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STOCHASTIC ASPECTS OF DYNAMICAL LOW-RANK
APPROXIMATION IN THE CONTEXT OF MACHINE LEARNING*

ARSEN HNATIUK', JONAS KUSCH#, LISA KUSCH$, NICOLAS R. GAUGERY, AND
ANDREA WALTHER!

Abstract. The central challenges of today’s neural network architectures are the prohibitive
memory footprint and the training costs associated with determining optimal weights and biases. A
large portion of research in machine learning is therefore dedicated to constructing memory-efficient
training methods. One promising approach is dynamical low-rank training (DLRT) which represents
and trains parameters as a low-rank factorization. While DLRT is equipped with several beneficial
properties, analytic results are currently limited to deterministic gradient flows. In this work, we show
that dynamical low-rank training in combination with stochastic gradient and momentum methods
fulfills descent guarantees and prove its convergence to an optimal point.
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1. Introduction. In recent years, deep neural networks (DNNs) have consis-
tently and radically redefined the state-of-the-art in tasks related to computer vision,
natural language processing, and many others. This was in part made possible by
the rapid increase in the size of the networks, with some of the newest DNN models
having trillions of parameters [23]. Despite this, there is evidence that large model
sizes are not necessary for good performance; large DNNs are known to contain pa-
rameter redundancies [11, 21, 8, 2, 9] and experiments show that it is often possible
to substantially reduce the model size with little loss in output quality. However, the
task of finding such smaller yet well-performing models is highly challenging [11].

The process of removing redundant parameters is called network pruning and
various techniques have been proposed to achieve this [2]. One possibility to compress
neural networks during training is low-rank pruning [24, 12, 26, 21]. This work will
focus on the method proposed in [21], which applies the principles of Dynamical Low-
Rank Approximation (DLRA) [15] to the task of training artificial neural networks.
The resulting Dynamical Low-Rank Training (DLRT) offers two main advantages over
conventional low-rank pruning methods: First, it allows for a dynamic adaptation of
the approximation rank during training. Second, its convergence is not slowed down
due to the curvature of the manifold containing low-rank matrices.

The core idea is to train the network while dynamically restricting the rank of its
parameter matrices. This method has been experimentally shown to significantly re-
duce the model size and computational costs while sacrificing little accuracy for fully
connected and convolutional layers [21]. Although much effort has been invested in the
study of error bounds and robustness properties of the DLRA algorithm [15, 19, 5, 13],
its convergence behavior when using stochastic gradients remains unexplored. Since
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the training of machine learning models such as DNNs generally relies on stochastic
gradients [3], the study of DLRA in the stochastic setting is fundamental for devel-
oping a theoretical understanding of the method proposed in [21]. This work will
attempt to fill this gap in the theory of DLRA. The main findings are

1. Robustness of stochastic gradients. We prove that the robust error bound of
DLRA holds in combination with stochastic gradient descent algorithms.

2. Descent direction. We prove that for sufficiently small learning rates, the
method in combination with stochastic gradient descent will retain the de-
scent guarantee from the deterministic and time-continuous setting.

3. Convergence. We show that DLRA in combination with stochastic gradient
and momentum methods will converge to a local minimum if the basis reaches
equilibrium.

This article is structured as follows. In Section 2 and Section 3, we provide
an overview of neural network training and Dynamical Low-Rank Approximation.
Section 4 discusses the robust error bound for DLRA in the presence of stochastic
gradients. In Section 5, we investigate the descent direction with stochastic gradients
and provide a convergence proof. Lastly, we provide a conclusion and outlook in
Section 6.

2. Recap: Training of deep neural networks. Deep neural networks (DNNi)
are a special type of machine learning models. In their simplest fully connected form,
DNNs with N layers are functions

N :RPL x RP — RP2 | (W) =y,

where the vector of trainable parameters W € RP is arranged in a sequence of matrices
Wl e Rraxnrz oo N ¢ RPNaXnN2 of corresponding dimensions ng1,Mk2 € N
with p = Zf\; Ni1Ni2, T = 29 € RP1 is the input vector of dimension D; € N,
and the output y € RP2 of dimension Dy € N is calculated by an N-fold nesting of
intermediary steps

2 = or(Whz,_1)

for some non-linear functions ¢y, [21]. Each intermediary step represents a layer of
the network and its trainable parameters are the matrices W¥.

The training of a DNN is the task of minimizing a real-valued cost function £
over the parameter space R?. A common way of performing this optimization is to
apply the gradient descent algorithm

Wt+1 = Wt - hVWﬁ(Wt) 5

where h is the step size, or, as it is called in the context of machine learning, the
learning rate [3, 25]. This algorithm starts in some point Wy € RP and successively
moves in the direction of steepest descent —Vyy L(WV;) of the objective function until
some optimality criterion is reached. It is also possible to consider a setting where
the parameters W(t) evolve smoothly in time. In this case, W(t) can be expressed as
a solution to the differential equation (also called the gradient flow)

(2.1) W(t) = =VwLW(t), W(t) =Wy.
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STOCHASTIC ASPECTS OF DLRA IN THE CONTEXT OF MACHINE LEARNING 3

Typically, the cost function £ has the form

d
L:RP SR, W= Iz, W),
=1

where {x1,...,24} is a training data set, and [ is a so-called loss function, which
quantifies the difference between the model output for a single point x; and the desired
output, given the parameters W [3]. We usually assume that [ is differentiable, so the
gradient of £ can be written as

SR

d
1
YwLW) == Vwl(wi, W),
i=1

Since, as in (2.1), we are mostly interested in the negative gradient, we will use the
shorthand notation F(W) = =V, L(W).

As the size d of the training data set gets larger, the cost of computing the full
gradient F' becomes prohibitively high [3]. It is thus usual to only use a small subset
of the data to compute the so-called minibatch or stochastic gradient

V) = =2 ST Uwl(E W),
i=1

where s < d is fixed and the & are i.i.d. random variables that follow a uniform
distribution over the training data set {z1,...,z4} [3]. We can also write f(W, &) to
underline the presence of randomness, where £ = (¢1,...,£%). In a setting like that
in (2.1), one would in practice use the stochastic gradient f instead of F' [3].

By construction, it is clear that E:[f(W, )] = F(W). By the law of large num-
bers, for a large enough s, we can expect f to come arbitrarily close to F.

3. Recap: Dynamical Low-Rank Approximation. The fact that the pa-
rameters of a neural network naturally appear as matrices is central to the pruning
strategy proposed in [21]. If we can approximate a parameter matrix W € R™*" by
a matrix Y € R™*" of rank ¢ < min{m,n} while maintaining good performance of
the network, we can significantly reduce the number of trainable parameters and the
associated computational costs, both for training and for inference. We can calculate
that while the matrix W has nm entries, we can encode Y in only mq + ng + ¢* en-
tries since the singular value decomposition allows us to write any rank-¢ matrix Y as
Y =USVT, with S € R?%9. The main motivation behind the approach proposed in
[21] is to represent and train such a low-rank approximation without computing and
storing full-rank parameter matrices. Such an efficient and robust training method
is derived by the use of Dynamical Low-Rank Approximation [15], which is a model
order reduction technique for time-dependent matrices. In this section, we present
the overall principle of [15] and explore practical implementations.

Throughout this work, let || - || and (:,-) refer to the Frobenius norm and scalar
product. Also, for a matrix U, let Py = UU' be the projection onto the space
spanned by the columns of U. Lastly, we will generally denote full-rank matrices by
the letter W, while low-rank matrices will be denoted by Y.

3.1. Rank-q Approximation. For ¢ € N and m,n € N such that m,n > q,
the space of rank-¢ R"*™ matrices is a smooth manifold, as seen in Example 8.14 of
[17], and we will denote it with M, = M7*". Let us further denote with Ty M,
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4 A. HNATIUK, J. KUSCH, L. KUSCH, N. R. GAUGER, A. WALTHER

the tangent space of M, at Y € M, and with P(Y") the orthogonal projection onto
Ty M.

The starting point for Dynamical Low-Rank Approximation (DLRA), first intro-
duced in [15], is the task of approximating time-dependent matrices W (t) € R™*"™,
smooth in ¢, by matrices Y (¢) € M, of rank ¢ < min{m,n}. why < and not < as in
other places? This task can be solved by finding elements of

argmin ||Y (¢) — W(t)] .
Y (t)eM,
This simple approach faces many challenges, such as the need to calculate a costly
singular value decomposition for each time value ¢ and the fact that it yields a solution
Y (¢) that is generally not smooth in ¢ [15].
An alternative method of finding rank-¢q approximations that avoids these issues

consists of approximating the initial value W (ty) and the derivative W(t) instead of
W (t) itself. The task is thus to find a solution Y (¢) of

Y(t)e argmin [[Y(t)-W®)|, Y(to)="Yo
Y(t)ETy(t)Mq
or, equivalently,
(3.1) Y(t)=PY(O))W(), Y(t)=Yo

with a ¥y € M, that approximates W (¢o) [15].
A common situation and one that we will explore from now on is where W (t) is
a solution of the matrix differential equation

(3.2) W(t)=F(W(t), Wi(t)=Wo

for some smooth function F : R™*"™ — R™*"_ The approach (3.1) fits naturally
in this setting, and if W(t) = F(W(t)) is not known, we can replace it with its
approximation F(Y (¢)) [15].

Approximating W (¢) by the rank-q solution Y (¢) of

(3.3) Y(t) = PY()F(Y (D) € TrpMy,  Yi(to) = Yo € M, ,

where Yj is a rank-q approximation of Wy, is the formulation of DLRA which we will
use in this work.

3.2. Robust Numerical Integrators. As already discussed, it is computation-
ally advantageous to work with rank-¢ matrices Y € R"*"™ in their decomposed form

(3.4) Y =USVT',

where U € R™*? and V' € R™"*? have orthonormal columns and S € R?*? is invertible.

Therefore, and since computing singular value decompositions at each time step
is expensive, numerical integrations of (3.3) attempt to integrate the U, S, and V
matrices separately. Proposition 2.1 in [15] uses (3.3) to derive this as the following
system of equations.

(3.5) U(t) =

This manuscript is for review purposes only.
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STOCHASTIC ASPECTS OF DLRA IN THE CONTEXT OF MACHINE LEARNING 5

From this, Lemma 4.1 in [15] yields an expression for the projector P(Y").
(3.6) P(Y)Z = ZPy — PyZPy + Py Z

for any Z € R™>"™. This representation is unique since Py and Py project onto the
range and co-range of Y and thus are uniquely determined by Y.

The numerical issues appearing in (3.5) when S contains small singular values
have pushed researchers to develop more robust integrators [19, 7, 5, 6, 14, 4, 16].

Algorithm 3.1 (Rank-Adaptive) Basis-Update and Galerkin (BUG) Integrator [5],
as used in [21].

Input: Yy = UOSO‘/[)T € M, asin (3.4), an initial rank go, and a truncation tolerance
9 > 0.

for k=0,1,...andtg <t; <---<tp <--- do

K-step: solve the R™*% differential equation
K(t) = F(K(t)VkT)Vk, K(ty) = UpSy over [tg,tg+1]-

if rank-adaptive then
| Set K(trs1) < [K(trs1) | Ul

Using the QR-decomposition, obtain Uy, Ri4+1 = K (tg41), where the columns of
Uy, form an orthonormal basis of the range of K (t41).

Set M «+ U,jLUk.

L-step: solve the R™"*% differential equation
L(t) = F(UkL(t)T)TUk, L(ty) = VkS,;r over [tg, tpt1)-

if rank-adaptive then
| Set L(tii1) < [Lltri1) | Vil-

Using the QR-decomposition, obtain Vk*+1]:'ik+1 = L(tx+1), where the columns of
Vi, form an orthonormal basis of the range of L(tj41).

Set N < V2 V.

S-step: solve the R4 differential equation (for Gr,dv € [qx,2qx], depending
on the sizes of Uy, and V|’ | respectively)
S(t)=Ur L F(U: SOV Ve, S(tk) = MSENT over [ty tgqa].

Set Si 1 < S(try1)-

if rank-adaptive then
Truncation step: Compute the singular value decomposition S}, ; = PxQT
with ¥ = diag(o;).
Determine the maximal set of singular values o; of S} | satisfying > o? < 92
and define X7, P; and @1 by removing the rows and columns from ¥, P and
Q@ corresponding to those o;.
| Set Sk+1 «— 21, Uk+1 < U]:+1P1 and Vk+1 «— Vk:*+1Q1'

else
L Set Ugy1 < Uiy Vi1 < Vi, and Skt1 S;—H‘

Set Vi1 < Up1Sk+1Vy 1

The method that will be studied in this work is the Rank-Adaptive (often referred
to as augmented) Basis-Update and Galerkin (BUG) Integrator (Algorithm 3.1), first
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proposed in [5], which is the rank-adaptive version of the fixed-rank BUG integrator
[7]. The rank-adaptive modification allows the algorithm to determine the optimal
rank based on a given threshold automatically. The resulting matrix Y; = U;S1V;"
after one step of the algorithm is an approximation of Y (¢;) from (3.3).

Notice that in Algorithm 3.1 it is possible to perform the K- and L-steps in
parallel. Also, notice that in the rank-adaptive setting, the number of singular values
o; of i, | remaining after the truncation step determines the (adaptive) rank g1
of the matrix Yy, resulting from the k-th pass of Algorithm 3.1.

An important fact for the subsequent theory is that the spans of the matrices
Ug,, and Vi7,, obtained in the rank-adaptive method also contain the spans of Uy
and V. Following [6], thus we can write

(3.7) Uir = Uk | U,

where U,j is composed of columns that expand the orthonormal basis spanning Uy.

Much in the same manner, Uy, can also be thought of as including and expanding

upon the spans of Uy41 obtained with either the adaptive or non-adaptive methods.

Thus, we can also write Uy, | = [Ur41 | U7 ,]. Analogous expressions hold for Vj7 ;.
Another important property of Algorithm 3.1 is

* T T
(3.8) Uk 15541 Vi1 — Uk 1Sk41 Vi || < 0,
which follows directly from the construction of the truncation step.

3.3. DLRA for Machine Learning. As seen in Section 2, the trainable pa-
rameters in neural networks naturally appear as matrices. The central idea of [21]
is to apply Algorithm 3.1 to (2.1), thereby leveraging the machinery of DLRA for
training individual layers of DNNs. By doing so, the optimization parameters are
restricted to the space of low-rank matrices and network pruning (that is, the task of
finding accurate models of smaller size) is performed during training itself.

The general compatibility between DLRA and the training of DNNs can be seen
when comparing the equations (2.1) and (3.2). In the notation of (3.2), the W becomes
the matrix of trainable parameters of one layer of the network, while F (W) becomes
the negative gradient —Vy L(W) of the objective function.

One major difference between the two methods, however, exists. As seen in
Section 2, during network training, one generally uses the stochastic gradient f instead
of the full gradient F. This difference gives rise to the central question of this work:
how does Algorithm 3.1 behave when F is replaced by f7

We will now specify some notation. A DNN, by definition, contains multiple lay-
ers and the implementation in [21] applies Algorithm 3.1 to the parameter matrices
WL W2, ... of each layer separately, cycling between the layers at each training step.
In this work, we focus on training a single layer of a DNN and present results corre-
sponding to this approach. Because of this, although the objective function £ depends
on all the parameter matrices W1, W?2 ... we will omit writing L(W*!, W2, -..) and
instead write £(W). Since the optimization of one layer requires only those gradi-
ents corresponding to the single parameter matrix in question, we will also write VL
instead of VL and consider the other parameters fixed.

It is also worth noting that although we write F/(W) = —Vy L(W) and theoreti-
cally treat it as such, considerable computational gains can be made if we notice that,
for example, as in the K-step of Algorithm 3.1,

F(KOV Vi = ~VwL(E 6V, Vi = -V LE([B)V]),

This manuscript is for review purposes only.
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making the computation of the gradient with respect to the full parameter matrix W
in the K-, L-, and S-steps unnecessary [21].

3.4. Optimality over the Manifold M,. Since we are performing optimiza-
tion over manifolds of low-rank matrices, we should take an interest in the optimality
conditions that exist there.

We know that for a point Y € M,, a necessary first-order condition for optimality
over M, is given by

(3.9) P(Y)VL(Y) =0.

This follows from Proposition 3.3 and Theorem 3.4 in [20].

Thanks to the explicit expression (3.6) of P(Y'), we can directly obtain a some-
what weaker, but in the context of this work more accessible necessary condition of
optimality

(3.10) PyVL(Y)Py =0,

We call this condition more accessible because expressions of the form PyVL(Y )Py
appear very naturally in the theory that we will tackle in Section 5.

In Section 5, we show that in the stochastic setting, the DLRA optimization
algorithm can come arbitrarily close to satisfying these conditions in expectation.

4. Robustness of Stochastic DLRA. Using the notation of Section 2, con-
sider the algorithm that results from replacing every F'(-) in Algorithm 3.1 by f(,£),
where a single realization of ¢ is used per pass in the for-loop. We call it the Sto-
chastic Algorithm 3.1. In this section, we explore how well the resulting matrix Y3
of one step of the Stochastic Algorithm 3.1 approximates the solution W (t1) of (3.2)
at time t; = to + h, h > 0. This extends the results found in [21], where Theorem 1
states a similar error bound for the deterministic algorithm.

We can use the manifold structure of M, to investigate the stochastic gradients.
Since Ty M, is a subspace of R™*"™ for any Y € M, we can decompose the gradients
F(Y) and f(Y) into components F(Y) = M(Y) 4+ R(Y) and f(Y) = m(Y) + r(Y),
where M (Y'), m(Y') € Ty M,. We make the following assumptions:

ASSUMPTION 4.1. There exists an € > 0 such that |R(Y)|, [|[7(Y)| < € for all
Y e M,.

ASSUMPTION 4.2. The two functions F' and f are bounded by a constant B > 0
and Lipschitz continuous with respect to || - ||. The corresponding Lipschitz constant
is denoted by L > 0.

ASSUMPTION 4.3. There exists a constant C > 0 such that |[F(Y) — f(Y)|| < C
for allY € Rm>™,

Assumption 4.1 for F states that F(Y') is contained in 7y M, up to a small factor
and is based on empirical observations [21]. Assumption 4.2 for F is common in
DLRA theory [21, 13] and smooth optimization in general. The extension of these
assumptions to f can be justified by the structure of the gradients; both f and F
directly inherit their properties from the loss function [, as seen in Section 2, so we
can expect them to behave similarly. The bound on ||F(Y)— f(Y)]| in Assumption 4.3
can be justified by the law of large numbers, as explained in Section 2. These three
assumptions hold for the rest of this section.

In the following, let W (¢) be the solution of (3.2) with initial value Wy and
Y; = U1 S1V;" be the resulting matrix after one step of the rank-adaptive Stochastic

This manuscript is for review purposes only.
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Algorithm 3.1 with initial value Yy € M, that approximates W,. We wish to find a
robust error bound for the local error

(4.1) [[W(t) =1 < [[W(t1) = Po; W(t) Pyy

1 Poy W(ta) Py =Y [+ Y7 = YAl

We know from (3.8) that the last term can be bounded by . The bounds for the
other terms are given by the following lemmas. In the following, let us assume that
||W0 — YE)H S 6 holds.

LEMMA 4.4. There exists a constant C7 such that

[W(t1) — Pus W (t1)Pys|| < C1h* +2(Lé + & + C)h + 26,

where Cy does not depend on the condition number of the coefficient matriz S.

Proof. We can write

[W(t1) — Puy W(t1) Py

<IW(ta) = Puy Wt + [[Po; (W (k) = W (t2) Py )
<|[W(t1) = Puy W(t)|| + [[W (1) — W(t) Py

First notice that

[Wo — Pu: Woll < [(I — Puz)Yoll + [[(I — Puy)(Wo — Yo)|| = (I — Py; )(Wo — Yo)l|,

where (I — Pyz)Yy = 0 holds by construction of Uy. Then, using the above and
Assumptions 4.1-4.3 we have

IW(t) — PoW ()] < / E(W () — Pus FOV(0) | de + 5

to

S/1||(I—PUf)f(W(t))Hdt—i—Ch—Fé

to

t1
< / | = Py ) F(Wo)|| dt + LB + Ch + 5

to

t1
g/ (I = Pys)f(Yo)| dt + (hL 4+ 1)6 + LBh* + Ch

to

t1
g/ (I = Pys)P(Yo)f(Yo)|l dt + he + (RL + 1)6 + LBh*> 4+ Ch

to

ty
= / ||(I—PUl*)f(Yo)PVOHdt‘FhE‘f’ (hL+ 1)6+L3h2 +Ch

to

1 /"
< 7 / (I — PU;)(K(tl)VOT —Yo)| dt + c1h® + he + (hL+1)5+ Ch
to

=c1h* + he + (hL +1)6 + Ch

where in the last inequality we use the fact that f(Yp)Vo = K(¢p). The analogous
derivation for the co-range proves the lemma. 0

Lastly, we have
LEMMA 4.5. It holds that

| Pus W (t1) Py — Y7*|| < 2LBh* + Ch+ (Lh +1)§.
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Proof. Let Y (t) := Uy S(t)V;*" for S(t) being the solution of the S-step of the

algorithm. From the construction of Uy and Vi* it follows that Y (¢y) = Y. From the

cons

Furt

truction of the S-step, we know that
t1 _
Y=Yy + Py f(Y(t))Pyydt.
to
hermore,

PUI*WOPVl* — Yb = PUl* (WO — YO)PVI* .

With the above and Assumptions 4.2 and 4.3, we have

t1 _
| Pus W (t1) Py —Y7'|| < / | Pus F(W (t)) Py — Pus f(Y (1)) Py dt +
to
t1 B
< / | Pus F(W (1) Py — Pu: f(V(£)) Py || dt + Ch + 6
to

t1
gL/ W (t) = ¥ (8)]| dt + Ch + 5
t

=L / 1 / IF(W (s)) — Pu; (¥ () Py || ds dt + (Lh +1)6 + Ch

0

<2LBh? 4+ Ch+ (Lh +1)§. u|

Together, these lemmas yield the bound

ie.,

[W(t1) = Yi|| < (C1 +2LB)h* + 2(L5 + €+ 20)h + (3 + Lh)5 + 9,

a global error bound then directly follows from Lady Windermere’s fan.

This result shows that the rank-adaptive BUG algorithm does not lose its ro-

bust

ness properties following a stochastic modification. Thus, we can now shift to

exploring the properties of the Stochastic Algorithm 3.1 as a stochastic optimization
algorithm for machine learning.

5. DLRA with Stochastic Gradients. Recall the definition of the Stochastic
Algorithm 3.1 from the previous section. In this section, we explore its properties as an
optimization algorithm for machine learning. At first, we quantify how it optimizes the
loss function £. Afterward, we show its convergence properties on the task of training
individual layers of deep neural networks when using stochastic gradient descent and
momentum methods as solvers of the integration steps. Let Assumptions 4.1 and 4.2

hold

throughout this section.

5.1. Optimization of the Loss Function. Let Y be iterates generated by
the Rank-Adaptive Stochastic Algorithm 3.1 for some starting point Yy. We begin by
taking a look at the structure of Py f(Vi)Py, . Using (3.7), we obtain

The

(5.1)

Py

k+1

= Ui Uiy = UU{ +UFUST = Py, + Py
same also holds for V;* ;. Thus, we can write

Py, f(Yi) Py, =

k+1

Py, f(Yr)Py, + PU;rf(Yk)PVk + Pka(Yk)PVkJr + PU;f(Yk)Pv,j .
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This form will help us to prove the next theorem.

THEOREM b5.1. If Yy is the resulting matriz after one pass of the Rank-Adaptive
Stochastic Algorithm 3.1, with t1 = to+h for h > 0 and some starting point Yo € My,,
then there exists a positive constant o such that

E[L(Y1)] < L(Y)) — ha® 4 c1h?B? + cohBe + c3h?B? + BY,

where c1,co, and c3 are independent of the low-rank manifold’s curvature.
Proof. Consider Y (t) :== Uy S(t)V;*T, where S(t) denotes the solution of the S-step

of the Stochastic Algorithm 3.1. Then
Y(t) =UiSVy T =Uror T Fy )V vyt

y (3.7), the ranges of Uy and V;* contain those of Uy and V. Hence, we have

Y(to) = UrS(to)Vy" = UUT T UgSoVy ViVET = UpSoV,,' = Yo

As a consequence,

(5.2) V() =Yo+ | Po:f(¥(s)Py-ds.

to

Using equations (5.1) and (5.2), we obtain

%ﬁ(y(t)) = (VLY (1), Y (1)) = —(F(Y(£)), Pu; f(Y (1)) Pry)
< —(F(Yo), Pu; f(Yo) Py;) + c1hB?
(5:3) == (F(), Pu; YO)PVO + Py, f(Yo) Py — Py, f (Yo) Py, + Pyt f(Yo) Py+)
+ ClhBZ.

F(Yc
f(
The last term in the scalar product can be bounded by

(P (Yo), Pyt F(Yo) Pyt )| < [{F(Y0), Py P(Yo) f(Yo) Py )| + c2Be = caBe
We use the structure of the K- and L-steps to bound the remaining terms in (5.3).

The ranges of both K(¢;) and K, are spanned by the columns of U;y. Therefore,
(I — Py;)K(t1) = (I — Pyz)Ko = 0 holds. Combining this equality with

t1 K() + / f ‘/ods

yields

ty
(54) | P PRV Wads = / FU )V Vads.
to
A symmetric statement also holds for the L-step yielding
1
1P F(Y0) Py, — f(Yo) Pyl < eshB.

1
1Py, f(Yo) " Pu, — f(Yo) " Pus | < 5cshB.
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Hence, (5.3) becomes with p := c;hB? + ¢y Be + c3hB?

d _
L () < —(F(Y0), f(Yo) Py, + Pu f(Yo) — Puo f(Yo) Pri) + .
Thus it holds that
d _
E[ZL(V(0)] < = (F(Yo), P(Yo) Py, + Pu, F(Yo) = P, P(Yo) Puy) +
= = IUg F(%) [ = [F(Yo)Val* + U F(Yo)Vol* +
1
< = S (IUG FOO)II* + [ F(Yo) Vo) + i
Now let o2 := 1(||U F(Yo)||> + | F(Yo)Vol|?). Then we get
d _
< —a?+p.
E[dtc(Y(t))} <—a’+p
Integrating this equation and using Fubini’s theorem (which applies since the inte-

grand %L(Y(t)) is bounded) yields

d

BLC(Y (1)) = BLE(Y () + B[ | ZLV ()]

(5.5) = L(Yo) + /t ! E{%ﬁ(?(t))] dt < L(Yo) — ha® + hy.

Since S(t1) = S, we can write Y (¢;) = U;S;V;*T. Consequently, by (3.8),
(5.6) Vi =Y ()] <9.
By Taylor, there exists a 7 € [0, 1], such that
L(Y1) =LY (1)) — (F(rY1 + (1 = 7)Y (t1)), Y1 = Y (t1)) -
Applying the Cauchy-Schwarz inequality and (5.6) to the above we obtain
(5.7) L(Y1) < L(Y(t1)) + BY.
Putting (5.5) and (5.7) together and taking the expected value yields
E[L(Y1)] < E[L(Y (t1))] + BY < L(Yy) — ha? + hu + BY. 0

This theorem expresses an upper bound on the expected value of the loss function
L after one step of the Stochastic Algorithm 3.1 in terms of the free parameters h and
. By construction, it holds that a < B, so this bound might actually be larger than
L(Yp). This is somewhat unsatisfactory in the context of minimization. We will see
later, however, that practical modifications of this algorithm are nonetheless capable
of assuring descent, given an appropriate choice of the step size.

5.2. Stochastic Gradient Descent. Until now, we have assumed that the
K-, L- and S-steps of Algorithm 3.1 are solved exactly. In practice, however, they
are solved using various discrete-time methods, such as (stochastic) gradient descent
and Adam [21, 3]. In this section, we will investigate the convergence properties of

This manuscript is for review purposes only.
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the Stochastic Algorithm 3.1, where the continuous time variable ¢ is replaced by
a discrete one (t = 0,1,...) and the integration steps are replaced by the gradient
descent algorithm, generally expressed as

Zyi1 = Zy — hVG(Zy)

for a step size h > 0, a smooth function G, and iterates Z;. More precisely, the
integration in the K-step is replaced by

(5.8) K1 = UiSi + hf (US V" )Vi,
in the L-step by

Liyr = ViS +hf(US V") UL,
and in the S-step by

(5.9) Fon = UEL UGSV Vi + hUS F(Puz, USVT Py, Vi

t+1

Once again, a single realization of £ is used to compute f for all these steps within
one pass of the for-loop of the algorithm. In this section, we will refer to this mod-
ification of the Stochastic Algorithm 3.1 as the Stochastic Gradient Descent (SGD)
Algorithm 3.1. This modification can also be seen as solving the differential equations
in the K-, -, and S-steps with the explicit Euler method.

The logic in this section generally follows from adapting the treatment of SGD
found in Chapter 4 of [3] to the DLRA setting.

LEMMA 5.2. For any Y, Y it holds that

(5.10) LY) < L(V) — (F(V),Y ~¥) + 2|V ~ V|,

Proof.

_ _ _ L _
= £(V) ~ (F(¥),Y = Y) + LV = VP,
where in the first line we use the chain rule and F = —V /L and in the third line the

Cauchy-Schwarz inequality. 0

Now, let Yy = UpSoV,' € M,, be some fixed initial value for the SGD Algo-
rithm 3.1. Let Y} be iterates generated by this algorithm.

THEOREM 5.3. If Y7 is the resulting matriz after one pass of the Rank-Adaptive
SGD Algorithm 3.1, then it holds that

E[L(Y1)] < L(Yy) — h||P(Yo)F(Yo)|* + %hQLBQ + hBe + BY.
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Proof. Consider Y;* = U;S;V;*T. By the definition of the S-step (5.9), we can
write

St = U TUsSoVy Vi + hUT T f(Pu: UpSoVy' Py ) V'
Using (3.7), we obtain
UsUT TUoSoVy' ViV T = Py:UgSoVy Py = UpSoVy' = Y.
Combining the above equations yields
Yy =Yy + hPy; f(Yo) Pyy .

Using Lemma 5.2 and equation (5.1) we obtain

L(YT) = L(Yo) < = WF(Yo), Pu; f(Yo)Pyy) + hQTLHPU;f(Yo)PV; 12

= — W(F(Yo), Pu, f (Yo) Py, + Py+ f(Yo) Py, + Pu, f(Yo) Py +)

(5.11) — h(F(Yo), Pyt f(Yo) Py+) + WTLHPU;f(Yo)PV; [
By Assumption 4.2 we have

h2L

1
(5.12) THPUff(YO)PVf 2< 5fﬂLB?

Furthermore, by applying the logic preceding (5.4) to the new K-step (5.8), we obtain

Py: f(Yo) Py, = f(Yo) Py, -
Combining this with a symmetric argument on the L-step yields

Pu, f(Yo) Py, + P+ f(Yo) Py, + Pu, f(Yo) P+
= Py; f(Yo)Pv, + Pu, f(Yo) Py — Pu, f(Yo) Py,
(5.13) = f(Yo) Py, + Pu, f(Yo) — Pu, f(Yo) Py, = P(Yo) f(Yo) .

The first term in (5.11), Py f(YO)PVO+, can be bounded using Assumption 4.1. Since

we know that f(Yp) = m(Yy) +7(Yo) with m(Yy) € Ty, My, the definition of U™ and
V," and the Assumption 4.1 allow us to write

(5.14) 1Py F(Y0) Pyt | = [Py r(¥o) Py [ < .

Applying (5.12), (5.13), and (5.14) onto (5.11) and using the Cauchy-Schwarz
inequality as well as Assumption 4.2 yields

1
L(YY) = £(Yo) < (F(Yo), P(Yo) f(Yo)) + 5h*LB* + hBe.
Taking the expected value, this becomes

E[L(Yy")] — L(Yo) < —h||[P(Yo)F(Yo)|* + %hQLBQ + hBe.
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Furthermore, by (3.8), we know that

Y1 =Y < 9.

Thus, using Taylor, for some 7 € [0, 1], we get

LY)=LY])—(F(tY1+ (1 —7)Y]), Y1 = Y] < L(Y]") + BY.
Putting everything together and taking the expected value yields

E[L(V1)] < E[L(Y;)] + BY < L(Yy) — h||P(Yo)F(Yo)|? + %hQLBQ +hBe+ BY. O

Whenever we write f(Y) = f(Y,¢), the randomness is hidden in the term &.
Thus, when reading E[f(Y))], one should understand E¢[f(Yy,&)]. The matrix Y
and its factors Uy, V7, and S7 are stochastic in &£, since they have been generated
using f(Yp,&). Therefore, E[L(Y7)] = E¢[L(Y1(£))] holds. In general, when consid-
ering the evolution of Y; up to the k-th step, if we denote with &q,...,& the i.i.d.
realizations of ¢ made in each pass of the algorithm, we can say that Y;, Uy, Vi,
and S; are stochastic in &1,. .., &, so the simplified notation E[f(Y};)] corresponds to
E§17-~~;€t+1 [f(}/t(gh s agt)a EtJrl)]'

Thus, we can rewrite the result of Theorem 5.3 in a more general manner:
1
(5:15)  Eg, [L(Vi(&)] < L(Vier) = BIP(Yi-) F(Yio1)|* + Sh?LB® + hBe + BY.

Now, we can make statements about the behavior of the algorithm as t — oco.

THEOREM 5.4. Let L be non-negative. Let Y1,...,Yy be iterates generated by the
Rank-Adaptive SGD Algorithm 3.1 over k steps. Then it holds that

1
gZ (1P F(Yeen)|P] <
Yt s 1
(5.16) ‘Cl(ghO)Jr ghLB® + Be + 319 = *hLBQ+Be+EB197

where the expected value is taken over all ft.

Proof. By taking the expected value over all £ in (5.15), we get

1
E[L(Y})] — E[L(Y;—1)] € —hE[|P(Yi—1)F(Yio1)|?] + §h2LBz + hBe + B9 .
Using £ > 0, we can now conclude

—L(Yo) < E[L(Yk)] — L(Yo)
k
< —h Y E[|P(Yie1)F(Yi0)|?] + k(%h%BZ + hBe + 319) .

t=1

Rearranging the terms, we obtain

k
1 1
> E[IP(Yi) F(YVi) 2] < 5 (£(30) +k<§h2LBQ +hB5+Bq9>)
t=1
LYy 1., 1
- k(-hLB? + Be + —BY).
Py (2 +Be+ o )

Dividing by k and taking the limit yields the desired result. 0
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Theorem 5.4 states that the running average of the expected squared norms of
the projected gradients of £ does not surpass %hLB2 + Be+ %Bﬁ. If this bound could
be made arbitrarily small, we could claim convergence towards a stationary point. In
the setting of the usual stochastic gradient descent algorithm such as in Section 4 of
[3], this bound is linear in h. This can be used to obtain

lim inf E || P(Y)) F(Y)[[?] =0,

by using a variable and shrinking step size h = h;.

Two terms are preventing us from taking this approach here. Firstly, Be is con-
stant in h, and reducing the step size would not affect it. This term stems from
the bound (5.14) we use on terms of the form (F(Y;), P+ f(Yt)PVt+>, which we can-
not easily integrate because both the projections PU1+ and the gradients f(Y;) are
stochastic in &4 1. '

The other even more problematic term in (5.16) is %Bﬁ, as it is inversely pro-
portional to h. This term appears because the truncation step is independent of the
learning rate h and the stochastic gradient f. All the steps preceding the truncation
move the objective towards a (stochastic) decrease, while the truncation can seem-
ingly throw it off in any direction at step distance ¢. If the learning rate h is made
smaller, this truncation displacement becomes increasingly dominant in the progress
of the algorithm.

We generally cannot expect ¢ to be smaller than h, see, e.g., the values in Section 5
of [21]. Letting ¥ — 0 would defeat the purpose of rank reduction since, over many
algorithm passes, this might yield matrices of high or even full rank. Notice that at
every pass of Rank-Adaptive Algorithm 3.1, the rank is initially increased by up to
two times with respect to the rank in the previous pass, and only those dimensions
that have singular values below the threshold are later removed; if the threshold goes
to 0, fewer dimensions are removed at each pass.

Interestingly, rank-adaptivity seems to be less impactful in the later stages of
training. The experiments in [21] indicate that the ranks of the parameter matrices
become close to constant after sufficiently many training steps. Thus, a sensible
solution would be to perform rank-adaptivity only at the beginning of model training
and afterward continue in a non-adaptive manner with a shrinking h;. This being
said, such an approach makes it challenging to obtain a theoretical result akin to the
ones above since the proofs depend on the property that the ranges of U; and V; are
contained in those of U ; and V;% ;. This property does not generally hold in the
non-adaptive setting.

We avoid this issue by exploring a method called S-fine-tuning. This method has
been implemented in the source code [22] released alongside [21], which consists of
dropping the K- and L-steps and only performing S-steps. S-fine-tuning is performed
after the model has been trained for several epochs (see the train_and finetune
function in the DLRT-Net/optimizer KLS/train_experiments.py scrip of the source
code). It seems to rely on the assumption that, in the later stages of model training,
the computational costs related to calculating the K- and L-steps outweigh the gain
in precision obtained from updating the U and V' matrices.

Performing S-fine-tuning can be seen as assuming that the ranges of the solutions
K; of the K-steps remain constant. In other words, we get

(I—-Py)K, =0

This manuscript is for review purposes only.



516

517

=

el

ot oot at
= O

3]
no

NN
(SN

[
(=)

v Ot Ot Ot Ot

[ )
3

B
[GLENNTN

(S

at
B

ot
iy
-~

16 A. HNATIUK, J. KUSCH, L. KUSCH, N. R. GAUGER, A. WALTHER

for all t. An analogous interpretation also holds for the L-step. Just as in (5.13),
applying this to the definition of the K- and L-steps yields

P(Y1)f(Yy) = Puf(Ye)Py .

We can now state our assumption.

ASSUMPTION 5.5. There exists an index tg such that for all t > tg
1. Uy =Ui—1 and Vy = Vy_q,
2. P(Y))f(Yy) = Pu, f(Ye)Py,.

Remark 5.6. When using this assumption, we drop the indices in our notation
of the U and V matrices. This assumption implies that, after the index tg, we not
only use the non-adaptive method, which makes the term %Bz? disappear, but also

no longer perform the K- and L-steps. It follows immediately that U, = V,* = 0 for
all t > tg, so the term Be must also disappear by (5.1) and the discussion above.

THEOREM 5.7. In the setting of Theorem 5.3, let Assumption 5.5 hold. Then
1

(5.17) B, [£(Y)] < £(¥io1) = B P(Yi 1) F(Yi) |2 + S WL B?
for all t >ty for tg from Assumption 5.5.

Proof. For t > tg, by the definition of the S-step (5.9),

S, =UTUS, . V'V +hU" f(PyUS,_\V'Py)V =8,_1+hU"f(Y;_1)V,
SO
Y, =USV' =Yy + 0Py f(Yi-1)Py = Yooy + hP (Y1) f(Yioa).

Using Lemma 5.2 and Assumption 4.2, we can write

2
£(Y) = £(Yim1) € ~h{F (i), PV Vi) + S E P £

< h(F(Yer), P(Yi)f(Yer)) + gh?LB?

Taking the expected value with respect to &; yields the desired result. ]

Remark 5.8. In particular, (5.17) shows that, for a small enough h, the algorithm
assures a decrease of the loss function in expectation.

The proof of Theorem 5.4 where (5.15) is replaced by (5.17) immediately yields,
up to a shift in the indices such that ty = 0,

k

L(Y 1 s 1
S E[|P(Yic)F(Yio1)[?] < ,ihO) + ShLB* 2% ShLB?.
t=1

(5.18)

T =

We can see that Assumption 5.5 has removed both problematic terms in equation
(5.16). It is clear that the right-hand side of (5.18) goes to 0 if we let h — 0. To
achieve this, let us now choose a variable step size h = h; that satisfies

(5.19) th:ooand th<oo
t=0 t=0

This manuscript is for review purposes only.
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THEOREM 5.9. In the setting of Theorem 5.4, let Assumption 5.5 hold and a
variable step size hy satisfy (5.19). Then one has

oo
(5.20) Zht—1E[||P(Yt—1)F(Yt—1)||2] < 00.
t=1
Proof. Without loss of generality let tg = 0 in Assumption 5.5, otherwise set the
index after which this holds to 0.
Using (5.17),

EIC(Y]-EIL(Y; )] € e B[P )F(V)IP] + Sh2 LB

Similarly to the proof of Theorem 5.4, we obtain

k k

~L(Y%) < EL()] - £(%) < — > B[P PO + % > H

Rearranging the terms,

k k
> E[| PG F (Vo)) < 2£(Yo) + LB Y iy

t=1 t=1
Taking the limit & — oo and using _,~ 0 h? < oo yields the result. ]
COROLLARY 5.10. In the setting of Theorem 5.9, it holds that

(5.21) lim inf E[| P(¥;) F(¥;)[?] = 0.

Proof. The statement follows directly from (5.20) and (5.19). d

This shows that in the setting of Theorem 5.9, the SGD Algorithm 3.1 yields
a sequence of iterates, such that a subsequence comes arbitrarily close to satisfying
the necessary condition for optimality (3.9) in expectation. If Assumption 5.5.2 is
dropped, the same result holds, albeit for the weaker necessary condition of optimal-
ity (3.10).

This convergence result indicates that the SGD Algorithm 3.1 is a valid optimiza-
tion algorithm for training individual layers of DNNs. The discussion in this section
also suggests that the best way to apply it would be to first train the model in a
rank-adaptive manner and, once the ranks of the S matrices have stabilized, finish
the training using S-fine-tuning.

5.3. Momentum Methods. Although stochastic gradient descent has an im-
portant place among optimization methods for machine learning, in practice, it has
been largely outperformed by momentum methods [3, 25, 10]. These methods do
not simply use the gradient of the current step but rather the accumulated gradient
information from all previous steps [3, 25]. Some common examples are the heavy
ball and Nesterov methods. In this section, we will use a momentum method as a
solver of the differential equations that constitute the Stochastic Algorithm 3.1 and
will investigate the convergence properties of the resulting algorithm.

For f as in the previous sections, consider the two-step algorithm

Xe=pXea +hf(Yy),

(5.22) (SUM) : {ym — Y+ A f (V) + (1= A+ )X,

This manuscript is for review purposes only.
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with parameters p € [0,1), A € [0, ﬁ] and step sizes hy, that generates a sequence
of iterates Y; from starting values Yy and Xy := 0. This is the Stochastic Unified
Momentum (SUM) algorithm proposed in [18], which generalizes the stochastic heavy
ball (A = 0) and Nesterov (A = 1) methods. When applied as an integrator of the S-
step of the Stochastic Algorithm 3.1 once again replacing the continuous time variable
t by a discrete one, it becomes

Xi = pXea +hUSL f(Pos UiSiVy Pos Vi
(5.23) to = UL US Y Vi + MU f(Pos, UeSiVy Py Vi

This algorithm is not immediately applicable in the rank-adaptive setting since the
dimension of X;_; and that of the stochastic gradient

U;J1f(PU;+1UtStV;TPVt11) 1

are not necessarily the same at any given step.

In practice, this issue can be circumvented by using heuristics. For example, in the
source code of [21], when applying the Adam algorithm, which also uses momentum
and thus suffers from the same issue [10], in the rank-adaptive setting, the dimensions
of X; and S; are kept constant and set to the largest possible value, while only
submatrices of X; and Sy with appropriate dynamical dimensions are being used and
updated.

Such approaches do not correspond to the SUM algorithm (5.22) that we want to
study. Luckily, the experimental findings in [21] suggest that even when using these
heuristics, the adaptive rank of the matrices Y; stabilizes during training. It is thus
reasonable to once again use Assumption 5.5.1. Just like in the previous section, we
can generally assume that tg = 0, for the number of steps ¢y after which the basis is
kept fixed since we are only interested in the behavior as t — oo.

Under this assumption, we can rewrite (5.23) as

Xy = pXeo + U f(Y)V,
Sii1 =8+ MU T fFYOV + (1 =X+ )X

Since there is no truncation step, multiplying by U from the left and by V' T from the
right yields, with a new definition of X4,

X = pXeo1 + Py f(Yy) Py,

(5.24) Yir = Yo + MePu f(Y)Py + (1— A+ M) X,
Consider the modification of the non-adaptive Algorithm 3.1, where, as under As-
sumption 5.5.1, only the S-step is performed and is further replaced by (5.24). In this
section, we will refer to this modification as the Stochastic Unified Momentum (SUM)
Algorithm 3.1. We will now investigate its convergence properties.

Let Assumptions 4.2 and 5.5.1 hold throughout this section. Let {Y;};>0 be a
sequence of iterates generated by the SUM Algorithm 3.1 for some Yy € M, and
{X1}i>0, Xo =0, be its corresponding sequence from (5.24).

The logic in this section generally follows from applying the treatment of the SUM
algorithm from [18] to the DLRA setting.

First, we need to state a few technical lemmas.

This manuscript is for review purposes only.
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622 LEMMA 5.11. Let {at}i>1, {bi}i>1, and {Gi}i>1 be non-negative real sequences
623 such that Y o) ap = 00, > po, arh? < 00, limy_eo gt =1, and b1 — b < Cay for a
624 positive constant C. Then lim;_,o by = 0.

625 Proof. This lemma is proven as Corollary 3.1 in [18]. 0
626 LEMMA 5.12. Let {a;}t>0, {bi}i>0, and {ci}i>0 be real sequences where {b;}1>¢
627 is non-negative. Further let a;41 < a; — by + ¢, and Zio ¢y converge. Then either
628 limg_, o0 ay = —00, 0T ay converges and Zfio by < 0.

629 Proof. This lemma is proven as Lemma 1 in [1]. |
630 LEMMA 5.13. Let the step sizes hy satisfy (5.19). Then it holds that

631 Ly2 1(25 Nl sh2> < 00,
632 2. 300, (Zt L PR X | ]) 00,

o 8 S B[V — Vil <
634 Proof. We can rewrite X; from (5.24) as
¢
635 (5.25) X, = Z pt=*he Py f(Ys) Py

s=1
636 Thus, using Jensen’s inequality in the second line,

t

637 E[|| X:|%] [(Z ohsl| Puf (Y. PV”) }

638 {(Z )Zﬂt *hi|| Py f (Y. )PVH

t

639 ptoh.

640 Since > o, h? and Y .o, u' converge absolutely, their Cauchy product

641 i(i M‘Shﬁ)

t=1 s=1
642 also converges. Thus
[e%S) [eS) k—1
643 (5.26) ZE[HXtHQ] < oo and Z( PR X| D 00,
t=1 k=1 t=1

644 where we notice that the sum in the second inequality is once again a Cauchy product
645 of two absolutely convergent series. Using the inequality (a+b)? < 2(a® +b?), we can
646 also write

647 Vi1 = Yill? = [N Pu f(Ye) Py + (1= X+ M) Xe |
615 (5.27) < 2VRE || Py f(Yo) Py |” +2(1 — A+ )2 (| X |12
649 <2XZhZB% 4+ 2(1 — X+ 22| X, )%
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Thus, Y_,2, hf < co and (5.26) yield

o0

D E[[[Yir1 - Yif*] < oo.

t=1

LEMMA 5.14. It holds that

—E[(F(Y;),X1)] <= > p'*hE[| Py F(Y:)Py|?]

s=1
t—1 t—1
+20) TR [| X)) + LAB Y okl
s=1 s=1

Proof. By the definition of X}, we have

~E[(F(Y2), X.)] = —E[(F(Y:), Xi—1)] — ME[|PuF(Y)Py|?] .

Using (5.27), the inequality ab < %(a2 +b?), and the Cauchy-Schwarz inequality, we
obtain

(F(Yi-1) = F(Yy), Xi—1) < |[F (Y1) = FY)[[[[Xe—1]] < LI[Yi—1 = Yi[[| Xe—a |
L L L
< SIVis = Yol + UKo 2 < LA%hE B2 + (L= A+ Aw)? + 5 ) X2
< LA?h;_ B* 4+ 2L||X; 1%,

where in the last line we use the fact that 4 —1 < 0 and thus 1 — A + Ay < 1.
Ccmbining these findings yields

—E[(F(Y:), X1)] = —pE[(F(Y,) + F(Y—1) — F(Yi1), Xe—1)] — hE[||PyF (Y;) Py ||?]
< —pE[(F(Yi-1), Xi—1)] — ME[| Py F(Y2) Py ||*] + pLA’h;_ B> + 2uLE[[| X, 1 [|]

t t—1 t—1
<= WThE[|PuF(Ya) Py |P] + 20 ) p TR X)) + LA*B* Y ptmhI. O
s=1 s=1 s=1

We can now show the central result of this section.

THEOREM 5.15. Let L be non-negative and the step sizes hy be such that (5.19)

hi—1

as well as limy_, o = 1 hold. Then
(5.28) Jim E[|| Py F(Y:)Py|l] = 0.

Proof. Putting Lemmas 5.2 and 5.14 together, we can write
E[L(Ye1)] = E[L(Y2)]
L
<—E[(F(), M Puf(V) Py + (1= A+ A X)] + SE[[Vigr = Yill?]

L
(5:29) <= AME[|[PyF(Y)Pr[*] + SE[|[Yi1 = Yil)?]

t—1 t—1

S (1= A ) <2L ST U TR+ LAZB2 Y o
s=1 s=1

> i hE[|PeP(YV)PrI?])

s=1
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Consider the sequences

a; = E[L(YR)],

t
by = ME[|PuF(Y)Py|?] + (1 — X+ Ap) Zut_shsE[HPUF(YS)PVHQ] ,

s=1
I t—1 t—1
. 2 t— 2 2 t— 2
e i= SB[V = YillF] + (1= A+ M) (2L§:u E[IX 7] + LB S uh2)

= s=1

The b; are non-negative by definition of A and p. By (5.29) we know that a;y; <
— by 4+ ¢;. Also, from Lemma 5.13 it follows that ) .-, ¢; converges, so Lemma 5.12
applies to these sequences. By the non-negativity of £, this yields a; — a. < co and

(5:30) > (AWE[IPT PP + (1= A+ M) D u B[ P F (V) Py [[2])
t=1

In particular, since for any k it holds that

k t k k
>SS w B[P PV PP = 3 (hE[IPUF(YV) Pl Y i)
t=1 s=1 s=1 t=s

k
> ZhsE[HPUF(YS)PVHZ] >
s=1
we can conclude with (5.30) that
[e’s} t
(5.31) th WIPoF(Y)Py [P <Y u ™ *hE[||[PyF(Ys)Py|*] < o0
t=1 t=1 s=1

Now, using (5.25), we write
Yesr = Vel < Muel|[Puf (Vo) Pyl + (1= A+ AM)HXtIl

< M| Puf(Ya) Pyl + (1 — A+ Ap) Zut *h||Po f(Ys) Py |-

s=1

From this inequality as well as the definitions of A and p it follows that

(5.32) E[IIYtHfYtII]Sl_M( : Z“t h) 1oy t2 t

for hy = (1 —p) 22:1 1! =%h,. To bring these values together, consider now a new set
of sequences

a¢ ‘= ht7
hy + hy
2 b
by = E[||PyF(Y;) Pvl|] -

ay ‘=
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Using the Stolz theorem, we can compute the limit

m o L g /1"
T TR Ty Y 7 ey Y
1 h 1 _p 1 h
= lim L1/1 t/'u lim ( — W i ) =1,
1— ptooo hetr/pttt 1 [ t—00 hita

from which one gets

hm@:l.

Also, by using Jensen’s inequality and (5.31), we can see

oo

> ab; = th [[|Po F(Ye) Py ]) Z 1Py F(Y:) Py |P] <
t=1

Lastly, using the inverse triangle inequality and (5.32), we obtain

bi11 — be| = [E[|PUF(Yir1)Py|l] — E[|| Py F(Y;) Py ]|
< E[||Py(F(Yis1) — F(Y2))Py|]] < LE[||Yir1 — Yi]]

2LB hy +h; 2LB _
S = Qg .
1—p 2 1—p

Lemma 5.11 is thus applicable and yields

This result shows that, under Assumption 5.5.1, the SUM Algorithm 3.1 yields a
sequence of iterates that comes arbitrarily close to satisfying the necessary condition
for optimality (3.10) in expectation. If, like in the previous section, Assumption 5.5.2
is also imposed, then this exact statement also holds for the stronger optimality
condition (3.9).

Notice that the result in Theorem 5.15 even improves upon the previous one
from Corollary 5.10. By setting A = p = 0 in (5.24), we obtain the stochastic
gradient descent algorithm, so (5.28) is valid even for the SGD Algorithm 3.1 under
Assumption 5.5.1. Although (5.28) does not induce a result for squared norms like
(5.21), it shows so-called last-iterate convergence as opposed to the convergence of a
subsequence or in average. Furthermore, since the equation (5.31) is identical to the
statement of Theorem 5.9, the exact result of Corollary 5.10 is effectively obtained at
that moment in the above proof.

This finding indicates that the SUM Algorithm 3.1 is also a valid optimization
algorithm for training individual layers of DNNs. The fact that it relies entirely on
Assumption 5.5, however, means that it cannot be used at the beginning of training. In
practice, one should use an algorithm such as the Rank-Adaptive SGD Algorithm 3.1
until the ranks of the parameter matrices become constant and then switch to the
SUM Algorithm 3.1. The fact that momentum methods perform better when training
DNNSs in practice [3] indicates that this might be a better approach than only using
the SGD Algorithm 3.1.
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6. Conclusion and Further Research. This work aimed to investigate the
properties of DLRA (more precisely, of the Rank-Adaptive BUG integrator [7]) as an
optimization algorithm for machine learning, an approach proposed in [21]. This in-
volved using stochastic gradients instead of deterministic ones and common machine
learning methods as solvers of the differential equations that constitute the integra-
tor. We showed that these modifications not only had little impact on the method’s
ability to perform low-rank approximation but also yielded algorithms that exhibit
convergence on the task of training individual layers of deep neural networks.

Future research on this topic could tackle some of the weaker points of this work.
For example, we are always fixing all layers of the network apart from the one that
we are currently training. It might be possible to frame our approach as a coordi-
nate descent method and obtain convergence results for the whole network instead
of just one layer. Also, it appears pertinent to look for a deeper understanding of
Assumption 5.5 and why or why not it is a sensible one, since all of our convergence
results rely heavily on it. Since it is essentially an assumption about the S-step of
the algorithm, understanding it better could offer insight into the weak optimality
condition (3.10) in the context of the manifold M,, since it derives its structure also
from the S-step. In general, the need for the condition (3.10) and Assumption 5.5
stems from an over-reliance on the S-step in our proofs.

Our findings can be interpreted as a theoretical validation of the advantageous
convergence behavior reported in [21]. They show that DLRA is generally capable of
finding optimal low-rank layers of neural networks during training. We can safely say
that this makes it a very promising network pruning technique that should be studied
further and will save considerable computational resources for practitioners.
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