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Abstract

We introduce a polyhedral framework for characterizing instances of quadratic combinatorial

optimization programs (QCOPs) that are linearizable, meaning that the quadratic objective can

be equivalently rewritten as linear in such a manner that preserves the objective function value

at all feasible solutions. In particular, we show that an instance is linearizable if and only if the

quadratic cost coefficients can be used to construct a linear equation, in a lifted variable space,

that is valid for the affine hull of a specially structured discrete set. In addition to developing

this result for general QCOPs, we illustrate its utility in the specific context of the quadratic

minimum spanning tree problem (QMSTP). As a consequence of this new polyhedral perspec-

tive on the concept of linearizability, we are able to make progress on a recent open question

regarding linearizable QMSTP instances defined on biconnected graphs.
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1 Introduction

Quadratic combinatorial optimization problems (QCOPs) are among the most widely studied prob-

lems in operations research, due both to their interesting mathematical structures and the diversity

of their practical applications. The objective of such problems is to find an optimal collection of

objects from within some finite set, where the function to be optimized is quadratic. Specifically,

let E = {1,2, . . . ,n} be a finite set of size n and let F be some family of subsets of E. Suppose that

a cost ci is associated with each i ∈ E, and furthermore, a cost qi j is associated with each pair of

elements of E. The QCOP can be expressed as
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minimize

∑
i∈S

ci +∑
i∈S

∑
j∈S
j>i

qi j : S ∈ F

 . (1)

Note that any subset S ∈ F can be represented by its 0-1 incidence vector x= (x1,x2, . . . ,xn), where

xi = 1 if and only if i ∈ S. Thus the restriction S ∈ F can be represented as x ∈ X, where the

constraints of X enforce that x is the incidence vector of some subset S ∈ F. In this way, (1) can be

equivalently formulated as the quadratic 0-1 program

QCOP: minimize

{
n

∑
i=1

cixi +
n−1

∑
i=1

n

∑
j=i+1

qi jxix j : x ∈ X, x binary

}
. (2)

This paper focuses exclusively on those instances of (2) for which X is an explicitly represented

polytope, i.e., it can be expressed as a system of linear equations and inequalities. Furthermore,

we are only concerned with such problems that are NP-hard, but for which the linear counter-

part, minimize{∑
n
i=1 cixi : x ∈ X, x binary} , can be solved efficiently. While these conditions may

seem restrictive, they are satisfied by many important problems. For example, the widely studied

quadratic assignment problem (QAP) is NP-hard, but its linear counterpart, the linear assignment

problem, can be solved efficiently by algorithms such as Kuhn’s Hungarian method. Other such

examples include the quadratic minimum spanning tree problem (QMSTP), the quadratic shortest

path problem (QSPP), the bilinear assignment problem, and the quadratic transportation problem.

Unfortunately, despite having been studied extensively, most cases of Problem QCOP exhibit

a significant gap between the sizes of motivating applications and those instances that can be opti-

mally solved. For example, state-of-the-art exact solution strategies for the QAP [1, 4, 18, 19, 20]

are limited to problems having n ≤ 40. Similarly, the most efficient algorithms for solving the QM-

STP on a complete graph are limited to graphs with 50 or fewer vertices [24]. An active research

direction therefore focuses on identifying, based on objective function structure, special problem

instances that are solvable in polynomial time. Many such identifications are available in the

literature, often considered independently and from vastly different perspectives; no overarching

theory exists. For example, researchers have studied readily solvable special cases of the QAP
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[3, 6, 7, 8, 9, 11, 10, 12, 16, 17, 22, 23, 25, 30], the QMSTP [13, 15], the QSPP [21, 26], and the

bilinear assignment problem [14].

Of particular interest to our study are readily solvable instances of Problem QCOP that are

known as linearizable, meaning that the problem can be equivalently rewritten as an instance of its

linear counterpart in such a way that the objective function value is preserved for all binary x ∈ X.

Formally, an instance of Problem QCOP with objective coefficients ci and qi j is called linearizable

if there exist a vector ĉ ∈ Rn and a scalar κ so that

n

∑
i=1

cixi +
n−1

∑
i=1

n

∑
j=i+1

qi jxix j = κ +
n

∑
i=1

ĉixi (3)

for all x ∈ X, x binary. Clearly, every linearizable instance of Problem QCOP is readily solvable

because it can be reduced to an instance of its linear counterpart which, according to our stated

assumptions of (2), can be solved efficiently.

Although much research has been done to identify necessary and/or sufficient conditions for var-

ious specific problem classes to be linearizable (see references above), no unifying framework exists

to identify such conditions for general instances of Problem QCOP. The primary contribution of

this paper is the establishment of a direct connection between the concept of linearizability

and polyhedral theory for general instances of Problem QCOP. Specifically, we show in our

main result that an instance of Problem QCOP is linearizable if and only if the quadratic cost coef-

ficients can be used to create a linear equation in a lifted variable space that is valid for the affine

hull of a specially structured discrete set. While this condition has been implicitly used [29] in the

context of the QAP, we develop it explicitly for general QCOP instances. The remainder of the

paper is structured as follows. Section 2 establishes our main result and connects it to the previous

QAP-focused work of [29]. Then Section 3 illustrates the implications of this result in the specific

context of the QMSTP. Notably, we use our new polyhedral perspective on the concept of lineariz-

ability to make progress on a recent open question regarding linearizable QMSTP instances defined

on biconnected graphs.
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2 A Polyhedral Characterization of Linearizable QCOPs

Given an instance of Problem QCOP of (2), define the set

P ≡
{
(x,y) ∈ Rn ×Rn(n−1)/2 : x ∈ X, x binary, yi j = xix j ∀ i < j

}
, (4)

and let aff{•} denote the affine hull of the set •.

Theorem 2.1. An instance of Problem QCOP with objective function coefficients ci and qi j is lin-

earizable if and only if there exist a vector c ∈ Rn and a scalar κ such that the equation

n

∑
i=1

cixi +
n−1

∑
i=1

n

∑
j=i+1

qi jyi j = κ (5)

is valid for aff{P} . Furthermore, the linearized problem is then given by

minimize

{
κ +

n

∑
i=1

(ci − ci)xi : x ∈ X, x binary

}
. (6)

Proof. Consider a linearizable instance of Problem QCOP with objective function coefficients ci

and qi j. By the definition of linearizable, there exist a vector ĉ ∈ Rn and a scalar κ so that the

equation
n

∑
i=1

cixi +
n−1

∑
i=1

n

∑
j=i+1

qi jxix j = κ +
n

∑
i=1

ĉixi (7)

holds for all x ∈ X, x binary. Setting c= c− ĉ and κ = κ gives us that

n

∑
i=1

cixi +
n−1

∑
i=1

n

∑
j=i+1

qi jxix j = κ (8)

holds for all x ∈ X, x binary. Therefore, the equation (5) holds for all x ∈ X, x binary, where

yi j = xix j, meaning that (5) holds for all (x,y) ∈ P, and is therefore valid for aff{P} , as desired.

Now consider any instance of Problem QCOP with objective function coefficients ci and qi j,

and suppose that there exist a vector c ∈ Rn and a scalar κ such that (5) is valid for aff{P} . Since

(5) must therefore hold for every (x,y) ∈ P, we have that (8) must hold for all x ∈ X, x binary.
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Setting ĉ = c−c and κ = κ gives us that (7) holds for all x ∈ X, x binary, meaning that Problem

QCOP is linearizable.

Finally, note that subtracting (8) from the objective function of Problem QCOP gives the lin-

earized problem (6).

Since any affine set can be represented as an intersection of hyperplanes, an equation is valid for

the affine set if and only if it can be computed as a linear combination of those defining hyperplanes.

Therefore, a direct consequence of Theorem 2.1 is that an instance of QCOP is linearizable if and

only if the quadratic objective coefficients qi j are computable via a linear combination of the linear

equations defining aff{P} . We formally state this result in the following corollary.

Corollary 2.2. An instance of Problem QCOP with objective function coefficients ci and qi j is

linearizable if and only if there exist a vector c ∈ Rn and a scalar κ such that the equation

n

∑
i=1

cixi +
n−1

∑
i=1

n

∑
j=i+1

qi jyi j = κ

is computable as a linear combination of the linear equations defining aff{P} .

Corollary 2.2 reveals that the task of characterizing all linearizable instances of Problem QCOP

is exactly the same task as characterizing the hyperplanes defining aff{P} that have a non-zero co-

efficient for at least one of the variables yi j. Although not explicitly stated in the terms of Corollary

2.2, the paper [29, Theorem 3] accomplished this task in the specific context of the QAP by showing

that all of the equations defining aff{P} are implied by the equality constraints of the well-known

level-1 reformulation-linearization-technique (RLT) reformulation of the QAP first given by [2].

This led directly to a new polyhedral-based necessary and sufficient condition for QAP linearizabil-

ity, namely that an instance of the QAP is linearizable if and only if a relaxed version of the Level-1

RLT form is bounded. In Section 3, we similarly investigate the set aff{P} for the QMSTP and use

the resulting insights to characterize linearizable instances.
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3 A Polyhedral Characterization of Linearizable QMSTP Instances

In this section, we discuss the implications of the results of Section 2 when applied to the QMSTP.

Section 3.1 introduces the QMSTP, and then Section 3.2 uses the polyhedral framework provided by

Corollary 2.2 to establish a sufficient condition for QMSTP linearizability, which is given in Theo-

rem 3.2. Interestingly, this sufficient linearizability condition could also be necessary, depending on

the structure of the graph upon which the QMSTP instance is defined. The framework of Theorem

2.1 allows us to develop, in Theorem 3.3, a polyhedral characterization of those graph structures

for which the linearizability condition is both necessary and sufficient. We then restate our results

in terms of weak sum matrices in order to draw parallels with previous work of [13]. In Section

3.3, we illustrate the utility of our results by showing that the sufficient linearizability condition

of Theorem 3.2 is not necessary for biconnected graphs containing a vertex of degree 2, but that

the condition is necessary for complete graphs. Finally, in Section 3.4, we use our new polyhedral

perspective to make progress on an open question proposed in [13] regarding linearizable QMSTP

instances defined on biconnected graphs.

3.1 QMSTP Background

Given an undirected, connected graph G = (V,E) with |V | = n vertices and |E| = m edges, the

QMSTP is an NP-hard QCOP of the form (2) that is formulated as

QMSTP: minimize

∑
e∈E

cexe + ∑
e∈E

∑
f∈E
f>e

qe f xex f : x ∈ X2, x binary

 ,

where

X2 ≡



x ∈ Rm : ∑
e∈E

xe = n−1,

∑
e∈E(S)

xe ≤ |S|−1 ∀ S ⊂V, |S| ≥ 2,

0≤ x≤ 1


, (9)

where E(S) is the set of all edges having both vertices in the set S. Note that the objective function

assumes an ordering of the edges in E. The problem’s name arises from the fact that the objective
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function is quadratic in the m binary variables x, and the constraints of X2, together with the binary

restrictions, define the set of all 0-1 incidence vectors of spanning trees of G. Recall that a spanning

tree of an undirected, connected graph G is a connected subgraph that contains no cycles and covers

all of the vertices of G. The first constraint of X2 enforces that the spanning tree contains the correct

number of edges, which is always one less that the number of vertices of G. The second set of

constraints prevents the chosen edges from forming any cycles.

The QMSTP was first introduced by Assad and Xu in 1992 [5]. One classical application in-

volves a telecommunications company laying cable in a new neighborhood. In this context, each

house is represented by a vertex in the graph G, and edges correspond to possible paths along which

to bury cable between the houses. Each edge e ∈ E costs a certain amount ce based on factors such

as the length of the path between the houses and how far underground the cable must be buried. The

goal of the QMSTP is to find the cheapest way to connect all of the houses, with the coefficients qe f

on the quadratic terms accounting for the cost of potential interference between pairs of cables. The

QMSTP has also found applications in areas such as oil and water transmission networks (where

edges represent pipes) and transportation networks (where edges represent roads). In these settings,

it is common for the quadratic costs to represent the price of transferring from one pipe/road to

another, and therefore these costs are often only non-zero for pairs of adjacent edges.

The number of feasible solutions to Problem QMSTP quickly becomes unmanageable as the

size of the problem grows; an instance defined on a complete graph with n vertices has nn−2 possi-

ble spanning trees (a result known as Cayley’s formula). As a result, the best-performing QMSTP

exact solution procedures are only capable of solving problems on complete graphs having up to

approximately 50 vertices [24, 27]. Therefore, researchers have recently begun to study conditions

under which Problem QMSTP is in fact readily solvable [13, 15]. This includes the study of lin-

earizable instances. Consistent with (3), an instance of Problem QMSTP on a graph G = (V,E) with

objective coefficients ce and qe f is said to be linearizable if there exist a vector ĉ ∈ Rm and a scalar

κ so that
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∑
e∈E

cexe + ∑
e∈E

∑
f∈E
f>e

qe f xex f = κ + ∑
e∈E

ĉexe (10)

for all x ∈ X2, x binary, with X2 given by (9). Every instance of Problem QMSTP whose objective

function is expressible in the form (10) is polynomially solvable, because each is reducible to a

linear minimum spanning tree problem which can be solved by efficient methods such as Kruskal’s

algorithm or Prim’s algorithm.

3.2 A Sufficient Condition for QMSTP Linearizability

Given an instance of Problem QMSTP defined on a graph with |V |= n vertices and |E|= m edges,

define the set

P2 ≡
{
(x,y) ∈ Rm ×Rm(m−1)/2 : x ∈ X2, x binary, ye f = xex f ∀ e < f

}
, (11)

which is consistent with (4). Based on the result of Corollary 2.2, a natural first step toward trying

to identify linearizable QMSTP instances is to find equations that are valid for aff{P2} .

Consider the m equations

∑
e∈E
e< f

ye f + ∑
e∈E
e> f

y f e = (n−2)x f ∀ f ∈ E. (12)

Lemma 3.1. The equations (12) hold for all (x,y) ∈ P2, i.e., they are valid for aff{P2}.

Proof. The equations (12) are precisely those obtained by multiplying the single equation of X2 in

(9) by each of the m binary variables x f , and then making the substitutions implied by (11) that

x f x f = x f for all f ∈ E and xex f = ye f for all e < f .

Since we have identified a set of equations that are valid for aff{P2} , we immediately have the

following sufficient condition for QMSTP linearizability as a direct result of the “if” direction of

Corollary 2.2.
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Theorem 3.2. Consider an instance of Problem QMSTP with objective function coefficients ce and

qe f . If there exists a vector c ∈ Rm such that the equation

∑
e∈E

cexe + ∑
e∈E

∑
f∈E
f>e

qe f ye f = 0 (13)

can be computed as a linear combination of the equations (12), then the instance is linearizable.

The preceding result begs the following question: are there any circumstances, such as special

structures in the graph upon which the QMSTP instance is defined, that would cause the lineariz-

ability condition of Theorem 3.2 to be necessary as well as sufficient? It turns out that Theorem 2.1

provides a framework for answering this question, as shown in the following theorem.

Theorem 3.3. Consider an instance of Problem QMSTP defined on a graph G = (V,E). The suf-

ficient linearizability condition of Theorem 3.2 is also necessary if and only if the structure of G

enforces that for any equation of the form

∑
e∈E

αexe + ∑
e∈E

∑
f∈E
f>e

βe f ye f = κ (14)

that is valid for aff{P2} , there exists a vector α ∈ Rm such that

∑
e∈E

αexe + ∑
e∈E

∑
f∈E
f>e

βe f ye f = 0 (15)

can be computed as a linear combination of the equations (12).

Proof. We begin with the ‘if’ direction. Consider a linearizable instance of the QMSTP defined on

the graph G, say with objective function coefficients ce and qe f . By Theorem 2.1 there exist a vector

c ∈ Rm and a scalar κ such that the equation

∑
e∈E

cexe + ∑
e∈E

∑
f∈E
f>e

qe f ye f = κ (16)
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is valid for aff{P2} . Since (16) is of the form (14), there exists a vector α ∈ Rm such that

∑
e∈E

αexe + ∑
e∈E

∑
f∈E
f>e

qe f ye f = 0

can be computed as a linear combination of the equations (12). Therefore, the sufficient lineariz-

ability condition of Theorem 3.2 is also necessary.

For the ‘only if’ direction, suppose that there exists an equation of the form (14), say

∑
e∈E

α̂exe + ∑
e∈E

∑
f∈E
f>e

β̂e f ye f = κ̂,

that is valid for aff{P2} . Consider an instance of Problem QMSTP with objective function coeffi-

cients ce and β̂e f . This QMSTP instance is clearly linearizable since

∑
e∈E

cexe + ∑
e∈E

∑
f∈E
f>e

β̂e f ye f = κ̂ + ∑
e∈E

(ce − α̂e)xe

for all (x,y) ∈ P2, meaning that

∑
e∈E

cexe + ∑
e∈E

∑
f∈E
f>e

β̂e f xex f = κ̂ + ∑
e∈E

(ce − α̂e)xe

for all x ∈ X2, x binary. Therefore, because of the hypothesis that the sufficient linearizability

condition of Theorem 3.2 is also necessary, there exists a vector α ∈ Rm such that the equation

∑
e∈E

αexe + ∑
e∈E

∑
f∈E
f>e

β̂e f ye f = 0 (17)

can be computed as a linear combination of the equations (12).

In order to draw parallels with previous results from the literature [13] that we will explore in

Section 3.3, we can rewrite the sufficient linearizability condition of Theorem 3.2 (in the upcoming
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Theorem 3.5) by defining W to be an m×m symmetric matrix containing the objective function

coefficients of Problem QMSTP, where the (e, f )th element of W is given by

we f =



1
2 qe f , if e < f

1
2 q f e, if e > f

ce, if e = f

. (18)

The symmetric matrix W is called a weak sum matrix if there exists a vector a ∈ Rm such that

we f = ae +a f for all e ̸= f .

Lemma 3.4. Given an instance of Problem QMSTP with objective function coefficients ce and qe f ,

the matrix W defined in (18) is a weak sum matrix if and only if there exists a vector c ∈ Rm such

that (13) can be computed as a linear combination of the equations (12).

Proof. First suppose that there exists a vector c ∈ Rm such that (13) can be computed as a linear

combination of the equations (12). Let λ ∈ Rm be the vector of coefficients of that linear combina-

tion. It follows that qe f = λe +λ f for all e < f , and therefore we f = αe +α f for all e ̸= f , where

α= 1
2λ. Thus, W is a weak sum matrix.

Now suppose that W is a weak sum matrix, meaning that there exists a vector α∈Rm such that

we f = αe +α f for all e ̸= f . So qe f = 2(αe +α f ) for all e < f . Using λ= 2α as the coefficients of

a linear combination of the equations (12) results in an equation of the form (13).

Theorem 3.5. Consider an instance of Problem QMSTP with objective function coefficients ce and

qe f . If the matrix W defined in (18) is a weak sum matrix, then the instance is linearizable.

Proof. This is a direct result of Theorem 3.2 and Lemma 3.4.

We end this section with the remark that the sufficient linearizability condition of Theorem 3.5

is also necessary in precisely the same circumstances as those described by Theorem 3.3.
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3.3 Examples

In this section we illustrate the utility of Theorem 3.3 by applying it two different graph structures

upon which instances of Problem QMSTP can be defined. In the first example, we show that for

biconnected graphs having at least four vertices and at least one vertex of degree two, the sufficient

linearizability condition of Theorem 3.2 (or equivalently that of Theorem 3.5) is not necessary. In

the second example, we show that the condition is both necessary and sufficient for complete graphs.

Although these results are previously known [13], we approach the proofs from the new polyhedral

perspective of Theorem 3.3. This new perspective allows us to make progress on an open question

related to the linearizability of QMSTP instances defined on biconnected graphs, as discussed in

Section 3.4.

Corollary 3.6. Consider an instance of Problem QMSTP defined on a biconnected graph G=(V,E)

with n = |V | ≥ 4 and at least one vertex of degree two. The sufficient linearizability condition of

Theorem 3.2 (or equivalently that of Theorem 3.5) is not necessary.

Proof. By Theorem 3.3, it is sufficient to find an equation of the form (14) that is valid for aff{P2} ,

but for which there exists no vector α ∈Rm such that (15) can be computed as a linear combination

of the equations (12).

Let v be a vertex of degree two, and suppose that the two edges adjacent to v are labeled i and

j, with i < j. Note that any spanning tree of G must contain n−1 edges. Furthermore, a spanning

tree of G could contain both of the edges i and j, or since G is biconnected, could contain exactly

one of them. Since the degree of v is two, it is impossible for a spanning tree of G to contain neither

edge i nor edge j.

Consider any (x,y) ∈ P2. If yi j = 1, meaning that xi + x j = 2, we have that

∑
e, f /∈{i, j}

e< f

ye f =

(
n−3

2

)
=

(n−3)(n−4)
2

. (19)
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On the other hand, if yi j = 0, we have that xi + x j = 1, and therefore

∑
e, f /∈{i, j}

e< f

ye f =

(
n−2

2

)
=

(n−2)(n−3)
2

. (20)

Together, equations (19) and (20) imply that

∑
e, f /∈{i, j}

e< f

ye f =
(n−2)(n−3)

2
− yi j(n−3)

for all (x,y) ∈ P2, meaning that

yi j +
1

n−3 ∑
e, f /∈{i, j}

e< f

ye f =
n−2

2
(21)

is valid for aff{P2} . Note that (21) is an equation of the form (14).

All that remains to show is that there exists no vector α ∈ Rm such that the equation

∑
e∈E

αexe + yi j +
1

n−3 ∑
e, f /∈{i, j}

e< f

ye f = 0 (22)

can be computed as a linear combination of the equations (12). Suppose that there did exist such a

linear combination, and let λ ∈ Rm be the multipliers of that linear combination. Since the coeffi-

cient on yi j in (22) is 1, we must have that λi+λ j = 1, so at least one of the values λi and λ j must be

positive. Without loss of generality, assume that λi > 0. Choose any other two edges in the graph,

say edge g and edge h (for notational convenience, assume that the edges are labeled such that

g < h < i < j). Since the coefficient of ygi in (22) is zero, it must be true that λg =−λi (so λg < 0).

Furthermore, since the coefficient of ygh in (22) is positive, we must have that λh > |λg|= λi. Hence,

λh and λi must both be positive, but the coefficient of yhi in (22) is zero, a contradiction.

Corollary 3.7. Consider an instance of Problem QMSTP defined on the complete graph Kn. The

sufficient linearizability condition of Theorem 3.2 (or equivalently that of Theorem 3.5) is also
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necessary.

Proof. By Theorem 3.3, it is sufficient to show that given any equation of the form (14) that is valid

for aff{P2} , there exists a vector α ∈Rm such that (15) can be computed as a linear combination of

the equations (12).

For this proof, we will assume that the m = n(n−1)
2 edges of the graph are labeled with the set

of numbers M ≡ {1,2, . . . ,m}. Without loss of generality, we will label the edges such that edges 1,

m− 1, and m are connected on a path of length three that doesn’t form a cycle, with edge 1 in the

middle (except in the case where n = 3 and this is not possible). We define the index set S as

S ≡ {(e, f ) ∈ M×M : e < f , e ∈ {1,m−1}}, (23)

so that |S|= m. For notational convenience, we define the set

R ≡ {(e, f ) ∈ M×M : e < f , e /∈ {1,m−1}}, (24)

so that S and R form a partition of the index pairs that define the variables ye f in (14). Note that

within the left-hand side of equations (12), the coefficients of those variables ye f having (e, f ) ∈ S

form the m×m node-arc incidence matrix of a connected, undirected graph containing an odd cycle,

meaning that this matrix has full rank [28].

Consider some specific equation of the form (14), say

∑
e∈E

α̂exe + ∑
e∈E

∑
f∈E
f>e

β̂e f ye f = κ̂, (25)

that is valid for aff{P2} . There must exist a linear combination of the equations (12) that yields an

equation of the form

∑
e∈E

αexe + ∑
(e, f )∈S

β̂e f ye f + ∑
(e, f )∈R

β e f ye f = 0 (26)

such that the coefficients β̂e f having (e, f ) ∈ S are the same as those found in (25). Note that by

Lemma 3.1, equation (26) is valid for aff{P2} ,

14



L. Waddell

The proof is now to show that given any equation of the form (14) that that is valid for aff{P2} ,

each βe f having (e, f ) ∈ R is uniquely defined in terms of the βe f having (e, f ) ∈ S. Because (25)

and (26) are both of the form (14) and are both valid for aff{P2} , the coefficients β̂e f of (25) and

β e f of (26) will then have β̂e f = β e f for all (e, f ) ∈ R, so that equation (26) is expressible as

∑
e∈E

ᾱexe + ∑
e∈E

∑
f∈E
f>e

β̂e f ye f = 0,

as desired.

The proof is inductive on the number of vertices n in the graph. For n = 3, we have that R = /0,

so the result trivially holds.

Base Case: n= 4

Consider an instance of Problem QMSTP defined on the complete graph having n = 4 vertices and

m = 6 edges, as shown in Figure 1, and suppose that we have an equation of the form (14) that is

valid for aff{P2} .

Figure 1: The complete graph with n = 4 vertices and m = 6 edges.

There are 44−2 = 16 solutions to x ∈ X2, x binary, meaning that |P2| = 16, with each of the

16 corresponding spanning trees containing three edges. Notationally, we distinguish each of these

solutions with a row vector θ ∈ {1,2,3,4,5,6}3 so that xθ denotes that binary solution having

xθ(i) = 1 for all i ∈ {1,2,3}, and all other x f = 0. For example, x(1,2,4) has x1 = x2 = x4 = 1,

and x3 = x5 = x6 = 0. Define yθ appropriately so that (xθ,yθ) ∈ P2. Since (14) is satisfied by

all (x,y) ∈ P2, the 16 equations listed below must hold, where E(xθ) denotes that linear equation
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obtained by setting x= xθ and y = yθ within (14).

(1) E(x(1,2,3)) : α1 +α2 +α3 +β12 +β13 +β23 = κ

(2) E(x(1,2,4)) : α1 +α2 +α4 +β12 +β14 +β24 = κ

(3) E(x(1,2,5)) : α1 +α2 +α5 +β12 +β15 +β25 = κ

(4) E(x(1,3,4)) : α1 +α3 +α4 +β13 +β14 +β34 = κ

(5) E(x(1,3,6)) : α1 +α3 +α6 +β13 +β16 +β36 = κ

(6) E(x(1,4,5)) : α1 +α4 +α5 +β14 +β15 +β45 = κ

(7) E(x(1,4,6)) : α1 +α4 +α6 +β14 +β16 +β46 = κ

(8) E(x(1,5,6)) : α1 +α5 +α6 +β15 +β16 +β56 = κ

(9) E(x(2,3,4)) : α2 +α3 +α4 +β23 +β24 +β34 = κ

(10) E(x(2,3,5)) : α2 +α3 +α5 +β23 +β25 +β35 = κ

(11) E(x(2,3,6)) : α2 +α3 +α6 +β23 +β26 +β36 = κ

(12) E(x(2,4,6)) : α2 +α4 +α6 +β24 +β26 +β46 = κ

(13) E(x(2,5,6)) : α2 +α5 +α6 +β25 +β26 +β56 = κ

(14) E(x(3,4,5)) : α3 +α4 +α5 +β34 +β35 +β45 = κ

(15) E(x(3,5,6)) : α3 +α5 +α6 +β35 +β36 +β56 = κ

(16) E(x(4,5,6)) : α4 +α5 +α6 +β45 +β46 +β56 = κ

Note that for n = 4, we have S = {(1,2), (1,3), (1,4), (1,5), (1,6), (5,6)}, and R = {(2,3), (2,4),

(2,5), (2,6), (3,4), (3,5), (3,6), (4,5), (4,6)}. The following linear combinations of equations

(1)–(16) above recursively express the nine coefficients βe f having (e, f ) ∈ R in terms of the six

coefficients βe f having (e, f ) ∈ S.

(2)− (3)− (12)+(13) : β46 = β14 −β15 +β56

(1)− (2)− (11)+(12) : β36 = β13 −β14 +β46
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= β13 −β14 +(β14 −β15 +β56)

= β13 −β15 +β56

(4)− (7)− (14)+(16) : β35 = β13 −β16 +β56

(2)− (3)− (9)+(10) : β34 = β14 −β15 +β35

= β14 −β15 +(β13 −β16 +β56)

= β13 +β14 −β15 −β16 +β56

(4)− (5)− (14)+(15) : β45 = β14 −β16 +β56

(6)− (3)− (16)+(13) : β26 = β12 −β14 +β46

= β12 −β14 +(β14 −β15 +β56)

= β12 −β15 +β56

(6)− (7)− (10)+(11) : β25 = β15 −β16 +β26 −β35 +β36 +β45 −β46

= β15 −β16 +(β12 −β15 +β56)− (β13 −β16 +β56)+(β13 −β15 +β56)

+(β14 −β16 +β56)− (β14 −β15 +β56)

= β12 −β16 +β56

(7)− (8)− (12)+(13) : β24 = β14 −β15 +β25

= β14 −β15 +(β12 −β16 +β56)

= β12 +β14 −β15 −β16 +β56

(11)− (12)− (15)+(16) : β23 = β24 +β35 −β45

= (β12 +β14 −β15 −β16 +β56)+(β13 −β16 +β56)− (β14 −β16 +β56)

= β12 +β13 −β15 −β16 +β56

This completes the n = 4 base case.

Now consider an instance of Problem QMSTP defined on a complete graph having n ≥ 5 ver-

tices, and suppose that we have an equation of the form (14) that is valid for aff{P2} . Choose a

vertex, call it T, that is not adjacent to edges labeled 1,m− 1, or m. Define ET as the set of edges
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that are adjacent to vertex T and define EN as the set of edges that are not adjacent to vertex T. Note

that |ET | = n− 1 and |EN | = (n−1)(n−2)
2 . For convenience, we will partition the index set R of (24)

into three subsets. Let R1 = {(e, f ) ∈ R : e ∈ EN , f ∈ EN},R2 = {(e, f ) ∈ R : e ∈ EN , f ∈ ET or e ∈

ET , f ∈ EN}, and R3 = {(e, f ) ∈ R : e ∈ ET , f ∈ ET}.

First, we will use an inductive argument to show that each βe f having (e, f ) ∈ R1 is uniquely

defined in terms of the βe f having (e, f ) ∈ S. To that end, randomly select some edge ℓ ∈ ET (which

means that ℓ /∈ {1,m−1,m}), and consider the set P′
2 ⊂ P2 consisting of all (x,y) ∈ P2 that corre-

spond to spanning trees containing the edge ℓ and no other edge adjacent to vertex T. For every such

spanning tree, we must have that xℓ = 1 and xe = 0 for all other edges e ∈ ET , and therefore from

(14) we have that

∑
e∈EN
e<ℓ

(αe +βeℓ)xe + ∑
e∈EN
e>ℓ

(αe +βℓe)xe + ∑
e∈EN

∑
f∈EN
f>e

βe f ye f = κ −αℓ (27)

must be satisfied by all (x,y) ∈ P′
2. Note that (27) takes the exact form of (14) for an instance of

Problem QMSTP defined on the complete graph having the n− 1 vertices in the set V −{T} and

the reduced edge set EN .

It is convenient to retain the original labels on the (n−1)(n−2)
2 edges in EN , which still includes

the edges labeled 1,m−1, and m. Now, in a similar manner to how (23) and (24) were used to define

the index sets S and R, respectively, we can define index sets SN and RN , but this time in terms of

the reduced edge set EN . Specifically,

SN ≡ {(e, f ) ∈ EN : e ∈ {1,m−1}}, (28)

and RN is the set of all ordered pairs (e, f ) ∈ EN such that (e, f ) /∈ SN .

By the inductive hypothesis, each coefficient βe f having (e, f )∈ RN is uniquely defined in terms

of the βe f having (e, f ) ∈ SN . Notice that SN ⊆ S and RN = R1, and therefore each coefficient βe f

having (e, f ) ∈ R1 is uniquely defined in terms of the βe f having (e, f ) ∈ S, as desired.

Next we will show that each βe f having (e, f ) ∈ R2 is uniquely defined in terms of the βe f
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having (e, f ) ∈ S. Arbitrarily select some (i, j) ∈ R2. Without loss of generality, assume that i ∈ EN

and j ∈ ET . Note that the edges 1, i, and j, along with vertex T, must be arranged in one of the

seven configurations displayed in Figure 2 (the configuration with six vertices is only possible when

n ≥ 6).

Figure 2: Possible edge configurations when i ∈ EN and j ∈ ET .

For each of the seven configurations in Figure 2, we define edges a,b, and y as shown in Figure 3.

For the configuration with six vertices, we define an additional edge c.
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Figure 3: Additional edge definitions based on the configurations of Figure 2.

Now consider the four different spanning trees that result from selecting:

a. every edge that connects an undrawn vertex to T (if any such vertices exist),

b. edges a and b,

c. edge c in the case of the configuration with six vertices, and

d. one of the following pairs of edges:

(i) edges i and j,

(ii) edges i and y,

(iii) edges 1 and j, or

(iv) edges 1 and y.

Each of these four spanning trees, differentiated by options (i)–(iv) in part (d), corresponds to an

(x,y) ∈ P2 that can be plugged into (14) to generate an equation that relates the parameters αe,

βe f , and κ. Taking the linear combination (i)-(ii)-(iii)+(iv) of these equations results in βi j = βiy +

β1 j −β1y (if i > y, replace βiy with βyi). Since (1,y) ∈ S,(1, j) ∈ S and (i,y) ∈ R1 (unless edges i

and y happen to be the edges labeled m− 1 and m, in which case (i,y) ∈ S), we have that βi j can
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be uniquely defined in terms of the βe f having (e, f ) ∈ S. Since i and j were arbitrarily chosen, the

result holds true for any coefficient βe f having (e, f ) ∈ R2.

Finally, we will prove that each βe f having (e, f ) ∈ R3 is uniquely defined in terms of the βe f

having (e, f )∈ S. Arbitrarily select some (i, j)∈R3. Note that the edges 1, i, and j, along with vertex

T, must be arranged in one of the three configurations displayed in Figure 4 (it is unnecessary to

show a fourth configuration that is equivalent to the third with i and j interchanged).

Figure 4: Possible edge configurations when i ∈ ET and j ∈ ET .

For each of the three configurations in Figure 4, we define edges a,b, and y as shown in Figure 5.

Figure 5: Additional edge definitions based on the configurations of Figure 4.

Now consider the four different spanning trees that result from selecting:

a. every edge that connects an undrawn vertex to T (if any such vertices exist),

b. edges a and b, and

c. one of the following pairs of edges:

(i) edges i and j,

(ii) edges i and y,

21



A Polyhedral Characterization of Linearizable QCOPs

(iii) edges 1 and j, or

(iv) edges 1 and y.

Each of these four spanning trees, differentiated by options (i)–(iv) in part (d), corresponds to an

(x,y) ∈ P2 that can be plugged into (14) to generate an equation that relates the parameters αe, βe f ,

and κ. Taking the linear combination (i)-(ii)-(iii)+(iv) of these equations results in βi j = βiy +β1 j −

β1y (if i > y, replace βiy with βyi). Since (1, j) ∈ S,(1,y) ∈ S and (i,y) ∈ R2, we have that βi j can

be uniquely defined in terms of the βe f having (e, f ) ∈ S. Since i and j were arbitrarily chosen, the

result holds true for any coefficient βe f having (e, f ) ∈ R3.

3.4 Progress on an Open Question regarding Linearizable QMSTP Instances

In Corollary 3.7 we saw that the sufficient linearizability condition of Theorem 3.2 (or equivalently

that of Theorem 3.5) is also necessary for instances of Problem QMSTP defined on a complete

graph. The paper [13] also shows that the condition is both necessary and sufficient for QMSTP

instances defined on a complete bipartite graph Kn1,n2 with min{n1,n2} ≥ 3. However, as shown in

Corollary 3.6, there are biconnected graph structures for which the linearizability condition is not

necessary. This naturally leads to the following open question, first posed in [13] in the context of

weak sum matrices.

Open Question 3.1. For which biconnected graph structures is the sufficient QMSTP linearizability

condition of Theorem 3.2 (or equivalently that of Theorem 3.5) also necessary?

In their concluding remarks, the authors of [13] wonder whether it would be enough for a bi-

connected graph to have a minimum vertex degree of at least three in order to guarantee that the

linearizability condition is both necessary and sufficient. By looking at this question through the

new polyhedral lens of Theorem 3.3, we can deduce that there is no fixed lower bound on the

minimum vertex degree that would guarantee the necessity of the linearizability condition.

Corollary 3.8. There does not exist a positive integer K for which the following statement is true:

the sufficient linearizability condition of Theorem 3.2 (or equivalently that of Theorem 3.5) is also
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necessary for any instance of Problem QMSTP defined on a biconnected graph with a minimum

vertex degree of at least K.

Proof. To prove the result we will construct a biconnected graph with arbitrarily large minimum

vertex degree for which the sufficient linearizability condition of Theorem 3.2 (or equivalently that

of Theorem 3.5) is not necessary. Consider the biconnected graph shown in Figure 6a, which is

constructed from three copies of the complete graph on p vertices, Kp, which are connected by four

additional edges, two of which are labeled i and j. Notice that the minimum vertex degree of this

graph is p−1. So, for example, when p = 4, this construction results in the graph shown in Figure

6b, which has minimum vertex degree three.

(a) Biconnected graph constructed from three copies of Kp, with minimum vertex degree p−1.

(b) The graph from Figure 6a when p = 4, with minimum vertex degree three.

Figure 6: Graph structures used in the proof of Corollary 3.8.

By Theorem 3.3, it is sufficient to find an equation of the form (14) that is valid for aff{P2} ,

but for which there exists no vector α ∈Rm such that (15) can be computed as a linear combination

of the equations (12). We can accomplish this in exactly the same way as in the proof of Corollary

3.6 by forming equation (21), with edges i and j defined as shown in Figure 6. Recall the key
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component of the formation of (21) is that any spanning tree must contain either both of the edges i

and j, or exactly one of them.

4 Conclusions and Future Research

This paper provides a polyhedral-based necessary and sufficient condition for identifying general

instances of Problem QCOP as being linearizable. Our general approach differs from previous

literature on linearizable QCOPs, which considers various problem classes (such as the QAP or the

QMSTP) independently and from vastly different perspectives, in that our main result (Theorem

2.1) holds for any QCOP. The utility of our methodology is illustrated in the specific context of

the QMSTP, where we reestablish several previously known linearizability results using our new

polyhedral framework, and then use the insights gained to make progress on an open question of

[13]. Specifically, we show that there is no fixed lower bound on the minimum vertex degree of

a biconnected graph that would guarantee that the sufficient QMSTP linearizability condition of

Theorem 3.2 (or equivalently that of Theorem 3.5) is also necessary.

Based on this work, two directions for future research naturally arise. First, we conjecture that

the polyhedral framework of Theorem 3.3 can lead to further progress on Open Question 3.1. For

example, perhaps the sufficient QMSTP linearizability condition of Theorem 3.2 is also necessary

for instances defined on 3-connected graphs, or perhaps alternatively for instances defined on bi-

connected graphs where the minimum vertex degree is at least some fixed percentage of the total

number of vertices. The proof of any such result would require an argument similar to that of

Corollary 3.7. Equally interesting would be the establishment that such graph structures are not

enough to guarantee the necessity of the linearizability condition of Theorem 3.2, which would re-

quire the construction of counterexamples similar to those found in the proofs of Corollaries 3.6 and

3.8. A second future research direction would be to investigate the implications of Theorem 2.1 to

other QCOPs, such as the QSPP, the bilinear assignment problem, and the quadratic transportation

problem.
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[6] R.E. Burkard, E. Çela, V. Demidenko, N. Matelski, and G. Woeginger. Perspectives of easy

and hard cases of the quadratic assignment problem, 1997.
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[17] G. Erdoğan and B. Tansel. A note on a polynomial time solvable case of the quadratic assign-

ment problem. Discrete Optimization, 3(4):382–384, 2006.
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