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Abstract

Semi-continuous decision variables arise naturally in many real-world
applications. They are defined to take either value zero or any value
within a specified range, and occur mainly to prevent small nonzero val-
ues in the solution. One particular challenge that can come with semi-
continuous variables in practical models is that their upper bound may be
large or even infinite. In this article, we briefly discuss these challenges,
and present a new diving heuristic tailored for mixed-integer optimiza-
tion problems with general semi-continuous variables. The heuristic is
designed to work independently of whether the semi-continuous variables
are bounded from above, and thus circumvents the specific difficulties that
come with unbounded semi-continuous variables. We conduct extensive
computational experiments on three different test sets, integrating the
heuristic in an open-source MIP solver. The results indicate that this
heuristic is a successful tool for finding high-quality solutions in negligible
time. At the root node the primal gap is reduced by an average of 5 % up
to 21 %, and considering the overall performance improvement, the primal
integral is reduced by 2 % to 17 % on average.

Keywords: Integer programming · Semi-continuous variables · Indicator con-
straints · Diving heuristic · Supply chain management

1 Introduction

In mathematical optimization, semi-continuous variables arise naturally in mod-
els for many real-world applications, and have been studied since at least 1979 [31].
Formally, a variable y is called semi-continuous if it is defined to take either the
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value 0 or any value within the range specified by its lower semi-continuous
bound s and upper semi-continuous bound u:

y ∈ {0} ∪ [s, u] with 0 < s ≤ u and u ∈ R+ ∪ {∞}. (1)

This characteristic makes semi-continuous variables a powerful modeling tool
for capturing scenarios where a variable’s influence is either fully absent or
continuous within a specific range.

Semi-continuous variables were introduced to simplify the solution of blend-
ing problems when materials must be excluded from the blend if they cannot
be used in significant quantities [8]. Nowadays, they are used in a wide range
of real-world applications. In portfolio optimization, semi-continuous variables
are often used to avoid a large number of small trades or holdings which are
undesirable because of management and transaction costs [35]. Also in unit
commitment problems in electrical power systems, semi-continuous variables
are used to model minimum online and offline times of units [16]. Supply chain
management problems are also a kind of problem in which semi-continuous vari-
ables often occur. Here, semi-continuous variables are used to model economic
order quantities, technical requirements because transportation of low quanti-
ties is undesirable from an operational point of view, or to describe the state of
a machine that is either turned off and thus produces nothing or turned on and
thus has to produce at least a minimal amount (so-called minimum lotsize) due
to economical and technical reasons; see [24, 27, 34, 41].

In the present article, we distinguish between two cases of semi-continuous
variables. If u is finite, we say the variable is bounded semi-continuous and if u is
infinite, we refer to it as an unbounded semi-continuous variable. In particular,
we are interested in the common scenario where semi-continuous variables are
part of a mixed-integer linear optimization problem. Formally, we consider an
optimization problem of the form

min
x,y

c>x+

ν∑
j=1

fj(yj) (2a)

s.t. A(x, y) ≥ b, (2b)

yj ∈ {0} ∪ [sj , uj ], for all j ∈ J , (2c)

xi ∈ Z, for all i ∈ Ix, (2d)

yi ∈ Z, for all i ∈ Iy, (2e)

where y denotes a vector of semi-continuous variables with lower semi-continuous
bound s ∈ Rν+ and upper bound u ∈ (R+ ∪ {∞})ν . Further variables are sum-
marized in vector x. The objective function is given by c ∈ Rη related to x, and
by discontinuous functions

fj : {0} ∪ [sj , uj ]→ R, fj(yj) :=

{
0, if yj = 0,

djyj + ej , if yj ≥ sj ,

related to yj for all j ∈ J := {1, . . . , ν}. Here, dj ∈ R models unit costs and ej ∈
R models set-up costs. Constraint (2c) specifies all ν semi-continuous variables.
Further linear constraints are given by a constraint matrix A ∈ Rm×η+ν with
right-hand side vector b ∈ Rm. Sets Ix ⊆ [1, . . . , η] and Iy ⊆ J specify the
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integer variables. Note that variables yj with j ∈ Iy are also called semi-integer,
but for sake of simplicity we will not distinguish these cases.

In order to motivate that a heuristic approach is appropriate to solve prob-
lem (2), let us briefly discuss its complexity. The optimization problem (2) can
be transformed into the related decision problem

∃ (x, y) satisfying (2b)-(2e) with value c>x+

ν∑
j=1

fj(yj) ≤ k, k ∈ Z. (3)

This decision problem (3) is NP-hard, because the decision problem 0-1 integer
program (see [45]) is polynomially reducible to (3) by not using any variables
x and requiring sj = uj = 1 and ej = 0 for all j ∈ J . Since the decision
problem (3) is no more difficult to solve than the optimization problem (2), it
is evident that problem (2) is intractable even for finite u.

Solution approaches for mixed-integer problems with semi-continuous vari-
ables include, for example, strengthening of semi-continuous bounds [4, 46],
branch-and-bound methods taking into account properties of semi-continuous
variables [8, 21], generation of semi-continuous cuts [21], convex hull descrip-
tions of problems with semi-continuous variables [5, 22], and heuristics [19, 28].
It is notable that, with the exception of [5, 21, 22], the vast majority of publica-
tions on semi-continuous variables is limited to the bounded case. An extensive
literature survey of solution methods with a focus on nonlinear optimization
problems with semi-continuous variables is provided in [40].

Our contributions include, in Section 2, a discussion of the particular chal-
lenges of solving MIPs with unbounded semi-continuous variables, which arise
when using an LP relaxation. In Section 3 we propose a diving heuristic that
is independent of the boundedness of the semi-continuous variables. The pe-
culiarity of this heuristic is that it performs a depth-first-search in the branch-
and-bound tree that indirectly takes into account the characteristics of semi-
continuous variables by treating indicator reformulations of the semi-continuous
variables appropriately, which means that the way the heuristic works can also
be seen as a transfer of the branching approach from [8, 21]. Moreover, a high-
performance publicly available C implementation of this heuristic is provided
in form of a tight integration with the open-source solver SCIP [12]. Computa-
tional results thereof are discussed in Section 4. One of our test sets is comprised
of real-world supply chain management instances, the other two test sets are
publicly available and contain general MIPs and artificially generated supply
chain management instances. A brief summary and a short discussion of open
research questions for future work in Section 5 conclude the article.

2 Formulations and LP Relaxation

In this section, we will discuss formulations of semi-continuous variables in prob-
lem (2), paying particular attention to the differences between bounded and
unbounded semi-continuous variables.

Consider the feasible set {0} ∪ [s, u] ⊆ R of one semi-continuous variable.
This set is the union of two polyhedra. For formulations of semi-continuous
variables, it is now crucial how the convex hull of the union of the two polyhedra
can be represented. In the case that u =∞ the convex hull of the union of the
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two polyhedra is not a bounded MIP-representable set [29, 42], which means
that no linear mixed-binary formulation exists. If u <∞, then the situation is
less difficult, since both polyhedra have the same recession cones and thus the
convex hull of their union can itself be formulated as a polyhedron [7, 18].

If unbounded semi-continuous variables occur in problem (2), we are con-
fronted with a more complex problem structure than if only bounded semi-
continuous variables occur. Therefore, the question arises as to whether it is
necessary to consider a problem with unbounded semi-continuous variables at
all. In Section 4 we substantiate that instances from practice actually contain
unbounded semi-continuous variables. In many cases, this is simply due to the
fact that no feasible finite upper bound is known, and determining a bound is
of no interest to the practitioner since it would (a) not be a practical concern if
y takes a large value, and (b) it is known that unboundedness of y does not ren-
der the entire problem unbounded. Even more, it is sometimes not possible to
determine a bound small enough to be used in numerical computations without
knowing a near-optimal solution. We therefore need to develop methods that
can deal with unbounded semi-continuous variables during the solving process.

There are several approaches to formulate semi-continuous variables. Cus-
tomary are the complementary formulation resulting in non-convex non-linear
problems [9, 39] and disjunctive programming approaches [6, 15]. The big-M -
formulation [15, 43] is presumably the easiest and commonly used disjunctive
programming approach, and is applicable in the case of a finite upper bound u.
By using a constant M with M ≥ u a bounded semi-continuous variable can be
formulated with an additional binary variable z as

y ≤M · z, (4a)

s · z ≤ y ≤ u, (4b)

z ∈ {0, 1}. (4c)

For z = 1 the constraint (4a) is redundant and s ≤ y ≤ u is active. In the
other case z = 0, the variable y is fixed to 0 by (4a) and (4b) whereby y ≤ u is
redundant. In the case of an infinite upper bound u one can use a sufficiently
large positive constant M , such that no optimal solution is cut off.

However, finding a suitable M can be a major difficulty, see [30] for a related
discussion. In practice, a pragmatic strategy is sometimes adopted by setting
M to a “huge” value, even though this may cut off optimal solutions.

Furthermore, the big-M method may cause numerical problems. When using
a large value for M , the reciprocal 1/M can be close to the machine accuracy
or the tolerances used by mathematical programming solvers when working
with floating point arithmetic and become indistinguishable from zero. This
carries the risk of numerical difficulties during the solution process. For example,
if z takes a value close to zero, M · z can still be large enough to set y to
a substantial value, whereas z is evaluated as integer feasible and zero. In
addition, the solutions of continuous relaxations may be weak, i.e., very far
away from the optimal solution value. Some of these difficulties can be defused
by strengthening the M value within the branch-and-bound tree by separation
of local cuts [17] and domain propagation techniques [4, 38].

Because of the above disadvantages the focus of this article is on indicator
constraints [9, 15], which allow us to model bounded as well as unbounded semi-
continuous variables exactly. Indicator constraints activate a linear inequality
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based on the state of a binary variable known as the indicator variable. When
the indicator variable is set to a certain value, the corresponding constraint is
included in the model; otherwise it is ignored. This representation is used hence-
forth and also in our later test sets, and has the advantage of being supported
by virtually all state-of-the-art solvers.

To express a semi-continuous variable y using indicator constraints, an addi-
tional binary indicator variable z is introduced. This indicator variable controls
the constraint y ≤ 0 (5a). If z = 0, it activates the constraint and forces the
value of y to be 0. To ensure that y ≥ s holds when z = 1, an additional
constraint y ≥ s · z is introduced (5b). Overall, we obtain the formulation

z = 0 =⇒ y ≤ 0, (5a)

s · z ≤ y ≤ u, (5b)

z ∈ {0, 1}. (5c)

By reformulating all semi-continuous variables yj for all j ∈ J in problem (2)
with approach (5), we arrive at

min
x,y,z

c>x+ d>y + e>z (6a)

s.t. A(x, y) ≥ b, (6b)

zj = 0 =⇒ yj ≤ 0, for all j ∈ J , (6c)

sj · zj ≤ yj ≤ uj , for all j ∈ J , (6d)

zj ∈ {0, 1}, for all j ∈ J , (6e)

xi ∈ Z, for all i ∈ Ix, (6f)

yi ∈ Z, for all i ∈ Iy, (6g)

where c, d, e, A, b, J , Ix, and Iy are defined as in Section 1.
Branch-and-bound type algorithms [20, 32] rely on solving a relaxation to

obtain information for bounding and branching decisions. An LP relaxation
is derived from a MIP by ignoring the integrality conditions on the integer
variables. If the LP relaxation is used to solve MIPs with a branch-and-bound
enumeration approach, this is referred to as the LP-based branch-and-bound
method [2, 33]. For an LP relaxation to a MIP involving indicator constraints
as problem (6), the integrality conditions (6e), (6f), (6g), and the indicator
constraint (6c) are ignored. Therefore, the semi-continuous variable y can take
any value in [0, u], which often results in weak LP relaxations [9]. In particular,
if objective coefficient e is positive, z can be set to zero to reduce set-up costs,
but y can be arbitrarily large in [0, u].

3 A Tailored Diving Heuristic

The determination of feasible solutions is essential for branch-and-bound type
algorithms [2, 20, 32] in order to cut off parts of the enumeration tree and thus
accelerate the solution process. In Section 1 we have shown that problem (3)
is NP-Hard and thus it is not surprising that heuristics play a central role in
solving problem (6).

One class of heuristics are the so-called diving heuristics (or dive-and-fix
heuristics). Starting with a solution of a relaxation at the current node in a
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branch-and-bound tree diving heuristics strengthen variable bounds and reop-
timize the relaxation iteratively. This simulates a depth-first-search to a leaf
in the branch-and-bound tree. Diving heuristics for mixed-integer linear pro-
grams (MIP) are described, for example, in [10, 44, 45], and for mixed-integer
nonlinear programs (MINLP) in [14].

We now propose the diving heuristic Indicator Diving (ID), which aims to
determine a feasible solution for problem (6). Indicator Diving can get called at
any node in a branch-and-bound tree after solving the LP relaxation of prob-
lem (6) with solution (x̂, ŷ, ẑ). If the LP solution is feasible for (6), there is
nothing to do, and the heuristic is not called. Otherwise, one has to specify a
set K of candidate variables that are responsible for the infeasibility of (x̂, ŷ, ẑ).
These are at first all integer variables xi, i ∈ Ix, yi, i ∈ Iy, and zj , j ∈ J ,
with fractional value. In our specific case of MIPs with indicator constraints,
we have to add additionally all binary indicator variables zj , if their correspond-
ing indicator constraint is violated as well as zj is not fixed already and ẑj is
integer. As long as the indicator variables are unfixed, the indicator constraints
are omitted in the LP relaxation and thus the LP solution may violate these
constraints.

For every candidate κ ∈ K three different functions get called:

• a score function ψ : K → R,

• a rounding function σ : K → {up, down}, and

• a bound value function β : K → R.

These functions are described in detail later in this section.
In Algorithm 1 the basic operation of Indicator Diving for MIPs with semi-

continuous variables as formulated in (6) is presented. The diving heuristic
repeatedly selects a candidate κ ∈ K with maximal score ψ(κ), and sets new
bounds for the corresponding variable according to the values σ(κ) and β(κ).
Afterwards, the LP gets optimized again with the updated bounds. This step is
optional and can be skipped at some or all iterations to keep the algorithm effi-
cient. Before updating the LP, it is also possible to propagate domain changes,
and afterwards one can, in addition, try to find an integral solution via round-
ing [3].

If the LP is infeasible, one can backtrack by undoing the last bound change
and selecting the opposite rounding direction, or abort the heuristic without
finding a feasible solution. If the LP solution is feasible for the original prob-
lem (6), the candidate set K is empty and the heuristic terminates with this
feasible solution.

In order to describe the heuristic Indicator Diving completely, we define now
the three mentioned functions ψ, σ, and β. For the score function ψ we have to
distinguish between indicator variables and integer variables. If we consider an
indicator variable zκ, the score is given by

ψ(κ) :=

{
−1, if ŷκ ∈ {0} ∪ [sκ, uκ],

100 · (sκ − ŷκ)/sκ, if ŷκ ∈ (0, sκ).
(7)

For all other candidate variables we use another already existing diving strat-
egy. For example, one can switch to Farkas Diving [44], as we will do for the
computational tests in Section 4. Since indicator variables should always be
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Algorithm 1: Diving Heuristic for MIPs with semi-cont. variables

Input: Problem (6) with LP relaxation, LP feasible solution (x̂, ŷ, ẑ),
score function ψ, rounding function σ, bound value function β.

Output: Feasible solution of (6) if one has been found.
K := {j ∈ J | ẑj ∈ Z, zj unfixed, (6c) violated}

∪ {i ∈ Ix | x̂i 6∈ Z} ∪ {i ∈ Iy | ŷi 6∈ Z} ∪ {j ∈ J | ẑj 6∈ Z}
while K 6= ∅ do

for κ ∈ K do
Calculate score ψ(κ), rounding direction σ(κ) and new value
β(κ) of bound.

end
Select candidate κ with maximal score.
K ← K \ {κ}
if σ(κ) = up then

Increase lower bound to β(κ).
else

Decrease upper bound to β(κ).
end
(Optional) propagate bound change.
(Optional) update and solve LP.
if LP infeasible then

Backtrack or abort.
else

Update K based on new LP solution.
end
(Optional) round LP solution.

end

preferred, the score for other candidate variables is scaled to a range less than
−1. As the candidate variable with the highest score is taken next, the indi-
cator variables with semi-continuous variables outside their domain are treated
first, followed by the indicator variables with semi-continuous variables inside
their domain and thus actually already fulfilled, and finally, all other integer
candidate variables are treated.

Moreover, the functions σ and β are defined as follows: If candidate κ cor-
responds to an indicator variable, the rounding function is given by

σ(κ) :=

{
up, if ŷκ ≥ 0.5 sκ,

down, if ŷκ < 0.5 sκ,
(8)

and the bound value function is given by

β(κ) :=

{
1, if ŷκ ≥ 0.5 sκ,

0, if ŷκ < 0.5 sκ.
(9)

In other words, the binary indicator variable is fixed to one—and thus semi-
continuous variable yκ is fixed to [sκ, uκ]—if the value of the corresponding
semi-continuous variable in the LP solution is at least 50 % of the lower semi-
continuous bound. Otherwise, it is fixed to zero—and thus yκ is also fixed to
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zero. At this point, Indicator Diving differs from well-known diving heuristics
in the literature, since the bounding step for one variable depends on the LP
solution value of another variable. For all other candidate variables, we switch
to the same already existing diving heuristic as used for the score function.

4 Computational Study

In this section, we present a comprehensive computational study of the diving
heuristic proposed in Section 3. After describing the experimental setup, results
for two main experiments are shown, for the first only the root node is processed
and the second analyzes the overall performance impact.

Computational setup. For the experiments, we used a pre-release version
of SCIP 9.0 [13] (git hash 7cc9c068bc) with SoPlex [13] version 6.0.3 (git hash
555f5d54) as underlying LP solver, running single-threaded. The code is publicly
available at https://github.com/scipopt. Indicator Diving is added as SCIP
heuristic plugin heur indicatordiving.c using the generic diving algorithm
framework of SCIP and is called after solving the root node LP relaxation. The
output stream has been modified slightly in some cases to retrieve the desired
information.

All presented computational results were generated on a compute cluster
using compute nodes with Intel Xeon Gold 6326 processors with 2.9 GHz and
32 GB RAM; see [23] for more details.

Performance metrics. For the purpose of evaluating the performance of
Indicator Diving, we compare shifted geometric means of primal gaps and primal
integrals.

For a single instance, let Rmax be the total running time and R1, . . . ,Rτ ∈
[0,Rmax] be the points in time when a new incumbent solution is found,R0 := 0,
Rτ+1 := Rmax. Let (x̃, ỹ, z̃)opt be an optimal or best known solution and let
(x̃, ỹ, z̃)R be the incumbent solution at point R ∈ [0,Rmax].

The primal gap function PG: [0,Rmax]→ [0, 1] is defined as

PG(R) :=



1, if no incumbent until point R,

0, if |(c, d, e)>(x̃, ỹ, z̃)opt| = |(c, d, e)>(x̃, ỹ, z̃)R| = 0,

1, if (c, d, e)>(x̃, ỹ, z̃)opt · (c, d, e)>(x̃, ỹ, z̃)R < 0,

|(c, d, e)>(x̃, ỹ, z̃)opt − (c, d, e)>(x̃, ỹ, z̃)R|
max{|(c, d, e)>(x̃, ỹ, z̃)opt|, |(c, d, e)>(x̃, ỹ, z̃)R|}

, else,

(10)

and building on this the primal integral is defined as

PI :=

τ+1∑
t=1

PG(Rt−1) · (Rt −Rt−1). (11)

The primal integral provides an absolute measurement for the performance of
primal heuristics by considering the evolution of the incumbent solution over
time, rewarding algorithms that find good solutions early. For a detailed descrip-
tion of the primal integral see [11]. For the best-known solution of an instance
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as the base value we can use publicly available solutions (see [47]) and/or results
of previous runs.

For average values over multiple instances, we use the shifted geometric mean
(SGM) of these values over all instances. For values w1, . . . , wN ≥ 0 and shift
s ≥ 0 we determine the SGM by

sgm(w1, . . . , wN , s) :=

(
N∏
i=1

(wi + s)

) 1
N

− s. (12)

Unlike the arithmetic mean, the shifted geometric mean has the advantage that
extreme values have less influence on the average. For further discussion on
evaluating computational results with SGMs see, for example, [1]. If not stated
otherwise, we use for all average values the shifted geometric mean with shift
s = 1.

Test sets. We consider three sets of instances. The first test set contains
588 real-world supply chain management instances (SCM) with semi-continuous
variables modeled with indicator constraints supplied by our industry partner
SAP SE [36]. The most important components are inventory holding, capac-
ity restrictions, procurement, transport, production, and demand fulfillment.
In [25] a more detailed description of very similar instances can be found. The
second test set contains 192 artificially generated supply chain management
instances based on real-world supply chain management models, again with
semi-continuous variables modeled by indicator constraints. They represent a
fictive company procuring components, producing cellphones of different types,
transporting them to distribution centers, and satisfying customer demands.
This test set is provided by SAP SE [36] and is publicly available at [37]. We
refer to it hereinafter as Cellphone. The third set contains all 42 instances of
the MIPLIB 2017 [26] Collection with indicator constraints, publicly available
at [47]. We have not filtered these further, so they do not necessarily conform
to our specifications, but necessary ones are checked when Indicator Diving is
called.

To account for the effect of performance variability, we use three different
seeds (including the default seed of zero) and treat every instance-seed combina-
tion as one individual observation. From now on, we refer to such a combination
simply as an instance, which triples the number of instances. So, we have test
set SCM with 1764 instances, Cellphone with 576 instances, and Miplib with
126 instances.

In Table 1 some basic statistics of all three test sets are summarized. We
consider only instances that reached the calling point of ID, that is, instances
for which the root LP was solved and ID was indeed called. Grouped by test set,
different numbers of the instances are reported, once from the original problem
and once from the problem that ID has received. In row “vars” and “conss” we
count the number of all variables and all constraints, in row “ind” we count only
the number of indicator constraints. The latter number is further divided into
the number of indicator constraints belonging to unbounded semi-continuous
variables (“unbd”) and to bounded semi-continuous variables with very large
upper bound (104 < u < ∞, “big”). In column “total” we state the sum of
these counts over all instances per test set. The minimum, maximum, and
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shifted geometric mean of these figures is reported in columns “min”, “max”,
and “sgm”, respectively.

original problem received problem

total min max sgm total min max sgm

S
C
M

(#
1
3
0
0
)

vars 14420569 1034 594067 6090.87 8345699 345 229155 4119.30
conss 8481884 287 515321 2329.60 4007191 166 225346 1493.93
ind 362939 7 29599 78.94 209101 2 24083 67.74
unbd 315083 0 29599 76.75 276 0 46 0.02
big 47856 0 23754 0.05 104519 0 23844 5.45

C
e
l
l
p
h
o
n
e

(#
4
6
3
)

vars 6778402 7065 24123 13498.18 75880 32 493 124.13
conss 4119674 4407 14467 8241.05 67253 27 439 109.75
ind 144149 187 415 298.43 15614 4 107 24.55
unbd 144149 187 415 298.43 0 0 0 0.00
big 0 0 0 0.00 14162 4 96 22.25

M
ip
l
ib

(#
9
9
)

vars 3417906 1923 315484 20765.78 2081992 626 304610 8797.25
conss 4564677 3912 268835 33283.11 2435727 2153 165383 16217.48
ind 525174 52 21247 2856.09 414986 24 46395 1883.76
unbd 0 0 0 0.00 0 0 0 0.00
big 0 0 0 0.00 0 0 0 0.00

Table 1: Statistics on dimensions of the instances.

As an example, for test set SCM 1300 instances reached the calling point.
These instances have between 7 and 29599 indicator constraints in the original
problem with an average of 78.94 indicator constraints. In the received problem
the average number of indicator constraints reduces to 67.74. It is noteworthy
that in test set Cellphone in the original problem all indicator constraints
belong to unbounded semi-continuous variables, but in the received problem all
indicator constraints belong to bounded semi-continuous variables, due to pre-
solving processes which determine finite bounds. Although there are no or only
a few unbounded indicator constraints remaining in the test sets, indicator con-
straints are nonetheless a concern because many have still a big upper bound,
leading to the issues discussed in Section 2. Note also that in test set Miplib
all indicator constraints are already bounded by a small bound in the original
problem. Therefore, strictly speaking, they do not exhibit the property of con-
taining big or infinite upper bounds, which motivated the design of Indicator
Diving.

Performance results. We start the evaluation with a root node experiment,
for which we stop SCIP after the end of the root node or a time limit of 5 h is
reached. Within this solution process, Indicator Diving was called, if possible,
after solving the LP relaxation, along with other default heuristics of SCIP.
Calling ID is, for example, not possible if all indicator constraints were fixed or
deleted due to presolving processes.

For test set SCM, Indicator Diving was called on 1300 out of 1764 instances
and found a solution in 1052 cases. Since diving heuristics in SCIP use an
objective cutoff, all these solutions improve the primal bound at the point in
time they are found. In 287 cases the solution found by ID was still the best
solution at the end of the root node.
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#instances PG root
PG

heurbest with w/o
called found found ID ID ratio

SCM (#1764) 1300 1052 287 0.15 0.19 0.79 0.30
Cellphone (#576) 463 365 55 0.23 0.25 0.92 0.46
Miplib (#126) 99 16 7 0.76 0.80 0.95 0.50

Table 2: Root node experiment.

These figures are summarized for all three test sets in Table 2. Moreover, we
take a look at the primal gap after solving the root node (column “PG root”)
for all instances on which ID was called. We calculate the shifted geometric
mean of the relative primal gaps and compare it to a run without ID. For SCM
the primal gap is reduced by 21% on average, from 0.19 to 0.15. The average
reduction of the primal gap at the point in time when the solution of ID is
passed to SCIP is given in the last column “PG heur”. The latter figures take
only instances on which ID found a solution into account.

Taking a look at Table 2, we can conclude that on SCM and Cellphone
Indicator Diving has a high probability to find an improving solution. In addi-
tion, over all test sets ID yields a large reduction of up to 70 % of the primal
gap at the point in time when the solution is passed to SCIP. This reduction of
the primal gap persists until the end of the root node, and is large, especially
on SCM, reaching up to 21 % on average.

In addition, we aim to verify that indicator constraints modeling semi-
continuous variables are, in fact, problematic and that they are frequently vi-
olated by the LP relaxation solution. To this end, for the two test sets SCM
and Cellphone, we investigated how many indicator variables were actually
diving candidates in the first iteration of Algorithm 1. For test set SCM, 13 %
of the indicator variables were diving candidates whereby 60 % of the associ-
ated semi-continuous variables were in the prohibited range (0, s). Considering
only semi-continuous variables that have a big or infinite upper bound, 8 % of
the related indicator variables were diving candidates and of these 50 % of the
semi-continuous variables were in the range (0, s). For Cellphone, 14 % of
the indicator variables were diving candidates whereby 99 % of the associated
semi-continuous variables were in (0, s). Restricted to semi-continuous variables
that have a big or infinite upper bound, the numbers are essentially the same.

Furthermore, in Figure 1 we compare the final primal gap achieved with
and without ID over all instances for which ID was called. The x-axis indicates
the primal gap at the end of the root node computation for the run with ID,
and the y-axis indicates the same value in the run without ID. Thus, crosses
in the left upper corner represent instances with a reduction of the primal gap.
As crosses may overlap, we explicitly report the number of instances with a
strict improvement (Wins) and a strict degradation (Losses) in the captions.
We consider an improvement/degradation to be strict if the absolute difference
is at least 10−4. These numbers demonstrate that there are considerably more
instances with a strict improvement of the primal gap. It is also noteworthy
that within SCM there are many instances where the gap decreases remarkably
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from a large value to almost zero due to Indicator Diving.
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Figure 1: Primal gap at end of root node computation.

Finally, we analyze the overall performance impact of Indicator Diving on
the complete tree search. For this we use a time limit of 20 minutes and no node
limit. The run with Indicator Diving is compared to a run without Indicator
Diving. The results are summarized in Table 3 for each test set separately. We
disregard the instances where ID was not called at all, and consider the subsets
of instances on which ID was called, and the subsets on which it was called and
found a solution. The numbers of instances of these subsets are stated in column
“#inst” and are slightly different compared to the numbers in the root node
experiment above. This is because we have different time limits and because
ID can get called more than once due to restarts in SCIP. We state the ratio
of the shifted geometric means of the primal integrals of both runs in column
“ratio PI” whereby a value less than 1 indicates a performance improvement,
and the average time spent in ID (in seconds) is stated in column “time ID”.
Moreover, the average solving time of the run with ID and the average solving
time of the run without ID is stated as well as the ratio thereof. In the last two
columns the number of instances that reached the time limit is specified.

solving time timeout

ratio time with w/o with w/o
#inst PI ID ID ID ratio ID ID

SCM
(#1764)

called 1304 0.86 0.080 29.1 28.9 1.01 277 262
found 1064 0.83 0.056 18.9 18.9 1.00 137 129

Cellphone
(#576)

called 463 0.97 0.004 161.1 177.0 0.91 281 289
found 425 0.98 0.004 143.2 158.7 0.90 248 257

Miplib
(#126)

called 94 0.98 4.456 375.3 380.2 0.99 51 51
found 19 0.92 1.087 77.5 79.2 0.98 3 4

Table 3: Performance comparison of SCIP with and without ID. Absolute times
are given in seconds.
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Taking a look at Table 3, we can conclude that Indicator Diving yields a
large reduction of the primal integral between 14 % and 17 % on test set SCM
and a reduction between 2 % and 8 % on the other two test sets. Moreover, ID
uses only a negligible proportion of the total solving time on all three test sets.
The impact on the overall solving time is almost neutral on SCM and Miplib,
but reduced by up to 10 % on Cellphone. This aligns with previous findings
that the impact of primal heuristics on the total solving time is minor [11].
Timeouts indicate that there is a considerable number of hard instances in our
test sets even though the average solving time is moderate. Their variation
depends more on performance variability of the subsequent processes of SCIP
than on ID.

To summarize, Indicator Diving helps the MIP solver to find better solutions
earlier during the solving process, which is an important, if not the most im-
portant metric in practice. As the total solving time is neutral or increases, we
observe that its impact on performance is somewhat leveled out by the ensemble
of other solving techniques applied by SCIP.

5 Conclusion

In this article, we discuss the challenges of using bounded and unbounded semi-
continuous variables and propose a tailored diving heuristic for solving mixed-
integer problems with semi-continuous variables that can be employed either
standalone or integrated into a MIP solver. An implementation in C of this
heuristic and two of the three treated test sets are publicly accessible to be able
to follow the extensive computational experiments in detail. One of the test
sets was newly generated by our industry partner in the course of this research
work and made available to the public in order to facilitate future research on
the problems studied.

As part of this work, two computational experiments were carried out to
evaluate the practical suitability of the diving heuristic. The first one is a root
node experiment, which exhibits a reduction of the primal gap on all three
test sets when using the heuristic. Particularly noteworthy is the result on one
test set, where a reduction of the primal gap of 21 % is achieved. In a second
experiment we compared the performance of a MIP solver with and without the
new heuristic and observed that the use of the heuristic improves the primal
integral by 2 % to 17 %.

Finally, we would like to address two research questions that complement
the topic of the article presented. First, we have found that unbounded semi-
continuous variables occur in real-world instances and we have also shown in our
computational study that unbounded semi-continuous variables are often trans-
formed to bounded semi-continuous variables by domain propagation methods.
This leads to the assumption that specially adapted and more aggressively used
domain reduction methods and presolving techniques might be able to transform
even more unbounded semi-continuous variables into bounded semi-continuous
variables. Such approaches might also make it possible to determine tighter
bounds for bounded semi-continuous variables. Second, if an LP relaxation,
in particular a simplex tableau, is used when generating cuts for problem (6),
then the indicator constraints are not taken into account. Consequently, im-
portant information is lost in the cut generating process, which usually leads to
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weaker cuts. It would now be an interesting research question what possibilities
there are to incorporate the information of the indicator constraints into the
generation of valid cuts.
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