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Abstract

Abstract. New first-order methods now need to be improved to keep up with the constant de-
velopments in machine learning and mathematics. They are commonly used methods to solve
optimization problems. Among them, the algorithm branch based on gradient descent has devel-
oped rapidly with good results achieved. Not out of that trend, in this article, we research a new
method combined with acceleration methods to provide updated results for optimization problems
commonly found in machine learning. Besides, realizing the remarkable increase in parameters
in recent deep learning models, we also research stochastic methods to increase speed in opti-
mizing model parameters. Also in this article, theories to prove the convergence of the proposed
algorithms are also given and there are experiments to prove the effectiveness of those.

1 Introduction

Along with the strong development of machine learning in recent years, first-order methods have also
been rapidly improved and play a core role in optimizing models. The most popular is gradient descent
and its variations as they are always the choice for problems in machine learning. Previously, gradient
descent was also a key method in solving nonlinear problems and other problems in mathematics. With
such wide application, a lot of research revolves around gradient descent. Most of them are methods
to improve acceleration and step size to achieve new results in convergence theory and experiment.
With the motivation from those studies, we propose some methods that combine several acceleration
methods with new step sizes. We present them and their stochastic versions in detail along with
theorems proving convergence and experiments. Also in this study, some new result for machine
learning and mathematics problems are presented.

Throughout the study, we use some notations for convenience in presenting algorithms and theory.
Let f : Rd → R be the objective function that we want to optimize, the problem formulation that we
consider is the basic unconstrained optimization problem

min
x∈Rd

f(x), (1)

where d ∈ N be the dimension or the number of parameters of the function, [d] = {1, 2, 3, ..., d}. We
assume that (1) has a solution and denote its optimal value by f∗. We denote ∇f be the gradient
of f . Assume that at each iteration we get sample ξk to make a stochastic gradient of f denoted as
∇ξkf(x

k), which in this paper is briefly written as ∇ξf(x
k). We also assume that E [∇ξf(x)] = ∇f(x)

for all x ∈ Rd and note En−1 [·] the conditional expectation knowing f1, ..., fn−1. Finally, we note {ςk}
is a sequence and ςk is its k-th component.

Gradient Descent, the mehod originally proposed by Augustin-Louis Cauchy[1], is a first-order
optimization method with the idea of updating the variable xk ∈ Rd at each iteration k > 0 with the
formula

xk+1 = xk − λk∇f(xk)

where λk > 0 is the stepsize at iteration k. In efforts to improve Gradient Descent, the accelerated
methods of Boris T. Polyak, Gradient Descent with Momentum or Heavy Ball method[15] and Nes-
terov’s Accelerated Gradient of Yurii Nesterov[12] became the most prominent. By improving the
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variable xk update method, Gradient Descent with Momentum

vk+1 = γvk + λk∇f
(
xk
)

xk+1 = xk − vk+1

and Nesterov’s Accelerated Gradient

vk+1 = γvk +∇f
(
xk
)

xk+1 = xk − λk

(
γvk+1 +∇f

(
xk
))

where 0 ≤ γ < 1 is momentum factor, have achieved many achievements and significantly improved
results on optimization problems. The above methods are also opportunities to open up new research
directions based on Gradient Descent to improve results and solve optimization problems. Inheriting
such motivation along with learning about related research in section 2, in this study we combine
acceleration methods based on Gradient Descent with new step sizes to create new methods in section
4. Besides, we also propose stochastic methods in section 5. Along with the proposed methods, we
present proof of their convergence in sections and conduct experiments to measure effectiveness when
applied to problems in the fields of mathematics, machine learning and deep learning in section 6.

2 Related work

Since their appearance, Gradient Descent with momentum[15] and Nesterov’s Accelerated Gradient[12]
have achieved many achievements in the field of optimization. They open up new research directions
to improve the above algorithms and prove them with new methods. The study [11] proposed an
adaptive step size for Gradient Descent and achieved various good results in optimization problems
when combined with acceleration. The study [5] provides proof of global convergence and global
intercepts of the convergence rate of Gradient Descent with momentum and Nesterov’s Accelerated
Gradient. In addition, [10] provides an improved analysis that shows Stochastic Gradient Descent
with momentum converges as quickly as Stochastic Gradient Descent on a smooth objective function,
with both strongly convex and non-convex settings. The study [16] showed that Stochastic Gradient
Descent with momentum converges with a convergence rate O((1− γ)−2) assuming that the gradients
are bounded. In [3], they improve this ratio to O((1− γ)−1). The study [10] obtained similar results
but with weaker assumption. And in [2], they provided an improved analysis of Stochastic Gradient
Descent with momentum with a tight Liapunov analysis.

3 Step Size

Algorithm 1 Novel step size

1: Inittialization. Select λ0 > 0, 0 < η1 < η0 and a positive real sequence {εk} such that
∞∑
k=0

εk < ∞.

Choose x0 ∈ Rd.
2: x1 = x0 − λ0∇f(x0)
3: for k = 1, 2, . . . do

4: if λk−1 > η0
∥xk−xk−1∥

∥∇f(xk)−∇f(xk−1)∥ then

5: λk = η1
∥xk−xk−1∥

∥∇f(xk)−∇f(xk−1)∥
6: else
7: λk = (1 + εk−1)λk−1

8: end if
9: xk+1 = xk − λk∇f(xk)

10: end for

We provide the step size lemmas that are used in all the algorithms proposed in this study. To facilitate
proving the convergence of the algorithms, we show that the step size has lower bounded and converges.
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Lemma 3.1. [9] Let {λk} be the sequence generated by Algorithm 1 where f is smooth and its gradient
is L-Lipschitz continuous, then

λk ≥ min(λ0,
η1
L
) ∀k ≥ 0

and if f is smooth, strongly convex and its gradient is L-Lipschitz continuous, then

λk <
(1 + εk−1)η0

µ
∀k ≥ 0

Proof. It’s obviously true with k = 0. With k ≥ 1, we consider two case:

• If
∥∥∇f(xk)−∇f(xk−1)

∥∥ > η0

λk−1

∥∥xk − xk−1
∥∥ then λk = η1∥xk−xk−1∥

∥∇f(xk)−∇f(xk−1)∥ . Because of L-

smooth assumption on f , we have ∥∇f(xk)−∇f(xk−1∥ ≤ L∥xk − xk−1∥, so λk ≥ η1

L .

• If
∥∥∇f(xk)−∇f(xk−1)

∥∥ < η0

λk−1

∥∥xk − xk−1
∥∥ then λk = (1 + εk−1)λk−1 ≥ λk−1.

By induction we get that ∀k ≥ 0, λk ≥ min(λ0,
η1

L ). Moreover, if f is smooth, strongly convex and its
gradient is L-Lipschitz continuous, we can deduce that

∀k ≥ 0, λk <
(1 + εk−1)η0

∥∥xk − xk−1
∥∥

∥∇f(xk)−∇f(xk−1)∥
=

(1 + εk−1)η0
µ

Lemma 3.2. [9] Let {λk} be the sequence generated by Algorithm (1) where f is smooth and its
gradient is L-Lipschitz continuous, then {λk} converges to λ < ∞.

Proof. Firstly we will proof that ln(λk+1

λk
) ≤ ln(1 + εk),∀k ≥ 0. Let’s consider two case:

• If
∥∥∇f(xk)−∇f(xk−1)

∥∥ > η0

λk−1

∥∥xk − xk−1
∥∥⇔ η0∥xk−xk−1∥

∥∇f(xk)−∇f(xk−1)∥ < λk−1 then

λk =
η1∥xk − xk−1∥

∥∇f(xk)−∇f(xk−1)∥
η1 < η0

<
η0∥xk − xk−1∥

∥∇f(xk)−∇f(xk−1)∥
< λk−1,

Then λk

λk−1
< 1 ⇒ λk

λk−1
< 1 + εk−1 (because {εk} is a positive sequence).

• If
∥∥∇f(xk)−∇f(xk−1)

∥∥ < η0

λk−1

∥∥xk − xk−1
∥∥ then λk = (1+ εk−1)λk−1. Then

λk

λk−1
= 1+ εk−1.

From two case, we have
λk

λk−1
≤ 1 + εk−1, ∀k ≥ 1

⇔ λk+1

λk
= 1 + εk, ∀k ≥ 0

Secondly we will show the main result of the Lemma. Let ak = ln(λk+1)−ln(λk). We have ak = a+k −a−k ,
where a+k = max(0, ak), a

−
k = −min(0, ak). So a+k ≥ 0, a−k ≥ 0,∀k ≥ 0. We have

ak = ln(
λk+1

λk
) ≤ ln(1 + εk) ≤ εk,∀k ≥ 0,

so a+k ≤ εk. Because
∞∑
k=0

εk is convergent, we have
∞∑
k=0

a+k is convergent.

Consider

ln(λk+1)− λ0 =

k∑
i=0

ai =

k∑
i=0

(a+i − a−i ) =

k∑
i=0

a+i −
k∑

i=0

a−i

Assert lim
k→+∞

k∑
i=0

a−i = +∞ then lim
k→+∞

ln(λk) = −∞ ⇔ lim
k→+∞

λk = 0. But in Lemma (3.1) we

showed that λk ≥ min(λ0,
η1

L ) > 0,∀k ≥ 0. So
+∞∑
k=0

a−k is convergent. Because of that, we have

lim
k→+∞

ln(λk) < +∞ ⇒ lim
k→+∞

λk < +∞
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Lemma 3.3. There exists a fixed number k̄ such that∥∥∇f
(
xk
)
−∇f

(
xk−1

)∥∥ ≤ η0
λk−1

∥∥xk − xk−1
∥∥ ∀k ≥ k̄

and therefore λk > λk−1 ∀k ≥ k̄

Proof. Suppose by contradiction that there exists {kj} , kj → +∞ such that∥∥∇f
(
xkj
)
−∇f

(
xkj−1

)∥∥ >
η0

λkj−1

∥∥xkj − xkj−1
∥∥ .

For this case

λkj
= η1

∥∥xkj − xkj−1
∥∥

∥∇f (xkj )−∇f (xkj−1)∥
Consequently,

η1
∥∥xkj − xkj−1

∥∥
λkj

=
∥∥∇f

(
xkj
)
−∇f

(
xkj−1

)∥∥ >
η0

λkj−1

∥∥xkj − xkj−1
∥∥

i.e.,

λkj

λkj−1
<

η1
η0

∀kj

On the other hand, from Lemma 3.2 we have

lim
kj→+∞

λkj
= lim

kj→+∞
λkj−1 = lim

k→+∞
λk = λ∗. (2)

hence we deduce that

λ∗

λ∗ ≤ η1
η0

< 1

It is a contradiction and we finish the proof.

4 Accelerated NGD

In this section, we propose two accelerated method. The algorithm 2 use our new step size for Gradient
Descent with momentum (or Heavy Ball method) and called Novel Gradient Descent with momentum
(NGDm). Beside, the algorithm 3 also use our new step size for Nesterov’s Accelerated Gradient
and called Novel Gradient Descent with Nesverov’s accelerated (NGD Nesterov). After present the
algorithms, the proves of convergence are also presented.

4.1 Assumptions

Assumption 4.1. We assume that f is lower bounded by f∗

∀x ∈ Rd, f(x) ≥ f∗.

Assumption 4.2. We assume f is smooth and µ-strongly convex, i.e its gradient is L-Lipschitz
continuous:

∀x, y ∈ Rd, ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

With above assumptions, we can prove that the algorithm 2 and algorithm 3 converges under certain
parameter conditions.
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Algorithm 2 Novel Gradient Descent with momentum (NGDm)

1: Inittialization. Select λ0 > 0, 0 < η1 < η0, 0 < γ < 1 and a positive real sequence {εk} such that
∞∑
k=0

εk < ∞. Choose x0 ∈ Rn, λ−1 = λ0.

2: v1 = ∇f
(
x0
)

3: x1 = x0 − λ0v
1

4: for k = 1, 2, . . . do
5: if

∥∥∇f(xk)−∇f(xk−1)
∥∥ > η0

λk−1

∥∥xk − xk−1
∥∥ then

6: λk = η1
∥xk−xk−1∥

∥∇f(xk)−∇f(xk−1)∥
7: else
8: λk = (1 + εk−1)λk−1

9: end if
10: vk+1 = γvk + λk∇f

(
xk
)

11: xk+1 = xk − vk+1

12: end for

4.2 Heavy Ball Method

Theorem 4.1. Under assumptions in 4.1, if (1+εk−1)η0

1−γ ≤ µ
L ∀k ∈ N and 0 ≤ γ < 1, the sequence {xk}

generated by algorithm 2 satisfies

f(xK)− f∗ ≤ 1

K + 1

(
γ

1− γ
(f(x0)− f∗) +

1

2λ0(1− γ)
∥x0 − (1− γ)x∗∥2 + C1

1− γ

)
where

C1 =

k̄−1∑
k=1

(
1

λk
− 1

λk−1

)
∥xk − γxk−1 − (1− γ)x∗∥2

and k̄ satisfy lemma 3.3 and

xK =
1

K + 1

K∑
k=0

xk

Proof. Rearranging the algorithm 2, at each iteration k, we have

xk+1 − γxk = xk − γxk−1 − λk∇f(xk) (3)

Apply norm to (3), we get

∥xk+1 − γxk − (1− γ)x∗∥2 = ∥xk − γxk−1 − (1− γ)x∗∥2 + λ2
k∥∇f(xk)∥2

− 2⟨xk − γxk−1 − (1− γ)x∗, λk∇f(xk)⟩
= ∥xk − γxk−1 − (1− γ)x∗∥2 + λ2

k∥∇f(xk)∥2

− 2(1− γ)λk⟨xk − x∗,∇f(xk)⟩ − 2γλk⟨xk − xk−1,∇f(xk)⟩ (4)

Because f is a smooth convex function and its gradient is Lipschitz continuous with constant L, apply
to (4) Theorem 2.1.5 in [13]

f(x)− f(y) +
1

2L
∥∇f(x)−∇f(y)∥2 ≤ ⟨x− y,∇f(x)⟩
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we get

∥xk+1 − γxk − (1− γ)x∗∥2 ≤ ∥xk − γxk−1 − (1− γ)x∗∥2 + λ2
k∥∇f(xk)∥2

− 2(1− γ)λk

(
f(xk)− f∗ +

1

2L
∥∇f(xk)∥2

)
− 2γλk

(
f(xk)− f(xk−1) +

1

2L
∥∇f(xk)−∇f(xk−1)∥2

)
≤ ∥xk − γxk−1 − (1− γ)x∗∥2 − 2(1− γ)λk

(
f(xk)− f∗)

− 2γλk

(
f(xk)− f(xk−1)

)
+

(
λ2
k − (1− γ)λk

L

)
∥∇f(xk)∥2 (5)

From lemma 3.1, we note λk < (1+εk−1)η0

µ ∀k ∈ N. Combining with (1+εk−1)η0

1−γ ≤ µ
L ∀k ∈ N and

divide the two side of 5 in 2λk, we could deduce that

1

2λk
∥xk+1 − γxk − (1− γ)x∗∥2 ≤ 1

2λk
∥xk − γxk−1 − (1− γ)x∗∥2 − (1− γ)

(
f(xk)− f∗)

− γ
(
f(xk)− f(xk−1)

)
(6)

Summing over k = 0, ...,K gives

(1− γ)

K∑
k=0

(f(xk)− f∗) +

K∑
k=0

(
γ(f(xk)− f∗) +

1

2λk
∥xk+1 − γxk − (1− γ)x∗∥2

)

≤
K∑

k=0

(
γ(f(xk−1)− f∗) +

1

2λk
∥xk − γxk−1 − (1− γ)x∗∥2

)
With lemma 3.3, there exists a fixed number k̄ such that

(1− γ)

K∑
k=0

(f(xk)− f∗) ≤ γ(f(x0)− f∗) +
1

2λ0
∥x0 − (1− γ)x∗∥2 − 1

2λK
∥xK+1 − (1− γ)x∗∥2

+

k̄−1∑
k=1

(
1

2λk
− 1

2λk−1

)
∥xk − γxk−1 − (1− γ)x∗∥2︸ ︷︷ ︸
C1<∞

+

K∑
k=k̄

(
1

2λk
− 1

2λk−1

)
∥xk − γxk−1 − (1− γ)x∗∥2︸ ︷︷ ︸
C2<0

And because f is convex, we have

f(xK)− f∗ ≤ 1

K + 1

(
γ

1− γ
(f(x0)− f∗) +

1

2λ0(1− γ)
∥x0 − (1− γ)x∗∥2 + C1

1− γ

)

4.3 Nesterov’s Accelerated Method

Theorem 4.2. Under assumptions in 4.1, if (1 + εk−1)η0 ≤ µ
L ∀k ∈ N and 0 ≤ γ < 1, the sequence

{xk} generated by algorithm 3 satisfies

f(xK)− f∗ ≤ 1

K + 1

(
γ

1− γ
f(x0 − f∗) +

(1− γ)

2λ0
∥x0 − x∗∥2 + (1− γ)C3

)

6



Algorithm 3 Novel Gradient Descent with Nesterov’s accelerated (NGD Nesterov)

1: Inittialization. Select λ0 > 0, 0 < η1 < η0, 0 < γ < 1 and a positive real sequence {εk} such that
∞∑
k=0

εk < ∞. Choose x0 ∈ Rn, λ−1 = λ0.

2: v1 = ∇f
(
x0
)

3: x1 = x0 − λ0v
1

4: for k = 1, 2, . . . do
5: if

∥∥∇f(xk)−∇f(xk−1)
∥∥ > η0

λk−1

∥∥xk − xk−1
∥∥ then

6: λk = η1
∥xk−xk−1∥

∥∇f(xk)−∇f(xk−1)∥
7: else
8: λk = (1 + εk−1)λk−1

9: end if
10: vk+1 = γvk + λk∇f

(
xk
)

11: xk+1 = xk −
(
γvk+1 + λk∇f

(
xk
))

12: end for

where

C3 =

k̄−1∑
k=1

(
1

2λk
− 1

2λk−1

)
∥xk + ak − x∗∥2

ak+1 =
γ

1− γ
(xk+1 − xk + λk∇f(xk))

and k̄ satisfy lemma 3.3 and

xK =
1

K + 1

K∑
k=0

xk

Proof. Modify the algorithm 3, we have

yk+1 = xk − λk∇f(xk) (7)

xk+1 = yk+1 + γ(yk+1 − yk) (8)

Assume that 0 ≤ γ < 1 we have

ak+1 =
γ

1− γ
(xk+1 − xk + λk∇f(xk)) (9)

From (7) and (9), we get

xk+1 + ak+1 =
xk+1

1− γ
+

γ

1− γ
(λk∇f(xk)− xk)

= xk + ak − λk∇f(xk)

1− γ

Consider that,

∥xk+1 + ak+1 − x∗∥2 = ∥xk + ak − x∗∥2 + λk
2

(1− γ)2
∥∇f(xk)∥2 − 2λk

1− γ
⟨xk + ak − x∗,∇f(xk)⟩

= ∥xk + ak − x∗∥2 + λk
2

(1− γ)2
∥∇f(xk)∥2 − 2λk

1− γ
⟨xk − x∗,∇f(xk)⟩

− 2γλk

(1− γ)2
⟨xk − xk−1,∇f(xk)⟩ − 2γλkλk−1

(1− γ)2
⟨∇f(xk−1),∇f(xk)⟩
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Because f is a smooth convex function and its gradient is Lipschitz continuous with constant L, with
Theorem 2.1.5 in [13]

f(x)− f(y) +
1

2L
∥∇f(x)−∇f(y)∥2 ≤ ⟨x− y,∇f(x)⟩

We have,

∥xk+1 + ak+1 − x∗∥2 ≤ ∥xk + ak − x∗∥2 − 2λk

1− γ
(f(xk)− f(x∗))− λk

(1− γ)L
∥∇f(xk)∥2

− 2γλk

(1− γ)2
(f(xk)− f(xk−1))− γλk

L(1− γ)2
∥∇f(xk)−∇f(xk−1)∥2

− 2γλkλ
k−1

(1− γ)2
⟨∇f(xk−1),∇f(xk)⟩+ λ2

k∥∇f(xk)∥2

(1− γ)2
∥xk+1 + ak+1 − x∗∥2

≤ ∥xk + ak − x∗∥2 − 2λk

1− γ
(f(xk)− f(x∗))− 2γλk

(1− γ)2
(f(xk)− f(xk−1))

− γλk

L(1− γ)2
∥∇f(xk)−∇f(xk−1)∥2 + γλkλk−1

(1− γ)2
∥∇f(xk)−∇f(xk−1)∥2︸ ︷︷ ︸

A

−
(

λk

(1− γ)L
+

γλkλk−1

(1− γ)2
− λ2

k

(1− γ)2

)
∥∇f(xk)∥2︸ ︷︷ ︸

B

−γλkλk−1

(1− γ)2
∥∇f(xk−1)∥2

(10)

From lemma 3.1, we note λk < (1+εk−1)η0

µ ∀k ∈ N. Combining with (1 + εk−1)η0 ≤ µ
L ∀k ∈ N and

divide the two side of 10 in 2λk, we could deduce that

1

2λk
∥xk+1 + ak+1 − x∗∥2 ≤ 1

2λk
∥xk + ak − x∗∥2 − f(xk)− f(x∗)

(1− γ)
− γ(f(xk)− f(xk−1))

(1− γ)2

Summing over k = 0, ...,K gives

1

1− γ

K∑
k=0

(f(xk)− f∗) +

K∑
k=0

(
γ

(1− γ)2
(f(xk)− f∗) +

1

2λk
∥xk+1 + ak+1 − x∗∥2

)

≤
K∑

k=0

(
γ

(1− γ)2
(f(xk−1)− f∗) +

1

2λk
∥xk + ak − x∗∥2

)
With lemma 3.3, there exists a fixed number k̄ such that

1

1− γ

K∑
k=0

(f(xk)− f∗) ≤ γ

(1− γ)2
(f(x0)− f∗) +

1

2λ0
∥x0 − x∗∥2 − 1

2λK
∥xK+1 + aK+1 − x∗∥2

+

k̄−1∑
k=1

(
1

2λk
− 1

2λk−1

)
∥xk + ak − x∗∥2︸ ︷︷ ︸

C3<∞

+

K∑
k=k̄

(
1

2λk
− 1

2λk−1

)
∥xk + ak − x∗∥2︸ ︷︷ ︸

C4<0

And because f is convex, we have

f(xK)− f∗ ≤ 1

K + 1

(
γ

1− γ
f(x0 − f∗) +

(1− γ)

2λ0
∥x0 − x∗∥2 + (1− γ)C3

)
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5 Stochastic Algorithms

Algorithm 4 Novel step size for Stochastic version

1: Inittialization. Select λ0 > 0, 0 < η1 < η0 and a positive real sequence {εk} such that
∞∑
k=0

εk < ∞.

Choose λ−1 = λ0.
2: for k = 1, 2, . . . do
3: if

∥∥∇fξ(x
k)−∇fξ(x

k−1)
∥∥ > η0

λk−1

∥∥xk − xk−1
∥∥ then

4: λk = η1
∥xk−xk−1∥

∥∇fξ(xk)−∇fξ(xk−1)∥
5: else
6: λk = (1 + εk−1)λk−1

7: end if
8: end for

Consider the problem
min{f(x) : x ∈ Rn} (11)

where f(x)
def
= E [fξ(x)] and fξ : Rn → R and assume f(x) has optimal value f∗. From lemmas

in section 3, it can be easily deduced the bellowing lemmas for stochastic algorithms. The proof is
completely similar.

Lemma 5.1. Let {λk} be the sequence generated by Algorithm 4 where fξ is smooth and its gradient
is L-Lipschitz continuous, then λk ≥ min(λ0,

η1

L ) ∀k ≥ 0.

Lemma 5.2. Let {λk} be the sequence generated by Algorithm (4) where fξ is smooth and its gradient
is L-Lipschitz continuous, then {λk} converges to λ < ∞.

Besides deterministic methods, stochastic methods are also proposed with the main purpose of
applying to deep learning models.

5.1 Stochastic Method

Assumption 5.1. We assume fξ is smooth, i.e its gradient is L-Lipschitz continuous:

∀x, y ∈ Rd, ∥∇fξ(x)−∇fξ(y)∥ ≤ L∥x− y∥.

This assumption also implies that f is smooth

Assumption 5.2. Each fξ, is µ-strongly convex. This assumption implies that f is also µ-strongly
convex.

Lemma 5.3. Suppose Assumption (5.1), (5.2) hold, λk is the stepsize sequence and η0, η1 is defined
in Algorithm (5). Then exists k1 such that

min{η1
L
, λ0} = γ ≤ λk ≤ η20

η1µ
, ∀k ≥ k1 (12)

Proof. Indeed, consider the two possible cases:

• Case 1: If Lk =
∥∥∇fζk

(
xk
)
−∇fζk

(
xk−1

)∥∥ > η0

λk−1

∥∥xk − xk−1
∥∥ then

λk = η1

∥∥xk − xk−1
∥∥

Lk
= η1

∥∥xk − xk−1
∥∥∥∥∇fζk (xk)−∇fζk (xk−1)

∥∥ ≤ η1
µ

≤ η0
µ

≤ η20
η1µ

.

( Because f is µ-strongly convex ∥x− y∥ ≤ 1
µ

∥∥∇fζk(x)−∇fζk(y)
∥∥ , ∀x, y.)

9



Algorithm 5 Novel stochastic gradient descent (SNGD)

1: Inittialization. Select λ0 > 0, 0 < η1 < η0 and a positive real sequence {εk} such that
∞∑
k=0

εk < ∞.

Choose x0 ∈ Rn, λ−1 = λ0, ξ
0.

2: x1 = x0 − λ0∇fξ0
(
x0
)

3: for k = 1, 2, . . . do
4: Sample ξk and optionally ζk

5: Option I: Lk =
∥∥∇fξk

(
xk
)
−∇fξk

(
xk−1

)∥∥
6: Option II: Lk =

∥∥∇fζk

(
xk
)
−∇fζk

(
xk−1

)∥∥
7: if Lk > η0

λk−1

∥∥xk − xk−1
∥∥ then

8: λk = η1
∥xk−xk−1∥

Lk

9: else
10: λk = (1 + εk−1)λk−1

11: end if
12: xk+1 = xk − λk∇fξk

(
xk
)

13: end for

• Otherwise, we have
∥∥∇fζk

(
xk
)
−∇fζk

(
xk−1

)∥∥ ≤ η0

λk−1

∥∥xk − xk−1
∥∥ meaning that λk−1 ≤ η0

µ .

Therefore,

λk = (1 + εk−1)λk−1 ≤ (1 + εk−1)
η0
µ
.

lim
n→∞

εk = 0 so exists k1 satisfy εk−1 ≤ η0

η1
− 1, ∀k ≥ k1. So λk ≤ η2

0

η1µ
, ∀k ≥ k1

Because f(x) is L-smooth so
∥∥∇fζk(x)−∇fζk(y)

∥∥ ≤ L∥x− y∥, ∀x, y ∈ Rn.

For k = 1 if L1 > η0

λ0

∥∥x1 − x0
∥∥ then λ1 = η1

∥x1−x0∥
L1

≥ η1

L , otherwise λ1 = (1 + ε0)λ0 ≥ λ0. By
induction, we get that λk ≥ min{η1

L , λ0} = γ ∀k ≥ 0.

Proposition 5.1. ([14] Lemma 1) Denote σ2 def
= E

[
∥∇fξ (x

∗)∥2
]
and assume f to be L-smooth and

convex. Then it holds for any x

E
[
∥∇fξ(x)∥2

]
≤ 4L (f(x)− f∗) + 2σ2. (13)

Another fact that we will use is a strong convexity bound, which states for any x, y

⟨∇f(x), x− y⟩ ≥ µ

2
∥x− y∥2 + f(x)− f(y). (14)

Theorem 5.1. Suppose Assumption (5.1), (5.2) hold, {λk} is the stepsize sequence and η0, η1 is

defined in Algorithm (5). If we choose some
η2
0

η1
≤ µ

2L , then exists k1 such that

E
[∥∥xk+1 − x∗∥∥2] ≤ exp (−µ(k − k1 + 1)γ)C0 + 2

η20σ
2

η1µ2

where C0
def
= E

[∥∥xk1 − x∗
∥∥2] and σ2 def

= E
[
∥∇fξ (x

∗)∥2
]
.

Proof. Under assumptions on
η2
0

η1
≤ µ

2L , we have λk ≤ η2
0

η1µ
≤ 1

2L . Since λk is independent of ξk, we

10



have E
[
λk∇fξk

(
xk
)]

= E [λk]E
[
∇f

(
xk
)]

and

E
[∥∥xk+1 − x∗∥∥2] = E

[∥∥xk − x∗∥∥2]− 2E
[
λk

〈
∇f

(
xk
)
, xk − x∗〉]+ E

[
λ2
k

]
E
[∥∥∇fξk

(
xk
)∥∥2]

(14)

≤ E
[
(1− λkµ)

∥∥xk − x∗∥∥2]− 2E
[
λk

(
f
(
xk
)
− f∗

)]
+ E

[
λ2
k

]
E
[∥∥∇fξk

(
xk
)∥∥2]

(13)

≤ E
[
(1− λkµ)

∥∥xk − x∗∥∥2]− 2E[λk (1− 2λkL)︸ ︷︷ ︸
≥0

(
f
(
xk
)
− f∗

)
] + 2E

[
λ2
k

]
σ2

(12)

≤ E [1− λkµ]E
[∥∥xk − x∗∥∥2]+ 2η20

E [λk]σ
2

η1µ
.

Therefore, if we subtract 2
η2
0σ

2

η1µ2 from both sides, we obtain

E
[∥∥xk+1 − x∗∥∥2 − 2

η20σ
2

η1µ2

]
≤ E [1− λkµ]E

[∥∥xk − x∗∥∥2 − 2
η20σ

2

η1µ2

]
.

If E
[∥∥xk − x∗

∥∥2] ≤ 2
η2
0σ

2

η1µ2 for some k, it follows that E
[
∥xt − x∗∥2

]
≤ 2

η2
0σ

2

η1µ2 for any t ≥ k. Otherwise,

we can reuse the produced bound to obtain

E
[∥∥xk+1 − x∗∥∥2] ≤ ( k∏

t=k1

E [1− λtµ]

)
E
[∥∥xk1 − x∗∥∥2]+ 2

η20σ
2

η1µ2
.

By inequality 1 − x ≤ e−x, we have
∏k

t=k1
E [1− λtµ] ≤ exp

(
−µ
∑k

t=k1
λt

)
. In addition, recall that

in accordance with (12) we have λk ≥ γ. Thus,

E
[∥∥xk+1 − x∗∥∥2] ≤ exp [−µ(k − k1 + 1)γ]E

[∥∥xk1 − x∗∥∥2]+ 2
η20σ

2

η1µ2
.

So if we can choose {εk} such that k1 = 1 then

E
[∥∥xk+1 − x∗∥∥2] ≤ exp [−µkγ]E

[∥∥x1 − x∗∥∥2]+ 2
η20σ

2

η1µ2
.

We also have

E
[∥∥x1 − x∗∥∥2] ≤ 2

∥∥x0 − x∗∥∥+2λ2
0E
[∥∥∇fξ0

(
x0
)∥∥2] ≤ 2

∥∥x0 − x∗∥∥+2λ2
0

(
2L2

∥∥x0 − x∗∥∥2 + 2σ2
)
= M.

So

E
[∥∥xk+1 − x∗∥∥2] ≤ exp (−µkγ)M + 2

η20σ
2

η1µ2
.

In this case we can choose εk such that ε0 ≤ η0

η1
− 1.

5.2 Stochastic Momentum Method

Before given the prove of convergence for the algorithm 6, we need some assumptions as follows.

5.2.1 Assumptions

Assumption 5.3. We assume that f is lower bounded by f∗

∀x ∈ Rd, f(x) ≥ f∗.

Assumption 5.4. We assume l2-norm of the stochastic gradients of f are bounded, i.e, there exist σ
so that

∀x ∈ Rd,E
[
∥∇fξ(x)∥2

]
≤ σ2.

Assumption 5.5. We assume fξ is smooth, i.e its gradient is L-Lipschitz continuous:

∀x, y ∈ Rd, ∥∇fξ(x)−∇fξ(y)∥ ≤ L∥x− y∥.

This assumption also implies that f is smooth
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Algorithm 6 Stochastic novel gradient descent momentum (SNGDm)

1: Inittialization. Select λ0 > 0, 0 < η1 < η0, 0 < γ < 1 and a positive real sequence {εk} such that
∞∑
k=0

εk < ∞. Choose x0 ∈ Rn, λ−1 = λ0, ξ
0.

2: v1 = ∇fξ0
(
x0
)

3: x1 = x0 − λ0v
1

4: for k = 1, 2, . . . do
5: if

∥∥∇fξk
(
xk
)
−∇fξk

(
xk−1

)∥∥ > η0

λk−1

∥∥xk − xk−1
∥∥ then

6: λk = η1
∥xk−xk−1∥

∥∇f
ξk

(xk)−∇f
ξk

(xk−1)∥
7: else
8: λk = (1 + εk−1)λk−1

9: end if
10: vk+1 = γvk +∇fξk

(
xk
)

11: xk+1 = xk − λkv
k+1

12: end for

5.2.2 Proof of Convergent

For all n ∈ N∗, we note Gk = ∇f(xk−1) and gk = ∇fξ(x
k−1).

Lemma 5.4. [3] Given 0 ≤ γ < 1, {xk} and {vk} defined by Algorithm (6) and with assumption in
(5.3), we have

E
[
∥vk∥2

]
≤ σ2

(1− γ)2
∀k ∈ N∗.

Proof.

E
[
∥vk∥2

]
= E

[
∥
k−1∑
i=0

γigk−i∥2
]

= E

⟨k−1∑
i=0

γigk−i,

k−1∑
j=0

γjgk−j⟩

 .

Using Cauchy-Schwarz,

E
[
∥vk∥2

]
≤

k−1∑
i=0

k−1∑
j=0

γiγj

(
E
[
∥gk−i∥2

]
2

+
E
[
∥gk−j∥2

]
2

)

≤
k−1∑
i=0

k−1∑
j=0

γiγjσ2

≤ σ2

(1− γ)2
.

Lemma 5.5. (Sum of a geometric term times index [3]). Given 0 < a < 1, i ∈ N and Q ∈ N with
Q ≥ i,

Q∑
q=i

aqq =
ai

1− a

(
i− aQ−i+1Q+

a− aQ+1−i

1− a

)
≤ a

(1− a)2
.

Lemma 5.6. (Descent lemma [3]) Given 0 ≤ γ < 1, {xk}, {vk}, {λk} defined by Algorithm (6) and
λk ≤ λ̄ ∀k ∈ N, we have

E
[
∇f(xk−1)T vk

]
≥

k−1∑
i=0

γiE
[
∥∇f(xk−i−1)∥2

]
− λ̄Lγσ2

(1− γ)3
.
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Proof. We note Gk = ∇f(xk−1) is the expected gradient and gk = ∇fξ(x
k−1) is the stochastic gradient

at iteration k. Consider

GkT vk =

k−1∑
i=0

γiGkT gk−i

=

k−1∑
i=0

γiGk−iT gk−i +

k−1∑
i=0

γi(Gk −Gk−i)
T
gk−i. (15)

We apply

∀r > 0, x, y ∈ R, ||xy|| ≤ r

2
||x||2 + ||y||2

2r

with x = Gk −Gk−i, y = gk−i to (15), we have

GkT vk ≥
k−1∑
i=0

γiGk−iT gk−i −
k−1∑
i=0

γi

2

(
r||Gk −Gk−i||2 + ||gk−i||

r

)
. (16)

Because f is L-smooth, so we have

||Gk −Gk−i||2 ≤ L2||xk − xk−i||2

≤ L2||
i∑

l=1

xk−l+1 − xk−l||2

≤ L2||
i∑

l=1

λk−l−1v
k−l||2.

Note that {λk} is convergent (lemma 3.2), let λ ≥ λk ∀k ∈ N, we have

||Gk −Gk−i||2 ≤ L2

∣∣∣∣∣
∣∣∣∣∣

i∑
l=1

λvk−l

∣∣∣∣∣
∣∣∣∣∣
2

≤ λ
2
L2i

i∑
l=1

||vk−l||2. (17)

From (15) and (17), we get

GkT vk ≥
k−1∑
i=0

γiGk−iT gk−i −
k−1∑
i=0

γi

2

(
r(λL)2i

i∑
l=1

||vk−l||2 + ||gk−i||2

r

)
.

Taking expectation of two side, we have

E
[
GkT vk

]
≥

k−1∑
i=0

γiE
[
Gk−iT gk−i

]
−

k−1∑
i=0

γi

2

(
r(λL)2i

i∑
l=1

E
[
||vk−l||2

]
+

E
[
||gk−i||2

]
r

)
. (18)

Beside that

E
[
Gk−iT gk−i

]
= E

[
En−k−1

[
∇F (xn−k−1)T∇f(xn−k−1)

]]
= E

[
∇F (xn−k−1)T∇F (xn−k−1)

]
= E

[
||Gk−i||2

]
. (19)

and from Assumption 5.4 we have

E
[
||gk−i||2

]
≤ σ2 (20)
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and from Lemma 5.4

E
[
||vk−l||2

]
≤ σ2

(1− γ)2
(21)

Injecting (19), (20), (21) to (18), we get

E
[
GkT vk

]
≥

k−1∑
i=0

γiE
[
||Gk−i||2

]
−

k−i∑
i=0

γi

2

(
r
(λLi)2σ2

(1− γ)2
+

σ2

r

)
(22)

Replace r = 1−γ

λLi
to (22), we obtain

E
[
GkT vk

]
≥

k−1∑
i=0

γiE
[
||Gk−i||2

]
−

k−1∑
i=0

γi

2

(
2λLiσ2

1− γ

)

≥
k−1∑
i=0

γiE
[
||Gk−i||2

]
− λL

1− γ
σ2

k−1∑
i=0

γii

Using Lemma 5.5, deduce

E
[
GkT vk

]
≥

k−1∑
i=0

γiE
[
||Gk−i||2

]
− λLγσ2

(1− γ)3

Before introducing convergent theorem of NSGDm, we remind about iteration standard for non
convex stochastic optimization ([6]). Our results bound the expected squared norm of the gradient at
iteration τ , which is a random index with value in {0, 1..., N − 1}, so that for a number of iterations
N ∈ N∗

∀i ∈ N, j < N,P [τ = j] ∝ 1− γN−j . (23)

Theorem 5.2. (Convergent of SNGDm [3]) Given assumptions from section 5.2.1, τ defined above,
for a iteration N > 1

1−γ , x
0 ∈ Rd, λk ≤ λ ∀k ∈ N, 0 ≥ γ < 1, {xk} defined as by Algorithm (6) then

E
[
||∇f(xτ )||2

]
≤ 1− γ

λÑ
(f(x0)− f∗) +

N

Ñ

λLσ2(1 + γ)

2(1− γ)2

where Ñ = N − γ
1−γ .

Proof. Because f is smooth and take a specifie iteration k ∈ N∗, we have

f(xk) ≤ f(xk−1)− λk−1G
kT vk +

λk−1
2L||vk||2

2

Let λ ≥ λk, ∀k ∈ N, with Lemma 5.4 and Lemma 5.6, take expectation of two side, we get

E
[
f(xk)

]
≤ E

[
f(xk−1)

]
− λ

(
k−1∑
i=0

γiE
[
||Gk−i||2

])
+

λ
2
Lγσ2

(1− γ)3
+

λLσ2

2(1− γ)2

≤ E
[
f(xk−1)

]
− λ

(
k−1∑
i=0

γiE
[
∥|Gk−i||2

])
+

λL(1 + γ)σ2

2(1− γ)3

rearranging and summing over k ∈ {1...N} we get

λ

N∑
k=1

k−1∑
i=0

γiE
[
||Gk−i||2

]
≤ f(x0)− E

[
f(xN )

]
+N

λ
2
Lσ2

2(1− γ)3
. (24)
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Zoom on the right hand side, replace j = k − i, we get

RHS = λ

N∑
k=1

k∑
j=1

γk−jE
[
||Gj ||2

]
= λ

N∑
j=1

E
[
||Gj ||2

] N∑
k=j

γk−j

=
λ

1− γ

N∑
j=1

E
[
||∇f(xj−1)||2

]
(1− γN−j+1)

=
λ

1− γ

N−1∑
j=0

E
[
||∇f(xj)||2

]
(1− γN−j).

As the definition of τ in (23)

N−1∑
j=0

(1− γN−j) = N − γ
1− γN

1− γ
≥ N − γ

1− γ

and let Ñ = N − γ
1−γ , we obtain

RHS ≥ λÑ

1− γ
E
[
||∇f(xτ )||2

]
(25)

From (24) and (25), with Assumption 5.3 that f is lower bounded by f∗, we obtain

E
[
||∇f(xτ )||2

]
≤ 1− γ

λÑ
(f(x0)− f∗) +

N

Ñ

λLσ2(1 + γ)

2(1− γ)2
.

5.3 Stochastic Nesterov’s Accelerated Method

Algorithm 7 Stochastic Novel Nesterov’s Accelerated Gradient Descent (SNAGD)

1: Inittialization. Select λ0 > 0, 0 < η1 < η0, 0 < γ < 1 and a positive real sequence {εk} such that
∞∑
k=0

εk < ∞. Choose x0 ∈ Rn, λ−1 = λ0, ξ
0.

2: v1 = ∇fξ0
(
x0
)

3: x1 = x0 − λ0v
1

4: for k = 1, 2, . . . do
5: if

∥∥∇fξk
(
xk
)
−∇fξk

(
xk−1

)∥∥ > η0

λk−1

∥∥xk − xk−1
∥∥ then

6: λk = η1
∥xk−xk−1∥

∥∇f
ξk

(xk)−∇f
ξk

(xk−1)∥
7: else
8: λk = (1 + εk−1)λk−1

9: end if
10: vk+1 = γvk +∇fξk

(
xk
)

11: xk+1 = xk − λk

(
γvk+1 +∇fξk

(
xk
))

12: end for

5.3.1 Assumptions

Assumption 5.6. We assume that f is lower bounded by f∗

∀x ∈ Rd, f(x) ≥ f∗.
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Assumption 5.7. We assume the stochastic gradients have bounded variance and the gradients of f
are uniformly bounded, i.e, there exist σ and δ so that

∀x ∈ Rd, ∥∇f(x)∥2 ≤ δ2, E
[
∥∇fξ(x)∥2

]
− ∥∇f(x)∥2 ≤ σ2

Assumption 5.8. We assume fξ is smooth, i.e its gradient is L-Lipschitz continuous:

∀x, y ∈ Rd, ∥∇fξ(x)−∇fξ(y)∥ ≤ L∥x− y∥.

This assumption also implies that f is smooth

5.3.2 Proof of Convergent

Lemma 5.7. [3] Given 0 ≤ γ < 1, {xk} and {vk} defined by Algorithm (7) and with assumption in
(5.7), we have

E
[
∥vk∥2

]
≤ σ2 + δ2

(1− γ)2
∀k ∈ N∗.

Proof.

E
[
∥vk∥2

]
= E

[
∥
k−1∑
i=0

γigk−i∥2
]

= E

⟨k−1∑
i=0

γigk−i,

k−1∑
j=0

γjgk−j⟩

 .

Using Cauchy-Schwarz,

E
[
∥vk∥2

]
≤

k−1∑
i=0

k−1∑
j=0

γiγj

(
E
[
∥gk−i∥2

]
2

+
E
[
∥gk−j∥2

]
2

)

≤
k−1∑
i=0

k−1∑
j=0

γiγj(σ2 + δ2)

≤ (σ2 + δ2)

(1− γ)2
.

Lemma 5.8. (Descent lemma [3]) Given 0 ≤ γ < 1, {xk}, {vk}, {λk} defined by Algorithm (7) and
λk ≤ λ̄ ∀k ∈ N, we have

E
[
∇f(xk−1)T vk

]
≥

k−1∑
i=0

γiE
[
∥∇f(xk−i−1)∥2

]
− λ̄Lγ(σ2 + δ2)

(1− γ)3
.

Proof. We note Gk = ∇f(xk−1) is the expected gradient and gk = ∇fξ(x
k−1) is the stochastic gradient

at iteration k. Consider

GkT vk =

k−1∑
i=0

γiGkT gk−i

=

k−1∑
i=0

γiGk−iT gk−i +

k−1∑
i=0

γi(Gk −Gk−i)
T
gk−i. (26)

We apply

∀r > 0, x, y ∈ R, ||xy|| ≤ r

2
||x||2 + ||y||2

2r
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with x = Gk −Gk−i, y = gk−i to (26), we have

GkT vk ≥
k−1∑
i=0

γiGk−iT gk−i −
k−1∑
i=0

γi

2

(
r||Gk −Gk−i||2 + ||gk−i||

r

)
.

Because f is L-smooth, so we have

||Gk −Gk−i||2 ≤ L2||xk − xk−i||2

≤ L2||
i∑

l=1

xk−l+1 − xk−l||2

≤ L2||
i∑

l=1

λk−l−1v
k−l||2.

Note that {λk} is convergent (lemma 3.2), let λ ≥ λk ∀k ∈ N, we have

||Gk −Gk−i||2 ≤ L2

∣∣∣∣∣
∣∣∣∣∣

i∑
l=1

λvk−l

∣∣∣∣∣
∣∣∣∣∣
2

≤ λ
2
L2i

i∑
l=1

||vk−l||2. (27)

From (26) and (27), we get

GkT vk ≥
k−1∑
i=0

γiGk−iT gk−i −
k−1∑
i=0

γi

2

(
r(λL)2i

i∑
l=1

||vk−l||2 + ||gk−i||2

r

)
.

Taking expectation of two side, we have

E
[
GkT vk

]
≥

k−1∑
i=0

γiE
[
Gk−iT gk−i

]
−

k−1∑
i=0

γi

2

(
r(λL)2i

i∑
l=1

E
[
||vk−l||2

]
+

E
[
||gk−i||2

]
r

)
. (28)

Beside that

E
[
Gk−iT gk−i

]
= E

[
En−k−1

[
∇F (xn−k−1)T∇f(xn−k−1)

]]
= E

[
∇F (xn−k−1)T∇F (xn−k−1)

]
= E

[
||Gk−i||2

]
. (29)

and from Assumption 5.7 we have

E
[
||gk−i||2

]
≤ σ2 + δ2 (30)

and from Lemma 5.7

E
[
||vk−l||2

]
≤ σ2 + δ2

(1− γ)2
(31)

Injecting (29), (30), (31) to (28), we get

E
[
GkT vk

]
≥

k−1∑
i=0

γiE
[
||Gk−i||2

]
−

k−i∑
i=0

γi

2

(
r
(λLi)2(σ2 + δ2)

(1− γ)2
+

σ2 + δ2

r

)
(32)

Replace r = 1−γ

λLi
to (32), we obtain

E
[
GkT vk

]
≥

k−1∑
i=0

γiE
[
||Gk−i||2

]
−

k−1∑
i=0

γi

2

(
2λLi(σ2 + δ2)

1− γ

)

≥
k−1∑
i=0

γiE
[
||Gk−i||2

]
− λL

1− γ
(σ2 + δ2)

k−1∑
i=0

γii
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Using Lemma 5.5, deduce

E
[
GkT vk

]
≥

k−1∑
i=0

γiE
[
||Gk−i||2

]
− λLγ(σ2 + δ2)

(1− γ)3

Theorem 5.3. (Convergent of SNAGD [3]) Given assumptions from section 5.3.1, τ defined above,
for a iteration N > 1

1−γ , x
0 ∈ Rd, λk ≤ λ ∀k ∈ N, 0 ≥ γ < 1 and {xk} defined as by Algorithm (7)

then

E
[
||∇f(xτ )||2

]
≤ 1− γ

λγÑ
(f(x0)− f∗) +

N

Ñ

(
λ
2
Lγ2(2− γ)(σ2 + δ2)

(1− γ)3
+

(λ+ 2λ
2
L)(σ2 + δ2)

2
+

λδ2

2

)

where Ñ = N − γ
1−γ .

Proof. We note Gk = ∇f(xk−1) is the expected gradient and gk = ∇fξ(x
k−1) is the stochastic gradient

at iteration k. Because f is smooth and take a specifie iteration k ∈ N∗, we have

f(xk) ≤ f(xk−1)− λk−1γG
kT vk − λk−1G

kT gk +
λk−1

2L||γvk + gk||2

2
(33)

Apply Cauchy-Schwarz inequality and assumption 5.7, we have

∥γvk + gk∥2 = ∥γvk∥2 + ∥gk∥2 + 2⟨γvk, gk⟩
≤ ∥γvk∥2 + ∥gk∥2 + 2∥γvk∥∥gk∥
≤ 2∥γvk∥2 + 2∥gk∥2 (34)

and

−⟨GkT gk⟩ ≤ ∥GkT gk∥ ≤ ∥Gk∥2

2
+

∥gk∥2

2
≤ δ2

2
+

∥gk∥2

2
(35)

Let λ ≥ λk, ∀k ∈ N, injecting (35) and (34) to (33) and taking expectation of two side with Lemma
5.7, Lemma 5.8, apply assumption 5.7, we get

E
[
f(xk)

]
≤ E

[
f(xk−1)

]
− λγ

(
k−1∑
i=0

γiE
[
||Gk−i||2

])
+

λ
2
Lγ2(σ2 + δ2)

(1− γ)3
+

λ
2
Lγ2(σ2 + δ2)

2(1− γ)2

+
λ(σ2 + δ2)

2
+

λδ2

2
+ λ

2
L(σ2 + δ2)

≤ E
[
f(xk−1)

]
− λγ

(
k−1∑
i=0

γiE
[
||Gk−i||2

])
+

λ
2
Lγ2(2− γ)(σ2 + δ2)

(1− γ)3
+

(λ+ 2λ
2
L)(σ2 + δ2)

2
+

λδ2

2

rearranging and summing over k ∈ {1...N} we get

λγ

N∑
k=1

k−1∑
i=0

γiE
[
||Gk−i||2

]
≤ f(x0)− E

[
f(xN )

]
+N

(
λ
2
Lγ2(2− γ)(σ2 + δ2)

(1− γ)3
+

(λ+ 2λ
2
L)(σ2 + δ2)

2
+

λδ2

2

)
(36)
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Zoom on the right hand side, replace j = k − i, we get

RHS = λγ

N∑
k=1

k∑
j=1

γk−jE
[
||Gj ||2

]
= λγ

N∑
j=1

E
[
||Gj ||2

] N∑
k=j

γk−j

=
λγ

1− γ

N∑
j=1

E
[
||∇f(xj−1)||2

]
(1− γN−j+1)

=
λγ

1− γ

N−1∑
j=0

E
[
||∇f(xj)||2

]
(1− γN−j).

As the definition of τ in (23)

N−1∑
j=0

(1− γN−j) = N − γ
1− γN

1− γ
≥ N − γ

1− γ

and let Ñ = N − γ
1−γ , we obtain

RHS ≥ λγÑ

1− γ
E
[
||∇f(xτ )||2

]
(37)

From (36) and (37), with Assumption 5.6 that f is lower bounded by f∗, we obtain

E
[
||∇f(xτ )||2

]
≤ 1− γ

λγÑ
(f(x0)− f∗) +

N

Ñ

(
λ
2
Lγ2(2− γ)(σ2 + δ2)

(1− γ)3
+

(λ+ 2λ
2
L)(σ2 + δ2)

2
+

λδ2

2

)

6 Experiments

In this section, experiments about the proposed algorithms are presented consist of four main prob-
lems: logistic regression, matrix factorization, cubic regularization and neural network. Through ex-

periments, we choose the convergence sequences as ε = 1
kα for SNGDm and SNAGD and ε = α log(k)β

k1.1

for NGD, NGDm, NGD Nesterov and SNGD. Beside that, we note lr as the learning rate, also known
as the step size or λ in our proposed algorithms, γ as the momentum hyper parameter and η0 and η1
as the hyper parameters which have been mentioned in our algorithms.

6.1 Accelerated NGD

In this part, we run the experiments with three problems.

1. Logistic Regression. The objective function 1
n

∑n
i=1 log(1 + exp(−bia

T
i x)) +

γ
2 ∥x∥

2 is the
logistic loss with l2-regularization. In this objective function, n is the number of observations,
γ > 0 which is often chosen as 1

n , is the regularization parameter and (ai, bi) ∈ Rd×R, i ∈ N∗ are
the observations. We apply the proposed algorithms NGDm and NGD Nesterov on the popular
benchmark dataset such as Covtype, Mushroom, W8a.

2. Matrix Factorization. The objective function minX=[U,V ]f(X) = f(U, V ) = 1
2∥UV T − A∥2F

with A ∈ Rm×n, r < min{m,n}, U ∈ Rm×r andV ∈ Rn×r, is nonconvex problem. We used
Movielens 100K dataset[7] which is polular dataset for benchmark in Matrix Factorization prob-
lems. Like in [11], r is chosen as 10, 20 and 30. All algorithms start with the same initial point
and its values are random.
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3. Cubic Regularization. The objective function f(x) = gTx + 1
2x

THx + M
6 ∥x∥3, where g ∈

Rd, H ∈ Rd×d andM > 0 is only smooth locally. In this objective function, g and H are
the gradient and the Hessian respectively. All algorithms start with the same initial point as
x = 0 ∈ Rd, with M = 10, 20, 100.

6.1.1 Logistic Regression

We compare proposed algorithms as NGDm, NGD Nesterov to related algorithms such as GD[1],
AdGD, AdGD-accel[11]. In the dataset detail,

• Covtype. has 581,012 samples total and 54 dimensions.

• Mushrooms. has 8,124 samples total and 112 dimensions.

• W8a. has 49,749 samples total and 300 dimensions.

As in Figure 1, NGDm and NGD Nesterov have good results on all problems, especially NGDm has
the most outstanding results. In the experiment, the algorithms use hyperparameters as follows:

• GD. 1
L lr where L is smoothness constant.

• AdGD and AdGD-accel. default hyperparameters as in public source code of [11]1.

• NGD. 1e-3 lr, 0.2 η0, 0.15 η1, 4.5 β and 2.0 α

• NGD Nesterov and NGDm. 1e-3 lr, 0.2 η0, 0.19 η1, 0.0 β and 3.0 α and 0.9 γ.

6.1.2 Matrix Factorization

Matrix factorization is commonly found in recommender system. This problem’s popularity makes
optimization for it very useful. Using Movielens 100K, a popular dataset in matrix factorization
problem, we want to evaluate algorithms in practical application in the most objective way. As result
in Figure 2, NGDm achieves a new result, much better than the algorithms considered together. In
detail, the algorithms use hyperparameters as follows:

• GD. 1
L lr where L is smoothness constant.

• AdGD and AdGD-accel. default hyperparameters as in public source code of [11]

• NGD. 1e-5 lr, 0.49 η0, 0.48 η1, 0 β and 75 α for three cases of r

• NGDm. 1e-5 lr, 0.49 η0, 0.48 η1, 1 β, 2 α and 0.9 γ for three cases of r

• textbfNGD Nesterov. there are three different hyper parameters for three cases of r. In detail,

1. r=10. 0.001 lr, 0.49 η0, 0.44 η1, 3 β and 5 α

2. r=20. 0.001 lr, 0.49 η0, 0.44 η1, 4 β and 2 α

3. r=30. 0.001 lr, 0.49 η0, 0.44 η1, 2 β and 1 α

6.1.3 Cubic Regularization

This problem is a subproblem of Newton’s method. In the experiment, the algorithms use hyperpa-
rameters as follows:

• GD. line search lr in numbers spaced evenly on a log scale from −1 to 1

• AdGD and AdGD-accel. default hyperparameters as in public source code of [11].

• NGD. 1e-5 lr, 0.49 η0, 0.45 η1, 3.5 β and 4.0 α

• NGD Nesterov and NGDm. 1e-3 lr, 0.2 η0, 0.19 η1, 0.0 β and 3.0 α and 0.9 γ.

1https://github.com/ymalitsky/adaptive gd
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Fig. 1: The logistic regression objective results

6.2 Stochastic Algorithm

The experiments were run to evaluate the stochastic variants of NGD such as SNGDm and SNAGD
on Cifar10 and Mnist dataset. About the datasets,

• Mnist[4] (Modified National Institute of Standards and Technology database, 10 classes) is a
large collection of handwritten digits. It has a training set of 60,000 examples, and a test set of
10,000 examples. Each sample is a 28× 28 pixels image.

• Cifar10[8] (Canadian Institute for Advanced Research, 10 classes) is a subset of the Tiny Images
dataset and consists of 60000 32 × 32 color images. There are 6000 images per class with 5000
training and 1000 testing images per class.

Although having the same classes and number of samples, but two datasets are different about sam-
ple type. This leads to different optimizations for these datasets. One often use both of them for
optimization algorithm benchmark. As result show in Figure 4 and Figure 5, NGD Nesterov and
NGDm also have an outstanding result for both datasets. Beside that, we present the learning rate of
algorithms. Unlike AdSGD, the learning rate of NGDm and NGD Nesterov increases with each cycle
and tends to converge. This has also been proven with the theory above. In detail, the algorithms use
hyperparameters as follows:

• SGD and SGDm. 0.01 lr and 0.9 momentum.

• AdSGD. default hyper parameters as in public source code of [11]

• SNGD. 1e-3 lr, 0.4 η0, 0.35 η1, 4.0 β and 3.0 α

• SNAGD and SNGDm. 1e-5 lr, 0.2 η0, 0.15 η1 and 0.9 α and 0.9 γ.

6.3 About Line Search Strategy

We implement a line search strategy to find the best possible hyper parameter in a set of hyper
parameters, which can make it easier to apply our proposed algorithms to problems. We consider
some hyper parameters to achieve good result: lr, η0, η1, β, α, where

• lr in [1e− 5, 5e− 5, 1e− 4, 5e− 4, 1e− 3, 5e− 3].

• η0 in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6].

• η1 in [η0 − 0.01, η0 − 0.05, η0 − 0.1].

• α and β in [0, 1, 2, 3, 4, 5].

We run line search in a small number of iterations to find best hyper parameters. There are other
good results but we only present the best results in this study.
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Fig. 2: Results for Matrix Factorization.
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Fig. 3: Results for Cubic Regularization.
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Fig. 4: Results for Cifar10 Dataset.
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Fig. 5: Results for Mnist Dataset.

22



7 Conclusion

In this study, we combined a new step size with acceleration and stochastic methods, to propose new
algorithms. We have also provided proofs of convergence for the proposed algorithms. In addition,
experiments also show that the new algorithms work very well on some optimization problems and
achieve new results.
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