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1. Introduction. In recent years, deep neural networks (DNNs) have consis-16

tently and radically redefined the state-of-the-art in tasks related to computer vision,17

natural language processing, and many others. This was in part made possible by18

the rapid increase in the size of the networks, with some of the newest DNN models19

having trillions of parameters [23]. Despite this, there is evidence that large model20

sizes are not necessary for good performance; large DNNs are known to contain pa-21

rameter redundancies [11, 21, 8, 2, 9] and experiments show that it is often possible22

to substantially reduce the model size with little loss in output quality. However, the23

task of finding such smaller yet well-performing models is highly challenging [11].24

The process of removing redundant parameters is called network pruning and25

various techniques have been proposed to achieve this [2]. One possibility to compress26

neural networks during training is low-rank pruning [24, 12, 26, 21]. This work will27

focus on the method proposed in [21], which applies the principles of Dynamical Low-28

Rank Approximation (DLRA) [15] to the task of training artificial neural networks.29

The resulting Dynamical Low-Rank Training (DLRT) offers two main advantages over30

conventional low-rank pruning methods: First, it allows for a dynamic adaptation of31

the approximation rank during training. Second, its convergence is not slowed down32

due to the curvature of the manifold containing low-rank matrices.33

The core idea is to train the network while dynamically restricting the rank of its34

parameter matrices. This method has been experimentally shown to significantly re-35

duce the model size and computational costs while sacrificing little accuracy for fully36

connected and convolutional layers [21]. Although much effort has been invested in the37

study of error bounds and robustness properties of the DLRA algorithm [15, 19, 5, 13],38

its convergence behavior when using stochastic gradients remains unexplored. Since39
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the training of machine learning models such as DNNs generally relies on stochastic40

gradients [3], the study of DLRA in the stochastic setting is fundamental for devel-41

oping a theoretical understanding of the method proposed in [21]. This work will42

attempt to fill this gap in the theory of DLRA. The main findings are43

1. Robustness of stochastic gradients. We prove that the robust error bound of44

DLRA holds in combination with stochastic gradient descent algorithms.45

2. Descent direction. We prove that for sufficiently small learning rates, the46

method in combination with stochastic gradient descent will retain the de-47

scent guarantee from the deterministic and time-continuous setting.48

3. Convergence. We show that DLRA in combination with stochastic gradient49

and momentum methods will converge to a local minimum if the basis reaches50

equilibrium.51

This article is structured as follows. In Section 2 and Section 3, we provide52

an overview of neural network training and Dynamical Low-Rank Approximation.53

Section 4 discusses the robust error bound for DLRA in the presence of stochastic54

gradients. In Section 5, we investigate the descent direction with stochastic gradients55

and provide a convergence proof. Lastly, we provide a conclusion and outlook in56

Section 6.57

2. Recap: Training of deep neural networks. Deep neural networks (DNNs)58

are a special type of machine learning models. In their simplest fully connected form,59

DNNs with N layers are functions60

N : RD1 × Rp → RD2 , (x;W) 7→ y ,61

where the vector of trainable parametersW ∈ Rp is arranged in a sequence of matrices62

W 1 ∈ Rn1,1×n1,2 , · · · ,WN ∈ RnN,1×nN,2 of corresponding dimensions nk,1, nk,2 ∈ N63

with p =
∑N

i=1 ni,1ni,2, x = z0 ∈ RD1 is the input vector of dimension D1 ∈ N,64

and the output y ∈ RD2 of dimension D2 ∈ N is calculated by an N -fold nesting of65

intermediary steps66

zk = ϕk(W
kzk−1)67

for some non-linear functions ϕk [21]. Each intermediary step represents a layer of68

the network and its trainable parameters are the matrices W k.69

The training of a DNN is the task of minimizing a real-valued cost function L70

over the parameter space Rp. A common way of performing this optimization is to71

apply the gradient descent algorithm72

Wt+1 =Wt − h∇WL(Wt) ,73

where h is the step size, or, as it is called in the context of machine learning, the74

learning rate [3, 25]. This algorithm starts in some point W0 ∈ Rp and successively75

moves in the direction of steepest descent −∇WL(Wt) of the objective function until76

some optimality criterion is reached. It is also possible to consider a setting where77

the parameters W(t) evolve smoothly in time. In this case, W(t) can be expressed as78

a solution to the differential equation (also called the gradient flow)79

(2.1) Ẇ(t) = −∇WL(W(t)) , W(t0) =W0 .80
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Typically, the cost function L has the form81

L : Rp → R , W 7→ 1

d

d∑
i=1

l(xi,W) ,82

where {x1, . . . , xd} is a training data set, and l is a so-called loss function, which83

quantifies the difference between the model output for a single point xi and the desired84

output, given the parametersW [3]. We usually assume that l is differentiable, so the85

gradient of L can be written as86

∇WL(W) =
1

d

d∑
i=1

∇W l(xi,W) .87

Since, as in (2.1), we are mostly interested in the negative gradient, we will use the88

shorthand notation F (W) = −∇WL(W).89

As the size d of the training data set gets larger, the cost of computing the full90

gradient F becomes prohibitively high [3]. It is thus usual to only use a small subset91

of the data to compute the so-called minibatch or stochastic gradient92

f(W) := −1

s

s∑
i=1

∇W l(ξi,W) ,93

where s ≪ d is fixed and the ξi are i.i.d. random variables that follow a uniform94

distribution over the training data set {x1, . . . , xd} [3]. We can also write f(W, ξ) to95

underline the presence of randomness, where ξ = (ξ1, . . . , ξs). In a setting like that96

in (2.1), one would in practice use the stochastic gradient f instead of F [3].97

By construction, it is clear that Eξ[f(W, ξ)] = F (W). By the law of large num-98

bers, for a large enough s, we can expect f to come arbitrarily close to F .99

3. Recap: Dynamical Low-Rank Approximation. The fact that the pa-100

rameters of a neural network naturally appear as matrices is central to the pruning101

strategy proposed in [21]. If we can approximate a parameter matrix W ∈ Rm×n by102

a matrix Y ∈ Rm×n of rank q ≪ min{m,n} while maintaining good performance of103

the network, we can significantly reduce the number of trainable parameters and the104

associated computational costs, both for training and for inference. We can calculate105

that while the matrix W has nm entries, we can encode Y in only mq + nq + q2 en-106

tries since the singular value decomposition allows us to write any rank-q matrix Y as107

Y = USV ⊤, with S ∈ Rq×q. The main motivation behind the approach proposed in108

[21] is to represent and train such a low-rank approximation without computing and109

storing full-rank parameter matrices. Such an efficient and robust training method110

is derived by the use of Dynamical Low-Rank Approximation [15], which is a model111

order reduction technique for time-dependent matrices. In this section, we present112

the overall principle of [15] and explore practical implementations.113

Throughout this work, let ∥ · ∥ and ⟨·, ·⟩ refer to the Frobenius norm and scalar114

product. Also, for a matrix U , let PU = UU⊤ be the projection onto the space115

spanned by the columns of U . Lastly, we will generally denote full-rank matrices by116

the letter W , while low-rank matrices will be denoted by Y .117

3.1. Rank-q Approximation. For q ∈ N and m,n ∈ N such that m,n ≥ q,118

the space of rank-q Rm×n matrices is a smooth manifold, as seen in Example 8.14 of119

[17], and we will denote it with Mq = Mm×n
q . Let us further denote with TYMq120

This manuscript is for review purposes only.



4 A. HNATIUK, J. KUSCH, L. KUSCH, N. R. GAUGER, A. WALTHER

the tangent space ofMq at Y ∈ Mq and with P (Y ) the orthogonal projection onto121

TYMq.122

The starting point for Dynamical Low-Rank Approximation (DLRA), first intro-123

duced in [15], is the task of approximating time-dependent matrices W (t) ∈ Rm×n,124

smooth in t, by matrices Y (t) ∈ Mq of rank q < min{m,n}. why < and not ≤ as in125

other places? This task can be solved by finding elements of126

argmin
Y (t)∈Mq

∥Y (t)−W (t)∥ .127

This simple approach faces many challenges, such as the need to calculate a costly128

singular value decomposition for each time value t and the fact that it yields a solution129

Y (t) that is generally not smooth in t [15].130

An alternative method of finding rank-q approximations that avoids these issues131

consists of approximating the initial value W (t0) and the derivative Ẇ (t) instead of132

W (t) itself. The task is thus to find a solution Y (t) of133

Ẏ (t) ∈ argmin
Ẏ (t)∈TY (t)Mq

∥Ẏ (t)− Ẇ (t)∥ , Y (t0) = Y0134

or, equivalently,135

(3.1) Ẏ (t) = P (Y (t))Ẇ (t) , Y (t0) = Y0136

with a Y0 ∈Mq that approximates W (t0) [15].137

A common situation and one that we will explore from now on is where W (t) is138

a solution of the matrix differential equation139

(3.2) Ẇ (t) = F (W (t)) , W (t0) = W0140

for some smooth function F : Rm×n → Rm×n. The approach (3.1) fits naturally141

in this setting, and if Ẇ (t) = F (W (t)) is not known, we can replace it with its142

approximation F (Y (t)) [15].143

Approximating W (t) by the rank-q solution Y (t) of144

(3.3) Ẏ (t) = P (Y (t))F (Y (t)) ∈ TY (t)Mq , Y (t0) = Y0 ∈Mq ,145

where Y0 is a rank-q approximation of W0, is the formulation of DLRA which we will146

use in this work.147

3.2. Robust Numerical Integrators. As already discussed, it is computation-148

ally advantageous to work with rank-q matrices Y ∈ Rm×n in their decomposed form149

150

(3.4) Y = USV ⊤ ,151

where U ∈ Rm×q and V ∈ Rn×q have orthonormal columns and S ∈ Rq×q is invertible.152

Therefore, and since computing singular value decompositions at each time step153

is expensive, numerical integrations of (3.3) attempt to integrate the U , S, and V154

matrices separately. Proposition 2.1 in [15] uses (3.3) to derive this as the following155

system of equations.156

Ṡ(t) = U(t)⊤F (Y (t))V (t) ,157

U̇(t) = (I − PU(t))F (Y (t))V (t)S(t)−1 ,(3.5)158

V̇ (t) = (I − PV (t))F (Y (t))⊤U(t)S(t)−⊤ .159
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From this, Lemma 4.1 in [15] yields an expression for the projector P (Y ).160

(3.6) P (Y )Z = ZPV − PUZPV + PUZ161

for any Z ∈ Rm×n. This representation is unique since PU and PV project onto the162

range and co-range of Y and thus are uniquely determined by Y .163

The numerical issues appearing in (3.5) when S contains small singular values164

have pushed researchers to develop more robust integrators [19, 7, 5, 6, 14, 4, 16].165

Algorithm 3.1 (Rank-Adaptive) Basis-Update and Galerkin (BUG) Integrator [5],
as used in [21].

Input: Y0 = U0S0V
⊤
0 ∈Mq0 as in (3.4), an initial rank q0, and a truncation tolerance

ϑ > 0.
for k = 0, 1, . . . and t0 < t1 < · · · < tk < · · · do

K-step: solve the Rm×qk differential equation
K̇(t) = F (K(t)V ⊤

k )Vk, K(tk) = UkSk over [tk, tk+1].
if rank-adaptive then

Set K(tk+1)← [K(tk+1) | Uk].

Using the QR-decomposition, obtain U∗
k+1Rk+1 = K(tk+1), where the columns of

U∗
k+1 form an orthonormal basis of the range of K(tk+1).

Set M ← U∗⊤
k+1Uk.

L-step: solve the Rn×qk differential equation
L̇(t) = F (UkL(t)

⊤)⊤Uk, L(tk) = VkS
⊤
k over [tk, tk+1].

if rank-adaptive then
Set L(tk+1)← [L(tk+1) | Vk].

Using the QR-decomposition, obtain V ∗
k+1R̃k+1 = L(tk+1), where the columns of

V ∗
k+1 form an orthonormal basis of the range of L(tk+1).

Set N ← V ∗⊤
k+1Vk.

S-step: solve the Rq̃U×q̃V differential equation (for q̃U , q̃V ∈ [qk, 2qk], depending
on the sizes of U∗

k+1 and V ∗
k+1 respectively)

Ṡ(t) = U∗⊤
k+1F (U∗

k+1S(t)V
∗⊤
k+1)V

∗
k+1, S(tk) = MSkN

⊤ over [tk, tk+1].
Set S∗

k+1 ← S(tk+1).

if rank-adaptive then
Truncation step: Compute the singular value decomposition S∗

k+1 = PΣQ⊤

with Σ = diag(σi).
Determine the maximal set of singular values σi of S

∗
k+1 satisfying

∑
σ2
i ≤ ϑ2

and define Σ1, P1 and Q1 by removing the rows and columns from Σ, P and
Q corresponding to those σi.
Set Sk+1 ← Σ1, Uk+1 ← U∗

k+1P1 and Vk+1 ← V ∗
k+1Q1.

else
Set Uk+1 ← U∗

k+1, Vk+1 ← V ∗
k+1 and Sk+1 ← S∗

k+1.

Set Yk+1 ← Uk+1Sk+1V
⊤
k+1.

The method that will be studied in this work is the Rank-Adaptive (often referred166

to as augmented) Basis-Update and Galerkin (BUG) Integrator (Algorithm 3.1), first167
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proposed in [5], which is the rank-adaptive version of the fixed-rank BUG integrator168

[7]. The rank-adaptive modification allows the algorithm to determine the optimal169

rank based on a given threshold automatically. The resulting matrix Y1 = U1S1V
⊤
1170

after one step of the algorithm is an approximation of Y (t1) from (3.3).171

Notice that in Algorithm 3.1 it is possible to perform the K- and L-steps in172

parallel. Also, notice that in the rank-adaptive setting, the number of singular values173

σi of S∗
k+1 remaining after the truncation step determines the (adaptive) rank qk+1174

of the matrix Yk+1 resulting from the k-th pass of Algorithm 3.1.175

An important fact for the subsequent theory is that the spans of the matrices176

U∗
k+1 and V ∗

k+1 obtained in the rank-adaptive method also contain the spans of Uk177

and Vk. Following [6], thus we can write178

(3.7) U∗
k+1 = [Uk | U+

k ] ,179

where U+
k is composed of columns that expand the orthonormal basis spanning Uk.180

Much in the same manner, U∗
k+1 can also be thought of as including and expanding181

upon the spans of Uk+1 obtained with either the adaptive or non-adaptive methods.182

Thus, we can also write U∗
k+1 = [Uk+1 | U+

k+1]. Analogous expressions hold for V ∗
k+1.183

Another important property of Algorithm 3.1 is184

(3.8) ∥U∗
k+1S

∗
k+1V

∗⊤
k+1 − Uk+1Sk+1V

⊤
k+1∥ ≤ ϑ ,185

which follows directly from the construction of the truncation step.186

3.3. DLRA for Machine Learning. As seen in Section 2, the trainable pa-187

rameters in neural networks naturally appear as matrices. The central idea of [21]188

is to apply Algorithm 3.1 to (2.1), thereby leveraging the machinery of DLRA for189

training individual layers of DNNs. By doing so, the optimization parameters are190

restricted to the space of low-rank matrices and network pruning (that is, the task of191

finding accurate models of smaller size) is performed during training itself.192

The general compatibility between DLRA and the training of DNNs can be seen193

when comparing the equations (2.1) and (3.2). In the notation of (3.2), theW becomes194

the matrix of trainable parameters of one layer of the network, while F (W ) becomes195

the negative gradient −∇WL(W ) of the objective function.196

One major difference between the two methods, however, exists. As seen in197

Section 2, during network training, one generally uses the stochastic gradient f instead198

of the full gradient F . This difference gives rise to the central question of this work:199

how does Algorithm 3.1 behave when F is replaced by f?200

We will now specify some notation. A DNN, by definition, contains multiple lay-201

ers and the implementation in [21] applies Algorithm 3.1 to the parameter matrices202

W 1,W 2, · · · of each layer separately, cycling between the layers at each training step.203

In this work, we focus on training a single layer of a DNN and present results corre-204

sponding to this approach. Because of this, although the objective function L depends205

on all the parameter matrices W 1,W 2, · · · , we will omit writing L(W 1,W 2, · · · ) and206

instead write L(W ). Since the optimization of one layer requires only those gradi-207

ents corresponding to the single parameter matrix in question, we will also write ∇L208

instead of ∇WL and consider the other parameters fixed.209

It is also worth noting that although we write F (W ) = −∇WL(W ) and theoreti-210

cally treat it as such, considerable computational gains can be made if we notice that,211

for example, as in the K-step of Algorithm 3.1,212

F (K(t)V ⊤
k )Vk = −∇WL(K(t)V ⊤

k )Vk = −∇KL(K(t)V ⊤
k ) ,213
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making the computation of the gradient with respect to the full parameter matrix W214

in the K-, L-, and S-steps unnecessary [21].215

3.4. Optimality over the Manifold Mq. Since we are performing optimiza-216

tion over manifolds of low-rank matrices, we should take an interest in the optimality217

conditions that exist there.218

We know that for a point Y ∈Mq, a necessary first-order condition for optimality219

overMq is given by220

(3.9) P (Y )∇L(Y ) = 0 .221

This follows from Proposition 3.3 and Theorem 3.4 in [20].222

Thanks to the explicit expression (3.6) of P (Y ), we can directly obtain a some-223

what weaker, but in the context of this work more accessible necessary condition of224

optimality225

(3.10) PU∇L(Y )PV = 0 .226

We call this condition more accessible because expressions of the form PU∇L(Y )PV227

appear very naturally in the theory that we will tackle in Section 5.228

In Section 5, we show that in the stochastic setting, the DLRA optimization229

algorithm can come arbitrarily close to satisfying these conditions in expectation.230

4. Robustness of Stochastic DLRA. Using the notation of Section 2, con-231

sider the algorithm that results from replacing every F (·) in Algorithm 3.1 by f(·, ξ),232

where a single realization of ξ is used per pass in the for-loop. We call it the Sto-233

chastic Algorithm 3.1. In this section, we explore how well the resulting matrix Y1234

of one step of the Stochastic Algorithm 3.1 approximates the solution W (t1) of (3.2)235

at time t1 = t0 + h, h > 0. This extends the results found in [21], where Theorem 1236

states a similar error bound for the deterministic algorithm.237

We can use the manifold structure ofMq to investigate the stochastic gradients.238

Since TYMq is a subspace of Rm×n for any Y ∈Mq, we can decompose the gradients239

F (Y ) and f(Y ) into components F (Y ) = M(Y ) + R(Y ) and f(Y ) = m(Y ) + r(Y ),240

where M(Y ), m(Y ) ∈ TYMq. We make the following assumptions:241

Assumption 4.1. There exists an ε > 0 such that ∥R(Y )∥, ∥r(Y )∥ ≤ ε for all242

Y ∈Mq.243

Assumption 4.2. The two functions F and f are bounded by a constant B > 0244

and Lipschitz continuous with respect to ∥ · ∥. The corresponding Lipschitz constant245

is denoted by L > 0.246

Assumption 4.3. There exists a constant C > 0 such that ∥F (Y ) − f(Y )∥ ≤ C247

for all Y ∈ Rm×n.248

Assumption 4.1 for F states that F (Y ) is contained in TYMq up to a small factor249

and is based on empirical observations [21]. Assumption 4.2 for F is common in250

DLRA theory [21, 13] and smooth optimization in general. The extension of these251

assumptions to f can be justified by the structure of the gradients; both f and F252

directly inherit their properties from the loss function l, as seen in Section 2, so we253

can expect them to behave similarly. The bound on ∥F (Y )−f(Y )∥ in Assumption 4.3254

can be justified by the law of large numbers, as explained in Section 2. These three255

assumptions hold for the rest of this section.256

In the following, let W (t) be the solution of (3.2) with initial value W0 and257

Y1 = U1S1V
⊤
1 be the resulting matrix after one step of the rank-adaptive Stochastic258
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Algorithm 3.1 with initial value Y0 ∈ Mq that approximates W0. We wish to find a259

robust error bound for the local error260

∥W (t1)−Y1∥ ≤ ∥W (t1)−PU∗
1
W (t1)PV ∗

1
∥+∥PU∗

1
W (t1)PV ∗

1
−Y ∗

1 ∥+∥Y ∗
1 −Y1∥ .(4.1)261

We know from (3.8) that the last term can be bounded by ϑ. The bounds for the262

other terms are given by the following lemmas. In the following, let us assume that263

∥W0 − Y0∥ ≤ δ holds.264

Lemma 4.4. There exists a constant C1 such that265

∥W (t1)− PU∗
1
W (t1)PV ∗

1
∥ ≤ C1h

2 + 2(Lδ + ε+ C)h+ 2δ ,266

where C1 does not depend on the condition number of the coefficient matrix S.267

Proof. We can write268

∥W (t1)− PU∗
1
W (t1)PV ∗

1
∥ ≤∥W (t1)− PU∗

1
W (t1)∥+ ∥PU∗

1

(
W (t1)−W (t1)PV ∗

1

)
∥269

≤∥W (t1)− PU∗
1
W (t1)∥+ ∥W (t1)−W (t1)PV ∗

1
∥ .270

First notice that271

∥W0 − PU∗
1
W0∥ ≤ ∥(I − PU∗

1
)Y0∥+ ∥(I − PU∗

1
)(W0 − Y0)∥ = ∥(I − PU∗

1
)(W0 − Y0)∥ ,272

where (I − PU∗
1
)Y0 = 0 holds by construction of U∗

1 . Then, using the above and273

Assumptions 4.1-4.3 we have274

∥W (t1)− PU∗
1
W (t1)∥ ≤

∫ t1

t0

∥F (W (t))− PU∗
1
F (W (t))∥ dt+ δ275

≤
∫ t1

t0

∥(I − PU∗
1
)f(W (t))∥ dt+ Ch+ δ276

≤
∫ t1

t0

∥(I − PU∗
1
)f(W0)∥ dt+ LBh2 + Ch+ δ277

≤
∫ t1

t0

∥(I − PU∗
1
)f(Y0)∥ dt+ (hL+ 1)δ + LBh2 + Ch278

≤
∫ t1

t0

∥(I − PU∗
1
)P (Y0)f(Y0)∥ dt+ hε+ (hL+ 1)δ + LBh2 + Ch279

=

∫ t1

t0

∥(I − PU∗
1
)f(Y0)PV0

∥ dt+ hε+ (hL+ 1)δ + LBh2 + Ch280

≤ 1

h

∫ t1

t0

∥(I − PU∗
1
)(K(t1)V

⊤
0 − Y0)∥ dt+ c1h

2 + hε+ (hL+ 1)δ + Ch281

= c1h
2 + hε+ (hL+ 1)δ + Ch282

where in the last inequality we use the fact that f(Y0)V0 = K̇(t0). The analogous283

derivation for the co-range proves the lemma.284

Lastly, we have285

Lemma 4.5. It holds that286

∥PU∗
1
W (t1)PV ∗

1
− Y ∗

1 ∥ ≤ 2LBh2 + Ch+ (Lh+ 1)δ .287
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Proof. Let Ȳ (t) := U∗
1S(t)V

∗⊤
1 for S(t) being the solution of the S-step of the288

algorithm. From the construction of U∗
1 and V ∗

1 it follows that Ȳ (t0) = Y0. From the289

construction of the S-step, we know that290

Y ∗
1 = Y0 +

∫ t1

t0

PU∗
1
f(Ȳ (t))PV ∗

1
dt .291

Furthermore,292

PU∗
1
W0PV ∗

1
− Y0 = PU∗

1
(W0 − Y0)PV ∗

1
.293

With the above and Assumptions 4.2 and 4.3, we have294

∥PU∗
1
W (t1)PV ∗

1
−Y ∗

1 ∥ ≤
∫ t1

t0

∥PU∗
1
F (W (t))PV ∗

1
− PU∗

1
f(Ȳ (t))PU∗

1
∥ dt+ δ295

≤
∫ t1

t0

∥PU∗
1
f(W (t))PV ∗

1
− PU∗

1
f(Ȳ (t))PU∗

1
∥ dt+ Ch+ δ296

≤L

∫ t1

t0

∥W (t)− Ȳ (t)∥ dt+ Ch+ δ297

≤L

∫ t1

t0

∫ t

t0

∥F (W (s))− PU∗
1
f(Ȳ (s))PV ∗

1
∥ ds dt+ (Lh+ 1)δ + Ch298

≤ 2LBh2 + Ch+ (Lh+ 1)δ .299

Together, these lemmas yield the bound300

∥W (t1)− Y1∥ ≤ (C1 + 2LB)h2 + 2(Lδ + ε+ 2C)h+ (3 + Lh)δ + ϑ ,301

i.e., a global error bound then directly follows from Lady Windermere’s fan.302

This result shows that the rank-adaptive BUG algorithm does not lose its ro-303

bustness properties following a stochastic modification. Thus, we can now shift to304

exploring the properties of the Stochastic Algorithm 3.1 as a stochastic optimization305

algorithm for machine learning.306

5. DLRA with Stochastic Gradients. Recall the definition of the Stochastic307

Algorithm 3.1 from the previous section. In this section, we explore its properties as an308

optimization algorithm for machine learning. At first, we quantify how it optimizes the309

loss function L. Afterward, we show its convergence properties on the task of training310

individual layers of deep neural networks when using stochastic gradient descent and311

momentum methods as solvers of the integration steps. Let Assumptions 4.1 and 4.2312

hold throughout this section.313

5.1. Optimization of the Loss Function. Let Yk be iterates generated by314

the Rank-Adaptive Stochastic Algorithm 3.1 for some starting point Y0. We begin by315

taking a look at the structure of PU∗
k+1

f(Yk)PV ∗
k+1

. Using (3.7), we obtain316

PU∗
k+1

= U∗
k+1U

∗⊤
k+1 = UkU

⊤
k + U+

k U+⊤
k = PUk

+ PU+
k
.317

The same also holds for V ∗
k+1. Thus, we can write318

PU∗
k+1

f(Yk)PV ∗
k+1

=319

PUk
f(Yk)PVk

+ PU+
k
f(Yk)PVk

+ PUk
f(Yk)PV +

k
+ PU+

k
f(Yk)PV +

k
.(5.1)320
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This form will help us to prove the next theorem.321

Theorem 5.1. If Y1 is the resulting matrix after one pass of the Rank-Adaptive322

Stochastic Algorithm 3.1, with t1 = t0+h for h > 0 and some starting point Y0 ∈Mq0 ,323

then there exists a positive constant α such that324

E[L(Y1)] ≤ L(Y0)− hα2 + c1h
2B2 + c2hBε+ c3h

2B2 +Bϑ ,325

where c1, c2, and c3 are independent of the low-rank manifold’s curvature.326

Proof. Consider Ȳ (t) := U∗
1S(t)V

∗⊤
1 , where S(t) denotes the solution of the S-step327

of the Stochastic Algorithm 3.1. Then328

˙̄Y (t) = U∗
1 Ṡ(t)V

∗⊤
1 = U∗

1U
∗⊤
1 f(Ȳ (t))V ∗

1 V
∗⊤
1 .329

By (3.7), the ranges of U∗
1 and V ∗

1 contain those of U0 and V0. Hence, we have330

Ȳ (t0) = U∗
1S(t0)V

∗⊤
1 = U∗

1U
∗⊤
1 U0S0V

⊤
0 V ∗

1 V
∗⊤
1 = U0S0V

⊤
0 = Y0 .331

As a consequence,332

(5.2) Ȳ (t1) = Y0 +

∫ t1

t0

PU∗
1
f(Ȳ (s))PV ∗

1
ds .333

Using equations (5.1) and (5.2), we obtain334

d

dt
L(Ȳ (t)) = ⟨∇L(Ȳ (t)), ˙̄Y (t)⟩ = −⟨F (Ȳ (t)), PU∗

1
f(Ȳ (t))PV ∗

1
⟩335

≤− ⟨F (Y0), PU∗
1
f(Y0)PV ∗

1
⟩+ c1hB

2
336

=− ⟨F (Y0), PU∗
1
f(Y0)PV0 + PU0f(Y0)PV ∗

1
− PU0f(Y0)PV0 + PU+

0
f(Y0)PV +

0
⟩(5.3)337

+ c1hB
2 .338

The last term in the scalar product can be bounded by339

|⟨F (Y0), PU+
0
f(Y0)PV +

0
⟩| ≤ |⟨F (Y0), PU+

0
P (Y0)f(Y0)PV +

0
⟩|+ c2Bε = c2Bε .340

We use the structure of the K- and L-steps to bound the remaining terms in (5.3).341

The ranges of both K(t1) and K0 are spanned by the columns of U∗
1 . Therefore,342

(I − PU∗
1
)K(t1) = (I − PU∗

1
)K0 = 0 holds. Combining this equality with343

K(t1) = K0 +

∫ t1

t0

f(K(s)V ⊤
0 )V0ds344

yields345

(5.4)

∫ t1

t0

PU∗
1
f(K(s)V ⊤

0 )V0ds =

∫ t1

t0

f(K(s)V ⊤
0 )V0ds .346

A symmetric statement also holds for the L-step yielding347

∥PU∗
1
f(Y0)PV0

− f(Y0)PV0
∥ ≤ 1

2
c3hB ,348

∥PV ∗
1
f(Y0)

⊤PU0
− f(Y0)

⊤PU0
∥ ≤ 1

2
c3hB .349
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Hence, (5.3) becomes with µ := c1hB
2 + c2Bε+ c3hB

2350

d

dt
L(Ȳ (t)) ≤ −⟨F (Y0), f(Y0)PV0

+ PU0
f(Y0)− PU0

f(Y0)PV0
⟩+ µ .351

Thus it holds that352

E
[ d

dt
L(Ȳ (t))

]
≤ − ⟨F (Y0), F (Y0)PV0

+ PU0
F (Y0)− PU0

F (Y0)PV0
⟩+ µ353

= − ∥U⊤
0 F (Y0)∥2 − ∥F (Y0)V0∥2 + ∥U⊤

0 F (Y0)V0∥2 + µ354

≤ − 1

2
(∥U⊤

0 F (Y0)∥2 + ∥F (Y0)V0∥2) + µ .355

Now let α2 := 1
2 (∥U

⊤
0 F (Y0)∥2 + ∥F (Y0)V0∥2). Then we get356

E
[ d

dt
L(Ȳ (t))

]
≤ −α2 + µ .357

Integrating this equation and using Fubini’s theorem (which applies since the inte-358

grand d
dtL(Ȳ (t)) is bounded) yields359

E[L(Ȳ (t1))] = E[L(Ȳ (t0))] + E
[∫ t1

t0

d

dt
L(Ȳ (t))dt

]
360

= L(Y0) +

∫ t1

t0

E
[ d

dt
L(Ȳ (t))

]
dt ≤ L(Y0)− hα2 + hµ .(5.5)361

Since S(t1) = S∗
1 , we can write Ȳ (t1) = U∗

1S
∗
1V

∗⊤
1 . Consequently, by (3.8),362

(5.6) ∥Y1 − Ȳ (t1)∥ ≤ ϑ .363

By Taylor, there exists a τ ∈ [0, 1], such that364

L(Y1) = L(Ȳ (t1))− ⟨F (τY1 + (1− τ)Ȳ (t1)), Y1 − Ȳ (t1)⟩ .365

Applying the Cauchy-Schwarz inequality and (5.6) to the above we obtain366

(5.7) L(Y1) ≤ L(Ȳ (t1)) +Bϑ .367

Putting (5.5) and (5.7) together and taking the expected value yields368

E[L(Y1)] ≤ E[L(Ȳ (t1))] +Bϑ ≤ L(Y0)− hα2 + hµ+Bϑ .369

This theorem expresses an upper bound on the expected value of the loss function370

L after one step of the Stochastic Algorithm 3.1 in terms of the free parameters h and371

ϑ. By construction, it holds that α ≤ B, so this bound might actually be larger than372

L(Y0). This is somewhat unsatisfactory in the context of minimization. We will see373

later, however, that practical modifications of this algorithm are nonetheless capable374

of assuring descent, given an appropriate choice of the step size.375

5.2. Stochastic Gradient Descent. Until now, we have assumed that the376

K-, L- and S-steps of Algorithm 3.1 are solved exactly. In practice, however, they377

are solved using various discrete-time methods, such as (stochastic) gradient descent378

and Adam [21, 3]. In this section, we will investigate the convergence properties of379
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the Stochastic Algorithm 3.1, where the continuous time variable t is replaced by380

a discrete one (t = 0, 1, . . .) and the integration steps are replaced by the gradient381

descent algorithm, generally expressed as382

Zt+1 = Zt − h∇G(Zt)383

for a step size h > 0, a smooth function G, and iterates Zt. More precisely, the384

integration in the K-step is replaced by385

(5.8) Kt+1 = UtSt + hf(UtStV
⊤
t )Vt ,386

in the L-step by387

Lt+1 = VtS
⊤
t + hf(UtStV

⊤
t )⊤Ut ,388

and in the S-step by389

(5.9) S∗
t+1 = U∗⊤

t+1UtStV
⊤
t V ∗

t+1 + hU∗⊤
t+1f(PU∗

t+1
UtStV

⊤
t PV ∗

t+1
)V ∗

t+1 .390

Once again, a single realization of ξ is used to compute f for all these steps within391

one pass of the for-loop of the algorithm. In this section, we will refer to this mod-392

ification of the Stochastic Algorithm 3.1 as the Stochastic Gradient Descent (SGD)393

Algorithm 3.1. This modification can also be seen as solving the differential equations394

in the K-, L-, and S-steps with the explicit Euler method.395

The logic in this section generally follows from adapting the treatment of SGD396

found in Chapter 4 of [3] to the DLRA setting.397

Lemma 5.2. For any Y , Ȳ it holds that398

(5.10) L(Y ) ≤ L(Ȳ )− ⟨F (Ȳ ), Y − Ȳ ⟩+ L

2
∥Y − Ȳ ∥2 .399

Proof.

L(Y ) = L(Ȳ ) +

∫ 1

0

d

dt
L(Ȳ + t(Y − Ȳ ))dt = L(Ȳ )−

∫ 1

0

⟨F (Ȳ + t(Y − Ȳ )), Y − Ȳ ⟩dt400

= L(Ȳ )− ⟨F (Ȳ ), Y − Ȳ ⟩ −
∫ 1

0

⟨F (Ȳ + t(Y − Ȳ ))− F (Ȳ ), Y − Ȳ ⟩dt401

≤ L(Ȳ )− ⟨F (Ȳ ), Y − Ȳ ⟩+
∫ 1

0

Lt∥Y − Ȳ ∥2dt402

= L(Ȳ )− ⟨F (Ȳ ), Y − Ȳ ⟩+ L

2
∥Y − Ȳ ∥2 ,403

where in the first line we use the chain rule and F = −∇L and in the third line the404

Cauchy-Schwarz inequality.405

Now, let Y0 = U0S0V
⊤
0 ∈ Mq0 be some fixed initial value for the SGD Algo-406

rithm 3.1. Let Yk be iterates generated by this algorithm.407

Theorem 5.3. If Y1 is the resulting matrix after one pass of the Rank-Adaptive408

SGD Algorithm 3.1, then it holds that409

E[L(Y1)] ≤ L(Y0)− h∥P (Y0)F (Y0)∥2 +
1

2
h2LB2 + hBε+Bϑ .410
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Proof. Consider Y ∗
1 = U∗

1S
∗
1V

∗⊤
1 . By the definition of the S-step (5.9), we can411

write412

S∗
1 = U∗⊤

1 U0S0V
⊤
0 V ∗

1 + hU∗⊤
1 f(PU∗

1
U0S0V

⊤
0 PV ∗

1
)V ∗

1 .413

Using (3.7), we obtain414

U∗
1U

∗⊤
1 U0S0V

⊤
0 V ∗

1 V
∗⊤
1 = PU∗

1
U0S0V

⊤
0 PV ∗

1
= U0S0V

⊤
0 = Y0 .415

Combining the above equations yields416

Y ∗
1 = Y0 + hPU∗

1
f(Y0)PV ∗

1
.417

Using Lemma 5.2 and equation (5.1) we obtain418

L(Y ∗
1 )− L(Y0) ≤ − h⟨F (Y0), PU∗

1
f(Y0)PV ∗

1
⟩+ h2L

2
∥PU∗

1
f(Y0)PV ∗

1
∥2419

= − h⟨F (Y0), PU0
f(Y0)PV0

+ PU+
0
f(Y0)PV0

+ PU0
f(Y0)PV +

0
⟩420

− h⟨F (Y0), PU+
0
f(Y0)PV +

0
⟩+ h2L

2
∥PU∗

1
f(Y0)PV ∗

1
∥2 .(5.11)421

By Assumption 4.2 we have422

(5.12)
h2L

2
∥PU∗

1
f(Y0)PV ∗

1
∥2 ≤ 1

2
h2LB2 .423

Furthermore, by applying the logic preceding (5.4) to the new K-step (5.8), we obtain424

PU∗
1
f(Y0)PV0 = f(Y0)PV0 .425

Combining this with a symmetric argument on the L-step yields426

PU0f(Y0)PV0 + PU+
0
f(Y0)PV0 + PU0f(Y0)PV +

0
427

= PU∗
1
f(Y0)PV0

+ PU0
f(Y0)PV ∗

1
− PU0

f(Y0)PV0
428

= f(Y0)PV0
+ PU0

f(Y0)− PU0
f(Y0)PV0

= P (Y0)f(Y0) .(5.13)429

The first term in (5.11), PU+
0
f(Y0)PV +

0
, can be bounded using Assumption 4.1. Since430

we know that f(Y0) = m(Y0)+ r(Y0) with m(Y0) ∈ TY0Mq0 , the definition of U+
0 and431

V +
0 and the Assumption 4.1 allow us to write432

(5.14) ∥PU+
0
f(Y0)PV +

0
∥ = ∥PU+

0
r(Y0)PV +

0
∥ ≤ ε .433

Applying (5.12), (5.13), and (5.14) onto (5.11) and using the Cauchy-Schwarz434

inequality as well as Assumption 4.2 yields435

L(Y ∗
1 )− L(Y0) ≤ ⟨F (Y0), P (Y0)f(Y0)⟩+

1

2
h2LB2 + hBε .436

Taking the expected value, this becomes437

E
[
L(Y ∗

1 )
]
− L(Y0) ≤ −h∥P (Y0)F (Y0)∥2 +

1

2
h2LB2 + hBε .438
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Furthermore, by (3.8), we know that439

∥Y1 − Y ∗
1 ∥ ≤ ϑ .440

Thus, using Taylor, for some τ ∈ [0, 1], we get441

L(Y1) = L(Y ∗
1 )− ⟨F (τY1 + (1− τ)Y ∗

1 ), Y1 − Y ∗
1 ⟩ ≤ L(Y ∗

1 ) +Bϑ .442

Putting everything together and taking the expected value yields443

E[L(Y1)] ≤ E[L(Y ∗
1 )] +Bϑ ≤ L(Y0)− h∥P (Y0)F (Y0)∥2 +

1

2
h2LB2 + hBε+Bϑ .444

Whenever we write f(Y ) = f(Y, ξ), the randomness is hidden in the term ξ.445

Thus, when reading E[f(Y0)], one should understand Eξ[f(Y0, ξ)]. The matrix Y1446

and its factors U1, V1, and S1 are stochastic in ξ, since they have been generated447

using f(Y0, ξ). Therefore, E[L(Y1)] = Eξ[L(Y1(ξ))] holds. In general, when consid-448

ering the evolution of Yt up to the k-th step, if we denote with ξ1, . . . , ξk the i.i.d.449

realizations of ξ made in each pass of the algorithm, we can say that Yt, Ut, Vt,450

and St are stochastic in ξ1, . . . , ξt, so the simplified notation E[f(Yt)] corresponds to451

Eξ1,...,ξt+1 [f(Yt(ξ1, . . . , ξt), ξt+1)].452

Thus, we can rewrite the result of Theorem 5.3 in a more general manner:453

(5.15) Eξt [L(Yt(ξt))] ≤ L(Yt−1)− h∥P (Yt−1)F (Yt−1)∥2 +
1

2
h2LB2 + hBε+Bϑ .454

Now, we can make statements about the behavior of the algorithm as t→∞.455

Theorem 5.4. Let L be non-negative. Let Y1, . . . , Yk be iterates generated by the456

Rank-Adaptive SGD Algorithm 3.1 over k steps. Then it holds that457

1

k

k∑
t=1

E
[
∥P (Yt−1)F (Yt−1)∥2

]
≤458

L(Y0)

kh
+

1

2
hLB2 +Bε+

1

h
Bϑ

k→∞−−−−→ 1

2
hLB2 +Bε+

1

h
Bϑ ,(5.16)459

where the expected value is taken over all ξt.460

Proof. By taking the expected value over all ξt in (5.15), we get461

E[L(Yt)]− E[L(Yt−1)] ≤ −hE
[
∥P (Yt−1)F (Yt−1)∥2

]
+

1

2
h2LB2 + hBε+Bϑ .462

Using L ≥ 0, we can now conclude463

−L(Y0) ≤ E[L(Yk)]− L(Y0)464

≤ −h
k∑

t=1

E
[
∥P (Yt−1)F (Yt−1)∥2

]
+ k

(1
2
h2LB2 + hBε+Bϑ

)
.465

Rearranging the terms, we obtain466

k∑
t=1

E
[
∥P (Yt−1)F (Yt−1)∥2

]
≤ 1

h

(
L(Y0) + k

(1
2
h2LB2 + hBε+Bϑ

))
467

=
L(Y0)

h
+ k(

1

2
hLB2 +Bε+

1

h
Bϑ) .468

Dividing by k and taking the limit yields the desired result.469
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Theorem 5.4 states that the running average of the expected squared norms of470

the projected gradients of L does not surpass 1
2hLB

2+Bε+ 1
hBϑ. If this bound could471

be made arbitrarily small, we could claim convergence towards a stationary point. In472

the setting of the usual stochastic gradient descent algorithm such as in Section 4 of473

[3], this bound is linear in h. This can be used to obtain474

lim inf
t→∞

E
[
∥P (Yt)F (Yt)∥2

]
= 0 ,475

by using a variable and shrinking step size h = ht.476

Two terms are preventing us from taking this approach here. Firstly, Bε is con-477

stant in h, and reducing the step size would not affect it. This term stems from478

the bound (5.14) we use on terms of the form ⟨F (Yt), PU+
t
f(Yt)PV +

t
⟩, which we can-479

not easily integrate because both the projections PU+
t

and the gradients f(Yt) are480

stochastic in ξt+1.481

The other even more problematic term in (5.16) is 1
hBϑ, as it is inversely pro-482

portional to h. This term appears because the truncation step is independent of the483

learning rate h and the stochastic gradient f . All the steps preceding the truncation484

move the objective towards a (stochastic) decrease, while the truncation can seem-485

ingly throw it off in any direction at step distance ϑ. If the learning rate h is made486

smaller, this truncation displacement becomes increasingly dominant in the progress487

of the algorithm.488

We generally cannot expect ϑ to be smaller than h, see, e.g., the values in Section 5489

of [21]. Letting ϑ → 0 would defeat the purpose of rank reduction since, over many490

algorithm passes, this might yield matrices of high or even full rank. Notice that at491

every pass of Rank-Adaptive Algorithm 3.1, the rank is initially increased by up to492

two times with respect to the rank in the previous pass, and only those dimensions493

that have singular values below the threshold are later removed; if the threshold goes494

to 0, fewer dimensions are removed at each pass.495

Interestingly, rank-adaptivity seems to be less impactful in the later stages of496

training. The experiments in [21] indicate that the ranks of the parameter matrices497

become close to constant after sufficiently many training steps. Thus, a sensible498

solution would be to perform rank-adaptivity only at the beginning of model training499

and afterward continue in a non-adaptive manner with a shrinking ht. This being500

said, such an approach makes it challenging to obtain a theoretical result akin to the501

ones above since the proofs depend on the property that the ranges of Ut and Vt are502

contained in those of U∗
t+1 and V ∗

t+1. This property does not generally hold in the503

non-adaptive setting.504

We avoid this issue by exploring a method called S-fine-tuning. This method has505

been implemented in the source code [22] released alongside [21], which consists of506

dropping the K- and L-steps and only performing S-steps. S-fine-tuning is performed507

after the model has been trained for several epochs (see the train and finetune508

function in the DLRT-Net/optimizer KLS/train experiments.py scrip of the source509

code). It seems to rely on the assumption that, in the later stages of model training,510

the computational costs related to calculating the K- and L-steps outweigh the gain511

in precision obtained from updating the U and V matrices.512

Performing S-fine-tuning can be seen as assuming that the ranges of the solutions513

Kt of the K-steps remain constant. In other words, we get514

(I − PU )Kt = 0515
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for all t. An analogous interpretation also holds for the L-step. Just as in (5.13),516

applying this to the definition of the K- and L-steps yields517

P (Yt)f(Yt) = PUf(Yt)PV .518

We can now state our assumption.519

Assumption 5.5. There exists an index t0 such that for all t ≥ t0520

1. Ut = Ut−1 and Vt = Vt−1,521

2. P (Yt)f(Yt) = PUtf(Yt)PVt .522

Remark 5.6. When using this assumption, we drop the indices in our notation523

of the U and V matrices. This assumption implies that, after the index t0, we not524

only use the non-adaptive method, which makes the term 1
hBϑ disappear, but also525

no longer perform the K- and L-steps. It follows immediately that U+
t = V +

t = 0 for526

all t ≥ t0, so the term Bε must also disappear by (5.1) and the discussion above.527

Theorem 5.7. In the setting of Theorem 5.3, let Assumption 5.5 hold. Then528

(5.17) Eξt [L(Yt)] ≤ L(Yt−1)− h∥P (Yt−1)F (Yt−1)∥2 +
1

2
h2LB2

529

for all t ≥ t0 for t0 from Assumption 5.5.530

Proof. For t ≥ t0, by the definition of the S-step (5.9),531

St = U⊤USt−1V
⊤V + hU⊤f(PUUSt−1V

⊤PV )V = St−1 + hU⊤f(Yt−1)V ,532

so533

Yt = UStV
⊤ = Yt−1 + hPUf(Yt−1)PV = Yt−1 + hP (Yt−1)f(Yt−1) .534

Using Lemma 5.2 and Assumption 4.2, we can write535

L(Yt)− L(Yt−1) ≤ −h⟨F (Yt−1), P (Yt−1)f(Yt−1)⟩+
h2L

2
∥P (Yt−1)f(Yt−1)∥2536

≤ −h⟨F (Yt−1), P (Yt−1)f(Yt−1)⟩+
1

2
h2LB2 .537

Taking the expected value with respect to ξt yields the desired result.538

Remark 5.8. In particular, (5.17) shows that, for a small enough h, the algorithm539

assures a decrease of the loss function in expectation.540

The proof of Theorem 5.4 where (5.15) is replaced by (5.17) immediately yields,541

up to a shift in the indices such that t0 = 0,542

(5.18)
1

k

k∑
t=1

E
[
∥P (Yt−1)F (Yt−1)∥2

]
≤ L(Y0)

kh
+

1

2
hLB2 k→∞−−−−→ 1

2
hLB2 .543

We can see that Assumption 5.5 has removed both problematic terms in equation544

(5.16). It is clear that the right-hand side of (5.18) goes to 0 if we let h → 0. To545

achieve this, let us now choose a variable step size h = ht that satisfies546

(5.19)

∞∑
t=0

ht =∞ and

∞∑
t=0

h2
t <∞ .547
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Theorem 5.9. In the setting of Theorem 5.4, let Assumption 5.5 hold and a548

variable step size ht satisfy (5.19). Then one has549

(5.20)

∞∑
t=1

ht−1E
[
∥P (Yt−1)F (Yt−1)∥2

]
<∞ .550

Proof. Without loss of generality let t0 = 0 in Assumption 5.5, otherwise set the551

index after which this holds to 0.552

Using (5.17),553

E[L(Yt)]−E[L(Yt−1)] ≤ −ht−1E
[
∥P (Yt−1)F (Yt−1)∥2

]
+

1

2
h2
t−1LB

2 .554

Similarly to the proof of Theorem 5.4, we obtain555

−L(Y0) ≤ E[L(Yk)]− L(Y0) ≤ −
1

2

k∑
t=1

ht−1E
[
∥P (Yt−1)F (Yt−1)∥2

]
+

LB2

2

k∑
t=1

h2
t−1 .556

Rearranging the terms,557

k∑
t=1

ht−1E
[
∥P (Yt−1)F (Yt−1)∥2

]
≤ 2L(Y0) + LB2

k∑
t=1

h2
t−1 .558

Taking the limit k →∞ and using
∑∞

t=0 h
2
t <∞ yields the result.559

Corollary 5.10. In the setting of Theorem 5.9, it holds that560

(5.21) lim inf
t→∞

E
[
∥P (Yt)F (Yt)∥2

]
= 0 .561

Proof. The statement follows directly from (5.20) and (5.19).562

This shows that in the setting of Theorem 5.9, the SGD Algorithm 3.1 yields563

a sequence of iterates, such that a subsequence comes arbitrarily close to satisfying564

the necessary condition for optimality (3.9) in expectation. If Assumption 5.5.2 is565

dropped, the same result holds, albeit for the weaker necessary condition of optimal-566

ity (3.10).567

This convergence result indicates that the SGD Algorithm 3.1 is a valid optimiza-568

tion algorithm for training individual layers of DNNs. The discussion in this section569

also suggests that the best way to apply it would be to first train the model in a570

rank-adaptive manner and, once the ranks of the S matrices have stabilized, finish571

the training using S-fine-tuning.572

5.3. Momentum Methods. Although stochastic gradient descent has an im-573

portant place among optimization methods for machine learning, in practice, it has574

been largely outperformed by momentum methods [3, 25, 10]. These methods do575

not simply use the gradient of the current step but rather the accumulated gradient576

information from all previous steps [3, 25]. Some common examples are the heavy577

ball and Nesterov methods. In this section, we will use a momentum method as a578

solver of the differential equations that constitute the Stochastic Algorithm 3.1 and579

will investigate the convergence properties of the resulting algorithm.580

For f as in the previous sections, consider the two-step algorithm581

(SUM) :

{
Xt = µXt−1 + htf(Yt) ,

Yt+1 = Yt + λhtf(Yt) + (1− λ+ λµ)Xt

(5.22)582
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with parameters µ ∈ [0, 1), λ ∈ [0, 1
1−µ ] and step sizes ht, that generates a sequence583

of iterates Yt from starting values Y0 and X0 := 0. This is the Stochastic Unified584

Momentum (SUM) algorithm proposed in [18], which generalizes the stochastic heavy585

ball (λ = 0) and Nesterov (λ = 1) methods. When applied as an integrator of the S-586

step of the Stochastic Algorithm 3.1 once again replacing the continuous time variable587

t by a discrete one, it becomes588

Xt = µXt−1 + htU
∗⊤
t+1f(PU∗

t+1
UtStV

⊤
t PV ∗

t+1
)V ∗

t+1 ,

S∗
t+1 = U∗⊤

t+1UtStV
⊤
t V ∗

t+1 + λhtU
∗⊤
t+1f(PU∗

t+1
UtStV

⊤
t PV ∗

t+1
)V ∗

t+1

+(1− λ+ λµ)Xt .

(5.23)589

This algorithm is not immediately applicable in the rank-adaptive setting since the590

dimension of Xt−1 and that of the stochastic gradient591

U∗⊤
t+1f(PU∗

t+1
UtStV

⊤
t PV ∗

t+1
)V ∗

t+1592

are not necessarily the same at any given step.593

In practice, this issue can be circumvented by using heuristics. For example, in the594

source code of [21], when applying the Adam algorithm, which also uses momentum595

and thus suffers from the same issue [10], in the rank-adaptive setting, the dimensions596

of Xt and St are kept constant and set to the largest possible value, while only597

submatrices of Xt and St with appropriate dynamical dimensions are being used and598

updated.599

Such approaches do not correspond to the SUM algorithm (5.22) that we want to600

study. Luckily, the experimental findings in [21] suggest that even when using these601

heuristics, the adaptive rank of the matrices Yt stabilizes during training. It is thus602

reasonable to once again use Assumption 5.5.1. Just like in the previous section, we603

can generally assume that t0 = 0, for the number of steps t0 after which the basis is604

kept fixed since we are only interested in the behavior as t→∞.605

Under this assumption, we can rewrite (5.23) as606

Xt = µXt−1 + htU
⊤f(Yt)V ,607

St+1 = St + λhtU
⊤f(Yt)V + (1− λ+ λµ)Xt .608

Since there is no truncation step, multiplying by U from the left and by V ⊤ from the609

right yields, with a new definition of Xt,610

Xt = µXt−1 + htPUf(Yt)PV ,

Yt+1 = Yt + λhtPUf(Yt)PV + (1− λ+ λµ)Xt .
(5.24)611

Consider the modification of the non-adaptive Algorithm 3.1, where, as under As-612

sumption 5.5.1, only the S-step is performed and is further replaced by (5.24). In this613

section, we will refer to this modification as the Stochastic Unified Momentum (SUM)614

Algorithm 3.1. We will now investigate its convergence properties.615

Let Assumptions 4.2 and 5.5.1 hold throughout this section. Let {Yt}t≥0 be a616

sequence of iterates generated by the SUM Algorithm 3.1 for some Y0 ∈ Mq and617

{Xt}t≥0, X0 = 0, be its corresponding sequence from (5.24).618

The logic in this section generally follows from applying the treatment of the SUM619

algorithm from [18] to the DLRA setting.620

First, we need to state a few technical lemmas.621
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Lemma 5.11. Let {at}t≥1, {bt}t≥1, and {ãt}t≥1 be non-negative real sequences622

such that
∑∞

t=1 at =∞,
∑∞

t=1 atb
2
t <∞, limt→∞

at

ãt
= 1, and |bt+1 − bt| ≤ Cãt for a623

positive constant C. Then limt→∞ bt = 0.624

Proof. This lemma is proven as Corollary 3.1 in [18].625

Lemma 5.12. Let {at}t≥0, {bt}t≥0, and {ct}t≥0 be real sequences where {bt}t≥0626

is non-negative. Further let at+1 ≤ at − bt + ct and
∑∞

t=0 ct converge. Then either627

limt→∞ at = −∞, or at converges and
∑∞

t=0 bt <∞.628

Proof. This lemma is proven as Lemma 1 in [1].629

Lemma 5.13. Let the step sizes ht satisfy (5.19). Then it holds that630

1.
∑∞

t=1

(∑t
s=1 µ

t−sh2
s

)
<∞,631

2.
∑∞

k=1

(∑k−1
t=1 µk−tE

[
∥Xt∥2

])
<∞,632

3.
∑∞

t=1 E
[
∥Yt+1 − Yt∥2

]
<∞.633

Proof. We can rewrite Xt from (5.24) as634

(5.25) Xt =

t∑
s=1

µt−shsPUf(Ys)PV .635

Thus, using Jensen’s inequality in the second line,636

E[∥Xt∥2] ≤ E
[( t∑

s=1

µt−shs∥PUf(Ys)PV ∥
)2]

637

≤ E
[( t∑

s=1

µt−s
) t∑

s=1

µt−sh2
s∥PUf(Ys)PV ∥2

]
638

≤ B2

1− µ

t∑
s=1

µt−sh2
s .639

Since
∑∞

t=1 h
2
t and

∑∞
t=1 µ

t converge absolutely, their Cauchy product640

∞∑
t=1

( t∑
s=1

µt−sh2
s

)
641

also converges. Thus642

(5.26)

∞∑
t=1

E
[
∥Xt∥2

]
<∞ and

∞∑
k=1

( k−1∑
t=1

µk−tE
[
∥Xt∥2

])
<∞ ,643

where we notice that the sum in the second inequality is once again a Cauchy product644

of two absolutely convergent series. Using the inequality (a+ b)2 ≤ 2(a2+ b2), we can645

also write646

∥Yt+1 − Yt∥2 = ∥λhtPUf(Yt)PV + (1− λ+ λµ)Xt∥2647

≤ 2λ2h2
t∥PUf(Yt)PV ∥2 + 2(1− λ+ λµ)2∥Xt∥2(5.27)648

≤ 2λ2h2
tB

2 + 2(1− λ+ λµ)2∥Xt∥2 .649
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Thus,
∑∞

t=1 h
2
t <∞ and (5.26) yield650

∞∑
t=1

E
[
∥Yt+1 − Yt∥2

]
<∞ .651

Lemma 5.14. It holds that652

−E
[
⟨F (Yt), Xt⟩

]
≤−

t∑
s=1

µt−shsE
[
∥PUF (Ys)PV ∥2

]
653

+ 2L

t−1∑
s=1

µt−sE
[
∥Xs∥2

]
+ Lλ2B2

t−1∑
s=1

µt−sh2
s .654

Proof. By the definition of Xk, we have655

−E
[
⟨F (Yt), Xt⟩

]
= −µE

[
⟨F (Yt), Xt−1⟩

]
− htE

[
∥PUF (Yt)PV ∥2

]
.656

Using (5.27), the inequality ab ≤ 1
2 (a

2 + b2), and the Cauchy-Schwarz inequality, we657

obtain658

⟨F (Yt−1)− F (Yt), Xt−1⟩ ≤ ∥F (Yt−1)− F (Yt)∥∥Xt−1∥ ≤ L∥Yt−1 − Yt∥∥Xt−1∥659

≤ L

2
∥Yt−1 − Yt∥2 +

L

2
∥Xt−1∥2 ≤ Lλ2h2

t−1B
2 +

(
L(1− λ+ λµ)2 +

L

2

)
∥Xt−1∥2660

≤ Lλ2h2
t−1B

2 + 2L∥Xt−1∥2 ,661

where in the last line we use the fact that µ − 1 < 0 and thus 1 − λ + λµ ≤ 1.662

Ccmbining these findings yields663

−E
[
⟨F (Yt), Xt⟩

]
= −µE

[
⟨F (Yt) + F (Yt−1)− F (Yt−1), Xt−1⟩

]
− htE

[
∥PUF (Yt)PV ∥2

]
664

≤ −µE
[
⟨F (Yt−1), Xt−1⟩

]
− htE[∥PUF (Yt)PV ∥2] + µLλ2h2

t−1B
2 + 2µLE

[
∥Xt−1∥2

]
665

≤ −
t∑

s=1

µt−shsE
[
∥PUF (Ys)PV ∥2

]
+ 2L

t−1∑
s=1

µt−sE
[
∥Xs∥2

]
+ Lλ2B2

t−1∑
s=1

µt−sh2
s .666

We can now show the central result of this section.667

Theorem 5.15. Let L be non-negative and the step sizes ht be such that (5.19)668

as well as limt→∞
ht−1

ht
= 1 hold. Then669

(5.28) lim
t→∞

E
[
∥PUF (Yt)PV ∥

]
= 0 .670

Proof. Putting Lemmas 5.2 and 5.14 together, we can write671

E[L(Yt+1)]− E[L(Yt)]672

≤− E
[
⟨F (Yt), λhtPUf(Yt)PV + (1− λ+ λµ)Xt⟩

]
+

L

2
E
[
∥Yt+1 − Yt∥2

]
673

≤− λhtE
[
∥PUF (Yt)PV ∥2

]
+

L

2
E
[
∥Yt+1 − Yt∥2

]
(5.29)674

+ (1− λ+ λµ)
(
2L

t−1∑
s=1

µt−sE
[
∥Xs∥2

]
+ Lλ2B2

t−1∑
s=1

µt−sh2
s−675

t∑
s=1

µt−shsE
[
∥PUF (Ys)PV ∥2

])
.676
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Consider the sequences677

at := E[L(Yt)] ,678

bt := λhtE
[
∥PUF (Yt)PV ∥2

]
+ (1− λ+ λµ)

t∑
s=1

µt−shsE
[
∥PUF (Ys)PV ∥2

]
,679

ct :=
L

2
E
[
∥Yt+1 − Yt∥2

]
+ (1− λ+ λµ)

(
2L

t−1∑
s=1

µt−sE
[
∥Xs∥2

]
+ Lλ2B2

t−1∑
s=1

µt−sh2
s

)
.680

The bt are non-negative by definition of λ and µ. By (5.29) we know that at+1 ≤681

at− bt+ ct. Also, from Lemma 5.13 it follows that
∑∞

t=0 ct converges, so Lemma 5.12682

applies to these sequences. By the non-negativity of L, this yields at → a∗ <∞ and683

∞∑
t=1

(
λhtE

[
∥PUF (Yt)PV ∥2

]
+ (1− λ+ λµ)

t∑
s=1

µt−shsE
[
∥PUF (Ys)PV ∥2

])
(5.30)684

=

∞∑
t=1

bt <∞ .685

In particular, since for any k it holds that686

k∑
t=1

t∑
s=1

µt−shsE
[
∥PUF (Ys)PV ∥2

]
=

k∑
s=1

(
hsE

[
∥PUF (Ys)PV ∥2

] k∑
t=s

µt−s
)

687

≥
k∑

s=1

hsE
[
∥PUF (Ys)PV ∥2

]
,688

we can conclude with (5.30) that689

∞∑
t=1

htE[∥PUF (Yt)PV ∥2] ≤
∞∑
t=1

t∑
s=1

µt−shsE
[
∥PUF (Ys)PV ∥2

]
<∞ .(5.31)690

Now, using (5.25), we write691

∥Yt+1 − Yt∥ ≤ λht∥PUf(Yt)PV ∥+ (1− λ+ λµ)∥Xt∥692

≤ λht∥PUf(Yt)PV ∥+ (1− λ+ λµ)

t∑
s=1

µt−shs∥PUf(Ys)PV ∥ .693

From this inequality as well as the definitions of λ and µ it follows that694

E
[
∥Yt+1 − Yt∥

]
≤ 2B

1− µ

(ht

2
+

(1− µ)

2

t∑
s=1

µt−shs

)
=:

2B

1− µ

ht + h̃t

2
(5.32)695

for h̃t = (1−µ)
∑t

s=1 µ
t−shs. To bring these values together, consider now a new set696

of sequences697

at := ht,698

ãt :=
ht + h̃t

2
,699

bt := E
[
∥PUF (Yt)PV ∥

]
.700
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Using the Stolz theorem, we can compute the limit701

lim
t→∞

ht

h̃t

=
1

1− µ
lim
t→∞

ht/µ
t

ht/µt + ht−1/µt−1 + · · ·+ h1/µ
702

=
1

1− µ
lim
t→∞

ht+1/µ
t+1 − ht/µ

t

ht+1/µt+1
=

1

1− µ
lim
t→∞

(
1− µ

ht

ht+1

)
= 1 ,703

from which one gets704

lim
t→∞

at
ãt

= 1 .705

Also, by using Jensen’s inequality and (5.31), we can see706

∞∑
t=1

atb
2
t =

∞∑
t=1

ht

(
E
[
∥PUF (Yt)PV ∥

])2 ≤ ∞∑
t=1

htE
[
∥PUF (Yt)PV ∥2

]
<∞ .707

Lastly, using the inverse triangle inequality and (5.32), we obtain708

|bt+1 − bt| = |E
[
∥PUF (Yt+1)PV ∥

]
− E

[
∥PUF (Yt)PV ∥

]
|709

≤ E
[
∥PU (F (Yt+1)− F (Yt))PV ∥

]
≤ LE

[
∥Yt+1 − Yt∥

]
710

≤ 2LB

1− µ

ht + h̃t

2
=

2LB

1− µ
ãt .711

Lemma 5.11 is thus applicable and yields712

lim
t→∞

E
[
∥PUF (Yt)PV ∥

]
= lim

t→∞
bt = 0 .713

This result shows that, under Assumption 5.5.1, the SUM Algorithm 3.1 yields a714

sequence of iterates that comes arbitrarily close to satisfying the necessary condition715

for optimality (3.10) in expectation. If, like in the previous section, Assumption 5.5.2716

is also imposed, then this exact statement also holds for the stronger optimality717

condition (3.9).718

Notice that the result in Theorem 5.15 even improves upon the previous one719

from Corollary 5.10. By setting λ = µ = 0 in (5.24), we obtain the stochastic720

gradient descent algorithm, so (5.28) is valid even for the SGD Algorithm 3.1 under721

Assumption 5.5.1. Although (5.28) does not induce a result for squared norms like722

(5.21), it shows so-called last-iterate convergence as opposed to the convergence of a723

subsequence or in average. Furthermore, since the equation (5.31) is identical to the724

statement of Theorem 5.9, the exact result of Corollary 5.10 is effectively obtained at725

that moment in the above proof.726

This finding indicates that the SUM Algorithm 3.1 is also a valid optimization727

algorithm for training individual layers of DNNs. The fact that it relies entirely on728

Assumption 5.5, however, means that it cannot be used at the beginning of training. In729

practice, one should use an algorithm such as the Rank-Adaptive SGD Algorithm 3.1730

until the ranks of the parameter matrices become constant and then switch to the731

SUM Algorithm 3.1. The fact that momentum methods perform better when training732

DNNs in practice [3] indicates that this might be a better approach than only using733

the SGD Algorithm 3.1.734
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6. Conclusion and Further Research. This work aimed to investigate the735

properties of DLRA (more precisely, of the Rank-Adaptive BUG integrator [7]) as an736

optimization algorithm for machine learning, an approach proposed in [21]. This in-737

volved using stochastic gradients instead of deterministic ones and common machine738

learning methods as solvers of the differential equations that constitute the integra-739

tor. We showed that these modifications not only had little impact on the method’s740

ability to perform low-rank approximation but also yielded algorithms that exhibit741

convergence on the task of training individual layers of deep neural networks.742

Future research on this topic could tackle some of the weaker points of this work.743

For example, we are always fixing all layers of the network apart from the one that744

we are currently training. It might be possible to frame our approach as a coordi-745

nate descent method and obtain convergence results for the whole network instead746

of just one layer. Also, it appears pertinent to look for a deeper understanding of747

Assumption 5.5 and why or why not it is a sensible one, since all of our convergence748

results rely heavily on it. Since it is essentially an assumption about the S-step of749

the algorithm, understanding it better could offer insight into the weak optimality750

condition (3.10) in the context of the manifoldMq, since it derives its structure also751

from the S-step. In general, the need for the condition (3.10) and Assumption 5.5752

stems from an over-reliance on the S-step in our proofs.753

Our findings can be interpreted as a theoretical validation of the advantageous754

convergence behavior reported in [21]. They show that DLRA is generally capable of755

finding optimal low-rank layers of neural networks during training. We can safely say756

that this makes it a very promising network pruning technique that should be studied757

further and will save considerable computational resources for practitioners.758
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