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Abstract

This paper presents the integration of constraint propagation and dual proof anal-
ysis in an exact, roundoff-error-free MIP solver. The authors employ safe rounding
methods to ensure that all results remain provably correct, while sacrificing as little
computational performance as possible in comparison to a pure floating-point imple-
mentation. The study also addresses the adaptation of certification techniques for
correctness verification. Computational studies demonstrate the effectiveness of these
techniques, showcasing a 23% performance improvement on the MIPLIB 2017 bench-
mark test set.

1 Introduction

Mixed integer programming (MIP) is a powerful modeling technique that can be used to
solve a wide variety of complex problems. Algorithms that solve MIP problems, short MIPs,
use an LP-based branch and bound algorithm at their core, but employ many complemen-
tary techniques to improve their performance [NW88, Ach07b, CCZ14, ABG+19, HP19].
They typically use double precision floating-point arithmetic together with the careful han-
dling of numerical tolerances to quickly compute accurate solutions. While this approach
makes the solving process highly efficient, and is accurate enough in practice for most ap-
plications, there exist problems where exact solutions are necessary. This is the case for ap-
plications in computational mathematics [BMVV19, BO12, EGP22, KS18, LPR20, Pul20]
as well as for several industry applications where exact correctness is critical [Ach07b,
WLH00, SBD19]. Furthermore, there exist pathological instances that exhibit such nu-
merical difficulties that floating-point solvers produce large errors. For these reasons, there
is a need for roundoff-error-free MIP solvers.
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In recent years, a hybrid approach has been proposed that aims to take advantage of
both floating-point and exact arithmetic in order to solve MIPs exactly [CKSW13]. This
approach has been revised and further improved by [EG22], and more recently in [EG23]
with the addition of cutting planes. What can be clearly seen in these works is that for
numerical techniques to be beneficial, it is crucial to employ them as much as possible
using floating-point arithmetic in a numerically safe way, as symbolic computation can be
prohibitively slow.

An important feature of MIP solvers is constraint propagation, which is a technique
that uses the problem constraints to tighten variable bounds, which can be used to detect
infeasibility of a subproblem before the LP is solved. This saves time, as performing
constraint propagation is generally much faster than solving an LP.

Another key feature of MIP solvers that has not yet been adapted to the exact setting
is conflict analysis, which can be categorized in two distinct types. In this paper we
will study dual proof analysis, which was introduced by [WBH16, WBH21]. This type
of conflict analysis derives constraints from Farkas certificates of infeasible subproblems
and dual solutions of bound-exceeding LPs. These are redundant constraints that do not
strengthen the LP relaxation. However, by performing propagation on these constraints,
infeasibility of subsequent subproblems can be detected more efficiently. Another form of
conflict analysis is graph-based conflict analysis [Ach07a], which was inspired by a similar
procedure in SAT solving [JS, MSS, MMZ+]. This form of conflict analysis is numerically
simpler, as it only generates disjunctive constraints with ±1 coefficients. In this paper we
study dual proof analysis, since our focus is on adapting numerical methods and studying
the challenges that arise in the exact setting.

An important aspect in the context of roundoff-error-free algorithms is the certification
of their correctness. A certifying algorithm creates a certificate alongside its solution that
can be independently verified to be correct [MMNS11, ABM+11]. Such techniques have
become standard in SAT solving [WHJ14, CFHH+17, CFMSSK17, GN03], and have also
been adapted to SMT solving [dMB08, BRK+22], pseudo boolean optimization [Goc19,
EGMN20], as well as to MIP solving [CGS17, EG22, EG23].

To summarize, our contribution is to develop numerically safe versions constraint prop-
agation and dual proof analysis, and to show that they can be used to improve the per-
formance of an exact MIP solver in practice. Furthermore, we show how to certify the
correctness of the derived bounds in the VIPR [CGS17] certificate format. Our paper is
structured as follows. First, we introduce the existing methods of dual proof analysis and
propagation in Section 2. Then, we describe how to adapt these techniques to the exact
setting as well as how to certify their correctness in Section 3. We conduct a thorough
computational study in Section 4, showing that these techniques can be used to improve
the running time by 23% on the MIPLIB 2017 benchmark test set [GHG+21] and solve
more instances within a time limit of two hours. We conclude with an outlook on future
research in Section 5.
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2 Constraint Propagation and Conflict Analysis

In this paper we consider MIPs of the form

minimize c⊤x

subject to Ax ≥ b,

ℓi ≤ xi ≤ ui for all i ∈ [n],

xi ∈ Z for all i ∈ S,

for A ∈ Rm×n, c ∈ Rn, b ∈ Rm. For the sake of simplicity of presentation, we assume that
all variables have finite bounds. The techniques are still applicable to MIPs with infinite
bounds, but propagation of some constraints involving unbounded variables may become
ineffective and is skipped. In the following, we first review the techniques of constraint
propagation and dual proof analysis in the floating-point setting.

2.1 Constraint Propagation

Constraint propagation is a technique that uses the problem constraints to tighten variable
bounds, see, e.g. [Ach07b, p. 426]. Consider a constraint a⊤x ≤ b. The maximum activity
is defined as act+ :=

∑n
i=1 max(aiℓi, aiui). Similarly, the minimum activity is defined to

be act− :=
∑n

i=1 min(aiℓi, aiui). We define the maximal activity relative to variable xk as

act+k :=
∑

i∈[n]\{k}

max(aiℓi, aiui),

and the minimal activity act−k analogously.
Any feasible vector x will satisfy a⊤x ≤ act+. Hence, for any variable xi with ak > 0,

we have

xk ≥
b− act+k

ak
, (1)

and if ak < 0 we have

xk ≤
b− act+k

ak
. (2)

Constraint propagation is the technique of computing the appropriate bounds from
Eqs. (1) and (2) and using them to tighten one of the variable bounds ℓk, uk if possible. It
can be performed in an iterated fashion, as long as some of the bounds have been tightened.
This is also the case at every node in a branch-and-bound tree, where the local bounds
of the subproblem are taken into account after they have been tightened by branching
decisions.
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In addition, by computing the minimal activity of a constraint, it can sometimes be
determined that a subproblem is infeasible. This happens when act− < b. In this case, the
problem is infeasible because the constraint is violated by any solution that respects the
variable bounds. Conversely, whenever act+ ≥ b, then constraint is redundant and can be
safely removed for the corresponding subproblem.

2.2 Dual Proof Analysis

Dual proof analysis is a technique that allows to learn from previously solved subproblems
that are infeasible or exceed the objective bound. In this type of conflict analysis, for any
subproblem with an infeasible or bound-exceeding LP relaxation a constraint is added to the
global problem from which the infeasibility of the subproblem can be derived by applying
constraint propagation to this single constraint instead of solving the LP relaxation over
all constraints. Note that the constraint will be redundant, and therefore does not need to
be added to the LP. However, it can be used for constraint propagation in other nodes of
the tree.

If branching is only performed on variables, then such a subproblem is given as a
sequence of bounds ℓ′i, u

′
i that have to be satisfied in addition to the problem constraints.

So, the LP relaxation in any node in the tree will be of the form

min c⊤x

Ax ≥ b

ℓ′i ≤ xi ≤ u′i for all i ∈ [n].

The dual program to this LP is given by

max b⊤y + ℓ′⊤r+ − u′⊤r−

r+ − r− −A⊤y = −c
y ≥ 0, r+ ≥ 0, r− ≥ 0.

If ℓ′ ≤ u′, we can assume that for all i ∈ [n] either r+i or r−i is zero, so we will write
r = r+ − r−. If the subproblem is infeasible, then the dual program will be unbounded.
This implies that there must exist a ray y, r+, r− with

b⊤y + ℓ′⊤r+ − u′⊤r− > 0,

A⊤y + r = 0.

Such a ray is called a Farkas proof of infeasibility [Far02]. Rewriting this gives

0 < b⊤y + ℓ′⊤r+ − u′⊤r− = b⊤y − ℓ′⊤(A⊤y)− + u′⊤(A⊤y)+. (3)

In dual proof analysis, the MIP solver adds the constraint y⊤Ax ≤ y⊤b to the problem.
Note that this constraint is globally valid, since it is a linear combination of problem
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constraints. The minimum activity of this constraint in the current subproblem is act− =
ℓ′⊤(A⊤y)+−u′⊤(A⊤y)−. Substituting this into Eq. (3) shows that act− > b⊤y. Hence, for
this subproblem, infeasibility can immediately be derived using propagation of the newly
added constraint.

Now consider the case of a bound-exceeding subproblem. This occurs when the objec-
tive value to the LP relaxation of the current problem is higher than the objective value
c⊤x• of the best IP-solution x• found so far. We can cut off bound-exceeding subproblems
by imposing c⊤x ≤ c⊤x•. Let y be the optimal dual solution. Dual proof analysis adds the
constraint (y⊤A−c)⊤x ≥ y⊤b−c⊤x•. This constraint is valid, as it is a linear combination
of the constraints of A and c⊤x ≤ c⊤x•. Note that for any feasible x for the subproblem,
we have

b⊤y + ℓ′⊤(A⊤y − c)+ − u′⊤(A⊤y − c)− = b⊤y + ℓ′⊤r+ − u′⊤r− ≥ c⊤x•, (4)

that is

ℓ′⊤(A⊤y − c)+ − u′⊤(A⊤y − c)− ≥ c⊤x• − b⊤y. (5)

Note that the left hand is the minimum activity of the newly added conflict constraint.
So just like in the case of an infeasible subproblem, we see that the bound-exceeding
subproblem can now be cut of using constraint propagation on the newly added constraint.

The constraints will not be added to the LP, but are only used for propagation. Since
dual proof analysis might be applied many times it can get too expensive to store all the
derived constraints. Therefore, we employ a method called aging, to dynamically remove
constraints that have not been useful for a long time [WBH16]. In the exact setting, we
make use of the same method.

3 Application in Numerically Exact MIP Solving

To efficiently implement constraint propagation and dual proof analysis in an exact MIP
solver, we will perform most computations in floating-point arithmetic. To guarantee
correctness, we carefully make use of directed rounding. We start with some definitions.

Let F ⊆ Q denote the set of floating-point numbers. In practice, these will be standard
IEEE double-precision [IEE08] numbers with 11 bits for the exponent and 52 bits for the
mantissa. For all x ∈ Q, we define:

x = min{y ∈ F : y ≥ x} x = max{y ∈ F : y ≤ x}

Whenever we write a + b + c + · · · we mean a + b + · · ·. An expression a + b + · · · is defined
analogously, as well as multiplication, division, and any combination thereof. We note that
this is consistent with how these expressions are computed in practice.
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3.1 Numerically Safe Constraint Propagation

Constraint propagation is applied at every node in the branch-and-bound tree. Recomput-
ing the minimum and maximum activity each time would be costly. Therefore, a solver
will keep track of these activities and update them whenever they change. This happens
when the variable bounds change, i.e., when the bounds (ℓ, u) of variable xi become (ℓ′, u′),
we update the maximum activity as

act+ ←

{
(u′ − u)ai if ai ≥ 0,

(ℓ′ − ℓ)ai otherwise.

In the exact setting, the activities would ideally be computed in exact arithmetic,
to give the tightest possible bounds. However, updating the activities using symbolic
computations can be prohibitively expensive. So instead our implementation uses floating-
point arithmetic. To ensure that no incorrect bounds are derived, we enforce the maximum
activity that we maintain to be at least as large as the actual maximum activity. So when
bounds (ℓ, u) are updated to (ℓ′, u′), the maximum activity is updated to

act+ ←

{
act+ + u′ai − uai if ai ≥ 0,

act+ + ℓ′ai − ℓai otherwise,

using directed rounding. Similarly, for the minimum activity we maintain only a lower
bound on the exact value.

In the floating-point setting the maintained activities need to be recomputed regularly
to keep the aggregated inaccuracy from accumulating. In the exact setting this is not
necessary, since the activities are guaranteed to remain valid. For this reason we do not
recompute them.

3.2 Numerically Safe Dual Proof Analysis

As explained in Section 2.2, the dual ray y is computed and the constraint y⊤Ax ≤ y⊤b is
added to the problem. For the sake of efficiency, we let the MIP solver compute y inexactly,
i.e., y is obtained by a floating-point LP solve, using the standard error tolerances. This
suffices, since slightly negative dual multipliers can be set to zero and any conic combination
of the constraints is globally valid.

To aggregate the constraints we also use floating-point arithmetic. We start from the
constraint â⊤x ≤ b̂ for â = 0 and b̂ = 0, which holds trivially. Now we add the constraints
yjA

⊤
·jx ≤ yjbj (where A·j is the jth column of A) to this constraint one by one: For each

j, we set b̂← b̂ + yjbj and the components of â are updated in the following way:

• If ui ≤ 0, then we set âi ← âi + yjAji.

• Otherwise, if ℓi ≥ 0, then we round âi ← âi + yjAji.
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• Otherwise, if ui ≤ ∞, then we set b̂ ← b̂ + (âi + yjAji − (âi + yjAji))ui and set

âi ← âi + yjAji.

• Otherwise, if ℓi ≥ −∞, then we set b̂ ← b̂− (âi + yjAji − (âi + yjAji))ℓi and set
âi ← âi + yjAji.

Note that this way of rounding guarantees that the constraint stays valid, and yields
an approximation of the exact conflict constraint. This approach has been used before to
implement Gomory mixed integer cuts [EG23].

3.3 Producing Certificates of Correctness

MIP solvers are complex pieces of software, that might contain bugs. Hence, it can be
desirable to verify the correctness of a solution that was found using a MIP solver, especially
when finding exact solutions is important. While checking feasibility is easy, verifying
optimality is harder, since this requires checking many nodes in the branch-and-bound tree
without using the solver. To make it possible to verify optimality, a MIP solver can be
extended to emit a certificate of optimality [CGS17]. The certificate contains all derived
bounds, plus a reason for why each bound holds. These certificates can be verified using a
simple piece of software that does not make use of the solver.

SCIP has been extended to generate certificates that can be verified using the program
VIPR [CGS17]. A VIPR certificate contains all the initial problem constraints and any
derived constraints. Each derived constraint contains a reason, that justifies why the
constraint holds. Previously derived constraints can be referred to by their line number in
the certificate. In VIPR certificates there are two deduction rules to derive an inequality:

• Linear combination. If a constraint is a linear combination of previously derived
constraints, it has to be valid. To certify the derivation, the line numbers of these
constraints are printed, along with the corresponding coefficients.

• Rounding. If c⊤x ≤ b has been previously derived such that c is zero for all indices
that correspond to non-integral variables, then

∑
i⌊ci⌋xi must be integral for any

feasible solution x. Hence,
∑

i⌊ci⌋xi ≤ ⌊b⌋ holds. To certify the derivation, the line
number of the constraint c⊤x ≤ b is printed to the certificate. This procedure is
called a Chvátal-Gomory cut in the context of pure integer programming.

Additionally, there are deduction rules that allow to encode a branching proof.
To be able to verify bounds that were derived using constraint propagation or dual proof

analysis, these bounds need to be written to the certificate in terms of the above derivation
rules. Because Eqs. (1) and (2) are both linear combinations of valid variable bounds,
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constraint propagation steps can be added to the certificate using the ‘linear combination’
deduction rule. If ak > 0 the constraint is

xk ≥
1

ak

bj −
n∑

i∈[n]\{k}

max(aiℓi, aiui)

 . (6)

For each i ̸= k, the line number of xi ≥ ℓi is printed to the certificate if aiℓi > aiui.
Otherwise, the line number of xi ≤ ui is printed. Finally, the line number corresponding
to the constraint

∑n
i=1 aixi ≥ bj is printed as well. For each of the constraints, the

corresponding coefficient is 1/ak.
If xk is an integer variable and for all i with nonzero ai, both ai and xi are integral, a

rounding derivation is printed to the certificate, certifying

xk ≥
⌈ 1

ak
(bj −

n∑
i∈[n]\{k}

max(aiℓi, aiui))
⌉
. (7)

In dual proof analysis, only linear combinations of globally valid constraints are added
as constraints. However, these constraints are computed using safe rounding methods
instead of exact arithmetic. For that reason, the derived constraints can not be computed
directly using the given multipliers and the “linear compbination” deduction rule.

Instead, we let the solver write just the linear combination corresponding to the original
constraint to the certificate along with a list of the current bounds for all variables appearing
in the constraint. Then afterwards a post-processing tool, called viprcomplete is applied
to the certificate to repair the linear combination of all of the constraints that have slight
inaccuracies due to the safe rounding procedure. One of the advantages of this approach
is that the repair step only needs to be done for constraints that will actually be used in
the solving process. For details, we refer to [EG23].

4 Computational Study

To analyze the actual impact of constraint propagation and dual proof analysis in the
context of exact MIP solving, we implemented these techniques in the exact variant of
SCIP and compared them with the impact of the same techniques in the floating-point
version of SCIP. Our runtime experiments do not include the time for certificate generation
in order to be as comparable as possible with the floating-point version. We stress that
while certificate generation does incur a computational cost, it does not change the solving
path and therefore does not affect the solvability of instances. We refer to [EG22, EG23]
for a detailed discussion of the computational cost of certificate generation.
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4.1 Experimental Setup and Test Set

The experiments were all performed on a cluster of Intel Xeon Gold 5122 CPUs with 3.6
GHz and 96 GB main memory. For all symbolic computations, we use the GNU Multiple
Precision Library (GMP) 6.1.2 [GT15]. All compared algorithms are implemented within
SCIP 8.0.3 [BBC+23], using SoPlex 6.0.3 [MGK+22] as both the floating-point and the
exact LP solver. For presolving in exact arithmetic, we use PaPILO 2.0.1 [Hoe22] and
disable all other presolving steps. Our proposed algorithms are freely available on GitHub.1

We use the MIPLIB 2017 benchmark test set [GHG+21]; in order to save computational
effort, we exclude all those that could not be solved by the floating-point default version of
SCIP 8.0.3 within two hours. For the remaining 132 instances we use three random seeds,
making the size of our test set 396. We report aggregated times in shifted geometric mean
with a shift of 1 second, and node numbers in shifted geometric mean with a shift of 100
nodes. For all tests, a time limit of two hours is used.

4.2 Experimental Results

The experimental results can be found in Table 1. From the table we see that enabling
propagation leads to an improvement in the running time of 11.6%. Also, 12 more instances
are solved to optimality within the time limit. The number of nodes decreases by 13.6%.
Enabling dual proof analysis decreases the running time by another 13.4% and the node
count by 17.7%. 3 more instances are solved to optimality within the time limit. Together
this comes down to a 23.4% decrease in running time, a 28.9% decrease in node count and
15 more instances that can be solved. From the performance profile in Fig. 1 it is also
clear that enabling constraint propagation and conflict analysis consistently speeds up the
solver. We also measured the total time that is spent in propagation. As can be seen from
the table, this amount is small in comparison with the total time.

To compare this with the impact that these techniques have in the floating-point setting,
we ran the same experiments on floating-point SCIP. In these experiments we disabled the
features not present in the exact version of SCIP: all cutting planes, graph-based conflict
analysis, restarts, presolving (except for PAPILO), custom propagation rules. As shown in
Table 2 in the floating-point setting, enabling propagation reduces solving time by 12.7%.
The node count increases by 6.2% and 11 more instances are solved to optimality. Dual
proof analysis reduces the running time by another 36.5% and the node count by 67.1%.
20 more instances are solved to optimality. Together this comes down to a decrease in the
running time of 44.5%, a 65.1% decrease in node count and 31 more instances being solved
to optimality.

It is clear that the performance boost is significantly larger in the floating-point setting.
The same is true for the increase in the number of instances solved. While the speedup

1As part of the development version of exact SCIP mirrored under https://github.com/scipopt/scip/
tree/exact-rational.
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# Solved Time Nodes (rel)

Settings Total (rel) CP DPA

Baseline 135 759.21 — — — 8735.1 —
+ CP 147 671.22 (0.88) 9.11 — 7550.4 (0.86)
+ CP + DPA 150 581.46 (0.77) 9.22 5.44 6211.1 (0.71)

Table 1: Experimental results comparing the performance of exact SCIP with and without
constraint propagation (CP) and dual proof analysis (DPA) enabled. All times shown are
in seconds. For the times and node counts, the shifted geometric with shift 1 seconds or 100
nodes respectively is used. Columns (rel) show times and nodes relative to the baseline.
Only the instances that could be solved by at least one of the given configurations are
included in these statistics.

Settings # Solved Time (rel) Nodes (rel)

Baseline 164 584.84 — 11415.0 —
+ CP 175 510.85 (0.87) 12119.4 (1.06)
+ CP + DPA 195 324.41 (0.55) 6986.1 (0.61)

Table 2: Experimental results comparing the performance of floating-point SCIP with and
without constraint propagation (CP) and dual proof analysis (DPA) enabled. All times
shown are in seconds. For the times and node counts, the shifted geometric with shift 1
seconds or 100 nodes respectively is used. Columns (rel) show times and nodes relative
to the baseline. Only the instances that could be solved by at least one of the given
configurations are included in these statistics.

from only enabling propagation is comparable, we observe a much greater reduction in the
number of nodes, and a much larger speedup from conflict analysis in the floating-point
setting. We see several reasons contributing to this difference.

First, performance variability plays a part and the fact that we look at different subsets
of the instances. Second, propagation takes up more time in the exact solving mode.
Although the shifted geometric mean of the propagation times shown in Table 1 is not
large, there exist instances where exact propagation even takes up a major portion of
the solving time. This is the case for instances in which propagation leads to a large
number of bound changes, since applying these bound changes is computationally more
expensive in the exact setting. This is because, while the propagation procedure itself
is implemented using floating-point arithmetic, applying a bound change in exact SCIP
is currently done using exact arithmetic. This means every floating-point bound change
needs to be converted to a rational number first, and then that rational number needs to

10



100 101

Factor of the best running time

40

60

80

100

120

140
N

u
m

b
er

of
in

st
an

ce
s

w
it

h
in

fa
ct

or

Baseline

+ CP

+ CP + DPA

Figure 1: Performance profile for different configurations. For each configuration it is
shown how many instances achieved a running time within a given factor of the shortest
running time for that instances. Only the instances that could be solved by at least one of
the given configurations are included in these statistics.

be used to update the exact bound. This can slow down the process significantly. If we
only look at the solving time without the time spent in propagation, the speedup from
enabling propagation is 17.1%, and the speedup from enabling conflict analysis is 28.3%.

There are more reasons that might lead to a lower impact of dual proof analysis in the
exact setting. The most important one is that constraint propagation is performed using
floating-point arithmetic, and that we cannot determine infeasibility within tolerances in
the exact setting. This might sometimes lead to derived bounds not being precise enough
to be useful in the exact settings or conflicts not being able to prove infeasibility. For
example, it is possible that in floating-point mode such an inexact bound can be used to
decide the infeasibility of a node, whereas in exact mode the corresponding LP still needs
to be solved. In numerically difficult cases, this might even lead to incorrect cutoffs in
the floating-point setting. It is clear that this is a trade-off that we can never fully avoid,
guaranteeing correctness while sacrificing performance.

Another possible reason that the techniques are slightly less effective in exact SCIP
could be that the derived variable bounds on non-integral variables can have a large de-
nominator. This can slow down solving LPs exactly, as has been observed for safe cutting
plane generation in [EG23]. We experimented with two variants that try to prevent this
from happening:

1. Limit the size of the denominators of the derived variable bounds for continuous
variables to a fixed upper bound.
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2. Disable constraint propagation for continuous variables.

However, we did not observe any positive effects on the solving times. This does not mean
that the described negative effects do not occur, but rather that all in all, by enabling
propagation for non-integral variables and allowing arbitrary denominators in their bounds,
we gain more than we lose.

5 Conclusion and Outlook

In this study, we investigated the feasibility and impact of constraint propagation and dual
proof analysis in the exact MIP solver SCIP. We found that enabling both techniques de-
creases the running time by 23.4% and the number of nodes by 28.9%. This performance
boost is significant, but less than the 44.5% decrease in running time and 65.1% decrease in
node count that we observed in the equivalent floating-point setting. Such weaker perfor-
mance is partially the price to be paid for exactness, coming from weaker inequalities due
to directed rounding and the fact that we cannot determine infeasibility within tolerances
in the exact setting.

Still, we see several future research opportunities to further improve these results.
On the implementation side, we believe there is potential to decrease the time spent in
propagation by adding support for floating-point bound changes in exact SCIP. Also, due to
technical reasons, it is currently not possible to apply propagation within strong branching
in the exact solving mode. Enabling this could also be beneficial.

Algorithmically, incorporating the strengthening techniques from [WBH21] for conflict
constraints also in the exact setting is likely to yield additional performance improvements.
Finally, implementing graph-based conflict analysis [Ach07a] would be straightforward due
to its combinatorial nature and is sure to yield positive impact in the exact setting. More
open-ended is the question if sporadically recomputing the activities also in the exact
setting could lead to tighter bounds and thus better performance.
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[CFHH+17] Lúıs Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt, Matt Kaufmann,
and Peter Schneider-Kamp. Efficient certified RAT verification. In Leonardo
de Moura, editor, Automated Deduction – CADE 26, pages 220–236, Cham,
2017. Springer International Publishing.
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