
On the integrality Gap of Small Asymmetric1

Travelling Salesman Problems: A Polyhedral and2

Computational Approach3

Eleonora Vercesia,b,∗, Janos Bartaa,c, Luca Maria Gambardellaa,b, Stefano4

Gualandid, Monaldo Mastrolillia,c
5

aIstituto Dalle Molle di studi sull’Intelligenza artificiale (IDSIA USI-SUPSI), Via La
Santa 1, 6900, Lugano, Switzerland

bFaculty of Informatics, Università della Svizzera italiana, Via La Santa
1, 6900, Lugano, Switzerland

cDipartimento Tecnologie innovative, Scuola universitaria professionale della Svizzera
italiana, Via La Santa 1, 6900, Lugano, Switzerland

dDepartment of Mathematics “Felice Casorati”, Universit of Paviia, Via Ferrata
5, 27100, Pavia, Italy

Abstract6

In this paper, we investigate the integrality gap of the Asymmetric Traveling
Salesman Problem (ATSP) with respect to the linear relaxation given by the
Asymmetric Subtour Elimination Problem (ASEP) for small-sized instances.
In particular, we focus on the geometric properties and symmetries of the
ASEP polytope (P n

ASEP) and its vertices. The polytope’s symmetries are
exploited to design a heuristic pivoting algorithm for the search of vertices
where the integrality gap is maximized. Furthermore, a general procedure
for the extension of vertices from P n

ASEP to P n+1
ASEP is defined. The generated

vertices improve the known lower bounds of the integrality gap for 16 ≤ n ≤
22 and, provide small hard-to-solve ATSP instances.

Keywords: Asymmetric Traveling Salesman Problem, Integrality Gap7

2000 MSC: 90C05,8

2000 MSC: 90C10.9

∗Corresponding author
Email addresses: eleonora.vercesi@usi.ch (Eleonora Vercesi),

janos.barta@supsi.ch (Janos Barta), luca.gambardella@usi.ch (Luca Maria
Gambardella), stefano.gualandi@unipv.it (Stefano Gualandi), monaldo@idsia.ch
(Monaldo Mastrolilli)

Preprint submitted to Discrete Optimization April 18, 2024



1. Introduction10

Mathematical programming relaxations and especially linear program-11

ming relaxations have played a central role both in solving combinatorial12

optimization problems in practice (e.g. see, [1]) and in the design and anal-13

ysis of approximation algorithms (see, e.g., [29]). When solving an instance,14

an important concept is the integrality gap with respect to the linear relax-15

ation, which is the maximum ratio between the solution quality of the Integer16

Linear Program (ILP) and its Linear Program (LP) relaxation. For many17

integer linear programs, the integrality gap of the linear relaxation is equal18

to the approximation ratio of the best algorithm as well as the hardness of19

the approximation ratio and essentially represents the inherent limits of the20

considered relaxation. To some extent, instances having a large integrality21

gap are the hard instances for the class of approaches based on linear pro-22

gramming. With this respect, the following facts can be observed from the23

literature.24

• Proving integrality gaps for LP relaxations of NP-hard optimization25

problems is a difficult task that is usually undertaken on a case-by-case26

basis (e.g., see the case of the Vertex Cover [27]). Very few and limited27

attempts have been made to use computer-assisted analysis for this28

difficult goal.29

• For several notable and important examples, like the Traveling Sales-30

man Problem (TSP), our integrality gap comprehension resisted the31

persistent attack during the last decades of many researchers. For32

the Symmetric Travelling Salesman Problem (STSP), several advances33

have been made in specific cases, such as the STSP having only costs 134

and 2 [23], and the cubic and subcubic STSP [6], where the integrality35

gap is proved to be equal to 4
3
. For the asymmetric case, [12, 9] inde-36

pendently shows that the lower bound for the integrality gap is 2, and37

no further improvements have been made. More specifically, [12] also38

provides specific lower bounds for n ≤ 15. This is the first time an IG39

greater than 4
3

is shown for n = 9. In terms of the upper bound, the40

best-known bound is constant ad equal to 22 [28].41

Within this paper, we investigate the integrality gap computationally for42

the Asymmetric Traveling Salesman Problem. More specifically, we investi-43

gate and exploit aspects of polyhedral theory to reduce the integrality gap44
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search space. Then, we combine this information to effectively search the45

pruned space. This approach allows us to get computer-aided construction46

of bad instances, namely, problem instances having large integrality gap val-47

ues, for the considered LP relaxation which improves upon the best-known48

lower bounds for small n (see Charikar, Goemans, and Karloff [9] and Elliot-49

Magwood [12]). The aim is to obtain a new and better understanding of50

lower bounds on the corresponding integrality gaps. Besides, we present51

hard-to-solve ATSP instances for the state-of-the-art solver Concorde.52

The problem.. Given a weighted directed graph, a Hamiltonian cycle is a cy-53

cle that visits each vertex exactly once. The Asymmetric Traveling Salesman54

Problem (ATSP) involves finding a directed Hamiltonian cycle of minimum55

cost. In practice, the currently most efficient exact algorithm for solving56

ATSP is based on an Integer Linear Programming (ILP) [26, 14, 13]. Let57

Kn = (V,A) be the complete directed graph with n nodes and m = n(n− 1)58

arcs, that is, V := {1, . . . , n} and A := {(i, j) | i, j ∈ V, i ̸= j}, each having59

a weight cij ∈ R+. Whenever cij = cji for all arcs (i, j), then we have a60

Symmetric TSP instance. Whenever cij ̸= cji, but the cost vector satisfies61

the triangle inequality cij ≤ cik + ckj,∀i, j, k ∈ V , we have a pseudo-quasi62

metric TSP instance, since the cost vector induces a pseudo-quasi metric63

[22]. Note that any instance of ATSP on a complete graph Kn is completely64

defined by its cost vector c ∈ Rm
+ . Given S ⊆ V , let δ(S) be the cut induced65

by S, namely δ(S) := {(i, j) | i ∈ S, j ̸∈ S}. For convenience, we denote66

δ(i) = δ({i}).67

In this paper, we study the LP relaxation of the Dantzig-Fulkerson-68

Johnson (DFJ) formulation [11] for solving the ATSP for small values of69

n.70

min
∑

(i,j)∈A

cijxij (1)

s.t.
∑
i∈V

xij = 1 ∀j ∈ V (2)∑
j∈V

xij = 1 ∀i ∈ V (3)∑
i∈δ(S)

xij ≥ 1 ∀S ⊂ V such that 2 ≤ |S| ≤ n− 2 (4)

xij ∈ {0, 1} ∀(i, j) ∈ A, (5)
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where xij ∈ {0, 1} is equal to 1 if arc (i, j) is one optimal cycle, and 071

otherwise. Constraints (2)–(3) are the in-degree and out-degree constraints,72

that force each node to have exactly one predecessor and one successor.73

Constraints (4) are the Subtour Elimination Constraints, which avoid the74

presence of sub-cycles (subtours). For a survey on ATSP formulations, we75

refer the reader to [26]. In the literature, the solution of the LP relaxation76

of (1)–(5) is called the Asymmetric Subtour Elimination Problem (ASEP),77

while the corresponding feasibility region is the ASEP Polytope, which is78

defined as follows.79

P n
ASEP := {x ∈ Rm | (2)–(4),x ≥ 0}. (6)

The Integrality Gap (IG) for the ATSP on n nodes is80

αn := sup
c∈Rm

+

ATSP(c)
ASEP(c)

, (7)

where ATSP(c) is the optimal value of (1)–(5) and ASEP(c) is the optimal81

value of its LP relaxation. In general, the IG for the ATSP is82

α := sup
n∈N

αn.

In [12], it is shown that for the general ATSP, a non-negative cost vector83

c exists such that ATSP(c) > 0 and ASEP(c) = 0. This implies that the84

integrality gap tends to +∞. For this reason, the works studying the inte-85

grality gap of ATSP always assume that the cost vector satisfies the triangle86

inequality cij ≤ cik + ckj, ∀i, j, k ∈ V and, hence, the costs induce a pseudo-87

quasi metric. Herein, we restrict our attention to pseudo-quasi metric ATSP,88

but we will call them ATSP for short, to be consistent with the notation of89

the literature.90

A long-standing conjecture stated that α ≤ 4
3

(e.g., see [8]). However,91

this conjecture was disproved independently in [12] and [9]. Both works92

show α ≥ 2 by presenting two families of ATSP instances with α(c)→ 2 for93

n→∞. For n ≤ 3, we have that αn = 1, while for 4 ≤ n ≤ 7 the exact value94

was computed in [12]. The authors of [12, 7] provide also lower bounds of αn95

for n ≤ 15. In particular, they show that α > 4
3
, since they prove (compute)96

that αn ≥ 11
8

for n = 9. Lower bounds were also provided by Charikar et97

al. [9] for arbitrarily large n, but they are rather weak for n ≤ 25. We98

remark that the literature is more extensive for the Symmetric TSP (STSP)99
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[5, 19, 20, 31, 30]. For instance, [31, 30, 20] propose STSP instances that100

have a large integrality gap and are hard-to-solve for the state-of-art solver101

Concorde [1]. However, no theoretical proof is available for the exact value102

of the integrality gap, neither for the STSP nor the ATSP. Furthermore, the103

relation between computational complexity and large integrality gap is still104

unclear even in the symmetric case.105

Main contributions.. This paper has three main contributions. First, we106

identify, for the first time, a group of symmetries of the ASEP polytope. We107

exploit this symmetry to design pivoting strategies that explore vertices of108

P n
ASEP . Second, we provide new lower bounds for the integrality gap αn for the109

ATSP for 16 ≤ n ≤ 22 by using a new pivoting algorithm which exploits the110

symmetries of the vertices of P n
ASEP , combined with an inductive algorithm111

that generates vertices of P n+1
ASEP from a vertex of P n

ASEP . Our bounds improve112

those provided in [12] and [9]. Third, by using our new inductive algorithm,113

we generate hard ATSP instances, where complexity is measured with respect114

to the Concorde solver for STSP [1], after an appropriate transformation of115

the ATSP instance.116

The outline of this paper is as follows. Section 2 reviews the background117

material. Section 3 studies the symmetries of the polytope P n
ASEP . In Sec-118

tion 4, we explain how we use the algebraic structure introduced to perform119

a symmetry-breaking heuristic pivoting. Furthermore, we introduce a new120

operator that generates vertices of P n+1
ASEP from a vertex of P n

ASEP . In Section121

5 we present the results of our approach, by analyzing the structure of the122

obtained vertices and exhibiting new lower bounds for 16 ≤ n ≤ 22. Finally,123

in Section 6 we conclude the paper with a perspective on future works.124

2. Background material125

A key subproblem of our approach is the computation of the maximum126

integrality gap over all possible pseudo-quasi metric cost vectors c ∈ Rm
+ for a127

single vertex of the ASEP polytope. This subproblem was first introduced in128

[5] for the symmetric TSP (STSP) and later in [12] for the asymmetric TSP129

(ATSP). The main idea is to divide the cost vector c by the optimal value130

ATSP(c), so that the definition of IG reduces to αn := supc
1

ASEP(c)
, which131

is equivalent to solve infc ASEP(c). Note that the operation of dividing the132

costs by ATSP(c) maintains the triangle inequalities and preserves the value133

of the IG.134
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The problem of computing the maximum αn of Kn for the pseudo-quasi135

metric (pq-metric) ATSP is as follows [12].136

1

αn

:= min
c is pq-metric,

ATSP(c)=1

ASEP(c) = min
x∈Pn

ASEP

min
is pq-metric,
ATSP(c)=1

xTc. (8)

To solve the problem (8) for a fixed (small) value of n, the authors in [12]137

enumerate the vertices of P n
ASEP , and for each vertex x ∈ P n

ASEP , they solve138

min
{
cTx | c is pq-metric, ATSP(c) = 1}. In [12], the latter inner problem139

is called Gap(x). Intuitively Gap(x) is related to the IG for a fixed vertex x140

and it is defined as141

Gap(x) :=min
∑

(i,j)∈A

xijcij (9)

s.t.
∑

(i,j)∈A

zijcij ≥ 1 ∀z ∈ T n
ASEP (10)

cij ≤ cik + cjk ∀i, j, k ∈ V (11)
cij ≥ 0 ∀(i, j) ∈ A (12)

cij − yout
i − yin

j −
∑

S∈Sij(x)

dS ≥ 0 ∀(i, j) ∈ A\A(x) (13)

cij − yout
i − yin

j −
∑

S∈Sij(x∗)

dS = 0 ∀(i, j) ∈ A(x) (14)

dS ≥ 0 ∀S ∈
⋃

(i,j)∈A

Sij(x), (15)

where T n
ASEP is the collection of every possible Hamiltonian cycle of Kn, and142

z ∈ {0, 1}m are incidence vectors of elements of T n
ASEP . We remark that the143

variables are cost cij, while xij and zij are given. Constraints (10) ensure144

that the optimal solution c∗ of Gap(x) yields ATSP (c∗) = 1. Constraints145

(13)–(15) derive from dualizing the linear program relaxation of (2)–(4).146

Here, we define the following subset of nodes Sij(x) and of arcs A(x) as147

follows: Sij(x) = {S ⊂ A|(i, j) ∈ δ(S),x(δ(S)) = 1, 2 ≤ |S |≤ n − 2} and148

A(x) = {(i, j) ∈ A | xij > 0}. Constraints (13)–(15) ensure that149

x∗ ∈ arg min
x∈Pn

ASEP

c∗x⇔ c∗ ∈ arg min
c,y,d satisfy (10)–(15)

Gap (x∗) .
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Thus, the argmin c∗ of the program Gap (x∗) is such that, once ASEP (c∗)150

is solved, the minimum is attained precisely at x∗ (for details, see [12]).151

3. Symmetry group of P n
ASEP152

Polyhedral aspects of the TSP have been extensively studied in the past153

decades. In particular, in [16, 24, 4] the polyhedral properties of the convex154

hull of the integer vertices, the so-called “natural polytope”, of the STSP and155

the ATSP have been investigated starting from the assignment polytope.156

More specifically, it has been shown that the diameter of the assignment157

polytope is two, which in turn implies that the diameter of the TSP polytope158

is at most 2. However, since an integer formulation is not known for the159

TSP, the focus is on the relationship between a valid formulation of the TSP160

(such as, in this paper, that of Dantzig-Fulkerson-Johnson [11]) and its linear161

relaxation. In this section, we focus in particular on the fractional vertices162

and the symmetry properties of the subtour elimination polytope P n
ASEP .163

As remarked in [12], the vertices of P n
ASEP can be subdivided into equiv-164

alence classes through permutations of the nodes of Kn. In this section, we165

define explicitly a symmetry group of P n
ASEP based on permutations. The166

classes of isomorphic vertices turn out to be the orbits generated by this167

symmetry group.168

By observing the definition of P n
ASEP , an important consideration can be169

made: due to the structure of the constraints, they are not affected by a170

permutation of the node indices. More precisely, it is well known that any171

relabeling of the nodes i ∈ V induces just an internal permutation of the172

constraint groups (2), (3) and (4), which leaves the feasible region unchanged.173

Consequently, it is possible to identify a group of symmetries of the polytope174

P n
ASEP induced by the symmetric group Sn of permutations of the nodes175

i ∈ V . To describe the symmetries of P n
ASEP explicitly, it is useful to convert176

the feasible solutions into matrix form. More precisely, we can rewrite any177

feasible solution x ∈ P n
ASEP as a matrix X ∈ [0, 1]n×n, with the corresponding178

components xij for i ̸= j and setting xij = 0 for i = j.179

Now, consider the symmetric group of permutations on n elements Sn.180

Let π ∈ Sn, such that π : i 7→ π(i), be a permutation of the nodes i ∈ V . For181

any feasible solution x ∈ P n
ASEP , with matrix representation X, it is possible182

to generate a new feasible solution x′, expressed by a matrix X ′, by applying183

the permutation π to the nodes of the graph Kn. It must hold184

x′
π(i)π(j) = xij ∀i, j ∈ V. (16)
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This means that X ′ is obtained by permuting rows and columns of X ac-185

cording to π. Let us define the permutation matrix Pπ = (pij) associated to186

π ∈ Sn as187

pij =

{
1 if i = π(j)

0 otherwise.

In the product PπX, the permutation matrix Pπ permutes the rows of X188

according to π. Since also the columns of X have to be permuted, we apply189

Pπ to the transpose of PπX. Thus190

X ′ =
(
Pπ(PπX)T

)T
= (PπX)P T

π = PπXP T
π .

A notion that we will widely use is the isomorphism between digraphs. Hence,191

let us recall some helpful definitions.192

Definition 1 (Support digraph). Let x ∈ P n
ASEP . The weighted support193

digraph x is the graph H(x) defined on the set of nodes V , having an arc194

(i, j) with the weight xij, if and only if xij > 0.195

Definition 2 (Isomorphism between weighted graphs). Two graphs D =196

(V,AD) and F = (V,AF ) on n nodes are isomorphic if there exists a permu-197

tation π of V such that (u, v) ∈ AD ⇐⇒ (π(u), π(v)) ∈ AF . Furthermore,198

the weights of the edges must satisfy cπ(u)π(v) = cuv,∀u, v ∈ V .199

Example 1. Consider x ∈ P 4
ASEP defined by200

x =

(
1

2
, 0,

1

2
,
1

2
,
1

2
, 0,

1

2
, 0,

1

2
, 0,

1

2
,
1

2

)T

.

Its matrix version is hence201

X =


0 1

2
0 1

2
1
2

0 1
2

0
1
2

0 0 1
2

0 1
2

1
2

0

 .

This feasible solution is associated with the support graph in Figure 1, left.202

Let π = (0 1 2 3), that is the permutation such that π(0) = 1, π(1) =203

2, π(2) = 3, π(3) = 0. Thus, in this case204

Pπ =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
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0

12

3

(a)

0

12

3

(b)

Figure 1: Two isomorphic vertices obtained via vertex permutation. Each arc is weighted
1
2 .

and we obtain205

X ′ = PπXP T
π =


0 0 1

2
1
2

1
2

0 1
2

0
0 1

2
0 1

2
1
2

1
2

0 0

 ,

which corresponds to the graph in Figure 1 on the right.206

For any node relabeling π ∈ Sn we can define the corresponding permu-207

tation of a solution X as208

gπ : [0, 1]n×n → [0, 1]n×n (17)
X 7→ PπXP T

π .

With a slight abuse of notation, we will use both gπ(x) and gπ(X) in-209

terchangeably, denoting the row and column permutation of X, according to210

π.211

First of all, we observe that the map is well defined in P n
ASEP , namely212

x ∈ P n
ASEP implies gπ(x) ∈ P n

ASEP . Hence, all the constraints are satisfied also213

for gπ(x) by a simple “shuffle” of the rows: degree constraints i become degree214

constraints π(i) and subtour elimination constraints associated to δ(S), S =215

{s1, . . . , sr} become δ(π(S)), π(S) := {π(s1), . . . , π(sr)}. The isomorphism216

of vertices, observed in [12], can now be extended to the whole polytope217

P n
ASEP . Hence, it trivially follows218

Lemma 1. Let x ∈ P n
ASEP and π ∈ Sn. The support graphs H(x) and219

H(gπ(x)) are isomorphic.220
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Let be G(n) = {gπ | π ∈ Sn} the set of all transformations gπ. The next221

theorem shows that G(n) is a group of symmetries of the polytope.222

Theorem 2. G(n) is a group of isometries acting on of P n
ASEP.223

Proof. We begin by showing the closure of G(n) under composition. Let224

π1, π2 ∈ Sn. By equation (17) we have225

gπ1gπ2(X) = gπ1

(
Pπ2XP T

π2

)
= Pπ1Pπ2XP T

π2
P T

π1
(18)

= (Pπ1π2)X (Pπ1π2)
T = gπ1π2(X) ∈ G(n).

It is not difficult to verify that the symmetric group Sn induces the group226

structure on G(n). In particular, by equation (18) we have that the identity227

element of G(n) is gid and the inverse element of gπ is gπ−1 . Moreover,228

equation (18) states that G(n) and Sn are isomorphic groups. By equation229

(16) it can be observed that for any feasible solution x ∈ P n
ASEP the solution230

x′ = gπ(x) ∈ P n
ASEP is obtained by a permutation of the components of x231

based on π. Therefore, it is immediately clear that gπ preserves the Euclidean232

distance, that is ||gπ(x)− gπ(y)|| = ||x− y|| ,∀x,y ∈ P n
ASEP , π ∈ Sn.233

234

As explained in Section 2, our main goal is the computation of the inte-235

grality gap of vertices. The following corollary focuses on the action of G(n)236

on the set of vertices, which will be denoted through the manuscript with237

X n
ASEP .238

Corollary 3. Let x ∈ X n
ASEP and gπ ∈ G(n). Then gπ(x) ∈ X n

ASEP.239

Proof. gπ is an isometry and isometries map vertices into vertices.240

Since the group G(n) acts on the set of vertices X n
ASEP , it is of interest to241

study the orbit of each vertex x ∈ X n
ASEP , that is the set242

Ox = {gπ(x) | gπ ∈ G(n)}, (19)

and the stabilizer of G(n) with respect to x ∈ X n
ASEP , that is the subgroup243

of G(n) defined as244

Gx = {gπ ∈ G(n) | gπ(x) = x}.

Combining Lemma 1 and (19), we can conclude that vertices of the poly-245

tope P n
ASEP belonging to the same orbit, have isomorphic support graphs. In246
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other terms, the isomorphism classes of vertices introduced in [12] are the247

orbits of the vertices with respect to the group G(n).248

By the so-called orbit-stabilizer theorem we have the relation |G(n)| =249

|Gx||Ox|. Further details on the orbit-stabilizer theorem, can be found for250

instance in [2]. A natural question concerns the role of the stabilizer of each251

vertex, and if it leads to some implications in combinatorial questions, such252

as the integrality gap. For example, what could be the relationship between253

the stabilizer of a vertex and the maximum integrality gap achievable at that254

vertex? The case of the integer vertices is particularly interesting. As already255

pointed out, integer vertices of P n
ASEP correspond to Hamiltonian cycles of Kn.256

However, Hamiltonian cycles differ from each other only by a relabeling of257

the nodes. Therefore we can prove the following property.258

Lemma 4. Let x ∈ T n
ASEP . Then, it holds Ox = T n

ASEP .259

Proof. Let x1,x2 ∈ T n
ASEP . Since x1 and x2 correspond to Hamiltonian260

cycles in Kn, there exists a permutation π, such that gπ(x1) = x2. It follows261

that x1 and x2 belong to the same orbit of G(n).262

A consequence of Lemma 4 is that integer vertices build a unique orbit263

Ox with |Ox| = (n − 1)!. By the orbit-stabilizer theorem it follows that264

|Gx| = n, ∀x ∈ T n
ASEP .265

More specifically, it holds the following266

Lemma 5. If x ∈ T n
ASEP , then Gx is the group267

⟨(1 2 . . . n)⟩

of all the cyclic permutations, that are268

τk(i) = (i+ k) mod n.

Proof. As these permutation are the k-shift of nodes, k ∈ {0, 1, 2, . . . , n}, it269

holds270

τk1 ◦ τk2 = τk3 k3 = (k1 + k2) mod n.

271

Unfortunately, as further discussed in Section 5.3, the stabilizer of a frac-272

tional vertex x of P n
ASEP does not seem to follow a general recipe.273
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In Section 6, we conjecture that vertices having a large integrality gap are274

the ones having large but not trivial stabilizers, hence, it could be relevant275

to know in advance the structure of the stabilizer to guess the “promising”276

vertices.277

It is worth to remark that the orbits of G(n) form large classes of isomor-278

phic vertices, hence, P n
ASEP can be considered a highly symmetric polytope.279

The intrinsic equivalence of vertices belonging to the same orbit is clearly280

visible in the following lemma.281

Lemma 6. Let x,y ∈ X n
ASEP such that y ∈ Ox, then Gap(x) = Gap(y).282

Proof. If x,y ∈ Ox, then there exists gπ ∈ G(n), such that x = gπ(y). Let283

c∗ ∈ argminGap(x).284

Gap(x) = c∗Tx = gπ(c
∗)Tgπ(x) = Gap(y).

The first equation holds by definition, while the second equation remains285

unchanged even if both terms of the scalar product are permuted. The final286

equation is derived from the fact that if there exists a c′ value such that287

c
′T
x′ < c∗

T
x, then g−1

π (c′) would provide a solution of lower cost than c∗
T ,288

thus rendering the latter non-optimal.289

Note that this result has already been proved in [12], using a different290

strategy. Finally, we add a result that justifies our symmetry-breaking sim-291

plex algorithm presented in the next section.292

Definition 3. The set of all vertices adjacent to x ∈ X n
ASEP is called the293

neighborhood of x and is denoted by N (x).294

Lemma 7. Let x,y ∈ X n
ASEP, π ∈ Sn. Then, y ∈ N (x) ⇔ gπ(y) ∈295

N (gπ(x)).296

Proof. First, we use the transformation π to sort the rows of the constraint297

matrix, by mapping each degree constraint associated with i to π(i), and each298

subtour elimination constraint associated with S = {s1, . . . , sf} to π(S) :=299

{s1, . . . , sf} and each non-negative constraint accordingly. With a slight300

abuse of notation, we will call π(i) the mapping of the ith constraint. Note301

that y shares exactly r(n)−1 linearly independent and tight constraints with302

x, let i1, . . . , iny−1, iny are this set of constraints of y and i1, . . . , iny−1, inx is303

the one of x3, then, π (i1) , . . . , π
(
iny−1

)
, π

(
iny

)
is associated to gπ(y and304

π (i1) , . . . , π
(
iny−1

)
, π (inx) is hence associated with gπ(x). Thus, gπ(y) ∈305

N (gπ)(x)).306
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Figure 2: Support graphs of the 5 isomorphism classes for n = 5. The arcs have a grey
level depending on the value of the corresponding xi. See Table 2 for details: while (a)
and (c) have all xi =

1
2 (light grey); in the support graph (b) 4 arcs correspond to xi =

2
3

(dark grey) and 7 to xi =
1
3 ; (d) 8 arcs have xi =

1
2 and 1 arc xi = 1; (e) all xi = 1.

Substantially, Lemma 7 states that the maps gπ preserve the adjacency of307

vertices. In other words, vertices belonging to the same orbit are equivalent308

also in terms of their neighborhoods.309

4. Computing vertices with an large integrality gap310

The orbits of the vertices of P n
ASEP introduced in the previous section311

are here used to design a computational strategy for heuristically generating312

vertices of P n
ASEP . In the next paragraphs, first, we introduce our pivot-313

ing algorithm that exploits the vertex symmetries to avoid the exploration314

of isomorphic vertices. Then, we introduce a new iterative procedure that315

generates vertices of P n+1
ASEP starting from vertices of P n

ASEP .316

4.1. Pivoting by symmetry-breaking317

In this subsection, we illustrate the new pivoting algorithm, which at-318

tempts to avoid the exploration of new vertices that are isomorphic to vertices319

already visited. The pivoting algorithm will be denoted by Pivoting(x, T ),320

where the meaning of the variable T will be clarified later, and it is described321

in the following.322

The main idea is simple: we start with a basic feasible solution, that is323

a vertex x ∈ P n
ASEP , and we explore all vertices in the neighborhood N (x)324

one at a time, by enumerating (or by sampling) the possible pivoting steps325

for that vertex. If the new vertex obtained by pivoting is not isomorphic326

to any vertex already explored, then we solve the optimization problem (9)–327

(15) to find the maximal integrality gap for that new vertex, and we record328

the corresponding orbit. We iterate the neighborhood search either with a329
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complete enumeration for small values of n (e.g., n ≤ 8), or with a random330

sampling strategy for n > 8. Our procedure is iterative, namely, it continues331

to iterate vertex-by-vertex, exploring each time the neighborhood of each332

vertex. The input parameters are:333

• M , the maximum number of iterations of the algorithm, equivalent to334

the maximum number of vertices we pivot on.335

• Ttot, timelimit for the whole iterations.336

• Tit, timelimit for a single iteration.337

Parameters Tit balance the tradeoff between exploration and exploitation.338

Small values of Tit allow for exploring only a few elements adjacent to a given339

vertex x and quickly moving on to the next neighboring vertex to be explored.340

On the other hand, high values of Tit insist heavily on the neighborhood of341

a vertex x. We continue to iterate the procedure until either the timelimit342

Ttot is hit or the maximum number M of iteration is reached.343

We named this algorithm “explore/exploit” for two reasons: the parameter344

Tit governs the exploitation of a single vertex. For small values of Tit, we do345

not focus much on the neighborhood of a single vertex, instead preferring to346

pivot on multiple vertices. However, for large values of Tit, we continue to347

build a single N (x), having less time to explore different areas of P n
ASEP .348

Hence, given a time limit of T , our function349

N ′(x) = Pivoting(x, T ) (20)

returns only a subset of N (x), namely the adjacent vertices that the strategy350

is capable of finding within a time limit.351

4.2. Generating vertices using loop breaking procedure352

In this subsection, we present our new iterative algorithm to compute a353

vertex of P n+1
ASEP by starting from a vertex of P n

ASEP . First, we recover two354

definitions and a lemma from [12] that we use to prove our new result. Then,355

we introduce our loop-breaking procedure.356

Definition 4 ([12], Chap. 3). Let S ⊂ V and x ∈ P n
ASEP . If δ(x(S)) :=357 ∑

(i,j)∈δ(S) xe = 1, then, S is called a tight set.358

Note that a tight set is a subset of vertices that induces a cut that satisfies359

a subtour elimination constraint with equality.360
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Algorithm 1: Generating vertices of P n
ASEP trough the explore-

exploit algorithm.
Input: n, Number of nodes of the ATSP instance under study
Input: R := {xi}i∈I , list of vertices available for n− 1
Input: M , Maximum number of iteration of algorithm
Input: Ttot, time limit for the whole iteration
Input: Tit, timelimit for the single iteration
Output: R′, a collection of non isomorphic vertices of P n

ASEP

1 R′ = Extend(R)
2 R′ = SortByNumberOfZeros(R′)
3 i = 0
4 x0 = R′[i]
5 Ps = []
6 while i < M and time < Ttot do
7 if x0 is not isomorphic to any vertex in Ps then
8 Ps.append(x0)
9 N ′(x0) = Pivoting(x0, Tit)

10 for y ∈ N (x0) do
11 if y is not isomorphic to any vertex in R′ then
12 R′.insert(y)
13 end
14 end
15 i← i+ 1
16 Ps.append(R′[i])
17 end
18 end
19 return R′

Definition 5 ([12], Chap. 3). Let S ⊂ V be a tight set and x ∈ P
n+|S|−1
ASEP .361

Then, we can collapse the set S into node w as follows:362

(x ↓w (S))uv =


∑

s∈S xus if v = w,∑
s∈S xsv if u = w,

xuv otherwise.

Lemma 8 ([12], Prop. 3.3.1). Let x ∈ P n
ASEP and S ⊂ V be a tight set of x.363

Then, x ↓w (S) belongs to P
n−|S|+1
ASEP .364

15



λ λλ λ

λ

λ

u1 w1 u2 w2

v1 v2

(a) Vertex x ∈ Pn
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(b) New vertex x ∈ Pn+1
ASEP .

Figure 3: Example of λ-loop breaking (x ↑v3 (v1, v2))uv, with λ = 1− λ.

We are now ready to formally introduce λ-loops.365

Definition 6 (λ-loop). Let x ∈ P n
ASEP and let v1, v2 ∈ V such that xv1v2 =366

λ and xv2v1 = 1− λ, then, we say that x contains a λ-loop ←→v1v2.367

The following trivially follows.368

Lemma 9. Consider x a point in P n
ASEP containing the λ-loop ←→v1v2, then369

S = {v1, v2} is a tight set.370

Proof. The amount of flow entering v1 is λ, while the amount of flow entering371

v2 is 1− λ. Hence, x(δ(S)) = 1.372

4.2.1. A new λ-loop breaking procedure373

Our algorithm for generating vertices of P n+1
ASEP from P n

ASEP exploits λ-loop374

in the following λ-loop breaking procedure.375

Definition 7. Let x ∈ P n
ASEP that contains a λ-loop←→v1v2. Then, the λ-loop376

breaking procedure generate a point in R(n+1)n adding the node v3 as377

follows :378

(x ↑v3 (v1, v2))uv =



λ if uv ∈ {v1v3, v3v2},
1− λ if uv ∈ {v3v1, v2v3},
0 if uv ∈ {v1v2, v2v1}
0 if v = v3 and u ̸∈ {v1, v2}
xuv otherwise.

The λ-loop breaking procedure has the following properties.379

Lemma 10. S = {v1, v3} is a tight set for x ↑v3 (v1, v2).380
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Proof. Let x′ = x ↑v3 (v1, v2)381

x′(δ(S)) =
∑
b∈v
b ̸=v3

xv1b +
∑
b∈r
b̸=v1

xv3b

given that382 ∑
b∈V

xv1b = 1⇒
∑
b∈V
b̸=v3

xv1b = 1− xv1v3 = 1− λ,

∑
b∈V

xv3b = 1⇒
∑
b∈V
b ̸=v1

xv3b = 1− xv3v1 = 1− (1− λ) = λ,

⇒ x′(δ(S)) = 1− λ+ λ = 1.

383

Lemma 11. If x is a vertex of P n
ASEP that contains a λ-loop ←→v1v2, then384

x ↑v3 (v1, v2) is a vertex of P n+1
ASEP.385

Proof. Let x′ := x ↑v3 (v1, v2). Clearly x′ is feasible. To show that is a vertex,386

assume by contradiction that there exists y′, z′ ∈ P n+1
ASEP and µ ∈ (0, 1) such387

that x′ = µy′ + (1− µ)z′. Let S = {v1, v3}. Note that388

x′(δ(S)) = 1 = µy′(δ(S)) + (1− µ)z′(δ(S)). (21)

As y′, z′ are feasible, we have y′(δ(S)) ≥ 1 and z′(δ(S)) ≥ 1. As the equality389

should hold, we have then z′(δ(S)) = y′(δ(S)) = 1. Thus, we have390

y :=↓v1 y′(S) and z :=↓v1 z′(S).

Thanks to Lemma 8, z,y ∈ P n
ASEP . Clearly, x = µy + (1− µ)z. This can be391

verified entry by entry. As an example, consider the case e = uv1:392

µyuv1 + (1− µ)zuv1 = µ
(
y′uv1 + y′uv3

)
+ (1− µ)

(
z′uv1 + z′uv3

)
=

[
µy′uv1 + (1− µ)z′uv1

]
+
[
µy′uv3 + (1− µ)z′uv3

]
= x′

uv1
+ x′

uv3
= xuv1 .

Thus, x is not a vertex of P n
ASEP , and we get a contradiction.393

Remark 1. Note that the converse unfortunately does not hold, e.g., if you394

collapse a λ-loop into a single not, you are not guaranteed to obtain a vertex.395

This will be particularly relevant in Section 5.4 where we collapse instead λ-396

loops: after doing that, we have to check that what we obtain is again a397

vertex.398
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4.2.2. How we used this procedure399

If we are able to compute an initial vertex x ∈ P n
ASEP having a λ−loop,400

then, we can iteratively apply the λ-loop breaking procedure to obtain a se-401

quence of vertices xk,xk+1, . . . ,xk+t that belongs to P n+1
ASEP , P

n+2
ASEP , . . . , P

n+t
ASEP ,402

respectively.403

Despite being simple, this iterative procedure is effective in generating404

ATSP instances with a large integrality gap, as we show in Section 5.1. Note405

that a similar idea was explored in [12], where the author introduced a 2-jack406

insertion procedure, where a node satisfying precise hypotheses is replaced407

with a λ-loop, with the strict condition λ = 1
2
. Our strategy is more general408

since we allow any value of λ ∈ (0, 1). Our experimental results show that our409

procedure is very effective in finding vertices with large integrality gaps (see410

Section 5.1). Note that the reverse move, namely, making a λ-loop collapse411

into one single point, does not always lead to a vertex, but it always leads to412

a feasible point thanks to Lemma 8.413

4.3. The full algorithm414

For a formal description of the proposed procedure, see Algorithm 1. The415

Pivoting function mentioned in line 9 of Algorithm 1 is the one of Equation416

(20). The whole procedure can be described in words as follows. Starting417

from n = 5 and the full collection of non-isomorphic vertices of P 5
ASEP (See418

Figure 2) that we can exhaustively generate using the software Polymake [3]:419

1. We apply the procedure of λ-loop break obtaining vertices of P n+1
ASEP .420

2. We complete each of these vertices with the slack variables.421

3. We order all the vertices found in this way by the number of zeros,422

from the one with the fewest zeros to the one with the most zeros.423

4. Starting from the first one, we begin to apply the Pivoting strategy as424

described in Section 4.1 and Equation 20. Specifically, we enumerate425

all possible combinations of variables that can form a feasible basis and426

attempt to include each of the nonbasic variables in the basis.427

5. When we reach the time limit Tit, we have a subset of adjacent vertices428

denoted as N ′(x) ⊆ N (x). At this point, two things can occur:429

(a) N ′(x) = ∅: in this case, we move on to the next vertex in the430

ordered list and start again from step 4.431

(b) N ′(x) ̸= ∅: in this case, we take each vertex from this set and add432

it to the input list - if does not belong to any of the orbits already433

explored - in order to maintain the list sorted by the number of434

zeros. Then, we start again from step 4.435
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Figure 4: Starting point for the pivoting algorithm for n = 6.

6. We continue iteratively until either Ttot or M are reached.436

Note that, thanks to Lemma 7, we do not need to pivot twice on iso-437

morphic vertices, as they share the same neighborhood. In the remainder of438

this section, we show step-by-step how the algorithm described in Section 4439

works in practice from n = 5 to n = 6. First, we need a starting vertex. To440

do so, we recover it using the breaking loop procedure from n = 5.441

This gives us a representative for 6 different orbits and, among them,442

we choose the one with the smallest number of zeros. Figure 4 reports its443

support graph. Such vertex has entries equal to k
3
, k ∈ {0, . . . , 5}. We start444

by pivoting from this vertex and collecting all its neighbors. Then, among its445

neighbors, we move to the one having the smaller number of zeros, and we446

proceed iteratively. Differently from the pivoting pipeline presented in [12],447

we can recover at least one representative for each orbit.448

5. Computational results449

This section shows the results of our experiments, focusing on the loop-450

breaking procedure’s impact on expanding loops and the effect on the inte-451

grality gap. Additionally, it examines the neighborhood and the stabilizer452

of vertices for small values of n, focusing on the relation with the integrality453

gap.454

Implementation details.. All the experiments run on an x86_64 architecture455

with a 13th Gen Intel(R) Core(TM) i5-13600 processor, offering 20 CPU456

cores with 32-bit and 64-bit operation modes. The pivoting algorithm is457

implemented in C++, while the iterative procedure is in Python. We use458
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the Eigen library [17] to deal with matrices and MPFR [15] for the operations459

in multiple precision. The integrality gap is computed by solving the linear460

program (9)–(15) using Gurobi v9.5.0 [18].461

5.1. Combining the symmetry breaking pivoting and the λ-loop breaking pro-462

cedure463

Our algorithm has some strengths and weaknesses.464

One of the strengths is that compared to the Pivoting algorithm intro-465

duced by [12], for n = 6, we manage to quickly recover at least one represen-466

tative for all orbits. Another strength is the impact of the λ-loop breaking467

procedure in quickly identifying vertices with a large integrality gap. Fig-468

ure 5 illustrates this phenomenon in the transition from n = 6 to n = 7.469

Experimentally, we observe that the integrality gap of the vertices obtained470

through λ-loop breaking is always greater or equal to the starting one. An-471

other strength is that the λ-loop breaking procedure alone is capable of find-472

ing the vertex with the maximum integrality gap for each n. For example,473

in Figure 7, it can be seen that the vertex with the maximum integrality gap474

was obtained at iteration 0, implying that the rest of the search, although475

leading to many points with large integrality gaps, is subordinated to what476

is obtained at step 0.477

Among the weaknesses, we observe that although the solutions we found478

with the λ-loop loops procedure are associated with large integrality gaps,479

they have a lot of zeros. In fact, moving from n to n + 1, we switch from480

considering points from dimension n(n−1) to points in R(n+1)n, adding hence481

2n entries. All of them are 0, but 2. So we add 2n− 2 zeros to our vertices.482

Hence, it is hard to explore the full neighborhood, due to the great amount483

of feasible basis. Lastly, we were able to push our pivoting procedure until484

n = 11. After that, it becomes infeasible to even partially enumerate at least485

one neighborhood of the vertex. Figure 7 illustrates how the duration of each486

iteration increases and how the number of new orbits found decreases with487

each iteration.488

5.2. Neighborhood exploration489

This section is devoted to studying the neighborhood of some vertices of490

n ∈ {4, 5, 6} and deducing local properties. Before diving into the details,491

let us recall the definition of a polyhedral graph.492

Definition 8 (Polyhedral graph). A polyhedral graph is an undirected493

graph formed from the vertices and edges of a convex polyhedron.494

20



1.2 1.25 1.3 1.35

1.2

1.25

1.3

1.35

Figure 5: On the x axis, we represent the integrality gap of the vertices for n = 6 that have
a λ-loop. For each of these vertices, we plot the integrality gap of the vertices obtained
by the λ-loop breaking procedure on the y axis. The fact that all points lie (non-strictly)
above the line y = x implies that the λ-loop breaking procedure is highly effective in
increasing the integrality gap.

Table 1: Orbit structure for n = 4. Columns: cardinality of the orbit, type of components,
frequency of each component, and integrality gap attained at the elements of that orbit.

|Ox| Components Frequencies IG
6 0 1

2
4 8 6/5

6 0 1 8 4 1

For n = 4, we recovered using Polymake [3] all the vertices have been495

enumerated in [12] using PORTA [10]. More specifically, we have 12 vertices496

in total and two orbits. With this small number of vertices and orbits is hence497

easy to exhaustively study the neighborhood of each point. Figure 6 show498

the polyhedral graph of P 4
ASEP . Nodes from 0 to 5 represent the non-integer499

vertices, while nodes from 6 to 11 represent the tours. We can observe that500

each non-integer vertex has among the adjacent vertices, always an integer501

one. Interestingly, each tour is connected to all the vertices but one.502

For n = 5, we recover 384 vertices, as already done in [12]. We choose503

a representative for each class and study its neighborhood. This can be504

done w.l.o.g thanks to Lemma 7. As expected, the number of neighbors is505

related to the degeneracy of the vertex, that is number of zeros among both506
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Figure 6: Polyhedral graph for P 4
ASEP .

Table 2: Orbit structure for n = 5. Columns: Label the orbits according to Figure 2,
Cardinality of the orbit, type of components, frequency of each component, integrality
gap attained at the elements of that orbit, number of tight sets, neighborhood size, and
stabilizer.

|Ox| Components Frequencies IG tight sets |N (x)| Gx

(a) 60 0 6/5 10 10 5/4 6 28 ⟨(0 1)(4 3)⟩
(b) 120 0 1

3
2
3

9 7 4 6/5 4 20 ⟨id⟩
(c) 60 0 1

2
10 10 6/5 4 28 ⟨(0 4)(1 3)⟩

(d) 120 0 1 1
2

11 1 8 6/5 4 23 ⟨id⟩
(e) 24 0 1 15 5 1 10 148 ⟨(0 1 2 3 4)⟩

arc and slack variables. Interestingly, each vertex has at least one adjacent507

representative for each equivalence class. Furthermore, the vertices (d) and508

(e) also have a representative of themselves among the neighbors.509

In the case of n = 6, we have 90 orbits. The orbit structure can be found510

in Table A.5 and A.6, in the appendix. Neighborhoods of these vertices511

cannot be exhaustively explored. When the number of zeros is close to 18,512

the exhaustive listing of the whole neighborhood quickly leads to an out-of-513

memory error.514

Note that, from our preliminary test, we state the following conjecture:515

Conjecture 1. For each x vertex, N (x) contains at least one tour.516

22



0 2 4 6 8
·104

1

1.1

1.2

1.3

time (seconds)

G
ap

Integrality gap found, n = 7

(a)

0 2 4 6 8
·104

200

400

600

800

1,000

1,200

1,400

time (seconds)

N
um

be
r

of
di

ffe
re

nt
cl

as
se

s
fo

un
d

Convergency rate, n = 7

(b)

0 0.2 0.4 0.6 0.8 1
·105

1

1.1

1.2

1.3

time (seconds)

G
ap

Integrality gap found, n = 9

(c)

0 0.2 0.4 0.6 0.8 1
·105

4,050

4,100

4,150

4,200

4,250

time (seconds)

N
um

be
r

of
di

ffe
re

nt
cl

as
se

s
fo

un
d

Convergency rate, n = 9

(d)

Figure 7: Left: time vs integrality gap found. The darker the ×, the bigger the number
of vertices found leading to that integrality gap. We note that the highest integrality
gap is found at the very beginning of the procedure. Right: Time vs Number of classes
of isomorphism. We note that for n = 7 the algorithm continuously finds new and new
vertices; for n = 9, new vertices are more and more rare.
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If this conjecture were true, solely pivoting on the integer vertex would517

lead to the full V-description of the polytope: by using Lemma 7 the neigh-518

borhood of an integer vertex will contain at least one representative of each519

orbit. We can then list all the vertices by fully describing each orbit. This520

can be done just theoretically, as in practice, listing the full neighborhood of521

a vertex with just 6 nodes is infeasible.522

5.3. Symmetries and conjectured relation with the integrality gap523

Table 1, 2, A.5, A.6 show the orbit structure of n = 4, 5, 6. In all cases,524

we observe that the maximum integrality gap has been attained at one-half525

integer vertex with a relatively small orbit.526

Table 1 reports the structure of the orbit we found for n = 4. As there is527

only one half-integer solution, the maximum integrality gap is hence attained528

at that vertex.529

For n = 5, we have represented all the vertices in Figure 2. The one530

attaining the highest integrality gap is vertex (a). Looking at Table 2, we531

understand that vertex (a) and (c) have the same number of non-zeros and532

zeros entries. The main differences lie in the number of λ-loops and tight sets533

(see Definition 4). Tight sets are associated with slack variables xS = 0. In534

particular, vertex (a) has 6 tight sets, while vertex (c) has only 4. For n = 6,535

there are 90 orbits, see Table A.5 and A.6. The vertex attaining the maximum536

integrality gap is again half-integer, which in principle does not seem very537

different from other half-integer vertices having low integrality gap (See, e.g,538

the middle of Table A.6). We observe that all the half-integer vertices have539

10 tight sets. The two vertices leading the two highest integrality gaps have540

instead a higher number of tight sets (Line 1 and 3 of Table A.5). More541

specifically, the two half integer vertices maximizing the integrality gap have,542

respectively, 10 and 12 tight sets.543

For these small number of nodes, we also explicitly compute the stabilizer.544

For n = 4, the stabilizer of any representative of the non-integer orbit is given545

by the vertices of the subcycles in the support graph. For instance, referring546

to Figure 1, left, it holds Gx = ⟨(0 3 1 2)⟩.547

All the stabilizers are trivial for n = 5, but the ones of the two half-integer548

vertices. Table 2 reports all the stabilizers explicitly computed. The vertices549

attaining the maximum gap are the ones whose stabilizer is isomorphic to Z2550

and, more specifically, it acts swapping the extreme of the two cycles. For551

(c), the situation is analogous, by considering the two chained λ-loops
←→
03552

and
←→
04 as one.553
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Figure 8: Vertex obtaining the maximum integrality gap for n = 6.

For n = 6, the vertex attaining the maximum integrality gap has been554

represented in Figure 8. The stabilizer of this vertex is isomorphic to Z4,555

more specifically is the group generated from (03)(1425). Even in this case,556

the stabilizer “swaps” the extreme nodes of the two chained λ - loops and the557

middle nodes 0 and 3.558

For n = 7, our heuristic procedure does not recover all the vertices, hence559

we can do considerations only among the ones we were able to obtain, which560

are 1356 out of 3748. According to [12], 5 different isomorphism classes are561

attaining the maximum gap of 4
3
: our heuristic finds all of them. As already562

observed in [12], 3 out of 5 vertices have entries in {0, 0.5} (from now on,563

we will denote vertices having entries in {0, 0.5} as half-integer) while the564

others in {0, 0.5, 1} (integer-half-integer). Even in this case, the number of565

tight sets in vertices maximizing the gap is high, namely, 12 and 16, although566

not maximal, as there exist pure half-integer vertices having 14 and 16 tight567

sets. A similar argument holds for half-integer vertices.568

For n = 8, we identified 41 vertices with a maximum integrality gap of569

4
3
. In [12], there were 43 of such vertices, but one of them was not half-570

integer. Observe that their method was specifically tailored to find all the571

half-integer vertices and potentially other, whereas our approach allows for572

more flexibility. Specifically, we discovered 17 pure half-integer orbits, 16573

half-orbits, and 8 orbits with components in {0, 0.25, 0.5, 0.75}. While this574

suggests the possibility that non-half-integer vertices may also result in the575

maximum integrality gap, it appears to be an isolated case.576

More specifically, for n ≥ 9, the vertex attaining the maximum gap is577

always unique and a pure half-integer vertex. Based on our recent discussion,578

we have gathered the following empirical evidence:579

• Among the vertices achieving the maximum integrality gap, there is at580

least one half-integer.581
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• Furthermore, vertices with a large stabilizer and a large number of tight582

sets appear to maximize the integrality.583

5.4. New lower bound on the integrality gap584

Table 3 presents the results of the combined symmetry-breaking pivot-585

ing and λ-loop breaking algorithm. Starting from a vertex of P 6
ASEP , our586

combined algorithm alternates the exploration of vertices of P n
ASEP with the587

generation of a new vertex of P n+1
ASEP588

With our combined algorithm, we can recompute all the lower bounds of589

αLB
n up to n = 15, and we compute newer lower bounds for n ∈ {16, 18, 20, 22}590

Note that for n odd, [12] introduces a family of ATSP instances having591

αn = 3k+1
2k+1

where n = 3 + 2(k + 1), which gives new lower bounds for592

n = 17, 19, 21. However, all the lower bounds in [12] are obtained only by593

exploring half-integer vertices, while our procedure can generate non-half-594

integer vertices, thanks to the λ-loop breaking procedure. However, except595

for the case n = 8, where we found a non-half integer vertex maximizing596

the gap, such a maximum is always achieved in correspondence with a half-597

integer vertex.598

To obtain Table 3, we proceed as follows: starting from a vertex explic-599

itly given by [12] for n = 18, having an integrality gap of 1.5, we make each600

λ-loop collapse to one single node, and check time by time if the so-obtained601

fesible point is a vertex. Afterward, we expand each λ-loop obtaining ver-602

tices for 19 ≤ n ≤ 22. These two procedures built Table 3, where the603

lower bounds have been improved with respect to the state of the art for604

n ∈ {16, 17, 19, 20, 21, 22}. We recall that, although our exploration allows605

different types of fractional vertices, the maximum gap is always attained on606

a half-integer vertex.607

5.5. Hard-ATSPLIB instances608

Whenever we solve the Gap(x) problem to compute the maximum inte-609

grality gap for a given vertex, we generate an ATSP instance which could be610

challenging in practice for the state-of-the-art solver Concorde [1]. Hence,611

we have saved several small hard ATSP instances, which we share online at612

https://github.com/eleonoravercesi/HardATSPLIB. Several studies in613

the literature have examined the empirical hardness of the STSP concerning614

the integrality gap, such as [20, 31, 30]. However, to the best of our knowl-615

edge, no such studies have been conducted on the ATSP. Note that every616

time we compute the maximum possible integrality gap attained at a given617
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Table 3: State of the art on the lower bounds αLB
n ≤ αn for ATSP, with 11 ≤ n ≤ 22. In

bold, the new best lower bounds are obtained with our approach.

n From [12] New n From [12] New

11 10/7 (1.429) 10/7 (1.429) 17 19/13 (1.461) 55/37 (1.486)
12 56/39 (1.436) 56/39 (1.436) 18 3/2 (1.500) 3/2 (1.500)
13 13/9 (1.444) 13/9 (1.444) 19 22/15 (1.466) 3/2 (1.500)
14 100/69 (1.449) 100/69 (1.449) 20 - 3/2 (1.500)
15 16/11 (1.454) 16/11 (1.454) 21 25/17 (1.470) 3/2 (1.500)
16 - 28/19 (1.474) 22 - 3/2 (1.500)

Table 4: Results of 10 runs of Concorde with 10 different seeds and different modalities.
Columns represent the number of nodes of the ATSP, the mean of the runtimes and the
B&B nodes, and the same values for an instance of the TSPLIB having 2n number of
nodes.
n Standard run DF No local cuts DF and No local cuts

Time
(s)

B&B
nds

Time
(s)

B&B
nds

Time
(s)

B&B
nds

Time
(s)

B&B
nds

7 0.7 1.0 0.7 1.0 0.1 7.0 0.1 7.2
8 2.6 1.0 2.6 1.0 0.1 11.2 0.1 11.2
9 3.4 6.6 3.4 7.4 0.1 39.4 0.1 32.9
10 5.1 13.2 4.2 11.6 0.1 54.6 0.1 54.8
11 7.6 36.2 6.6 39.8 0.4 103.8 0.3 80.4
12 9.8 104.6 10.3 112.8 112.8 278.8 0.8 220.9
13 25.5 258.4 21.9 240.3 2.0 335.8 1.1 198.8
14 44.2 561.6 39.9 561.5 9.2 1468.6 4.3 778.0
15 57.1 661.2 42.8 516.4 7.9 1003.0 3.2 461.9
16 145.1 1551.0 92.5 1047.2 20.8 2112.0 6.0 773.4
17 259.9 2948.2 178.8 2152.7 35.1 2928.0 9.6 1104.5
18 548.7 6422.0 363.2 4678.0 246.5 14283.2 44.5 4321.7
19 1090.8 11675.8 668.8 8094.0 270.6 10398.0 57.7 4540.5

vertex x by solving problem (9)–(15), we obtain a cost vector c associated618

to an ATSP instance having ATSP(c) = 1. Hence, we can evaluate the619

computational complexity of each instance as generated in this way.620

A core question is how to evaluate complexity from a computational per-621

spective. Differently from the case of STSP, a native state-of-art solver is not622
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available for ATSP. Previous work by [14] has shown promising results using a623

branch-and-cut algorithm that exploits facet-defining inequalities for ATSP.624

However, more recent studies [13, 26] suggest that Concorde, the state-of-art625

solver for the STSP, remains the most efficient method for solving ATSP. It626

is important to note that Concorde can only handle symmetric nonnegative627

and integer costs, but it is possible to transform any of the ATSP instances628

we obtained into an integer and non-negative STSP starting from the method629

proposed in [21]. First of all, we have observed that all the solutions we found630

solving Gap(x) are rational, and hence it is possible to make the costs integer631

by multiplying all the entries by the common denominator. Hence, without632

loss of generality, we can consider all the solutions of Gap(x) as integer vec-633

tors. Let C = (cij) be a matrix derived from the cost vector as suggested in634

[21], namely:635

cij =

{
cij i ̸= j

−M i = j,
(22)

where M denotes a large positive number. Consider the matrix U , where all636

entries are set to infinity. We construct the following R2n×2n matrix: We can637

create the following R2n×2n matrix:638

C̃ =

[
C̄ U
U C̄

]
.

Note that C̃ may contain negative costs, which we do not want, as Concorde639

only performs with positive costs. Therefore, we shift all costs forward by640

M , namely making the minimum cost equal to 0. Unfortunately, in this641

framework, we only have premetrics, as we lose the triangle inequality in642

every triple involving two of the original nodes and one “doubled” node.643

However, since we have only performed an affine translation on each cost,644

the optimal tour does not change. The relationship between the original645

values of ATSP and STSP is hence646

ATSP(c) = STSP(c̃)− nM. (23)

Hence, we transform each ATSP into an STSP as discussed above, solve647

each instance using Concorde, and record the computational time and the648

integrality gap. Regarding the integrality gap, we observe that we only have649

a relation between the value of ATSP(c) and STSP(c̃), but nothing can650

be said a prior for SSEP(c̃) and ASEP(c). Remarkably, we observed that651
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ATSP STSP

1

1.1

1.2

1.3

Figure 9: Distribution of the integrality gap from the ATSP to the STSP via the applica-
tion of the Jonker-Volgenant-based procedure for n = 9.

after the above-discussed procedure, the resulting instances exhibit a reduced652

integrality gap. Figure 9 reports this information for n = 9.653

In terms of computational complexity, we are hence able to retrieve some654

hard-to-solve instances. Table 4 reports the results for some hard instances655

with 7 ≤ n ≤ 19 nodes generated by our approach. We do four different656

types of computation:657

• We run Concorde as it is, 10 times with 10 different seeds and we record658

the runtime and the number of Branch & Bound (B&B) nodes. From659

now on, this would be called the “standard” setting.660

• We add the flag -d flag that uses Deep-first (DF) branching instead661

of Breadth-First (BF). Adding this flag can prevent Concorde from662

writing search nodes to files, which could not be a good idea for small663

instances. Even in this case, we ran Concorde 10 times with 10 different664

seeds, collecting the results.665

• We add the flag -C0 to disable local cuts. For small instances of the666

TSP, the computational overhead associated with generating and ap-667

plying local cuts may outweigh the benefits they provide.668

• We combine the flag -d -C0 together.669
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We compare both runtime and B&B nodes with the instances of the TSPLIB670

[25].671

First, we observe that not using local cuts in small instances has a great672

benefit, as already known in the literature. First, we observe that not using673

local cuts in small instances has a great benefit. For instance, a 15-node674

instance from our library, when solved with Concorde “as it is” requires ap-675

proximately one minute. Disabling local cuts can lead to a solution in less676

than 10 seconds. This time is further reduced if we prefer a DF strategy for677

branching. However, our instances still prove to be challenging even in their678

optimized version compared to instances from the TSPLIB and even with679

the hard instances introduced by [20]. By disabling local cuts and using DF680

instead of BF, Concorde takes less than 2 seconds to reach the optimal value681

with n = 52. Note that the STSP instances in the TSPLIB with less than 26682

nodes, namely burma14, ulysses16, ulysses22, gr24, and fri26, and the683

ATSPLIB instance br17 are all solved by Concorde in around 0.01 seconds684

with the standard setting.685

6. Conclusions686

In this paper, we have introduced and implemented a new symmetry-687

breaking pivoting algorithm and a new λ-loop breaking procedure that per-688

mits the exploration of vertices of the asymmetric subtour elimination poly-689

tope yielding a large integrality gap. The symmetry-breaking pivoting ex-690

ploits the class of isomorphism of the vertices of P n
ASEP that we completely691

calculated for a small value of n. Checking whether two vertices of P n
ASEP692

are isomorphic is currently one of the two computational bottlenecks of our693

procedure. For each non-isomorphic vertex we visit, we solve an instance of694

the Gap(x) problem. With our new algorithm, we can compute new lower695

bounds for αLB
n for n ≤ 22 by exploring not only half-integer vertices.696

In addition, we solved the instances yielding the largest integrality gap697

with Concorde, and comparing the runtime, it is clear that those instances698

are challenging for a state-of-the-art TSP solver.699

In the future, we plan to explore the unresolved issue addressed in this700

study, which involves developing a procedure that yields the stabilizer based701

on a vertex and creating a strategy that leverages symmetries to produce702

vertices that are considered noteworthy in terms of the integrality gap. Note703

that for small values of n the integrality gap values returned by the two704

families of instances proposed and studied in [9, 12] are improved. For these705
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two families, the integrality gap converges to 2. Therefore, if the improvement706

obtained in this paper for small values of n could be “uniformly” observed707

also for large values of n this would lead to an integrality gap greater than708

2. Of course, this is just an intriguing hypothesis for future research.709
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Appendix A. Detailed description of the orbits for for n = 6804

Table A.5: Orbit structure for n = 6, top 21 having the highest integrality gap. Columns:
cardinality of the orbit, type of components, frequency of each component, and integrality
gap attained at the elements of that orbit.

|Ox| Components Frequencies IG

180 0 1/2 18 12 4/3
120 0 1/3 2/3 18 6 6 9/7
360 0 1/2 18 12 14/11
360 0 1/2 18 12 5/4
720 0 1/2 18 12 5/4
180 0 1/2 18 12 5/4
720 0 1 1/2 19 1 10 5/4
720 0 1 1/2 19 1 10 5/4
360 0 1 1/2 19 1 10 5/4
720 0 1/4 3/4 1/2 17 5 3 5 16/13
720 0 1/4 3/4 1/2 16 6 2 6 6/5
720 0 1/4 3/4 1/2 16 6 2 6 6/5
720 0 1/4 3/4 1/2 17 5 3 5 6/5
720 0 1/4 3/4 1/2 16 6 2 6 6/5
720 0 1/4 3/4 1/2 16 6 2 6 6/5
720 0 1/4 3/4 1/2 16 6 2 6 6/5
720 0 1/4 3/4 1/2 16 6 2 6 6/5
720 0 1/4 3/4 1/2 16 6 2 6 6/5
720 0 1/4 3/4 1/2 16 6 2 6 6/5
720 0 1/4 3/4 1/2 16 6 2 6 6/5
720 0 1/4 3/4 1/2 17 5 3 5 6/5
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Table A.6: Orbit structure for n = 6, bottom 69 having the lowest integrality gap.
Columns: cardinality of the orbit, type of components, frequency of each component,
and integrality gap attained at the elements of that orbit.

|Ox| Components Frequencies IG

720 0 1/3 2/3 17 8 5 6/5
720 0 1/3 2/3 16 10 4 6/5
720 0 1/3 2/3 16 10 4 6/5
720 0 1/3 2/3 16 10 4 6/5
720 0 1/3 2/3 16 10 4 6/5
720 0 1/3 2/3 16 10 4 6/5
720 0 1/3 2/3 16 10 4 6/5
720 0 1/3 2/3 16 10 4 6/5
720 0 1/3 2/3 16 10 4 6/5
720 0 1/3 2/3 16 10 4 6/5
720 0 1/3 2/3 16 10 4 6/5
720 0 1/3 2/3 17 8 5 6/5
720 0 1/3 2/3 17 8 5 6/5
720 0 1/3 2/3 17 8 5 6/5
720 0 1/3 2/3 17 8 5 6/5
720 0 1/3 2/3 17 8 5 6/5
720 0 1/3 2/3 17 8 5 6/5
720 0 1/3 2/3 16 10 4 6/5
720 0 1/3 2/3 17 8 5 6/5
720 0 1/3 2/3 17 8 5 6/5
720 0 1/3 2/3 17 8 5 6/5
720 0 1/3 2/3 17 8 5 6/5
720 0 1/3 2/3 16 10 4 6/5
720 0 1/3 2/3 17 8 5 6/5
720 0 1/3 2/3 17 8 5 6/5
240 0 1/3 2/3 18 6 6 6/5
720 0 1/3 2/3 16 10 4 6/5
720 0 1/3 2/3 17 8 5 6/5
720 0 1/3 2/3 17 8 5 6/5
720 0 1/3 2/3 16 10 4 6/5
120 0 1/2 18 12 6/5
720 0 1/2 18 12 6/5
720 0 1/2 18 12 6/5
720 0 1/2 18 12 6/5
720 0 1/2 18 12 6/5
720 0 1 1/3 2/3 18 1 7 4 6/5
720 0 1 1/3 2/3 18 1 7 4 6/5
720 0 1 1/3 2/3 18 1 7 4 6/5
720 0 1 1/3 2/3 18 1 7 4 6/5
360 0 1 1/2 19 1 10 6/5
720 0 1 1/2 19 1 10 6/5
720 0 1 1/2 19 1 10 6/5
720 0 1 1/3 2/3 18 1 7 4 6/5
360 0 1 1/2 20 2 8 6/5
720 0 1 1/2 20 2 8 6/5
720 0 1 1/2 20 2 8 6/5
720 0 1/5 4/5 2/5 3/5 16 5 2 4 3 25/21
720 0 1/5 4/5 2/5 3/5 16 5 2 4 3 25/21
720 0 1/5 4/5 2/5 3/5 16 5 2 4 3 25/21
720 0 1/4 3/4 1/2 16 7 3 4 20/17
720 0 1/4 3/4 1/2 16 7 3 4 20/17
720 0 1/4 3/4 1/2 16 7 3 4 20/17
720 0 1/4 3/4 1/2 16 7 3 4 20/17
720 0 1/4 3/4 1/2 16 7 3 4 20/17
720 0 1/4 3/4 16 9 5 20/17
720 0 1/3 2/3 16 10 4 7/6
120 0 1/2 18 12 7/6
720 0 1/3 2/3 16 10 4 15/13
720 0 1/3 2/3 17 8 5 15/13
360 0 1/3 2/3 16 10 4 15/13
720 0 1/3 2/3 16 10 4 15/13
720 0 1/3 2/3 16 10 4 15/13
720 0 1/3 2/3 16 10 4 15/13
720 0 1/3 2/3 16 10 4 15/13
360 0 1/3 2/3 16 10 4 15/13
720 0 1/3 2/3 17 8 5 15/13
720 0 1/3 2/3 17 8 5 15/13
120 0 1/3 2/3 18 6 6 15/13
120 0 1 24 6 1
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