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Abstract. We present a branch-and-cut method for solving convex integer
nonlinear bilevel problems, i.e., bilevel models with nonlinear but convex
objective functions and constraints in both the upper and the lower level. To this
end, we generalize the idea of using disjunctive cuts to cut off integer-feasible but
bilevel-infeasible points. These cuts can be obtained by solving a cut-generating
problem, which itself is a single-level but nonconvex integer nonlinear problem.
We show that this cut-generating problem can be decomposed into a series of
smaller subproblems. These can all be solved in parallel and we state sufficient
conditions to ensure that they are convex integer nonlinear problems. Moreover,
we develop additional algorithmic techniques such as tailored pruning rules to
further speed up our method. We finally prove the correctness of the method
and test it in a numerical study that shows the applicability of the method.

1. Introduction

Bilevel optimization is an important area of mathematical optimization that has
gained increasing attention over the last years and decades. Bilevel problems model
hierarchical situations in which two agents with potentially conflicting interests
make decisions that influence each other and, therefore, cannot be considered
independently; see Dempe and Zemkoho (2020) or Bard (2013) for more detailed
introductions. Hence, bilevel optimization is a powerful tool to study hierarchical
decision making processes that occur in various applications such as energy markets
(Gabriel et al. 2012; Grimm et al. 2019), transportation (Marcotte 1986), security
applications (Tambe 2011), or pricing (Labbé and Violin 2013). However, bilevel
problems are very hard to solve both in theory and practice. Even in the easiest
case in which both levels are linear programs, the problem is known to be strongly
NP-hard (Hansen et al. 1992) and even checking local optimality for a given point
is NP-hard; see Vicente et al. (1994).

For bilevel problems with convex lower levels, there are established approaches that
transform the bilevel problem into a single-level problem by replacing its lower level
with necessary and sufficient optimality conditions; see, e.g., Dempe and Zemkoho
(2020) for further information. Both mathematically and algorithmically more
challenging classes of bilevel problems are those with nonconvexities in the lower-
level problem. In such cases, there are no compact necessary and sufficient optimality
conditions in general. Therefore, approaches such as the KKT reformulation or
reformulations based on strong-duality theorems (Zare et al. 2019) are not applicable.
An important example of such a problem class are bilevel problems for which both
levels are mixed-integer linear problems. Here, nonconvexities are due to integrality
constraints. In Jeroslow (1985) and Lodi et al. (2014) it is shown that bilevel
problems with mixed-integer linear models on both levels are ΣP
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Hence, most solution methods use some kind of branch-and-cut framework, where
branching is performed on integrality constraints and cutting planes are used to cut
off integer-feasible but bilevel-infeasible points. The cut generation usually needs to
solve an NP-hard problem. The first approach in this direction has been published
by DeNegre and Ralphs (2009) for purely integer linear bilevel problems. Since then,
many authors developed further techniques for tackling mixed-integer linear bilevel
problems such as the watermelon approach in Wang and Xu (2017) or the use of
intersection cuts in Fischetti et al. (2017) and Fischetti et al. (2018); see Kleinert
et al. (2021b) for a recent overview. An overview of suitable cutting planes in bilevel
optimization is given in Tahernejad and Ralphs (2020).

Even more challenging than MILP-MILP bilevel problems are problems with
integrality conditions as well as nonlinearities in both levels. In the recent work
by Gaar et al. (2023), the authors consider convex integer nonlinear bilevel problems
with second-order cone constraints in the upper level and a convex quadratic
objective function and linear constraints in the lower level. The authors developed
problem-specific disjunctive cuts to solve such problems using a branch-and-cut
framework. Based on their work, we develop a solution algorithm for bilevel problems
with convex integer nonlinear programs in both levels. In the considered class of
problems, the nonlinearities can appear in the objective function as well as in the
constraints of both levels but we restrict ourselves to convex nonlinearities. This is
a generalization of the problem setting studied in Gaar et al. (2023) as we allow for
nonlinearities in the lower-level constraints and since we do not restrict ourselves to
second-order cone constraints.

Let us also mention methods that consider even more general classes of bilevel
problems. For instance, in Mitsos (2010), general bilevel MINLPs are considered.
The approach is an extension of the method in Mitsos et al. (2008) for purely
continuous bilevel problems. Furthermore, there is a series of papers on the so-called
branch-and-sandwich approach for bilevel MINLPs; see, e.g., Kleniati and Adjiman
(2014b) and Kleniati and Adjiman (2014a) on purely continuous bilevel problems
and the extension to the mixed-integer case in Kleniati and Adjiman (2015). Due
to the overall hardness of the problems under consideration and the very general
assumptions made, the computational study in Kleniati and Adjiman (2015) deals
with rather small problems with up to 12 variables and 7 constraints. A different
setting is considered in Lozano and Smith (2017). Here, all objective and constraint
functions need to be continuous but can be nonconvex. However, the authors use
special separability properties and assume that some functions only take integer
values.

In the view of these references and to the best of our knowledge, we are the
first ones presenting a method that is tailored for solving general convex integer
nonlinear bilevel problems. By exploiting the problem’s special structure, we are
able to tackle much larger instances having a few hundred variables and constraints.
Hence, and to sum up, our contribution is the development of disjunctive cuts for
our specific setup. Furthermore, we develop a novel branch-and-cut framework and
also present additional algorithmic techniques to enhance our method. Finally, we
present extensive numerical results that show the applicability of our method.

The remainder of the paper is organized as follows. In Section 2, we describe
our problem setting and introduce those standard notions of bilevel optimization
that will be used afterward. Then, in Section 3, we discuss disjunctive cuts in the
context of our setup and give an in-depth discussion on how to compute them. Next,
we describe the overall branch-and-cut framework including the use of disjunctive
cuts in Section 4 and we prove the correctness of the method. In Section 5, we
discuss algorithmic techniques that we develop to enhance the proposed algorithm.



A BRANCH-AND-CUT METHOD FOR CONVEX INTEGER BILEVEL PROBLEMS 3

Section 6 contains the numerical results. We compare our branch-and-cut method
with a branch-and-cut algorithm based on classic integer no-good cuts to illustrate
the potential benefits from using disjunctive cuts. Finally, we summarize in Section 7
and discuss some topics for future research.

2. Problem Statement and Important Relaxations

We consider the problem

min
x∈Znx ,y

F (x, y) (1a)

s.t. G(x, y) ≤ 0, (1b)

y ∈ arg min
y′∈Zny

{f(x, y′) : g(x, y′) ≤ 0} , (1c)

where n := nx + ny and F, f : Rn → R, G : Rn → Rm, as well as g : Rn → Rl are
continuous and jointly convex functions. Note that the constraints in (1b) and (1c)
may also contain bounds on the x- and y-variables. Without loss of generality, we
can assume that F is linear, because we can solve the epigraph reformulation of
Problem (1) otherwise. We refer to (1a) and (1b) as the leader’s optimization or
upper-level problem and to (1c) as the follower’s optimization or lower-level problem.
In the case that the lower level has multiple optimal solutions, we choose the one
leading to minimum costs F (x, y), i.e., we consider the optimistic version of the
given bilevel optimization problem.

The value-function reformulation of Problem (1) reads1

min
x∈Znx ,y∈Zny

F (x, y) (2a)

s.t. G(x, y) ≤ 0, (2b)
g(x, y) ≤ 0, (2c)
(x, y) ∈ Zn, (2d)
f(x, y) ≤ Φ(x) (2e)

with

Φ(x) := min
y∈Zny

{f(x, y) : g(x, y) ≤ 0} . (3)

Dropping Condition (2e) leads to the high-point relaxation (HPR), i.e., the convex
integer nonlinear problem (INLP)

min
(x,y)∈Ω̃

F (x, y) (4)

with Ω̃ := {(x, y) ∈ Zn : G(x, y) ≤ 0, g(x, y) ≤ 0}. The set Ω̃ is the shared constraint
set and its projection onto the x-space is denoted with

Ω̃x :=
{
x ∈ Znx : ∃y with (x, y) ∈ Ω̃

}
.

Further removing the integrality constraints on the variables x and y leads to
the continuous high-point relaxation (C-HPR), which is the convex optimization
problem

min
(x,y)∈Ω

F (x, y) (5)

with Ω := {(x, y) ∈ Rn : G(x, y) ≤ 0, g(x, y) ≤ 0}.
Similar to Gaar et al. (2023), we make the following assumptions.

Assumption 2.1. The HPR’s feasible set is bounded and the HPR has a solution.

1Throughout this paper, we abbreviate (x>, y>)> by (x, y) for the ease of better reading.
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Assumption 2.2. For all x ∈ Ω̃x, the set Ω̃l(x) := {y ∈ Zny : g(x, y) ≤ 0} is
non-empty and bounded.

Note that if Assumption 2.1 holds, the C-HPR (5) cannot be unbounded due
to the convexity of the problem. Hence, this implies the boundedness of the
set Ω. Assumption 2.2 ensures that for all x ∈ Ω̃x, the x-parameterized lower-level
problem (1c) has a solution.

3. Disjunctive Cuts

We tackle Problem (1) by using a branch-and-cut method, where branching is
performed on the integrality constraints and cutting planes are used to separate
bilevel-infeasible points; see Algorithm 2 in Fischetti et al. (2018) for a generic
branch-and-bound scheme for mixed-integer linear bilevel problems (MILP-MILP).
In this section, we show how to derive cutting planes in the form of disjunctive cuts.
Therefore, we make use of the following result taken from Fischetti et al. (2018)
and Xu and Wang (2014), which also applies to our setup.

Theorem 3.1. For any ŷ ∈ Zny , the set

S(ŷ) := {(x, y) ∈ Rn : g(x, ŷ) ≤ 0, f(x, y) > f(x, ŷ)} (6)

does not contain any bilevel-feasible point.

The set S(ŷ) in (6) is commonly denoted as the bilevel-free set; see Fischetti
et al. (2018) or Gaar et al. (2023). We will later use the interior of S(ŷ) and its
complement to derive valid inequalities to cut off bilevel-infeasible points. To this
end, we make the following assumption.

Assumption 3.2. Let (x̃, ỹ) ∈ Ω be a bilevel-infeasible point. We assume that there
exists a point ŷ ∈ Zny such that (x̃, ỹ) ∈ int(S(ŷ)), where for an arbitrary set A we
denote with int(A) the interior of A.

Note that the point (x̃, ỹ) in the last assumption does not need to be integer-
feasible. Whenever we talk about a bilevel-infeasible point that is already integer-
feasible, we explicitly mention this in what follows. We assume that the bilevel-
infeasible point (x̃, ỹ) is in the interior of a bilevel-free set S(ŷ) to guarantee that
the inequality we generate actually cuts off the point. In Section 3.4, we discuss how
to compute a suitable bilevel-free set (if it exists at all). Furthermore, in Section 4.2,
we discuss the case in which the bilevel-infeasible point (x̃, ỹ) is on the boundary of
the bilevel-free set S(ŷ).

Given ŷ ∈ Zny such that Assumption 3.2 is satisfied, we now define

Di(ŷ) := {(x, y) ∈ Rn : gi(x, ŷ) ≥ 0}

for i ∈ I := {1, . . . , l} and

D0(ŷ) := {(x, y) ∈ Rn : f(x, y) ≤ f(x, ŷ)} .

The sets Di(ŷ) for i ∈ I0 := {0, . . . , l} are in general nonconvex and unbounded.
Furthermore, each of them has an empty intersection with the interior of the
bilevel-free set S(ŷ). Moreover, we have⋃

i∈I0

Di(ŷ) = int(S(ŷ))c, (7)

where for an arbitrary set A, we denote Ac as the complement of A. In the following,
we will use the disjunction

⋃
i∈I0 Di(ŷ) intersected with the integer lattice to derive

disjunctive cuts.
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3.1. Computing Disjunctive Cuts. We now give a formal definition of disjunctive
cuts in our context.

Definition 3.3. Let Θ ⊆ Ω be non-empty and convex and let (x̃, ỹ) ∈ Θ be a
bilevel-infeasible point. Moreover, let

α>x+ β>y − τ = 0 (8)

be a hyperplane that is parameterized by α ∈ Rnx , β ∈ Rny , and τ ∈ R. Furthermore,
suppose that the following two statements hold:
(i) The bilevel-infeasible point (x̃, ỹ) is strictly on one side of the hyperplane, i.e.,

α>x̃+ β>ỹ − τ > 0.
(ii) Every point

(x′, y′) ∈ Θ ∩ Zn ∩

(⋃
i∈I0

Di(ŷ)

)
is on the other side of the hyperplane, i.e., α>x′ + β>y′ − τ ≤ 0.

Then, the inequality α>x+ β>y − τ ≤ 0 is called a disjunctive cut which separates
(x̃, ỹ) from all bilevel-feasible points inside Θ.

A disjunctive cut as stated in Definition 3.3 separates a bilevel-infeasible point
(x̃, ỹ) from all integer-feasible points that are inside Θ but outside of int(S(ŷ)) for a
given ŷ. To compute a disjunctive cut, we solve the cut-generating problem

max
α,β,τ

α>x̃+ β>ỹ − τ

s.t. α>x+ β>y − τ ≤ 0 for all (x, y) ∈ Θ ∩ Zn ∩

(⋃
i∈I0

Di(ŷ)

)
,

||α, β, τ ||1 ≤ 1.

(CGP)

The norm constraint ensures that the (CGP) is bounded. We use the `1-norm as it is
commonly done in the literature; see, e.g., Fischetti et al. (2011) and Lodi et al. (2023).
Note that the (CGP) cannot be infeasible because (α, β, τ) = (0, 0, 0) ∈ Rnx×Rny×R
is feasible for (CGP). If a solution (α, β, τ) to the (CGP) yields a strictly positive
objective function value, then the resulting hyperplane separates the point (x̃, ỹ)
from the set Θ ∩ Zn ∩

(⋃
i∈I0 Di(ŷ)

)
. The following theorem makes a statement

about the solvability of (CGP).

Theorem 3.4. Suppose that there is a bilevel-infeasible point (x̃, ỹ) that is an
extreme point of Θ and that belongs to the interior of the bilevel-free set S(ŷ) for
some ŷ ∈ Zny . Then, there exists a disjunctive cut that separates (x̃, ỹ) from
Θ ∩ Zn ∩

(⋃
i∈I0 Di(ŷ)

)
and it can be obtained by solving the (CGP).

Proof. The proof is similar to the proof of Theorem 1 in Gaar et al. (2023). If
the point (x̃, ỹ) lies in the interior of the bilevel-free set S(ŷ), then it is not in
Θ ∩ Zn ∩ (

⋃
i∈I0 Di(ŷ)) due to (7). Moreover, since (x̃, ỹ) is an extreme point of Θ,

it cannot be represented as a proper convex combination of two different points
inside Θ ∩ Zn ∩ (

⋃
i∈I0 Di(ŷ)). Therefore, the point is not in the convex hull of

Θ ∩ Zn ∩ (
⋃
i∈I0 Di(ŷ)). Hence, we can separate (x̃, ỹ) from Θ ∩ Zn ∩ (

⋃
i∈I0 Di(ŷ))

via a linear inequality. Such an inequality is a disjunctive cut according to Defini-
tion 3.3 and is obtained when solving the (CGP). �

In the context of a branch-and-bound algorithm, the set Θ may correspond to
a subset of the search space determined by the branching decisions together with
additional constraints generated along the branching process.
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Remark 3.5. In the standard theory of disjunctive cuts one typically separates
points from the convex hull of a disjunction; see, e.g., Balas (2018). In our setup, we
want to separate (x̃, ỹ) from a discrete set. Therefore, we do not need to work with
the convex hull of Zn∩(

⋃
i∈I0 Di(ŷ)) because we can obtain an implicit representation

of the discrete set as shown in the next section.

3.2. Cut Generation. The cut-generating problem (CGP) can be seen as a ro-
bust optimization problem with a nonconvex, discrete, and finite uncertainty set.
Moreover, the problem itself is nonlinear and nonconvex and thus hard to solve.
Therefore, we apply an adversarial approach; see, e.g., Gorissen et al. (2015). For
k = 0, 1, 2, . . . , we solve the relaxed cut-generating problem (RCGP)

max
α,β,τ

α>x̃+ β>ỹ − τ

s.t. α>x′ + β>y′ − τ ≤ 0 for all (x′, y′) ∈ Zk,
||α, β, τ ||1 ≤ 1,

(RCGP)

where Zk ⊆ Θ ∩ Zn ∩ (
⋃
i∈I0 Di(ŷ)) is a discrete and finite set. Note that (RCGP)

can be reformulated as a linear optimization problem in (α, β, τ). Hence, it can be
solved in polynomial time. The set Z0 can be initialized with the empty set but
in Section 5.2 we will also give a condition under which we can initialize Z0 with
bilevel-feasible points. After solving the (RCGP), we obtain an optimal solution
(αk, βk, τk) and check if this solution satisfies the constraint

(αk)>x+ (βk)>y − τk ≤ 0 for all (x, y) ∈ Θ ∩ Zn ∩

(⋃
i∈I0

Di(ŷ)

)
,

i.e., we check if

Ψ(αk, βk, τk)

:= max
x,y

{
(αk)>x+ (βk)>y − τk : (x, y) ∈ Θ ∩ Zn ∩

(⋃
i∈I0

Di(ŷ)

)}
≤ 0

(9)

holds. Problem (9) is bounded due to the boundedness of Θ ⊆ Ω. If Problem (9) is
infeasible, the set Θ does not contain bilevel-feasible points as stated in the following
lemma.

Lemma 3.6. Let S(ŷ) be any bilevel-free set. If Problem (9) is infeasible, then the
set Θ ⊆ Ω is bilevel-free.

Proof. If Problem (9) is infeasible, we have

Θ ∩ Zn ∩

(⋃
i∈I0

Di(ŷ)

)
= Θ ∩ Zn ∩ int(S(ŷ))c = ∅;

see (7) for the first equality. It follows that

Θ ∩ Zn ⊆ int(S(ŷ))

holds, i.e., every integer-feasible point inside Θ is inside a bilevel-free set. Therefore,
Θ does not contain any bilevel-feasible point. �
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Note that the feasibility of Problem (9) does not depend on the iteration k. To
obtain Ψ(αk, βk, τk) we can solve the equivalent problem

max
x,y,b

(αk)>x+ (βk)>y − τk (10a)

s.t. (x, y) ∈ Θ ∩ Zn, (10b)
f(x, ŷ)− f(x, y) ≥ −M0(1− b0), (10c)
gi(x, ŷ) ≥ −Mi(1− bi), i ∈ I, (10d)
bi ∈ {0, 1} , i ∈ I0, (10e)∑
i∈I0

bi ≥ 1, (10f)

where bi are binary variables and Mi are sufficiently large constants for all i ∈ I0.
For each i ∈ I0, Constraints (10c) and (10d) ensure that (x, y) has to be in the
set Di(ŷ) if the corresponding binary variable bi is one. Otherwise, if bi is zero, the
constraint is trivially satisfied. Constraint (10f) ensures that at least one of the
binary variables is one, i.e., (x, y) has to be in at least one of the sets Di(ŷ) for
each feasible point (x, y, b). Therefore, in Problem (10), we optimize over the set
Θ ∩ Zn ∩ (

⋃
i∈I0 Di(ŷ)).

3.3. Decomposition of (CGP). To solve Problem (10), we decompose it into the
l + 1 subproblems

max
x,y

(αk)>x+ (βk)>y − τk

s.t. (x, y) ∈ Θ ∩ Zn,
f(x, ŷ)− f(x, y) ≥ 0

(11)

and
max
x,y

(αk)>x+ (βk)>y − τk

s.t. (x, y) ∈ Θ ∩ Zn,
gi(x, ŷ) ≥ 0

(12)

for i ∈ I. In each of the subproblems (11) and (12) one aims to find a point
(x, y) ∈ Θ ∩ Zn ∩ Di(ŷ), which yields the largest objective value for the current
hyperplane that is parameterized by αk, βk, and τk.

Note that the subproblems (11) and (12) are generally nonconvex and, thus, hard
to solve. They are bounded due to the boundedness of Θ. It is possible that some or
even all of the subproblems (11) and (12) are infeasible, which depends on ŷ and Θ.
Hence, we consider I feas

0 ⊆ I0 as the index set of the feasible subproblems. If every
subproblem appears to be infeasible, i.e., I feas

0 = ∅, then Problem (9) is infeasible as
well and, hence, Θ is bilevel-free; see Lemma 3.6.

Otherwise, for each subproblem i ∈ I feas
0 we get a solution (xi, yi)k in every

iteration k. Now we check if there are solutions (xi, yi)k with

(αk)>(xi)k + (βk)>(yi)k − τk > 0. (13)

If this is the case, those solutions are on the same side of the hyperplane induced by
(αk, βk, τk) as the point (xj , yj). Then, we set

Zk+1 ← Zk ∪
{

(xi, yi)k : (αk)>(xi)k + (βk)>(yi)k − τk > 0, i ∈ I feas
0

}
(14)

and repeat the procedure by solving the (RCGP) with the updated set Zk+1. If,
on the other hand, there is no (xi, yi)k satisfying (13) for some i ∈ I feas

0 , then
(αk, βk, τk) strictly separates (x∗, y∗) from all points (x, y) ∈ Θ∩Zn ∩ (

⋃
i∈I0 Di(ŷ))

and we found an appropriate cut.
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One advantage of considering the subproblems (11) and (12) instead of Prob-
lem (10) is that we neither need big-M constants nor the respective binary variables.
Moreover, we can solve all subproblems in parallel. We now show that computing a
disjunctive cut with the described adversarial approach only takes a finite amount
of iterations.

Lemma 3.7. Suppose that there is a bilevel-infeasible point (x̃, ỹ) that is an extreme
point of Θ and that belongs to the interior of the bilevel-free set S(ŷ) for some
ŷ ∈ Zny . Then, computing the disjunctive cut from Theorem 3.4 can be done in
finitely many steps.

Proof. Solving the (RCGP) can be done in polynomial time as it is a linear problem.
Since the subproblems (11) and (12) are purely integer, it takes finitely many steps
to solve them. Note that, although these problems are nonconvex in general, we
only have to enumerate a finite number of points in the worst case to get a globally
optimal solution. This is due to the boundedness of the shared constraint set Ω,
see Assumption 2.1, which implies the boundedness of Θ. Furthermore, in every
iteration k, we enlarge the set Zk by at least one point if we have not found a
cutting hyperplane yet; see (14). Hence, we only need finitely many updates until
Zk′ = Θ ∩ Zn ∩ (

⋃
i∈I0 Di(ŷ)) holds for some k′ <∞. �

In general, the subproblems (11) and (12) are nonconvex INLPs but the following
proposition gives a condition under which the problems are convex INLPs.

Proposition 3.8. Let the functions f and gi be jointly convex and linear in x for
all i ∈ I. Then, the problems (11) and (12) are convex INLPs for all i ∈ I.

Proof. If the functions f and gi, i ∈ I, are jointly convex and linear in x, then the
condition

f(x, ŷ)− f(x, y) ≥ 0

in Problem (11) is convex in x and y. Furthermore, the condition

gi(x, ŷ) ≥ 0

in Problem (12) is also convex in x for all i ∈ I. Note that ŷ is a constant in this
context. �

3.4. Computing Bilevel-Free Sets. So far we assumed that we are given a bilevel-
free set such that the bilevel-infeasible point (x̃, ỹ) is in the interior of this set; see
Assumption 3.2. In this section, we show how do derive a suitable bilevel-free set
for a given integer-feasible point (x̃, ỹ).

The idea of Fischetti et al. (2018) for mixed-integer bilevel linear programs
(MIBLPs) consists of using the optimal follower’s response for a given x̃ as ŷ to
create a bilevel-free set. Therefore, in Fischetti et al. (2018), S(ŷ) is enlarged in a
way that a bilevel-infeasible point (x̃, ỹ) is guaranteed to be in the interior of this
set; see Theorem 4 in Fischetti et al. (2018). However, applying the same techniques
is not possible in our nonlinear setting.

Instead, we derive the bilevel-free set by solving an auxiliary problem. Therefore,
we generalize the type-1 scoop problem of the watermelon approach presented
by Wang and Xu (2017), where bilevel integer linear optimization problems are
considered. We construct the bilevel-free set as follows. Starting from ỹ ∈ Zny ,
we try to find a direction ∆y such that the bilevel-free set S(ỹ + ∆y) contains the
bilevel-infeasible point (x̃, ỹ) in its interior, i.e., (x̃, ỹ) ∈ int(S(ỹ + ∆y)). Note that
ỹ + ∆y takes the role of ŷ of the previous notation. The bilevel-free set of the point
ỹ + ∆y is given by

S(ỹ + ∆y) := {(x, y) ∈ Rn : g(x, ỹ + ∆y) ≤ 0, f(x, y) > f(x, ỹ + ∆y)} (15)
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and the point (x̃, ỹ) belongs to int(S(ỹ + ∆y)) if it fulfills

g(x̃, ỹ + ∆y) < 0, f(x̃, ỹ) > f(x̃, ỹ + ∆y).

To compute a suitable direction ∆y, we solve the convex MINLP

max
∆y∈Rny ,s∈Rl+1,t∈R

t (16a)

s.t. t ≤ si, i ∈ I0, (16b)
gi(x̃, ỹ + ∆y) + si ≤ 0, i ∈ I, (16c)
f(x̃, ỹ + ∆y)− f(x̃, ỹ) + s0 ≤ 0, (16d)
∆y ∈ Zny , (16e)
si ≥ 0, i ∈ I0, (16f)

which is an extension of the type-1 scoop problem in Wang and Xu (2017) to the
nonlinear case. Problem (16) is convex in our setting because we assume that f
and gi are jointly convex. Hence, the left-hand sides of Constraints (16c) and (16d)
are convex in ∆y. These constraints ensure that the point (x̃, ỹ) is inside the bilevel-
free set S(ỹ + ∆y). If we find a solution to Problem (16) such that (16c) and (16d)
are strictly satisfied, i.e., all slack variables si for i ∈ I0 are strictly positive, then
(x̃, ỹ) ∈ int(S(ỹ + ∆y)) holds. To achieve this, we maximize the auxiliary variable t,
which is a lower bound for all slack variables si, i ∈ I0. Furthermore, we need the
integrality constraints on the ∆y variables because ỹ + ∆y has to be integer for
being able to apply Theorem 3.1. We now derive some properties of Problem (16).

Proposition 3.9. Let (x̃, ỹ) ∈ Θ ⊆ Ω be given. Then, Problem (16) is always
solvable and the solution (∆y∗, s∗, t∗) of Problem (16) yields a non-negative optimal
objective value t∗.

Proof. Due to Assumption 2.2, the constraints in (16c) bound the ∆y-variables.
Hence, the scoop problem cannot be unbounded. Since the functions f and gi,
i ∈ I, are continuous, the feasible region of problem (16) is closed. If (x̃, ỹ) is in
Θ ⊆ Ω, the point (∆y, s, t) = (0, 0, 0) is always feasible for Problem (16) and yields
a non-negative objective value, i.e., the feasible region of (16) is non-empty. With
the theorem of Weierstraß we thus get the existence of an optimal solution for the
scoop problem. �

Proposition 3.10. Let (x̃, ỹ) ∈ Θ ⊆ Ω be an integer-feasible point. Furthermore, let
(∆y∗, s∗, t∗) be an optimal solution of Problem (16) that is parameterized by (x̃, ỹ)
and suppose that t∗ > 0 holds. Then, the point (x̃, ỹ) is in the interior of the
bilevel-free set S(ỹ + ∆y∗).

Proof. If t∗ > 0 holds, then every slack variable s∗i , i ∈ I0, is strictly positive as well.
Therefore, every inequality constraint of S(ỹ + ∆y∗) is strictly satisfied at (x̃, ỹ).
Hence, the point is in the interior of the bilevel-free set S(ỹ + ∆y∗). Note that
we need ỹ to be integer because a set S(ỹ + ∆y∗) with fractional ỹ + ∆y∗ is not
guaranteed to be bilevel-free; see Definition 6. �

Proposition 3.11. Let (x̃, ỹ) ∈ Θ ⊆ Ω be an integer-feasible point. Furthermore,
let (∆y∗, s∗, t∗) be an optimal solution of Problem (16) that is parameterized by
(x̃, ỹ) and suppose t∗ = 0 holds. Then, there exists no ∆y ∈ Zny for which the point
(x̃, ỹ) is in the interior of the bilevel-free set S(ỹ + ∆y).

Proof. If t∗ = 0 holds, then there is at least one slack variable s∗i , i ∈ I0, with s∗i = 0.
Therefore, at least one inequality constraint of S(ỹ + ∆y∗) is satisfied with equality
at the point (x̃, ỹ) and hence this point is on the boundary of the bilevel-free set
S(ỹ + ∆y∗). Since t is maximized, there is no other bilevel-free set containing (x̃, ỹ)
in its interior. �
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Proposition 3.10 requires that the solution ∆ỹ of Problem (16) has a strictly
positive objective value. However, it is not guaranteed that such a solution exists. In
the case t∗ = 0, we cannot satisfy the assumptions of Theorem 3.4, and, hence, it may
be impossible to compute a disjunctive cut as defined in Definition 3.3. Therefore,
in this scenario, we use an integer no-good cut to separate the bilevel-infeasible
point; see Section 4.2.

4. A Branch-and-Cut Method

In this section, we describe how to use the results of Section 3 in a branch-and-cut
procedure to solve convex integer nonlinear bilevel problems. A general branch-and-
bound framework for mixed-integer linear bilevel problems can be found in Fischetti
et al. (2018). A formal listing of our method is given in Algorithm 1.

Algorithm 1: Processing Node j
Input: A node problem of the form (Nj) and an incumbent value u.

1 Solve node problem (Nj).
2 if Problem (Nj) is infeasible then
3 fathom the current node.
4 Let (xj , yj) denote the solution of Problem (Nj).
5 if F (xj , yj) ≥ u then
6 fathom the current node.
7 if (xj , yj) /∈ Zn then
8 apply integrality branching.
9 Determine ȳ ∈ arg miny∈Zny {f(xj , y) : g(xj , y) ≤ 0} and Φ(xj).

10 if G(xj , ȳ) ≤ 0 then
11 The point (xj , ȳ) is bilevel-feasible. Set u← min{u, F (xj , ȳ)}.
12 if f(xj , yj) > Φ(xj) then
13 solve Problem (16) to obtain an optimal solution (∆yj , sj , tj).
14 if tj > 0 then
15 set Θ := Ωj and ŷ := yj + ∆yj .
16 for k = 0, 1, 2, . . . do
17 solve the (RCGP) and obtain the solution (αk, βk, τk).
18 Given (αk, βk, τk), solve the subproblems (11) and (12) for all

i ∈ I0. Let I feas
0,j denote the index set of the feasible subproblems.

19 if I feas
0,j = ∅ then

20 fathom the current node.
21 else
22 compute solutions (xi, yi)k with i ∈ I feas

0,j . Set
M := {(xi, yi)k : (αk)>(xi)k + (βk)>(yi)k − τk > 0, i ∈ I feas

0,j }.
23 if M 6= ∅ then
24 Set Zk+1 ← Zk ∪M.
25 else
26 add the cut αkx+ βky − τ ≤ 0 to Problem (Nj) and go to

Line 1.
27 else
28 derive an integer no-good cut and add it to Problem (Nj); see

Section 4.2. Go to Line 1.
29 else
30 The node solution (xj , yj) is bilevel-feasible. Set u← min{u, F (xj , yj)}.

Fathom the current node.
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Starting with the continuous HPR (5) as the root-node relaxation, we solve in
every node j of the branch-and-bound tree problems of the form

min
(x,y)∈Ωj

F (x, y), (Nj)

where Ωj := Ω ∩ {(x, y) ∈ Rn : Ajx+Bjy ≤ aj}; see Line 1. The linear constraints
Ajx + Bjy ≤ aj contain cuts that we already added, branching decisions, and
potential other cuts of the underlying MINLP solver. Note that due to Assump-
tion 2.1, each node problem is bounded. As stated in Section 2 we assume w.l.o.g.
that the upper-level objective function F is linear, because we can solve the epigraph
reformulation of Problem (1) otherwise.

As usual in branch-and-bound, we fathom a node j if it is infeasible; see Lines 2
and 3. Otherwise, we denote a solution of Problem (Nj) with (xj , yj); see Line 4.
Note that in our setting we can always obtain a node solution (xj , yj), which is an
extreme point of Ωj . This is because we minimize a linear function over a continuous,
convex, and bounded set. If the objective value of the node solution (xj , yj) exceeds
an upper bound u for the objective value of the bilevel-optimal solution, we prune
the node j; see Lines 5 and 6. Otherwise, we check if the solution is integer and if it
is fractional, we perform the branching step in Line 8 of Algorithm 1.

On the other hand, if it is integer-feasible, we compute an optimal follower’s
response ȳ and the corresponding objective value Φ(xj) for the leader’s decision xj ;
see Line 9. If the point (xj , ȳ) satisfies every constraint of the upper level, it is
bilevel-feasible and, hence, we update the incumbent u with the minimum of u
and F (xj , ȳ); see Lines 10 and 11. In Line 12 we check if the integer-feasible node
solution (xj , yj) is bilevel-feasible by comparing its lower-level objective function
value with the optimal objective function value of the xj-parameterized lower level.
If the point (xj , yj) is bilevel-feasible, we update the incumbent u and prune the
current node; see Line 30. Note that at this point we need to update the incumbent
to hedge against the case that (xj , yj) is bilevel-feasible but we obtain a ȳ 6= yj such
that (xj , ȳ) violates the upper-level constraints. Then we would not update u in
Line 11. This scenario can happen because we do not assume that the lower level
has a unique solution for all parameterizations x ∈ Ω̃x.

If the node solution (xj , yj) is integer-feasible but bilevel-infeasible, we compute
a disjunctive cut separating the node solution (xj , yj) from all bilevel-feasible points
inside Ωj . Therefore, we first solve the scoop problem (16) with (x̃, ỹ) := (xj , yj) and
obtain an optimal solution (∆yj , sj , tj); see Line 13. If the optimal objective value tj
is strictly greater than zero, we have found a bilevel-free set S(yj + ∆yj) such that
the node solution (xj , yj) is in its interior. Hence, the assumptions in Theorem 3.4
are satisfied and we compute a disjunctive cut to separate the bilevel-infeasible node
solution by using the adversarial approach as discussed in Section 3.2.

Iteratively, we first solve the (RCGP) to obtain a hyperplane separating the node
solution (xj , yj) from every point in Zk for the current iteration k; see Lines 16
and 17. Afterward, we check if the computed hyperplane separates (xj , yj) from
Ωj ∩Zn ∩ (

⋃
i∈I0 Di(y

j + ∆yj)). Therefore, in Line 18 of Algorithm 1, we determine
for every set Di(yj + ∆yj), i ∈ I0, a point (xi, yi)k ∈ Ωj ∩Zn ∩Di(yj + ∆yj), which
maximizes the value of the left hand-side of the given hyperplane. We do this by
solving the subproblems (11) and (12) with Θ := Ωj and ŷ := yj + ∆yj . Since the
feasibility of these subproblems depends on Ωj and yj + ∆yj , we denote the index
set of feasible subproblems with I feas

0,j .
If each of the subproblems is infeasible, i.e., I feas

0,j = ∅, we prune the current
node due to Lemma 3.6; see Line 20. This is because Ωj does not contain any
bilevel-feasible point. The correctness of this pruning step is shown in Lemma 4.1,
below. Otherwise, we consider the solutions (xi, yi)k with i ∈ I feas

0 of the feasible
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subproblems and check if at least one of them lies on the same side of the computed
hyperplane as the node solution (xj , yj); see Line 23. If this is the case, we extend Zk
by those points; see Line 24. Otherwise, we add the hyperplane as a local constraint
to the node problem (Nj), i.e., it only affects the nodes of the subtree rooted in
node j. Note that adding the disjunctive cut as a global constraint to the model is
not valid because we may cut off bilevel-feasible points, which are not in the feasible
region of the current node.

If, on the other hand, tj = 0 holds, there is no bilevel-free set containing the node
solution (xj , yj) in its interior; see Proposition 3.11. Hence, we derive an integer
no-good cut and add it as a local constraint to the node problem (Nj); see Line 28.
A derivation of such an integer no-good cut is given in Section 4.2.

4.1. Correctness of the Method. The following lemma makes a statement about
the correctness of the pruning step in Line 20.

Lemma 4.1. Let Ωj be the feasible region of node j and let S(ŷ) be any bilevel-free
set. If the subproblems (11) and (12) with Θ := Ωj are infeasible for all i ∈ I, then
we can prune node j.

Proof. Let Θ := Ωj . If the subproblems (11) and (12) are infeasible for all i ∈ I
and any ŷ ∈ Zn, Problem (9) is infeasible as well. Due to Lemma 3.6 we have
Ωj ∩ Zn ⊆ int(S(ŷ)). Therefore, Ωj is bilevel-free and, hence, we can prune
node j. �

Note that in Line 20 of Algorithm 1, we check the feasibility of the subprob-
lems (11) and (12), which are parameterized by ŷ := yj + ∆yj ; see Line 15. As
stated in Lemma 4.1, it is also possible to use any other parameterization ŷ ∈ Zn.
We discuss this briefly in Section 5.1. With the above lemma we finally show the
correctness of Algorithm 1.

Theorem 4.2. Suppose that the Assumptions 2.1 and 2.2 hold. Then, the branch-
and-cut procedure based on Algorithm 1 terminates after a finite number of steps
with a globally optimal solution of the bilevel problem (1) or with a correct indication
of infeasibility.

Proof. The assumptions ensure a finite number of solutions to the HPR, to the
x-parameterized lower-level problem (1c) for every parameterization x ∈ Ω̃x, and,
therefore, also to the bilevel problem (1). Let j be an arbitrary node in the branch-
and-bound tree. The set Ωj ∩ Zn is finite due to Assumption 2.1. Since every node
problem (Nj) is convex, the node solution (xj , yj) we obtain in Line 4 of Algorithm 1
is globally optimal for Problem (Nj). Let Bj = {(x, y) ∈ Zn : f(x, y) ≤ Φ(x)} ∩ Ωj
be the set of bilevel-feasible points in the feasible region of node j. If we get a
node solution (xj , yj) ∈ Zn that is bilevel-infeasible, i.e., (xj , yj) /∈ Bj , Algorithm 1
either adds a constraint to Ωj , which excludes at least this point from the finite set
Ωj ∩ Zn, see Line 26, or prunes the node j; see Line 20. Note that the pruning step
is correct due to Lemma 4.1.

From Lemma 3.7, we know that computing a disjunctive cut only takes finitely
many steps. The same holds true for computing an integer-no-good cut, which
can easily be seen in Section 4.2. Furthermore, it only takes finitely many cuts
to separate every integer-feasible but bilevel-infeasible point in Ωj . A complete
evaluation of the branch-and-bound tree also takes finitely many steps. Therefore,
if
⋃
j Bj is not empty, the algorithm terminates after a finite amount of steps with a



A BRANCH-AND-CUT METHOD FOR CONVEX INTEGER BILEVEL PROBLEMS 13

bilevel-optimal solution

(x∗, y∗) ∈ arg min
x,y

F (x, y) : (x, y) ∈
⋃
j

Bj
 .

Otherwise, if
⋃
j Bj is empty, we need only finitely many steps to exclude every

integer-feasible point in Ω, which results in a correct indication of infeasibility. �

Note that the correctness of Algorithm1 remains true even if we only use integer
no-good cuts. This is due to finiteness of Ω ∩ Zn; see Assumption 2.1.

4.2. Integer No-Good Cuts. We now briefly discuss how to compute an integer
no-good cut in the case that the optimal objective function value tj for a node j
is zero, see Lines 14 and 28 of Algorithm 1, and we cannot compute a disjunctive
cut; see Proposition 3.11 and Theorem 3.4. For binary variables x and y we use the
inequality∑

i∈Nx:xj
i=0

xi +
∑

i∈Nx:xj
i=1

(1− xi) +
∑

i∈Ny :yji =0

yi +
∑

i∈Ny :yji =1

(1− yi) ≥ 1

with Nx := {1, . . . , nx} and Ny := {1, . . . , ny} to cut off the bilevel-infeasible node
solution (xj , yj). In the case of integer variables x and y with bounds lx ≤ x ≤ ux
and ly ≤ y ≤ uy, we represent them with binary variables v and w first, i.e.,

xi = −2mxvi,mx
+

mx−1∑
k=0

2kvi,k, yi = −2mywi,my
+

my−1∑
k=0

2kwi,k

with

mx := dlog2 (max {|lx|, |ux|}) + 1e, my := dlog2 (max {|ly|, |uy|}) + 1e.

5. Further Algorithmic Techniques

Now we discuss further algorithmic techniques, which we implemented in Algo-
rithm 1 to enhance our method.

5.1. Sibling Node Pruning. In Line 20 of Algorithm 1, we implemented a pruning
technique based on Lemma 3.6. Therefore, we check the feasibility of the subprob-
lems (11) and (12) that are parameterized by yj + ∆yj . This is equivalent to check
if Ωk ∩ Zn ⊆ int(S(yj + ∆yj)) holds. As stated in Lemma 4.1, one can use any
other bilevel-free set S(ŷ) different from S(yj + ∆yj) as well. Based on this, if a
node j gets pruned due to Lemma 3.6 in Line 20 of Algorithm 1, we can check
if Ωk ∩ Zn ⊆ int(S(yj + ∆yj)) holds. Here, Ωk is the feasible region of the sibling
node k of node j and ∆yj is a solution to the scoop problem (16) parameterized
by a node solution (xj , yj) of node j. We do this by checking the feasibility of the
subproblems (11) and (12) with Θ := Ωk and ŷ := yj + ∆yj . If we verify that the
sibling node k of j is also contained in S(yj + ∆yj), we prune node k. We only
apply this technique at the sibling node because its feasible region is the one which
is most likely to be contained in the same bilevel-free set as the feasible region of
node j. That is because the sets Ωk and Ωj only differ in the bounds of one variable,
i.e., their difference is as small as possible. This approach is useful in scenarios in
which the sibling node k can be pruned and has a fractional solution. Then, we
prune the node instead of branching on an integrality condition and creating two
more subproblems in Line 8 of Algorithm 1.
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5.2. Initializing Z0. In Line 17, we solve the relaxed cut-generating problem
(RCGP). In the first iteration k = 0, one can initialize the set Z0 with the empty
set. The following lemma gives a condition under which one can initialize Z0 with
a bilevel-feasible point.

Lemma 5.1. Let (x̂, ŷ) be a bilevel-feasible point, which is feasible for node j, i.e.,
(x̂, ŷ) ∈ Ωj. Then, (x̂, ŷ) ∈ Ωj ∩ Zn ∩ (

⋃
i∈I0 Di(ŷ)) holds.

Proof. If the point (x̂, ŷ) ∈ Ωj is bilevel-feasible, it is also integer-feasible. Fur-
thermore, it is not contained in S(yj + ∆yj) and with (7) we have (x̂, ŷ) ∈⋃
i∈I0 Di(ŷ). �

One can make use of this lemma as follows. When a bilevel-feasible point (xj , ȳ)
in Line 9 of Algorithm 1 is computed, one can check if (xj , ȳ) ∈ Ωj holds. If this
is the case, one can initialize Z0 with that point. However, in our setup it is too
costly to be implemented, so this remains a theoretical result.

5.3. Refinement Procedure. As in Fischetti et al. (2018), we can apply a refine-
ment procedure to our algorithm to obtain better upper bounds for the optimal
objective function value. If the lower-level objective function is not strictly convex,
we may not have uniqueness of the solution of the xj-parameterized lower-level
problem. In this case, after computing Φ(xj) ∈ R in Line 9 of Algorithm 1, we can
solve a restricted HPR in which we temporarily fix all upper-level variables x = xj

and add the constraint f(xj , y) ≤ Φ(xj). Solving this restricted HPR leads to the
xj-parameterized lower-level solution, which minimizes the upper-level objective
function and, hence, gives the best upper bound for it. Note that we can make use
of this idea because we consider the optimistic version of the bilevel problem; see
Section 2. We will, however, later not test this idea numerically since almost all of
our tested instances do not have multiple lower-level solutions.

5.4. Recycling Bilevel-Free Sets. In Algorithm 1, before solving the xj-parame-
terized lower level for an integer-feasible node solution (xj , yj) in Line 9, one could
check if (xj , yj) ∈ S(ŷ) holds for any bilevel-free set S(ŷ) observed so far. If this is
the case, the node solution (xj , yj) is bilevel-infeasible. Hence, we do not need to
solve the lower-level problem. Instead, we then check if (xj , yj) is inside the interior
of that bilevel-free set and, if it is, we also do not need to solve the scoop problem
because we can simply use the set S(ŷ) to derive the disjunctive cut. This may not
lead to the optimal bilevel-free set in terms of maximizing the distance of (xj , yj)
to its boundary as it is done in the scoop problem (16). But in return, we may save
computational effort; see Table 8 in Appendix B.

5.5. Handling the Subproblems (11) and (12). The feasibility of the subprob-
lems (11) and (12) does not depend on the parameters αk, βk, and τk. Hence, if
one of those problems is infeasible for k = 0, we do not solve them again for any
iteration k ≥ 1.

If we obtain a non-positive upper bound for the objective value of one of the
subproblems (11) and (12), we terminate the solution process for this specific
subproblem. This is because there is no point that is feasible for the subproblem
and that lies on the wrong side of the hyperplane.

Furthermore, we can optionally decide if we solve the subproblems (11) and (12)
to global optimality in every iteration k or if we terminate the solution process of a
problem as soon as we find a strictly positive lower bound of the objective function
value. In the latter case we still obtain a point, that lies on the wrong side of the
hyperplane but this point may not have the largest distance to it. By doing so, we
save time in the optimization process of the subproblems but we may need more
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iterations k to find a cutting plane because the change of the hyperplane in each
iteration gets smaller.

We can also optionally decide if we solve every feasible subproblem in each
iteration k or if we only consider those subproblems in iteration k + 1 that led to
a point with positive objective function value in iteration k. The latter case may
prevent solving subproblems multiple times that are not relevant for computing the
hyperplane. In iteration k′, if there is no subproblem left, we perform a correction
step in which we solve every feasible subproblem again for the parameters αk

′
, βk

′
,

and τk
′
. We do this to check if the hyperplane is still valid for those subproblems

that we did not solve again. If this is the case, we have a valid cutting plane and,
otherwise, we repeat this procedure.

6. Numerical Results

In this section, we present the numerical results obtained with our method applied
to bilevel test instances from the literature. To the best of our knowledge, there is
no publicly available solver that can handle general convex integer nonlinear bilevel
problems for which the nonlinearities appear both in the objective function and in
the constraints of the upper and the lower level. Consequently, to shed some light
on the effectiveness of the developed disjunctive cuts, we compare the following two
approaches:

B: a branch-and-cut algorithm in which only integer no-good cuts are used to
cut off integer-feasible but bilevel-infeasible points;

B+DC: our branch-and-cut algorithm based on disjunctive cuts and the sepa-
ration procedure as described in Algorithm 1.

We also test the additional algorithmic techniques as discussed in Section 5. In
Section 6.1, we describe our computational setup and discuss some implementation
details. Then, in Section 6.2, we describe the instance sets used for our experiments.
Finally, Section 6.3 contains a discussion of the numerical results.

6.1. Hardware and Software Setup. We implemented Algorithm 1 in Python 3.9.7
and we use the branch-and-cut (BnC) framework of CPLEX 22.1.1.0. The x-
parameterized lower-level problem, the scoop problem (16), and the cut-generating
problem (CGP) are also solved using CPLEX 22.1.1.0. The subproblems (11) and (12)
are solved using Gurobi 9.5.1. The reason for the latter is that CPLEX is not capable
of solving problems having nonlinear and nonconvex constraints. CPLEX would still
work for problems for which the functions appearing in the lower-level problem (18)
are linear in x and, hence, the resulting subproblems (11) and (12) are convex; see
Lemma 3.8. However, since the implementation should also be general enough to
be applied to other instances in the future as well, Gurobi is used for solving the
decomposed cut-generating problems. All cuts are implemented using the add_local
function inside the LazyConstraintCallback environment of CPLEX.

We use depth-first search as our node selection strategy. This is because we need
to keep track on the precise definition of the feasible region Ωj in each node j of
the BnC tree; this information is needed in Line 18 of Algorithm 1 for solving the
subproblems (11) and (12). More precisely, we need to inherit DCs and INGCs
from the parent node. Both Gurobi and CPLEX do not provide the exact location
of a node in the BnC tree, and we have to track its location manually. Whenever
we obtain an integer-feasible but bilevel-infeasible node solution, we store the node
by appending its variable bounds as well as the cutting plane derived for it to a
list. With this at hand, we check if the variable bounds in the current node are
tighter than the variable bounds of the last element in the list. If this is the case, we
are in a successor node of the last node in the list and, hence, all local cuts stored
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in the list for the subproblems (11) and (12) are valid for the successor node as
well. Otherwise, we remove the last node from the list and repeat the procedure.
This procedure is repeated until we find an ancestor node in the list or until the
list is empty, in which case we are in the root-node of the BnC tree. This strategy
works for depth-first and breadth-first search but not for other, more sophisticated,
node selection strategies. Our preliminary tests showed superior performance of
depth-first search, which is why we focus on this setting in the remainder of this
paper.

We implemented the INGCs with the help of a binary expansion of the x- and y-
variables as discussed in Section 4.2. It is worth mentioning that for the problem type
we consider in our numerical study, i.e., convex-quadratic integer bilevel problems
(see below for the details), one can also use the approach given in Tahernejad and
Ralphs (2020), which results in convex-quadratic INGCs. This approach would use
less variables but is ruled out since it is not possible to add nonlinear cuts via the
add_local function inside the LazyConstraintCallback environment of CPLEX.

In our computational studies we disabled heuristics and presolve to purely focus
on the impact of the cuts. The integrality and feasibility tolerances in CPLEX and
Gurobi are kept at their default values. Moreover, we prioritize branching on x- and
y-variables compared to the auxiliary binary variables introduced for the binary
representation of these variables.

All computations are executed on the high performance cluster “Elwetritsch” at
the TU Kaiserslautern, which is part of the “Alliance of High Performance Computing
Rheinland-Pfalz” (AHRP). We use a single Intel XEON SP 6126 core with 2.6GHz
and a maximum of 32GB RAM.

6.2. Test Instances. We consider problems of the form

min
(x,y)∈Zn

c>x x+ c>y y

s.t. Ax+By ≤ a,
y ∈ S(x),

(17)

where S(x) is the set of optimal solutions of the x-parameterized lower-level problem

min
y∈Zny

1

2
y>Qy + d>y (18a)

s.t. (Cx+Dy)i ≤ bi, i = 1, . . . , l − 1, (18b)

(Cx+Dy)l +
1

2
y>Py ≤ bl, (18c)

i.e., we have a quadratic lower-level objective as well as one quadratic lower-level
constraint. Since the novelty of our approach is in handling nonlinearities in the
lower-level problem, we keep the upper-level linear. For our test set, we use a subset
of the QBMKP instances used in Gaar et al. (2023). These are multidimensional
knapsack problems derived from the SAC-94 library (Khuri et al. 1994) with 2
to 10 constraints and 10 to 105 items that got translated into quadratic bilevel
multiple knapsack problems (QBMKP); see Gaar et al. (2023) for further details.
From those instances we used the 100 binary and the 100 integer QBMKP instances
with a single lower-level constraint. Furthermore, for each of those instances, we
constructed a new instance that contains the first b(m + l)/2c constraints of the
HPR in the upper level and we moved the last d(m+ l)/2e constraints to the lower
level. If an instance only has two constraints in total, we moved both constraints
in the lower level. We denote the latter instance set as QBMKP_50/50. Since our
method is capable of dealing with nonlinear but convex lower-level constraints, we
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Table 1. Overview of the original test instances per instance class

nx ny m l

Reference Size Min Max Min Max Min Max Min Max

QBMKP Gaar et al. (2023) 200 5 79 2 52 1 10 1 1
QBMKP_50/50 This paper 200 5 79 2 52 1 10 2 5
DENEGRE DeNegre (2011) 50 5 15 5 15 0 0 20 20
XUWANG Xu and Wang (2014) 100 10 460 10 460 4 184 4 184
XULARGE Fischetti et al. (2017) 30 500 700 500 700 200 280 200 280

Table 2. Overview of the modified test instances per subset

without quadratic constraint with quadratic constraint

solvable time limit trivial
∑

solvable time limit trivial
∑

QBMKP_sim 45 144 11 200 54 121 25 200
QBMKP_opp 52 147 1 200 105 94 1 200
QBMKP_50/50_sim 54 135 11 200 52 63 85 200
QBMKP_50/50_opp 52 147 1 200 33 106 61 200
DENEGRE 0 0 0 0 29 15 6 50
XU 0 0 0 0 123 0 7 130

additionally created the instances with a convex-quadratic constraint contained
in the lower level. Starting from a QBMKP instance, we converted the last linear
constraint from the lower-level problem (Cx+Dy)l ≤ bl into a convex quadratic
one (Cx+Dy)l + 1

2y
>Py ≤ bl as follows. A positive semi-definite matrix P = P̃>P̃

is generated following the procedure described in Kleinert et al. (2021a) and Gaar
et al. (2023). The entries of P̃ are chosen uniformly at random from the interval
[− 4
√
σ, 4
√
σ] with σ = ||bl||∞, see the MATLAB function of Kleinert and Schmidt

(2021).2 The value of the right-hand side is set as bl ← bl + |bl|.
Moreover, we tested all of the instances w.r.t. minimization and maximization of

the upper-level objective function. The upper-level objective function coefficients are
always positive since they represent the value gained for packing the knapsack. The
lower-level objective function of the QBMKP instances only consist of a quadratic
term, i.e., d = 0. Therefore, minimizing the upper-level objective function leads to a
case where both players objective functions point towards a similar direction w.r.t.
the y-variables while maximizing the upper-level objective function leads to the case
that the two objectives point in opposite directions. Hence, we can investigate both
scenarios, either when both players optimize in similar or in opposite directions.
These instance sets are denoted by “sim” and “opp”, respectively.

For our experiments we also used a subset of the MILP-MILP instances from Klein-
ert and Schmidt (2021). To fit in our setting, we applied integrality constraints on all
x- and y-variables and randomly generated positive semi-definite matrices Q and P
for the lower-level objective function (18a) and the lower-level constraint (18c) in
the same way as we did it with the QBMKP instances. Note that we used σ = ||d||∞
to generate the entries of matrix Q. Again, we increased the right-hand side of the
quadratic constraint by its absolute value. Since almost all of the modified instances
from this collection could either not be solved within a time limit of 2 hours or
were solved without using a single cut, we excluded all instance sets but the sets
DENEGRE, XUWANG, and XULARGE.

The sizes of the instance sets used can be found in Table 1.

2The MATLAB function can be found under https://github.com/m-schmidt-math-opt/
qp-bilevel-matrix-generator.

https://github.com/m-schmidt-math-opt/qp-bilevel-matrix-generator
https://github.com/m-schmidt-math-opt/qp-bilevel-matrix-generator
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Figure 1. ECDFs of the instances in the class QBMKP_sim. Left:
idealized runtimes. Middle: node counts. Right: MIP gaps.

6.3. Discussion of the Results. In the following we provide results of a com-
putational comparison of our B+DC approach with the B approach. We divided
the entire set of benchmark instances into six subsets; see Table 2. The first two
subsets contain each instance of QBMKP once with and once without having a
quadratic constraint in the lower level as described in Section 6.2. In the first subset,
both the upper and the lower level objective function are minimized, i.e., both
players optimize in a similar direction w.r.t. y because all coefficients in the objective
functions are positive. Therefore, we denote this set as QBMKP_sim. In the second
set, the upper level objective function is maximized, i.e., both players optimize in
opposite directions w.r.t. y. We denote this second set as QBMKP_opp. The next
two sets are constructed the same way but with instances of QBMKP_50/50, i.e.,
they are denoted with QBMKP_50/50_sim and QBMKP_50/50_opp. We consider
the instance set DENEGRE as our fifth subset and the last subset contains the
instances of XUWANG and XULARGE and is denoted as XU.

For the presentation of the numerical results, we exclude all instances that could
be solved by both methods B and B+DC in less than one second. We also exclude the
instances that B+DC solves without using a disjunctive cut and without pruning a
node (as for those instances both methods are identical). We denote those instances
as trivial and the other ones as non-trivial. A classification of the instances per
subset is given in Table 2. Here, instances are called “solvable” if they are non-trivial
and if at least one of the methods solves them within the time limit of 2 hours. They
are labeled with “time limit” when none of the methods could solve them within the
time limit and “trivial” if they are trivial.

The empirical cumulative distribution functions (ECDFs) w.r.t. idealized runtimes,
node counts, and (relative) MIP gaps at termination of B+DC and B are given in
the Figures 1–6. To get the idealized runtime of method B+DC for a given instance,
we replace the runtime that it takes to solve all of the subproblems (11) and (12)
successively (see Line 18 in Algorithm 1) by the maximum runtime that we need
to solve one of the subproblems—hence mimicking as if we would solve all of the
subproblems (11) and (12) in parallel; see Section 3.3.

The minimum, maximum, and median values for the idealized runtimes and for
the node counts of the methods B and B+DC are given in Table 3 for each subset
respectively. Similarly, Table 4 reports that information w.r.t. the number of DCs,
INGCs, and subproblems needed, respectively.

6.3.1. QBMKP. As illustrated in Figure 1, which focuses on the instances in QBMKP_-
sim, our approach B+DC clearly outperforms the standard approach B w.r.t. the
runtimes and the number of nodes. In addition, our method separates a median of
8 DCs and no INGCs while the method B has a median of 11 724 INGCs. Moreover,
B+DC solves 25.5% of the non-trivial instances while the standard approach only
solves 20.1%; see Table 3. For the unsolved instances of QBMKP_sim, the MIP
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Figure 2. ECDFs of the instances in the class QBMKP_opp. Left:
idealized runtimes. Middle: node counts. Right: MIP gaps.

Table 3. Detailed results for the “solvable” instances per instance class

idealized runtime in s nodes

method % solved min max median min max median

QBMKP_sim B 20.1 0.1 7 082.1 185.8 0 11 738 740 8 173
B+DC 25.5 0.1 7 070.9 30.6 0 267 923 701

QBMKP_opp B 7.3 2.2 6 663.5 1 083.7 0 1 149 025 23 833
B+DC 39.4 0.1 6 941.6 14.4 0 88 297 0

QBMKP_50/50_sim B 33.9 0.1 6 835.0 32.7 4 7 724 085 3 032
B+DC 32.9 0.6 7 068.6 55.2 0 107 491 1 997

QBMKP_50/50_opp B 12.4 0.1 6 353.9 138.8 0 991 462 16 333
B+DC 24.9 1.5 5 073.2 94.6 0 359 734 554

DENEGRE B 45.5 0.1 6 124.0 293.3 5 340 344 13 453
B+DC 65.9 1.4 5 670.4 156.8 0 174 201 4 186

XU B 100 1.0 5 723.6 258.7 45 39 423 3 381
B+DC 95.9 1.7 6 800.1 556.0 37 31 920 2 859

gaps are rather similar for the two approaches, with B+DC having a slight advantage
over B.

Figure 2 illustrates the ECDFs of the non-trivial instances in QBMKP_opp.
Again, B+DC outperforms approach B, but the difference in performance is much
more pronounced than for the QBMKP_sim instances. When both the upper- and
lower-level objective function point in a similar direction, it is likely that a solution
to a node problem in the BnC tree is “close” to a bilevel-feasible point and, hence,
only a few INGCs are required. Therefore, also method B performs well in those
cases. Conversely, when both objective functions point in opposite directions, a
BnC algorithm using only INGCs will likely need many more cuts to separate
bilevel-infeasible points in each node. This observation is confirmed in Table 4,
where the standard approach B needs a lot more INGCs to prove optimality for the
instances in QBMKP_opp, compared to the instances in QBMKP_sim. While the
performance of a BnC method using only INGCs seems to highly depend on the
correlation of the two objective functions, method B+DC using DCs performs well
independent of that.

It can be seen in Table 3 that the standard approach B only solves 7.3% while the
method B+DC solves 39.4% of the non-trivial QBMKP_opp instances. Moreover,
the median number of BnC nodes for B+DC is zero, i.e., most of the instances
are solved in the root node, whereas median for B is 23 833 nodes. One possible
reason for this drastic difference lies in the fact that around 11% of the non-trivial
instances of this subset are bilevel-infeasible but their high-point relaxations are
feasible. Hence, our B+DC method detects the bilevel-infeasibility already at the
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Table 4. Total number of cuts and subproblems for the “solvable”
instances per instance class

DCs INGCs Subproblems (11) and (12)

Method Min Max Median Min Max Median Min Max Median

QBMKP_sim B 0 0 0 1 889 875 11 724 0 0 0
B+DC 0 11 586 8 0 163 0 2 258 236 572

QBMKP_opp B 0 0 0 328 1 107 808 169 175 0 0 0
B+DC 0 11 082 10 0 16 0 2 252 200 382

QBMKP_50/50_sim B 0 0 0 1 415 973 495 0 0 0
B+DC 0 6 684 7 0 155 0 3 228 072 1 045

QBMKP_50/50_opp B 0 0 0 3 967 094 13 986 0 0 0
B+DC 2 5 623 66 0 2 411 0 20 230 313 4 096

DENEGRE B 0 0 0 2 209 584 10 047 0 0 0
B+DC 1 6 876 114 0 46 745 20 147 1 154 937 32 823

XU B 0 0 0 1 11 240 27 0 0 0
B+DC 0 193 3 0 72 1 45 69 030 3 145

Figure 3. ECDFs of the instances in the class QBMKP_50/50_sim.
Left: idealized runtimes. Middle: node counts. Right: MIP gaps.

Figure 4. ECDFs of the instances in the class
QBMKP_50/50_opp. Left: idealized runtimes. Middle:
node counts. Right: MIP gaps.

root node (see Line 19 of Algorithm 1) and prunes it (see Line 20). However, the
approach B is not capable of detecting bilevel-infeasibility and, hence, removes
every point that is feasible for the high-point relaxation using an INGC. The latter
approach almost always results in reaching the time limit of 2 hours.

6.3.2. QBMKP_50/50. Figure 3 reports the ECDF for QBMKP_50/50_sim in-
stances. We observe that both methods B and B+DC perform equally well for this
subset. However, if we consider the QBMKP_50/50_opp instances, then our ap-
proach again clearly outperforms the standard approach; see Figure 4. As discussed
above, a lot more INGCs are needed when both objective functions point towards
an opposite direction, as opposed to the problems where both objective functions
point towards a similar direction. This can also be verified in Table 4.
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Figure 5. ECDFs of the instances DENEGRE. Left: idealized
runtimes. Middle: node counts. Right: MIP gaps.

However, the performance difference between the two methods for the instances
in QBMKP_50/50 is not as large as for the instances in QBMKP; compare Figure 1
vs. 3 and Figure 2 vs. 4. This may be because shifting more upper-level constraints
to the lower level shrinks the feasible region of the x-parameterized lower-level
problems. Hence, finding the optimal follower’s response to a given leaders decision
x takes less INGCs the more constraints are in the lower level. This could explain
why the method B performs better for the instances in QBMKP_50/50 than for the
instances in QBMKP.

Additionally, having more constraints in the lower level leads to more subproblems
in (12) that have to be solved in Line 18 of Algorithm 1 in each iteration k. If
one compares the median values of the total number of subproblems (11) and (12)
needed for the method B+DC of the instances in QBMK with those of the instances
in QBMK_50/50, one can see that they are significantly higher for the latter
instances; see Table 4. The same holds for the medians of the running times for
the method B+DC. Therefore, B+DC may perform better on instances with less
constraints in the lower level. However, the total number of subproblems (11)
and (12) does not only depend on the number of lower-level constraints but also
on the number of disjunctive cuts needed. Hence, an instance with many lower-
level constraints that only needs a few disjunctive cuts to be solved may need less
subproblems to be solved than a problem that has only a few lower-level constraints
but that needs a lot of disjunctive cuts to be solved. In Table 4 one can see
that the median of the number of disjunctive cuts needed for the instances in the
subset QBMKP_50/50_opp (66) is over six times as large as for the instances in the
subset QBMKP_opp (10) while the median of the number of subproblems increased
more than tenfold from 382 to 4096. On the other hand, the median of the number
of disjunctive cuts needed for the instances in the subset QBMKP_50/50_sim (7) is
almost the same as for the instances in the subset QBMKP_sim (8) while the median
of the number of subproblems almost doubles from 572 to only 1045. Therefore, it
can be seen that the total number of subproblems (11) and (12) needed depends even
more on the number of disjunctive cuts needed than on the number of lower-level
constraints.

6.3.3. DENEGRE and XU. Figure 5 illustrates the ECDFs for the instances in DENE-
GRE, where we see that B+DC outperforms B w.r.t. runtimes and node counts. The
same holds for the number of cuts used; see Table 4. However, for the instances
in XU (see Figure 6), B+DC is slightly outperformed by B w.r.t. the running times
and also slightly outperformed w.r.t. the node counts, but it still needs less cuts
to solve the problems; see Table 4. This is because the instances in XU are rather
easy compared to the instances in all other subsets. Indeed, all instances of the
subset XU could be solved within the time limit (see Table 2) and both methods B
and B+DC solve over 95% of the non-trivial instances; see Table 3. The advantage
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Figure 6. ECDFs of the instances XU. Left: idealized runtimes.
Middle: node counts. Right: MIP gaps.

of INGCs is their fast separation that cannot be outperformed by any other type
of cutting planes, but their drawback is that they only cut off a single point, i.e.,
they are very shallow and, hence, typically many of them are required to prove
optimality. Regarding the DCs, there is a trade-off between the high computational
effort of the separation procedure, and the depth of the cuts, which does not pay
off for instances like the ones in XU, where only very few INGCs are sufficient to
prove optimality. Indeed, the median of the INGCs used by B is 27, see Table 4,
which is by far the lowest value across all subsets. Similarly, it only takes three
DCs and one INGC in the median to solve these instances with B+DC; see Table 4.
However, the median of the running times of B+DC is more than twice as large
as the median of B. Additionally, these running times are much larger compared
to the other median values for other subsets; see Table 3. This is due to the size
of the instances in XU, which are much larger compared to the instances of the
other subsets; see Table 1. Hence, although XU instances are easy to solve, they
still need some time to be solved because of their size. This has an even larger
effect on the method B+DC, because not only the x-parameterized lower-level (1c),
used in both B and B+DC, but also the scoop problem (16), the (CGP), and the
subproblems (11) and (12) are affected by the size of the input instance.

6.3.4. Summary. Our empirical study shows that B+DC outperforms the BnC
algorithm that uses only INGCs in most of the tested instances. This is true
in terms of node counts, running times, and the number of cuts used. Further-
more, there are instances where both methods are equally good, e.g., the instances
in QBMKP_50/50_sim, and also instances where the standard approach performs
better than B+DC, e.g., the instances in XU. However, those instances have in
common that they can be solved using only few integer no-good cuts and, hence,
they are too easy to justify the high computational effort that comes with separating
disjunctive cuts. For the instances that are harder to solve, the number of integer
no-good cuts outnumbers the number of disjunctive cuts, making B+DC a clearly
more efficient method than the branch-and-cut method using only integer no-good
cuts.

For the QBMKP instances, the benefit of using B+DC over B is largest when the
two players optimize in opposite directions w.r.t. y. This is also the more realistic
and the more interesting case in bilevel optimization compared to the setting in
which both players optimize in similar directions. B+DC will likely perform better
for instances that have fewer lower-level constraints than for instances with many
lower-level constraints due to the time it needs to solve the subproblems (11) and (12)
in each iteration k in Line 18. However, the effect of the number of lower-level
constraints on the performance of the method does not seem to be relevant for
instances of small to medium size.
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We also compared the computational performance of instances with and without
an additional quadratic constraint in the lower level, see Appendix A. This analysis
shows that there is no significant trend depending on having a quadratic constraint
benefits our method compared to method B or not. This is because modifying a
constraint as described in Section 6.2 does not a priori decrease the feasible region of
the follower and, hence, we do not have the same effect as when we shift upper-level
constraints to the lower level as it is discussed in Section 6.3.2.

Finally, we tested the further algorithmic techniques discussed in Section 5 for the
subsets DENEGRE, XU, and on the instances in QBMK_opp and QBMK_50/50_opp
that have a quadratic constraint. None of the described enhancements lead to
a significant improvement of our method for the instances tested in this paper.
There may still be other applications for which they could make a difference. The
numerical results for these tests are given in the Appendix B.

7. Conclusion

We have presented a branch-and-cut algorithm based on disjunctive cuts that
is able to solve convex integer nonlinear bilevel problems. These problems contain
nonlinearities both in the upper- and lower-level objective function as well as in
the upper- and lower-level constraints. We derive tailored disjunctive cuts and
show how to separate them. Moreover, we prove the correctness of the resulting
branch-and-cut method. Furthermore, we discussed additional techniques to enhance
our method that may be useful in certain scenarios; see Section 5. We also compared
our approach to a branch-and-cut method that only uses integer no-good cuts and
show that the benefit of using disjunctive cuts outweighs the higher computational
effort that it takes to generate them, which shows the applicability of our novel
approach.
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Appendix A. ECDFs for the QBMKP Instances With and Without a
Quadratic Constraint in the Lower Level

Figure 7. ECDFs of the instances in QBMKP without a quadratic
lower-level constraint

Figure 8. ECDFs of the instances in QBMKP with a quadratic
lower-level constraint

Figure 9. ECDFs of the instances in QBMKP_50/50 without a
quadratic lower-level constraint

Figure 10. ECDFs of the instances in QBMKP_50/50 with a
quadratic lower-level constraint
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Appendix B. Numerical Results for the Techniques of Section 5

Table 5. Detailed results for Algorithm 1 with and without sibling
node pruning (SNP). Here, the instances per instance class are
considered that are quadratic and “solvable” with at least one node
getting pruned due to Line 20 of Algorithm 1.

idealized runtime in s nodes

method % solved min max median min max median

QBMKP_sim B+DC 26.2 0.1 7 070.9 10.3 0 233 342 30
B+DC+SNP 26.2 0.1 6 937.5 9.1 0 204 054 27

QBMKP_opp B+DC 29.9 1.6 6 941.6 55.3 0 29 837 112
B+DC+SNP 30.6 0.1 4 573.7 47.5 0 20 297 48

QBMKP_50/50_sim B+DC 41.6 1.0 7 068.6 69.1 59 72 205 2 510
B+DC+SNP 41.6 1.0 6 045.0 65.1 59 466 220 3 229

QBMKP_50/50_opp B+DC 14.4 3.3 5 073.2 99.9 10 359 734 1 681
B+DC+SNP 14.4 3.6 3 566.1 122.7 10 48 823 1 688

DENEGRE B+DC 64.3 2.2 5 670.4 287.5 67 174 201 4 330
B+DC+SNP 64.3 2.0 7 110.0 211.2 67 152 658 3 960

XU B+DC 95.9 1.7 6 800.1 567.6 37 31 920 2 938
B+DC+SNP 92.6 2.4 6 962.7 599.3 37 31 798 2 777

Table 6. Detailed results for Algorithm 1 with and without early
termination (E) of the subproblems (11) and (12) as discussed in
Section 5.5. Here, the instances per instance class are considered
that are quadratic and “solvable”.

idealized runtime in s nodes

method % solved min max median min max median

QBMKP_sim B+DC 29.1 0.1 7 070.9 9.3 0 233 342 0
B+DC+E 29.7 0.1 6 899.2 11.4 0 233 342 0

QBMKP_opp B+DC 52.8 0.1 6 941.6 5.5 0 29 837 0
B+DC+E 54.8 0.2 4 893.9 5.1 0 28 892 0

QBMKP_50/50_sim B+DC 42.6 0.6 7 068.6 66.3 0 72 205 2 103
B+DC+E 41.7 0.6 6 009.5 63.3 0 72 205 2 077

QBMKP_50/50_opp B+DC 23.0 1.5 5 073.2 28.5 0 359 734 67
B+DC+E 22.3 2.0 2 016.0 23.9 0 53 156 64

DENEGRE B+DC 65.9 1.4 5 670.4 156.8 0 174 201 4 186
B+DC+E 65.9 1.5 5 320.0 143.4 0 174 201 3 911

XU B+DC 95.9 1.7 6 800.1 556.0 37 31 920 2 859
B+DC+E 96.7 2.1 6 757.7 523.3 37 31 798 2 938
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Table 7. Detailed results for Algorithm 1 with and without strate-
gic solving (S) of the subproblems (11) and (12) as described in
Section 5.5. Here, the instances per instance class are considered
that are quadratic and “solvable”.

idealized runtime in s nodes

method % solved min max median min max median

QBMKP_sim B+DC 29.1 0.1 7 070.9 9.3 0 233 342 0
B+DC+S 29.1 0.1 6 516.5 8.6 0 233 342 0

QBMKP_opp B+DC 52.8 0.1 6 941.6 5.5 0 29 837 0
B+DC+S 52.8 0.1 4 156.3 4.7 0 29 873 0

QBMKP_50/50_sim B+DC 42.6 0.6 7 068.6 66.3 0 72 205 2 103
B+DC+S 41.7 0.8 5 995.7 59.2 0 72 205 2 077

QBMKP_50/50_opp B+DC 23.0 1.5 5 073.2 28.5 0 359 734 67
B+DC+S 23.0 1.5 1 860.5 30.9 0 53 229 86

DENEGRE B+DC 65.9 1.4 5 670.4 156.8 0 174 201 4 186
B+DC+S 65.9 1.3 3 343.4 144.0 0 174 201 4 186

XU B+DC 95.9 1.7 6 800.1 556.0 37 31 920 2 859
B+DC+S 96.7 1.8 6 058.6 525.6 37 31 635 2 938

Table 8. Detailed results for Algorithm 1 with and without recy-
cling of bilevel-free sets (R) as described in Section 5.4. Here, the
instances per instance class are considered that are quadratic and
“solvable”.

idealized runtime in s nodes

method % solved min max median min max median

QBMKP_sim B+DC 29.1 0.1 7 070.9 9.3 0 233 342 0
B+DC+R 26.3 0.1 6 310.7 4.5 0 236 113 0

QBMKP_opp B+DC 52.8 0.1 6 941.6 5.5 0 29 837 0
B+DC+R 55.3 0.1 6 056.8 3.8 0 21 188 0

QBMKP_50/50_sim B+DC 42.6 0.6 7 068.6 66.3 0 72 205 2 103
B+DC+R 49.6 0.6 7 030.3 67.6 0 728 602 12 607

QBMKP_50/50_opp B+DC 23.0 1.5 5 073.2 28.5 0 359 734 67
B+DC+R 20.9 1.1 6 195.9 14.1 0 53 115 42

DENEGRE B+DC 65.9 1.4 5 670.4 156.8 0 174 201 4 186
B+DC+R 68.2 1.6 5 521.8 230.1 0 191 509 5 861

XU B+DC 95.9 1.7 6 800.1 556.0 37 31 920 2 859
B+DC+R 96.7 1.2 5 290.3 353.3 37 41 104 3 783
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