0.

Lemma 3 implies that for any piecewise affine function g, we can approximate the value of the round
down of g over a bounded box domain using the continuous function hϵ.

2.3 Chvátal-Gomory Dual Function

For any fixed b ∈ D, there exists a finite set of CG inequalities multipliers {ub,i}ri=1 that derives
the convex hull of the integral solution of IP(b). We use the superscript b to emphasize that these
CG multipliers are derived from the IP with right-hand side vector b. In addition, by denoting
b1 := b, bi+1 := [bi, ⌊uibi⌋]T , and A1 := A, Ai+1 := [Ai, ⌊uiAi⌋]T , we have that the optimal value of
max{cTx|Ax ≤ b, x ∈ Zn

+} is equal to

max cTx

subject to Ax ≤ b

⌊ub,1A1⌋x ≤ ⌊ub,1b1⌋
⌊ub,2A2⌋x ≤ ⌊ub,2b2⌋

...

⌊ub,rAr⌋x ≤ ⌊ub,rbr⌋
x ≥ 0.

(3)

Assumption (Minimal CG Inequalities). In Equation (3), we assume that there are no redun-
dant CG inequalities in solving the problem IP(b) - every face defined by a CG inequality is maximal
and contains the optimal solution.

Since (3) is an LP, by strong LP duality, we also derive that the optimal value of (3) is the same as
the following LP dual problem:

min pT b+ qT1 ⌊ub,1b1⌋+ · · ·+ qTr ⌊ub,rbr⌋
subject to pTA+ qT1 ⌊ub,1A1⌋+ · · ·+ qTr ⌊ub,rAr⌋ ≥ c

p, q1, . . . , qr ≥ 0.

(4)

Let pb, qb1, . . . , q
b
r be an optimal solution of (4), and consider the following function:

Definition 3. We say that fb(·) : Rm
+ → R+ is a CG dual function with respect to the right-hand

side vector b if for every β ∈ Zm
+ ,

fb(β) = (pb)Tβ + (qb1)
T ⌊ub,1β1⌋+ · · ·+ (qbr)

T ⌊ub,rβr⌋, (5)

with β1 = β, βi+1 = [βi, ⌊uiβi⌋]T , where ub, pb and qb are the CG multipliers described in (3) and
optimal solution of (4) for right-hand side b, respectively.
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Certainly, for a given right-hand side b, there is more than one set of CG inequalities that lead to
the solution of IP(b). Hence, there can be multiple CG dual functions associated with a right-hand
side b. Since, by definition, a CG dual function is a CG function, and later in this section, we show
that this class function plays an essential role in deriving a novel representation theorem for the
value function of an IP, we want to dedicate a portion of this section to study the properties of CG
dual functions. We first start with a simple observation for a CG dual function.

Proposition 1. Given a CG dual function fb(·) : Rm
+ → R+, we have

fb(b) = z(b).

Proof. This comes directly from how we define the function fb. Since z(b) is the optimal value of
the IP max{cx|Ax ≤ b, x ∈ Zm

+} and fb(b) gives the objective value of (4), by LP strong duality, we
must have fb(b) = z(b).

Proposition 1 says that the CG dual function gives the optimal objective at the corresponding
right-hand side. This is of limited practical use because, according to the definition of a CG dual
function concerning the right-hand side b, we are obliged to incorporate all the necessary CG
inequalities, thus solving the IP directly. Another way to view the CG dual functions is that they
incorporate cutting plane information. This is a starting intuition for us to derive more interesting
properties for this class of functions.

Proposition 2. Given a CG dual function fb(·) : Rm
+ → R+. If LP(b) has an unique solution and

z(b) = zLP (b), we have
fb(tb) = zLP (tb), for every t ∈ R+.

Proof. We have
fb(b) = z(b) = zLP (b).

By our assumption on the minimal set of added CG inequalities and the uniqueness of the solution
of LP(b), there is a vector pb such that

fb(β) = (pb)Tβ.

Thus,
tfb(tb) = tfb(b) = tzLP (b) = zLP (tb) ∀ t ∈ R+.

Essentially, Proposition 2 implies that for a right-hand side b where the LP(b) and IP(b) share the
same solution, the CG dual function fb is a linear function. It is because, in this case, pb is the
optimal LP dual extreme point.

Proposition 3. For a fixed b ∈ D, its corresponding CG dual function fb is a feasible solution to
the superadditive dual of the IP max{cx|Ax ≤ b, x ∈ Zm

+}, i.e., fb is a feasible solution of

min f(b)

s.t f(aj) ≥ cj ∀j ∈ JnK,
f(0) = 0,

f is non-decreasing and superadditive.

(6)
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Proof. Since the floor function is superadditive, the CG multipliers ub,i for i ∈ JrK along with the
dual variable pb and qbi for i ∈ JrK are non-negative, the CG dual function corresponding with the
right-hand side b is non-decreasing and superadditive. Moreover, by definition, we have fb(0) = 0.
In addition, from the constraint of (4), we have

fb(a
i) ≥ ci ∀i ∈ JnK.

Hence, the CG dual function fb is a feasible solution to the superadditive dual.

In a special case where the entries of the matrix A are non-negative, the dual problem can be written
as an LP where each variable can be interpreted as an upper bound of the optimal value of the
IP when the right-hand side vector is a certain integral vector. In particular, the following LP is
equivalent to the superadditive dual [31]:

min F (b)

s.t F (aj) ≥ cj ∀i ∈ JnK
F (d1) + F (d2)− F (d1 + d2) ≤ 0 ∀d1, d2, d1 + d2 ∈ D(b)

F (0) = 0, F (d) ≥ 0 ∀d ∈ D(b),

(SDLP)

where D(b) := {d ∈ Zm
+ |d ≤ b} and F is a vector with |D(b)| coordinates. By the feasibility of fb

from Proposition 3, we have the following immediate connection between fb and the LP (SDLP).

Corollary 1. Given a CG dual function fb and let the vector Fb be such that Fb(d) = fb(d) for
every d ∈ D(b), then Fb is a solution of (SDLP).

By Proposition 3, a CG dual function fb is a feasible solution of (6), it is an upper bound on the IP
value function z, i.e., fb(β) ≥ z(β) for every β ∈ B. Based on this property, we have the following
observation between CG dual functions and the IP value function z.

Proposition 4. Let z(β) be the optimal value of max{cx|Ax ≤ β, x ≥ Zn
+}, we have

z(β) = min{fb(β)|b ∈ D} ∀β ∈ D.

Proof. By Proposition 3, we have fb(β) ≥ z(β) for every b, β ∈ D, thus minb∈Zm
+
fb ≥ z. Moreover,

by Proposition 1, when b = β, we must have fb(β) = z(β). Therefore, z(β) = min{fb(β)|b ∈
Zm

+} ∀β ∈ D.

Certainly, it is not practical to solve an IP for every non-negative integral right-hand side. The only
important meaning that it conveys is taking a minimum of multiple CG dual functions can give a
better approximation of the value function z. However, we might not need an infinite number of CG
dual functions to construct the IP value function z, as observed in the following examples of CG
dual functions.

Example 1. : In Figure 1, we consider an integer knapsack with 2 variables:

z(b) = max 3x1 + x2

s.t 2x1 + x2 ≤ b

x1, x2 ∈ Z+.

(7)
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Let b = 1 and solve the corresponding problem by adding a CG cut with the multiplier u = 1/2, we
have the integer knapsack is now equivalent to

z(b) = max 3x1 + x2

s.t 2x1 + x2 ≤ 1

x1 ≤ 0

x1, x2 ≥ 0.

(8)

By solving the dual of (8), we construct the corresponding CG dual function fb (where b = 1) as

f1(β) = ⌊β + ⌊β
2
⌋⌋.

The plot of f1 is given Figure 1. However, we can observe that the function f1 itself is indeed the IP
value function z(b).

b

Optimal Value

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

Figure 1: An illustration of a CG dual function in 1-dimensional space.

Example 2. : We consider an IP with 2 constraints

z(b) = max x1 + x2

s.t 2x1 + x2 ≤ b1

x1 + 2x2 ≤ b2

x1, x2 ∈ Z+

(9)

We construct two dual variable functions, one corresponds with b = [2, 0]T and one corresponds with
b = [0, 2]T . The plot of the first function is in the leftmost, and the plot of the second function is in
the middle of Figure 2. When taking the minimum of these two functions, we obtain the IP value
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Figure 2: An illustration of the CG dual functions in 2-dimensional space.

function z in the rightmost.

As observed by these two examples, in constructing the IP value function, we might only need to take
the minimum of a finite number of CG dual functions. In the next part of the section, we will prove
that this conjecture is indeed true for every IP with a non-negative constraint matrix A.

2.4 Constructing The Integer Programming Value Function

In this subsection, we derive a “pattern” property of an IP value function. Generally speaking, we
will show for any value function z, there exists a bounded domain B such that for any point β
outside the domain, we can compute z(β) based on the value of z over B. The “pattern” of IP value
functions was discussed in Theorem 1 in [14]. However, in this theorem, the “pattern” property is
only concerned with right-hand side vectors that are far away from the boundaries of some cones.
Later, Alfant et al. [1] also came up with a way to compute IP value functions given known values
of the function at some points β̂ < β using the optimal solutions of IP(β). However, in Proposition
3.2 [1], it is not guaranteed that the value function at every point in D can be computed using this
property.

Consider the set S := {(c1, a1), . . . , (cn, an), (0, e1), . . . , (0, em), (−1, 0m)} and C := cone(S) denote
the polyhedral cone generated by S, see Figure 3 for an illustration. Let F be the (finite) set of
facets of the polyhedral cone C. By Lemma 3 in [19], for each face F ∈ F , we have that the set of
m extreme rays defining F is a subset of S. We note that F can contain at most m facets whose
extreme rays are (−1, 0m) and a set of m− 1 unit vectors in the m-dimensional space. We denote
the set of facets of C that excludes the facet containing (−1, 0m) by F ′.

Proposition 5. Let F ∈ F ′ be a facet of C, and let {(γF1 , vF1 ), . . . (γFm, vFm)} ⊂ S be the set of
finite extreme rays defining F . Then, for every non-negative integers ki for i ∈ JmK such that
IP(k1v

F
1 + · · ·+ kmvFm) has a finite optimal solution, we have:

z(k1v
F
1 + · · ·+ kmvFm) = k1γ

F
1 + · · ·+ kmγFm.

Proof. Since F ∈ F ′ every vFi is either a column of matrix A or a unit vector and every γFi is a
component of the objective c or is equal to 0. We have that z(k1vF1 +· · ·+kmvFm) ≥ k1γ

F
1 +· · ·+kmγFm,

as we can easily find a feasible solution of z(k1v
F
1 + · · · + kmvFm) whose objective is equal to
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= max

(1,1,3)

(2,2,0)
(1,2,1)

LP relaxation

IP value

1 2 3

1

Figure 3: An illustration of cone C. We only show here the 3 relevant facets of C, while omitting the
other 2 facets which contain the extreme rays (−1, 0, 0)T . Intuitively, for a given right-hand side
b = (b1, b2), we move upward as far as possible until we reach a point belonging to one of the faces
of cone C, and the z-coordinate of which is the optimal value of the LP-relaxation. The optimal
value of z(b) is some point below the optimal value of the LP relaxation.

k1γ
F
1 + · · ·+ kmγFm by setting the value of the variable corresponds to the column vFj equal to kj .

By contradiction, suppose that

z(k1v
F
1 + · · ·+ kmvFm)− (k1γ

F
1 + · · ·+ kmγFm) > 0.

Let zLP (b) denote the LP relaxation value function of z(b). We have

ϵ := zLP (k1v
F
1 + . . . kmvFm)− (k1γ

F
1 + · · ·+ kmγFm) > 0.

Let x∗ be the optimal primal solution of zLP(k1v
F
1 + · · ·+ kmvFm), we have{

cTx∗ − ϵ = k1γ
F
1 + · · ·+ kmγFm

Ax∗ + Ims∗ = k1v
F
1 + · · ·+ kmvFm,

where s∗ =
∑m

i=1 kiv
F
i −Ax∗ ≥ 0. Hence we have that[

c
A

]
x∗ + ϵ

[
−1
0m

]
+

[
0
Im

]
s∗ = k1

[
γF1
vF1

]
+ · · ·+ km

[
γFm
vFm

]
. (10)

The right-hand side of (10) is a vector belonging to the facet F , while the left-hand side is a vector
that does not belong to F as ϵ > 0. Hence

z(k1v
F
1 + . . . kmvFm) = k1γ

F
1 + · · ·+ kmγFm.
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For a set of vectors V of C, we denote its projection onto the space of the right-hand side b, which is
Rm

+ , by
ProjRm(V ) := {v ∈ Rm|∃ γ ∈ R+ s.t (γ, v) ∈ V }.

Lemma 4. Let F := cone((γ1, v1), . . . , (γm, vm)) ∈ F ′ be a facet of C and β ∈ ProjRm(F ) be
represented as

β = k1v1 + · · ·+ kmvm + β̄,

where ki are non-negative integers and b̄ < vj ∀j ∈ JmK. Then, there exists non-negative integers
K1, . . . ,Km such that for any j ∈ JmK satisfying kj > Kj and γi > 0, we have z(β) = z(β− vj)+ γj.

Proof. We only prove the existence of K1, the existence of K2, . . . ,Km can be proved similarly. By
Corollary 2 in [12], we have that zLP (b)− z(b) ≤ MA,c, where the constant MA,c only depends on
the constraint matrix A and the objective coefficient c. Therefore, we have that

z(β + v1)− z(β) ≤ zLP (β + v1)− z(β)

≤ zLP (β) + zLP (v1)− z(β)

≤ MA,c + γ1.

(11)

The first inequality of Equation (11) follows from the fact that z ≤ zLP . The second inequality is
based on the piecewise linear property of an LP value function. Finally, zLP (v1) = γ1 because F is a
facet of C.

Let xj∗ be the variable corresponding to the column v1. Let f0(β) be an optimal value of the LP
which is obtained by the relaxation of z(β) with an additional constraint xj∗ = 0, i.e.,

f0(β) := max cTx

Ax ≤ β

xj∗ = 0

x ≥ 0.

(12)

We have that zLP (v1) > f0(v1) because (γ1, v1) is an extreme ray of C. Let ϵ := zLP (v1)− f0(v1)

and K1 := ⌈MA,c+γ1
ϵ ⌉. We will prove that if β = k1v1 + · · · + kmvm + β̄ and k1 ≥ K1, then

z(β) = z(β − v1) + γ1. To do so, we show that there exists an optimal solution x̄ of z(β) for which
x̄i∗ ≥ 1. By contradiction, suppose that x̄j∗ = 0 in every optimal solution of IP(β). We have

z(β) ≤ f0(β) = f0(k1v1 + β̄) + f0(k2v2 + . . . kmvm)

= f0(k1v1 + β̄) + k2γ2 + . . . kmγm.

On the other hand, we also have

z(β + v1 − β̄) = z((k1 + 1)v1 + · · ·+ kmvm)

= (k1 + 1)γ1 + · · ·+ kmγm (By Proposition 2).

Hence, we have

z(β + v1 − β̄)− z(β) ≥ (k1 + 1)γ1 − f0(k1v1 + b̄)

≥ (k1 + 1)γ1 − f0((k1 + 1)v1)

= (k1 + 1)(γ1 − f0(v1))

>
MA,c + γ1

ϵ
× ϵ = MA,c + γ1,

11



which contradicts Equation (11) as z(β + v1 − β̄) ≤ z(β + v1). Hence, there exists a solution of z(β)
where θ ≥ 1. Thus,

z(β) = z(β − v1) + γ1, ∀k1 > K1.

Suppose that for every face F ∈ F ′, we have a set of non-negative integers {KF
1 , . . .K

F
m} correspond-

ing to each extreme rays of F . Let K := maxF∈F ′,i∈JmK ∥KF
i v

F
i ∥1. Since, for every vector β ∈ D

where z(β) is feasible, there exists a face F ∈ F ′ such that (zLP (β), β) ∈ F . If ∥β∥1 ≥ K and β is
written in the form of β = kF1 v

F
1 + · · ·+ kFmvFm + b̄, where b̄ ≤ vFi for every i ∈ JmK, there must exist

i ∈ JmK such that kFi > KF
i . Thus by Lemma 4, we have z(β) = z(β−(kFi −KF

i )vFi )+(kFi −KF
i )γFi .

Given a vector β ∈ Rm
+ , to a find face F ∈ F ′, and represent as b = kF1 v

F
1 + · · · + kFmvFm + b̄, we

simply need to solve the relaxation LP(β).

We can interpret Lemma 4 as a result of the “pattern” of the IP value function. i.e., when we
know value of the function z(β) at enough values of β, we can compute the value of z at differ-
ent β based on the ones that we know. On the other hand, as we discussed earlier, for a fixed
right-hand side vector b, there exists a set of CG multipliers that gives the convex hull of the
feasible domain of z(b). This observation and the “pattern” property from Lemma 4 raises a natural
question of whether we can reuse the same CG multiplier for z(β) for a different right-hand side β ̸= b.

Lemma 5. There exists a finite set L such that the function l := min{fb(β)|b ∈ L} ≤ zLP (β) is
upper bounded by the LP value function zLP , i.e.,

l(β) ≤ zLP (β).

Proof. Since the value function of the LP relaxation zLP is a concave function that is obtained by
taking the minimum of a finite set of linear functions, we denote

zLP (β) = min
i∈J∥P∥K

(pi)Tβ,

where P denotes the set of extreme points of {p ∈ Rm|pTA ≥ c, p ≥ 0}. For every extreme point
pi in P, let bi denote the right-hand side vector for which pi is the unique optimal solution to the
dual of LP (bi). Furthermore, for every i ∈ J∥P∥K, let Āi be an optimal basis of LP (bi). By strong
duality, we have zLP (|det(Āi)|bi) = (pi)T |det(Āi)|bi. Moreover, since the optimal basic variables of
LP(|det(Āi)|bi) are (Āi)−1|det(Āi)|b̄i where b̄i is sub-vector of bi corresponding to the basis Āi, we
have that the solution are integral. Thus, we derive that zLP (|det(Āi)|bi) = z(|det(Āi)|bi). Therefore,
by letting L = {|det(Āi)|bi|∀i ∈ J∥P∥K}, we have l(β) ≤ zLP (β) for every β ∈ Rm.

Now, we use Lemma 4 and Lemma 5 to derive the main theorem of this section. The idea is to
construct a function that has zLP as an upper bound and the IP value function z as its lower bound.
Then, we use the fact that the function z behaves in a pattern as described in Lemma 4, when our
function agrees with z for enough number points, it must agree with z everywhere else.

Theorem 1. There exists a finite set B ⊂ Zm
+ such that

z(β) = min{fb(β)|b ∈ B} ∀β ∈ Zm
+ .

12



Proof. For every facet F of C, let bF := KF
1 v

F
1 + . . .KF

mvF1 , where KF
i and vFi are defined in Lemma

4, and let L be the set of vectors that satisfies the condition stated in Lemma 5. Given the vectors
bF for every facet of F of C and L, we choose B = {b ∈ Zm

+ |b ∈ L or ∃F ∈ facet(C) s.t b ≤ bF }. We
will show that the function f∗(β) := min{fb(β)|b ∈ B} equals to the IP value function z at every
integral point by contradiction.

By definition, we must have f∗(β) = z(β) for every b ∈ B and f∗(β) ≥ z(β) for every b ∈ Zm
+ since

f∗(β) is a feasible solution to the superadditive dual. By contradiction, suppose that there exists
β̄ /∈ B and ϵ := f∗(β̄)− z(β̄) > 0. By Lemma 4, since β̄ is outside B, we can decompose β̄ into sum
of β1 and β2, where β1 ∈ B, while β2 =

∑m
i=1 kiv

F
i for some facet F of C. We have

f∗((̄β))− z(β̄) > 0

⇔ f∗(β1 + β2)− z(β1 + β2) > 0

⇔ f∗(β1 + β2)− z(β1) + z(β2) > 0

⇔ f∗(β1 + β2)− f∗(β1) = zLP (β2) + ϵ.

(13)

Consider the univariate CG functions defined as follows g∗(t) = f(β1 + tβ2) for t ∈ Z. Let c∗ be the
carrier of g∗. Since g∗ is univariate, g∗(0) = f∗(β1), and g∗ is non-decreasing, there must exist α ≥ 0
such that c∗(t) = αt+ f∗(β1). Since g∗ is a CG function with a rational coefficient, we must have

0 ≤ c∗(t)− g∗(t) ≤ r∗,

where r∗ is the CG rank of g∗, and γ∗(t) := c∗(t)− g∗(t) is periodic. Let T denote the periodicity of
γ∗, we have

c∗(1 + T ) + Tγ∗(1) + Tf∗(β1) ≥ (1 + T )c∗(1)

⇔ c∗(1 + T )− γ∗(1 + T ) + Tf∗(β1) ≥ (1 + T )(c∗(1)− γ∗(1))

⇔ f∗(β1 + Tβ2) + Tf∗(β1) ≥ (1 + T )f∗(β1 + β2)

⇔ f∗(β1 + (1 + T )β2)− f(β1) ≥ (1 + T )(f∗(β1 + β2)− f∗(β1)).

We derive the first inequality based on the linearity of c∗ and the fact that γ∗ is always non-negative.
For the second inequality, we subtract (1 + T )γ∗(1) from both sides and apply the periodic property.
Intuitively, the final inequality tells us that if we increase the input of f∗ by Tβ2, the increase in f∗

will increase at least linearly. In combination with (13), we have

f∗(β + (1 + τT )β2) ≥ (1 + τT )(f∗(β1 + β2)− f∗(β1)) + f∗(β1)

≥ (1 + τT )(zLP (β2) + ϵ) + f∗(β1).

However, this mean that, as τ → +∞, because ϵ > 0, f∗(β1 + (1 + τT )β2) will grow larger than the
LP relaxation value zLP (β1 + (1 + τT )β2), which contradicts our choice of L. Therefore, we have
z(β) = f∗(β) ∀β ∈ Zm

+ .
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3 Tree Representation Theorem of the IP Value Function

This section describes how we can derive a NN structure that can approximate an IP value function.
We respectively denote the three CG operators as:

linear operator : Λα,β(f, g)(v) = αf(v) + βg(v),

round-down operator : ⌊f⌋(v) = ⌊f(v)⌋,
minimum operator : min(f, g)(v) = min{f(v), g(v)}.

In addition, we also denote H := {Λα,β(·, ·)|α, β ∈ R+}∪{⌊·⌋,min{·, ·}} as the set of all CG operators
on a function in m-dimensional space. Finally, we use G to denote the class of m-dimensional CG
functions, and L∅ for the class of m-dimensional linear functions, i.e.,

L∅ := {f |∃λ ∈ Rm s.t f(v) = λT v ∀v ∈ Rm}.

For a class of functions F , we define Fh to be the class of functions in F equipped with a operator
h ∈ H to be

Fh := F ∪ {h(f, g)|f, g ∈ F}, if h ∈ {Λα,β,min},
Fh := F ∪ {⌊f⌋|f ∈ F}, if h = ⌊·⌋.

A class of functions can also be stacked with multiple CG operators. We define, inductively Fh1,...,hr

to be the class of functions Fh1,...,hr−1 equipped with the CG operator hr. Using this notation, we
can derive a simple representation for the class of rank r CG functions.

Lemma 6. Let Gr be the class of Gomory functions of rank at most r. We have

Gr = ∪(h1,...,hr)⊆HrLh1,...,hr ,

where Hr denotes the r-time Cartesian product for the set of CG operators H (when r = 0, H0 = ∅).

Proof. If r = 0, then G0 is the set of linear functions. Hence G0 = L∅. By induction, suppose that
the hypothesis is true for r; we prove it is also true for r + 1. By definition of Gomory functions, we
have Lh1,...,hr+1 ⊆ Gr+1. Thus, we only need to show that Gr+1 ⊆ ∪Lh1,...,hr+1 .

If a function f ∈ Gr+1, then exactly one of the following must be true for the last CG operation of h:

1. f = ⌊f ′⌋ for some f ′ ∈ Gk. By the induction hypothesis f ′ ∈ ∪Lh1,...,hr , and thus f ∈
∪Lh1,...,hr,⌊·⌋.

2. f = min{f ′, g′} for some f ′, g′ ∈ Gk. By the induction hypothesis f ′, g′ ∈ ∪Lh1,...,hr , thus
f ∈ ∪Lh1,...,hr,min.

3. f = αf ′+βg′ for some α, β ∈ R+ and f ′, g′ ∈ Gr. By the induction hypothesis f ′, g′ ∈ ∪Lh1,...,hr ,
thus f ∈ ∪Lh1,...,hr,Λα,β .

Hence, Gr+1 = ∪Lh1,...,hr,hr+1 .

Theorem 2. Given a real number δ > 0, a bounded input domain B := {b ∈ D|∥b∥1 ≤ K}, and a
CG function z(b) of rank r, there exists a NN f with O(r) layers and O(2r+1) neurons such that∫

B
|f(b)− z(b)|db < δ.

14



Proof. The proof is based on the construction of the function z. Certainly, when z is an affine
function, we can use a single neuron to model z as a NN exactly. Suppose the theorem is true for
every CG function that uses r or fewer operations; we prove that it is also true for CG function that
contains r + 1 operations.

Case 1: Suppose z = αz1 + βz2, where α, β ∈ R+ and z1, z2 are CG functions of rank smaller or
equal to r. By the induction hypothesis, there exist two NNs f1 and f2 such that∫

B
|f1 − z1| ≤

δ

2α
and

∫
B
∥f2 − z2∥ ≤ δ

2β
.

We construct a NN representing f which contains f1, f2, and a final layer with one neuron whose
input is the output of f1, f2 and whose weight is (α, β) so that we have f = αf1 + βf2. Hence∫

B
|f − z| ≤ α

∫
B
|f1 − z1|+ β

∫
B
|f2 − z2| ≤ δ.

Case 2: Suppose z = min{z1, z2}. By the induction hypothesis, there exist two NNs f1 and f2 such
that ∫

B
|f1 − z1| ≤

δ

2
and

∫
B
|f2 − z2| ≤

δ

2
.

We then construct a NN f , which contains f1, f2, and a final min layer. We have∫
B
|f − z| =

∫
B
|min{f1, f2} −min{z1, z2}| ≤

∫
B
|f1 − z1|+

∫
B
|f2 − z2∥ ≤ δ.

Case 3: Suppose z = ⌊z′⌋. Suppose we have a NN f ′ that approximates z′, and the NN f is
constructed from f ′ with a final layer equal to hϵ. By Lemma 3, we choose ϵ so that ∥hϵ(z′)−⌊z′⌋∥1 ≤
δ
2 . Furthermore, we choose the NN f ′ such that ∥z′ − f ′∥1 ≤ δ

2 . We have∫
B
|f − z| =

∫
B
|hϵ(f ′)− hϵ(z

′) + hϵ(z
′)− ⌊z′⌋|

≤
∫
B
|hϵ(f ′)− hϵ(z

′)|+
∫
B
|hϵ(z′)− ⌊z′⌋|

≤
∫
B
|f ′ − z′|+

∫
B
|hϵ(z′)− ⌊z′⌋|.

Hence, we derive ∫
B
|f − z| ≤ δ

2
+

δ

2
= δ.

Constructing a NN based on Theorem 2 can be viewed as forming a balanced binary tree and then
a fully connected layer connecting the input with the tree’s leaves. For an illustration, see Figure
4. Knowing the order CG operations of z(b) allows us to assign each NN layer the corresponding
operations.
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Approximate 
the floor function

minmin

Figure 4: An example of the NN with exponential size width and linear size depth with respect to
CG rank. Consider the function f(x1, x2) =

1
2 min{⌊34x1 +

7
5x2⌋, ⌊

3
2x1 + x2⌋}+ 2

3⌊
1
2x1 +

1
3x2⌋. We

can see that f(x1, x2) ∈ L⌊·⌋,min,Λα,β . Based on the order of CG operations, we can construct a NN
that models f(x1, x2) top-down and in reverse order of the operation. In particular, starting from
a single neuron corresponding to the output of the net, we create two children nodes, which will
be the next layer. And we keep “branching” until we reach depth r, which is the rank of the CG
function. The activation function for Λα,β is linear, min is min, and ⌊·⌋ is the round-down function,
which can be approximated using a smaller network.

We have shown the existence of an NN with a bounded size that approximates an IP value function.
However, using this NN architecture cannot assure the monotone and superadditive property of
an IP value function. In the next sections, we extend the structural results of Section 2 to derive
another representation theorem, which allows us an NN training framework that guarantees an upper
approximation of the IP value function.

4 Block Representation Theorem of the IP Value Function

Based on Theorem 1, we construct a NN structure that can capture the IP-value function z(β).
Naturally, we want to have a structure that can represent a function of the form as in Equation (5).
In Figure 5, we have a NN’s architecture with k + 1 hidden neurons, where exactly one of them has
no activation function, while the remaining k has an activation function that approximates the floor
function. We use the term CG neuron to refer to a neuron that takes the right-hand side β and
output of all previous neurons as input. In addition, we name an NN consisting only of CG neurons
a CG-Block. When an NN is constructed by taking the minimum of multiple CG-Block, we call it a
CG-Neural Network (or CGNN).
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Input: right-hand side vector β

CG Block 1 CG Block 2 CG Block 3

Min-Pooling

Output of CGNN

Input: right-hand side vector β

fu
lly

-c
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ne
ct

ed CG Hidden Layer

Output of CG-Block

Figure 5: CGNN Architecture: (Left) An illustration of a CG-Block. (Right) An illustration of a
CGNN containing multiple CG-Block and a Min-Pooling Layer.

Theorem 3. There exists a finite set of N number k1, . . . , kN such that there exists a CGNN with
N CG-blocks with ki CG-neurons each that can represent the IP-value function z(β).

Proof. By Theorem 1, if each block is equal to a CG dual function fb(β) for every b ∈ B, then the
entire NN is exactly equal to the IP value function z(β), i.e, N = ∥B∥. In addition, since every CG
dual function requires a finite number of round-down operations, for each block i ∈ JNK, we only
need a finite number ki neurons to represent the CG dual function.

4.1 Mixed-Integer Formulation for IP Value Function

In this subsection, we discuss an optimization formulation that guarantees a superadditive function
which is an upper bound of the IP value function. Based on Theorem 3, an IP value function can
be represented by a finite number of blocks, where each block is parameterized by a finite set of
weights. We first derive the following formulation for the superadditive dual feasibility of one block
with k CG-neurons.

zij = ⌊z1i ū
j
i + · · ·+ zj−1

i ūjj−1 + ai · ũj⌋ ∀i ∈ JnK, j ∈ JkK, (15a)

ai·p+ q1z
1
i + · · ·+ qkz

k
i ≥ ci ∀i ∈ JnK, (15b)

p, q, u ≥ 0 (15c)

In Model (15), we use the variables z for the post-activation values. Moreover, since for each
CG-neurons, there are two types of weights: weights for the input and weights for the previous
CG-neurons, we use ũ for the input weight and ū to denote the previous CG-neurons’ weights. We
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can extend (15) for a superadditive dual feasible formulation to a CG net with N blocks.

zij,r = ⌊z1i,rū
j
i,r + · · ·+ zj−1

i ūjj−1,r + ai · ũjr⌋ ∀i ∈ JnK, j ∈ JkrK, r ∈ JNK (16a)

ai·pr + qr,1z
1
i,r + · · ·+ qr,krz

kr
i,r ≥ ci ∀i ∈ JnK, r ∈ JNK, (16b)

p, q, u ≥ 0 (16c)

In Model (16), we introduce variables p, q, u for each block (with the subscript r ∈ JNK), where each
block has kr CG-neurons. According to Theorem 1, let B be the finite set that z(β) = min{fb(β)|b ∈
B}, we have the following MIP for finding the IP value function.

max
∑
b∈B

wb (17a)

zij,r = ⌊z1i,rū
j
i,r + · · ·+ zj−1

i ūjj−1,r + ai · ũjr⌋ ∀i ∈ JnK, j ∈ JkrK, r ∈ JNK (17b)

zbj,r = ⌊zbi,rū
j
i,r + · · ·+ zj−1

i ūjj−1,r + ai · ũjr⌋ ∀b ∈ JBK, j ∈ JkrK, r ∈ JNK (17c)

ai·pr + qr,1z
1
i,r + · · ·+ qr,krz

kr
i,r ≥ ci ∀i ∈ JnK, r ∈ JNK, (17d)

ai·b+ qr,1z
1
i,r + · · ·+ qr,krz

kr
i,r ≥ wb ∀b ∈ B, r ∈ JNK, (17e)

p, q, u ≥ 0. (17f)

Corollary 2. A solution of (17) yields the value of zIP for every b ∈ D.

4.2 Learning CG Multipliers

In addition to allowing us to derive a MIP formulation for finding an IP value function, the
representation via CG-Block can be viewed as a way of “learning” CG multipliers.

Corollary 3. Let CGB(β) : Rm → R be a function represented by a CG-Block with non-negative
weights and round-down activation functions. If CGB(ai) > ci∀i ∈ JnK, then CBG(β) is an upper
bound of the IP value function z(β).

Hence, for a right-hand side b, finding the weights of a CG-Block that minimize CGB(b) gives us the
optimal value of IP(b). However, since each CG-block represents one CG dual function, the weights
of the CG block will be the CG-multipliers that derive the convex hull of IP(b). In general, we want
to find the weight of a CG-Block that minimizes:

min CGB(b)

s.t CGB(ai) ≥ ci ∀i ∈ JnK.
(18)

Even though solving (18) to optimality is difficult, obtaining any suboptimal solution where CGB(b) <
zLP (b) is meaningful because in this case, the weights of the CG-Block derive nontrivial CG
inequalities.

4.3 Bounds on CG multipliers

In Theorem 3, we use the round-down operation as the activation function. When restricting the
activation functions to ReLU, or other piecewise affine activation functions that only have a finite
number of pieces, e.g., Leaky ReLU, binarized, or quantized activation functions [18, 32], we can
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only approximate the IP value function within a bounded domain. Hence, in this subsection, we
discuss a possible upper bound of the CG multipliers. As the weight of a CGNN directly depends on
the CG multipliers, bounds on the CG multipliers can derive bounds on the number of neurons in
a CGNN with ReLU activation. Certainly, when the right-hand side vector b varies, we may need
different CG multipliers to derive the convex hull Sb. Hence, in Definition 2, we use the superscript
b to signal the dependence of a CG inequality on b. However, for the remaining of this subsection,
we fix a right-hand side vector b and suppress the dependence on b for notations simplicity. For a
vector u ∈ Rm

+ , we define {u} := [{u1}, . . . , {um}]T also be a vector in Rm
+ of the fractional part of

every element in u, that is {u} = u− ⌊u⌋.

Lemma 7. For any k non-negative vectors u1, . . . , uk ∈ Rm
+ , we have P̄ := {x ∈ Rn

+|Ax ≤
b, ⌊(ui)TA⌋x ≤ ⌊(ui)T b⌋ ∀i ∈ JkK} contains P̃ := {x ∈ Rn

+|Ax ≤ b, ⌊{ui}TA⌋x ≤ ⌊{ui}T b⌋ ∀i ∈ JkK}.

Proof. For the base case, we show that for u1 ∈ Rm
+ , P̄ 1 := {x ∈ Rn

+|Ax ≤ b, ⌊(u1)TA⌋x ≤ ⌊(u1)T b⌋}
contains P̃ 1 := {x ∈ Rn

+|Ax ≤ b, ⌊{u1}TA⌋x ≤ ⌊{u1}T b⌋}.

For any j ∈ JmK and ej denotes the jth unit vector, we have

⌊(u1 − ej)
TA⌋x ≤ ⌊(u1 − ej)

T b⌋
⇔ ⌊(u1)TA−Aj⌋x ≤ ⌊(u1)T b− bj⌋

⇔ ⌊(u1)TA⌋x−Ajx ≤ ⌊(u1)T b⌋ − bj .

(19)

We obtain the last inequality because Aj - the jth row of A and bi are integral. By taking sum of
(19) and the ith row of Ax ≤ b, we derive that ⌊uTA⌋x ≤ ⌊uT b⌋ is valid for P̃ . By applying this
procedure ⌊u1j⌋ times for every j ∈ JmK, we have P̃ 1 ⊆ P̄ 1. By applying the same argument for
k > 1 times, we derive that P̃ ⊆ P̄ .

In this section, we use S to denote Sb to suppress dependence on b when the context is clear. Since
for any non-negative CG multiplier u ∈ Rm

+ , we always derive a valid inequality for S, thus S ⊆ P̃ .
Moreover, Lemma 7 states that we can replace the multipliers of every rank 1 CG inequality by their
fractional parts and obtain a tighter relaxation. In what follows, we show that this still holds for
higher-rank CG inequalities. Suppose that the convex hull S requires up to rank r Chvátal-Gomory
inequalities (r ∈ Z+), we denote

u1 = [u11, . . . , u
1
k1 ] as multipliers corresponding to rank 1 CG inequalities,

...
ur = [ur1, . . . , u

r
kr ] as multipliers corresponding to rank r CG inequalities,

where each ui is a matrix and uij is a vector for every j ∈ JkiK, i ∈ JrK, that defines linear constraints
of S. Whenever we add new CG inequalities, we obtain a new LP with an updated constraint matrix
and an updated right-hand side vector. Notationally, we let A0 := A, b0 := b, and

Ai =

[
Ai−1

⌊(ui)TAi−1⌋

]
, with bi =

[
bi−1

⌊(ui)T bi−1⌋

]
∀i ∈ JrK.

Similarly, we denote S0 := {x ∈ Rn
+|Ax ≤ b} and Si := {x ∈ Rn

+|Aix ≤ bi, } for i ∈ JrK. For every
i ∈ JrK, Si can be interpreted as the polyhedron where we add all rank i CG inequalities. Trivially,
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we have
S0 ⊇ S1 ⊇ · · · ⊇ Sr = S.

We let ũ1i = {u1i } for every i ∈ JK1K and S̃1
b = {x ∈ Rn

+|Ã1x ≤ b̃1}, where Ã1 and b̃1 are constructed
from A and b by introducing the CG inequalities corresponding to ũi for every i ∈ Jk1K. Based
on Lemma 7, we have that S̃1 ⊆ S1. The main idea of the following theorem is that we want to
construct a sequence S̃1 ⊇ S̃2 ⊇ · · · ⊇ S̃r such that S̃i ⊆ Si for every i ∈ JrK, and thus S̃r = S.

Lemma 8. For a positive integer i ≤ r, suppose we have a polyhedron S̃i that satisfies S̃i ⊆ Si.
Then we can construct a polyhedron S̃i+1 from S̃i by adding CG inequalities with multipliers in [0, 1]
such that S̃i+1 ⊆ Si+1.

Proof. Since S̃i
b ⊆ Si

b, for every k ∈ JkiK, there exists vik such that

(vik)
T Ãi = ⌊(uik)TAi−1⌋.

Hence, we can write Ai as a non-negative linear combination of rows in Ãi, i.e., there exists V i such
that V iÃi = Ai. Moreover, by construction, we have that:

Ai+1 =


Ai

⌊(ui+1
1 )TAi⌋

...
⌊(ui+1

ki+1
)TAi⌋

 =


Ai

⌊(ui+1
1 )TV iÃi⌋

...
⌊(ui+1

ki+1
)TV iÃi⌋

 .

Let ũi+1
l = {(ui+1

l )TV i} for every l ∈ Jki+1K and apply Lemma 7, we have:

S̃i+1 := {x ∈ Rn
+|Ãix ≤ b̃i, ⌊ũi+1

k Ãi⌋x ≤ ⌊ũi+1
l b̃i⌋ ∀l ∈ Jki+1K} ⊆ Si+1

b .

Since by construction, we have S̃1 ⊆ S1; we derive the following claim by applying Lemma 8. The
following result can also be proven as a corollary from Theorem 7.2 of [11] and Lemma 7

Theorem 4. There exists a set of CG multipliers {uil|l ∈ ∥ki∥, i ∈ JrK} corresponding to valid
inequalities that defines Sb, where r is the CG rank of Sb, such that ∥uij∥∞ < 1 for every j ∈ JriK
and i ∈ JrK.

Proof. This is a direct consequence of Lemma 8. Since every valid inequality of Sb is a CG inequality,
we derive that the CG inequality is obtained by multipliers of value between 0 and 1.

5 Conclusion and Future Research

In this work, we have proved the existence of NNs that can approximate any IP Value Function
within a desired L1 tolerance. In addition to the NN Representation Theorems, our result on
constructing IP value functions via CG multipliers can be used to derive a MIP formulation for the
IP value functions over a (possibly) unbounded domain.

While we show that the set B in (17) only contains a finite number of right-hand side vectors,
obtaining every element of B is computationally expensive as there can be any exponential number
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of element in B. On the other hand, we can replace the set B with any set of right-hand side
vectors to look for a good approximation of the IP value function. The inquiry into identifying a
good sub-optimal formulation for approximating the IP value function remains a subject for future
research.
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