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Abstract

We develop a new approximation theory for linear and quadratic interpolation mod-
els, suitable for use in convex-constrained derivative-free optimization (DFO). Most exist-
ing model-based DFO methods for constrained problems assume the ability to construct
su�ciently accurate approximations via interpolation, but the standard notions of accu-
racy (designed for unconstrained problems) may not be achievable by only sampling fea-
sible points, and so may not give practical algorithms. This work extends the theory of
convex-constrained linear interpolation developed in [Hough & Roberts, SIAM J. Optim,
32:4 (2022), pp. 2552�2579] to the case of linear regression models and underdetermined
quadratic interpolation models.
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1 Introduction

This work is concerned with model-based methods for derivative-free optimization (DFO). Such
methods are widely studied and have proven to be popular in practice [16, 1, 25]. Most commonly,
model-based methods construct a local interpolant for the objective from selected evaluations
which is then used in place of Taylor series in a standard framework, most commonly trust-
region methods [13]. The convergence and worst-case complexity of model-based DFO in the
unconstrained setting is well-established. Here, we are interested in nonconvex minimization
over a convex set,

min
x∈C

f(x), (1.1)

where f : Rn → R is smooth (but nonconvex), and C ⊆ Rn is a closed, convex set with
nonempty interior. Such problems appear in the derivative-free setting, for example bound
and linear constraints appearing in problems from climate science [31, 30], deep learning [33]
and systems design engineering [23]. Although a model-based DFO framework for solving (1.1)
was recently developed in [22], it only considered the case of constructing linear interpolants
from function evaluations (at feasible points). Outside of structured problems such as nonlinear
least-squares [8], quadratic interpolants are the most common models used in model-based DFO
[28, 29, 16]. In this work, we develop a comprehensive approximation theory for linear regression
and underdetermined quadratic interpolation models based on sampling only from feasible points.
This theory �ts the requirements of the method from [22], and so allows this framework to be
used with more practical model choices.
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(lindon.roberts@sydney.edu.au). This work was supported by the Australian Research Council Discovery Early
Career Award DE240100006.
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1.1 Existing work

Model-based DFOmethods for unconstrained problems have well-established convergence [13, 16]
and worst-case complexity theory [17, 25]. This theory relies on building (typically linear or
quadratic) interpolants for the objective function based on samples of the objective at speci�c
points, which must be �fully linear�, i.e. satisfying speci�c error bounds. Unlike much approxima-
tion theory in numerical analysis (e.g. [32]), it is typically assumed that we have limited ability
to select the sample points and instead should use as many pre-existing evaluations as possible
(motivated by problems with computationally expensive objectives, an important DFO use case).
In this setting, the model accuracy can be bounded by quantities only depending on the choice of
sampling points (and information about the smoothness of the objective). Originally in [13], the
concept of �Λ-poised� interpolation sets was introduced as a su�cient condition for constructing
fully linear interpolation models, as well as developing procedures for improving the choice of
sample points (while retaining as many existing points as possible) to construct a Λ-poised set.
This was extended in [14] for polynomial regression and underdetermined polynomial interpo-
lation models. A speci�c form of underdetermined quadratic interpolation, namely minimum
Frobenius interpolation, was introduced and extensively studied in [26, 27] and is the foundation
of several state-of-the-art codes [28, 29, 6]. An analysis of minimum Frobenius interpolation in
terms of Λ-poisedness/fully linear error bounds was given in [16]. Alternate model constructions
have been proposed based on weighted linear regression [5], underdetermined quadratic inter-
polation based on Sobolev norms [37], radial basis functions (RBF) [35] and combinations of
polynomial and RBFs [2], for example.

Many model-based DFO methods have been proposed for constrained optimization; see [25,
Section 7] for a thorough survey. We note in particular the following strictly feasible meth-
ods: [10] studies convex-constrained problems, [29, 19] and [34, Section 6.3] consider bound con-
straints, and [20] considers linear inequality constraints. Strictly feasible methods for nonconvex-
constrainted problems have also been considered in [11, 9, 36]. Of these, where convergence was
established it was based on the assumption that fully linear models could be constructed using
the same Λ-poised interpolation sets as in the unconstrained case. However, this is potentially
impractical, as in some settings �it may be impossible to obtain a fully linear model using only
feasible points� [25, p. 362].

More recently, [22] introduces a model-based DFO method for solving (1.1) by adapting
the unconstrained approach from [15] based on gradient-based trust-region methods for convex-
constrained optimization [12, Chapter 12]. The method has convergence and worst-case com-
plexity results which align with unconstrained model-based DFO [17] and convex-constrained
gradient-based trust-region methods [7]. To make this approach practical, it introduced a weaker
notion of fully linear models which are su�cient for algorithm convergence, but which can be
attained using linear interpolation over a Λ-poised set of only feasible points. It also demon-
strated how to modify an interpolation set to make it Λ-poised (without changing too many
points). However, linear models are not typically used in practice, except for special cases (such
as nonlinear least-squares minimization [8]), with quadratic models being preferred [28, 29, 6].

We additionally note that the BOBYQA code [29] for bound-constrained optimization uses
maximization of Lagrange polynomials inside the feasible region�similar to how we will de�ne
Λ-poisedness in this setting�but this was a heuristic with no theoretical analysis.1

1.2 Contributions

The contributions of this work are:

� A generalization of the linear interpolation theory (based on sampling feasible points) from
[22] to the case of linear regression models. This includes fully linear error bounds and
procedures to generate Λ-poised interpolation sets (which are simpler than those developed
in [22]).

1In fact, our results here give some theoretical justi�cation to this approach.
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� A full approximation theory for underdetermined quadratic interpolation (in the style of
[26, 27]) based on sampling only feasible points. This includes derivation of fully linear
error bounds, de�ning the relevant notion of Λ-poisedness in this setting, and procedures
for e�ciently generating Λ-poised sets. By construction, in the case of a full interpolation
set of (n+1)(n+2)/2 points for quadratic interpolation, this approach produces the same
result as standard quadratic interpolation, and so our results also apply to this setting.

While the linear regression theory is of independent interest for DFO applied to noisy objec-
tives [24], it is primarily included as a prerequisite for deriving the quadratic results. The
results proven in both cases are su�cient to enable these model constructions to be used in the
algorithmic framework from [22] (with the associated convergence and worst-case complexity
guarantees).

While the formulations and results are very similar to those for the unconstrained case from
[14], the constrained setting necessitates new approaches for proving the results (which when
applied to the C = Rn case provide simpler proofs of existing results).

Organization A summary of the modi�ed fully linear model accuracy requirement and associ-
ated algorithm from [22] is given in Section 2. That Λ-poisedness (only over the feasible region)
guarantees fully linear interpolation models is �rst shown for linear regression models in Section 3
and then for (underdetermined) quadratic interpolation models in Section 4. Lastly, Section 5
provides concrete procedures for identifying and constructing Λ-poised quadratic interpolation
models using only feasible points.

Notation We let ∥ · ∥ be the Euclidean norm of vectors and the operator 2-norm of matrices,
and use B(x,∆) for x ∈ Rn and ∆ > 0 for the closed ball {y ∈ Rn : ∥y − x∥ ≤ ∆}.

2 Background

This section summarizes the key background and results from [22], which provide a model-based
DFO algorithm for solving (1.1).

We now outline how problem (1.1) can be solved using model-based DFO methods. We begin
with outlining our problem assumptions.

Assumption 2.1. The objective function f : Rn → R is bounded below by flow and continuously
di�erentiable, and ∇f is L∇f -Lipschitz continuous.

Although ∇f exists, we assume that it is not available to the algorithm as an oracle.

Assumption 2.2. The feasible set C ⊆ Rn is closed and convex with nonempty interior.

Assumption 2.2 implies that the Euclidean projection operator for C,

projC(y) := argmin
x∈C

∥y − x∥2, (2.1)

is a well-de�ned function projC : Rn → C [3, Theorem 6.25]. Our framework is based on a setting
in which projC is inexpensive to evaluate (at least compared to evaluations of the objective f).
Several examples of feasible sets C which have simple analytic expressions for projC are given
in [3, Table 6.1].

In this work, as in [22], we aim to �nd a �rst-order optimal solution to (1.1). To measure
this, we use the following �rst-order criticality measure from [12, Section 12.1.4], de�ned for all
x ∈ C:

πf (x) :=

∣∣∣∣∣∣ min
x+d∈C
∥d∥≤1

∇f(x)Td

∣∣∣∣∣∣ . (2.2)
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From [12, Theorem 12.1.6], we have that πf is a non-negative, continuous function of x and
πf (x∗) = 0 if and only if x∗ is a �rst-order critical point for (1.1). In the unconstrained case
C = Rn, then (2.2) simpli�es to πf (x) = ∥∇f(x)∥. For notational convenience, we de�ne

πf
k := πf (xk), where xk ∈ Rn is the k-th iterate of our algorithm.

2.1 Model Construction & Accuracy

We will consider a model-based DFO approach for solving (1.1). Speci�cally, at each iteration
k we construct a local quadratic approximation to f which we hope to be accurate near the
current iterate xk ∈ Rn:

f(y) ≈ mk(y) := ck + gT
k (y − xk) +

1

2
(y − xk)

THk(y − xk), (2.3)

for some ck ∈ R, gk ∈ Rn and Hk ∈ Rn×n with Hk = HT
k .

Assumption 2.3. There exists κH ≥ 1 such that ∥Hk∥ ≤ κH − 1 for all k.

Convergence of our algorithm will require that the local models mk (2.3) are su�ciently
accurate approximations of the objective f (at least on some iterations). The required notion of
`su�ciently accurate' is the following:

De�nition 2.4. The model mk (2.3) is C-fully linear in B(xk,∆k) if there exist κef, κeg > 0,
independent of k, such that

max
xk+d∈C
∥d∥≤∆k

|f(xk + d)−mk(xk + d)| ≤ κef∆
2
k, (2.4a)

max
xk+d∈C
∥d∥≤1

∣∣(∇f(xk)− gk)
Td
∣∣ ≤ κeg∆k. (2.4b)

When we wish to refer to this notion in the abstract sense, we use the term �C-full linearity�.

We note in particular that (2.4a) uses the constraint ∥d∥ ≤ ∆k and (2.4b) uses ∥d∥ ≤ 1.
This essentially corresponds to the standard de�nition of fully linear models [15, De�nition 3.1]
in the unconstrained case C = Rn.

Our algorithm will require the existence of two procedures related to C-full linearity: given
a model mk, iterate xk and trust-region radius ∆k, we assume that we can

� Verify whether or not mk is C-fully linear in B(xk,∆k); and

� If mk is not C-fully linear, create a new model (typically a small modi�cation of mk) which
is C-fully linear in B(xk,∆k).

Lastly, our model mk (2.3) induces an approximate �rst-order criticality measure, namely

πm(x) :=

∣∣∣∣∣∣ min
x+d∈C
∥d∥≤1

gT
k d

∣∣∣∣∣∣ . (2.5)

As above, for convenience we will de�ne πm
k := πm(xk).

2.2 Algorithm Speci�cation

Our DFO method is based on a trust-region framework. That is, given the local model mk (2.3),
we calculate a potential new iterate as xk + sk, where sk is an approximate minimizer of the
trust-region subproblem

min
x+s∈C
∥s∥≤∆k

mk(xk + s), (2.6)

where ∆k > 0 is a parameter updated dynamically inside the algorithm. Formally, we require
the following, which can be achieved using a Goldstein-type linesearch method [12, Algorithm
12.2.2 & Theorem 12.2.2].
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Algorithm 1 CDFO-TR: model-based DFO method for (1.1), from [22].

Input: Starting point x0 ∈ Rn and trust-region radius ∆0 > 0.

Parameters: maximum trust-region radius ∆max ≥ ∆0, scaling factors 0 < γdec < 1 < γinc,
criticality constants ϵC , µ > 0, and acceptance threshold η ∈ (0, 1).

1: Build an initial model m0 (2.3).
2: for k = 0, 1, 2, . . . do
3: if πm

k < ϵC and (πm
k < µ−1∆k or mk is not C-fully linear in B(xk,∆k)) then

4: Criticality step: Set xk+1 = xk. If mk is C-fully linear in B(xk,∆k), set ∆k+1 =
γdec∆k, otherwise set ∆k+1 = ∆k. Construct mk+1 to be C-fully linear in B(xk+1,∆k+1).

5: else ← πm
k ≥ ϵC or (πm

k ≥ µ−1∆k and mk is C-fully linear in B(xk,∆k))
6: Approximately solve (2.6) to get a step sk.
7: Evaluate f(xk + sk) and calculate ratio

ρk :=
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
. (2.8)

8: if ρk ≥ η then
9: Successful step: Set xk+1 = xk + sk and ∆k+1 = min(γinc∆k,∆max). Form mk+1

in any manner.
10: else if mk is not C-fully linear in B(xk,∆k) then
11: Model-improving step: Set xk+1 = xk and ∆k+1 = ∆k, and construct mk+1 to be

C-fully linear in B(xk+1,∆k+1).
12: else ← ρk < η and mk is C-fully linear in B(xk,∆k)
13: Unsuccessful step: Set xk+1 = xk and∆k+1 = γdec∆k. Formmk+1 in any manner.
14: end if

15: end if

16: end for

Assumption 2.5. There exists a constant c1 ∈ (0, 1) such that the computed step sk satis�es
xk + sk ∈ C, ∥sk∥ ≤ ∆k and the generalized Cauchy decrease condition:

mk(xk)−mk(xk + sk) ≥ c1π
m
k min

(
πm
k

1 + ∥Hk∥
,∆k, 1

)
. (2.7)

The full derivative-free algorithm for solving (1.1) from [22], called CDFO-TR, is given in
Algorithm 1. The overall structure is similar to other model-based DFO methods, such as [15,
Algorithm 4.1] for unconstrained minimization.

We have the following global convergence and worst-case complexity results for Algorithm 1
from [22].

Theorem 2.6 (Theorem 3.10 & Corollary 3.15, [22]). If Assumptions 2.1, 2.3 and 2.5 hold, then

limk→∞ πf
k = 0. Moreover, if ϵ ∈ (0, 1] and ϵC ≥ c2ϵ for some constant c2 > 0, then the number

of iterations k before Algorithm 1 produces an iterate with πf
k < ϵ is at most O(κHκ2

dϵ
−2), where

κd := max(κef, κeg).

In [22], details are given on how to construct fully linear models based on linear interpolation
to feasible points. Although linear models can be practical for some structured problems, such
as nonlinear least-squares objectives (e.g. [8]), quadratic models are generally preferred. The
remainder of this paper is devoted to the construction of fully linear quadratic models by only
sampling the objective at feasible points.

3 Linear Regression Models

We �rst consider how to extend the linear interpolation approximation theory from [22] to the
case of linear regression models (with the slight extra generalization that the base point x does
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not need to be an interpolation point). The purpose of this is twofold: regression models can be
useful for modelling noisy objectives (e.g. [5]), and this theory will be necessary to develop the
corresponding quadratic interpolation theory in Section 4. In the unconstrained case C = Rn,
these results were originally proven in [14].

Suppose we have sampled the function f at p points {y1, . . . ,yp} ⊂ Rn (where p ≥ n + 1),
and given this information we wish to �nd a linear model

f(y) ≈ m(y) := c+ gT (y − x), (3.1)

by solving

min
c,g∈R×Rn

p∑
t=1

(f(yt)−m(yt))
2. (3.2)

Equivalently, we can �nd the c and g for our model by �nding the least-squares solution to the
p× (n+ 1) system

M

[
c
g

]
:=

1 (y1 − x)T

...
...

1 (yp − x)T

[c
g

]
=

f(y1)
...

f(yp)

 , (3.3)

which may be written as

[
c
g

]
= M†

f(y1)
...

f(yp)

 , (3.4)

where M† ∈ R(n+1)×p is the Moore-Penrose pseudoinverse of M .
Later we will require the following standard properties of M† (see, e.g. [18, Section 5.5.4]).

Lemma 3.1. For p ≥ n+1, the Moore-Penrose pesudoinverse M† of M (3.3) satis�es (MT )† =
(M†)T and M†MM† = M†. The minimal-norm solution to the underdetermined system MTu =
v is u = (MT )†v.

The quality of the choice of interpolation points will be assessed by considering the associ-
ated set of Lagrange polynomials. In this case, the Lagrange polynomials associated with our
interpolation set are the linear functions

ℓt(y) := ct + gT
t (y − x), ∀t = 1, . . . , p, (3.5)

each de�ned by the least-squares regression problem

min
ct,gt∈R×Rn

p+1∑
s=1

(δs,t − ℓt(ys))
2, ∀t = 1, . . . , p, (3.6)

or equivalently [
ct
gt

]
= M†et, ∀t = 1, . . . , p. (3.7)

Our notion of the sampled points {y1, . . . ,yp} being a `good' choice is given by the Lagrange
polynomials having small magnitude in the region of interest. This is formalized in the following
notion, which generalizes [14, De�nition 2.7] to the convex feasible region C.

De�nition 3.2. Given Λ ≥ 1, the set {y1, . . . ,yp} ⊂ C is Λ-poised for linear regression in
B(x,∆) ∩ C if {y2 − y1, . . . ,yp − y1} spans Rn and

max
t=1,...,p

|ℓt(y)| ≤ Λ, ∀y ∈ C ∩B(x,min(∆, 1)). (3.8)
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We note that if {y1, . . . ,yp} is Λ-poised for linear regression, then M has full column rank
(since {y2 − y1, . . . ,yp − y1} is assumed to span Rn). This requirement also necessitates that
p ≥ n+ 1.

Assuming the Λ-poisedness of {y1, . . . ,yp} will be su�cient for the associated linear regres-
sion model to be C-fully linear. The proof of this follows a similar structure to [22, Lemma 4.3
& Theorem 4.4], but with an increased complexity to the proofs coming from using regression
instead of interpolation.

Lemma 3.3. Suppose f satis�es Assumption 2.1 and C satis�es Assumption 2.2. Then if
{y1, . . . ,yp} is Λ-poised for linear regression in B(x,∆)∩C and ∥yt −x∥ ≤ βmin(∆, 1) for all
t = 1, . . . , p and some β > 0, we have

|m(y)− f(x)−∇f(x)T (y − x)| ≤ pΛL∇fβ
2

2
min(∆, 1)2, (3.9)

for all y ∈ B(x,min(∆, 1)) ∩ C. If we also have x ∈ C, this in turn implies error bounds on c
and g individually, namely

|c− f(x)| ≤ pΛL∇fβ
2

2
min(∆, 1)2, (3.10)

and

|(y − x)T (g −∇f(x))| ≤ pΛL∇fβ
2 min(∆, 1)2, (3.11)

for all y ∈ B(x,min(∆, 1)) ∩ C.

Proof. We begin by de�ning the residual of the least-squares problem (3.3) as

r := M

[
c
g

]
−

f(y1)
...

f(yp)

 = (MM† − I)

f(y1)
...

f(yp)

 ∈ Rp. (3.12)

Then for all t = 1, . . . , p have

m(yt)− f(x)−∇f(x)T (yt − x) =

[
c
g

]T [
1

yt − x

]
︸ ︷︷ ︸
=MT et

−f(x)−∇f(x)T (yt − x), (3.13)

= rTet + f(yt)− f(x)−∇f(x)T (yt − x). (3.14)

Now, �x y ∈ B(x,min(∆, 1))∩C. Since M has full column rank, its rows span Rn+1 and so
there exist constants αt(y) such that[

1
y − x

]
=

p∑
t=1

αt(y)

[
1

yt − x

]
= MTα(y). (3.15)

Of these, we take the α(y) with minimal norm (c.f. Lemma 3.1),

α(y) = (MT )†
[

1
y − x

]
. (3.16)

There are two key properties of α(y): �rstly,

ℓt(y) =

[
ct
gt

]T [
1

y − x

]
= eTt (M

†)T
[

1
y − x

]
= αt(y), (3.17)
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where the last equality follows (MT )† = (M†)T (Lemma 3.1). Hence |αt(y)| = |ℓt(y)| ≤ Λ from
the Λ-poisedness condition. Secondly, we have

α(y)Tr =

[
1

y − x

]T
M†(MM† − I)

f(y1)
...

f(yp)

 = 0, (3.18)

from M†MM† = M† (Lemma 3.1). All together, we have

|m(y)− f(x)−∇f(x)T (y − x)| =

∣∣∣∣∣
[
c
g

]T [
1

y − x

]
−
[
f(x)
∇f(x)

]T [
1

y − x

]∣∣∣∣∣ , (3.19)

=

∣∣∣∣∣
p∑

t=1

αt(y)

([
c
g

]T [
1

yt − x

]
−
[
f(x)
∇f(x)

]T [
1

yt − x

])∣∣∣∣∣ ,
(3.20)

=

∣∣∣∣∣
p∑

t=1

αt(y)
{
rTet + f(yt)− f(x)−∇f(x)T (yt − x)

}∣∣∣∣∣ ,
(3.21)

≤
∣∣α(y)Tr

∣∣+ L∇f

2

p∑
t=1

|αt(y)| · ∥yt − x∥2, (3.22)

≤ pΛL∇fβ
2

2
min(∆, 1)2, (3.23)

and we recover (3.9), where we used (3.18), |αt(y)| ≤ Λ and ∥yt − x∥ ≤ βmin(∆, 1) to get the
last inequality.

If x ∈ C, we can take y = x in (3.9) to get (3.10). Combining (3.10) with (3.9) we get

|(y − x)T (g −∇f(x))| ≤ |c+ gT (y − x)− f(x)−∇f(x)T (y − x)|+ |c− f(x)|, (3.24)

≤ pΛL∇fβ
2 min(∆, 1)2, (3.25)

and we get (3.11).

Theorem 3.4. Suppose the assumptions of Lemma 3.3 hold and x ∈ C. Then the regression
model (3.1) is C-fully linear in B(x,∆) with constants

κef = pΛL∇fβ
2 +

L∇f

2
, and κeg = pΛL∇fβ

2, (3.26)

in (2.4).

Proof. Fix y ∈ B(x,∆) ∩ C. We �rst derive κef by considering the cases ∆ > 1 and ∆ ≤ 1
separately.

If ∆ > 1, then ŷ = x + 1
∆ (y − x) ∈ B(x, 1) = B(x,min(∆, 1)). Since C is convex and

x,y ∈ C we also have ŷ ∈ C. Hence (3.9) gives

|c+ gT (ŷ − x)− f(x)−∇f(x)T (ŷ − x)| ≤ pΛL∇fβ
2

2
min(∆, 1)2, (3.27)

and so ∣∣∣∣c+ 1

∆
gT (y − x)− f(x)− 1

∆
∇f(x)T (y − x)

∣∣∣∣ ≤ pΛL∇fβ
2

2
min(∆, 1)2. (3.28)
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This gives us

|f(y)−m(y)| ≤ |f(y)− f(x)−∇f(x)T (y − x)|+ |m(y)− f(x)−∇f(x)T (y − x)|, (3.29)

≤ L∇f

2
∥y − x∥2 +∆

∣∣∣∣ 1∆c+
1

∆
gT (y − x)− 1

∆
f(x)− 1

∆
∇f(x)T (y − x)

∣∣∣∣ ,
(3.30)

≤ L∇f

2
∥y − x∥2 +∆

[∣∣∣∣c+ 1

∆
gT (y − x)− f(x)− 1

∆
∇f(x)T (y − x)

∣∣∣∣
+

∣∣∣∣( 1

∆
− 1

)
(c− f(x))

∣∣∣∣] , (3.31)

≤ L∇f

2
∆2 +∆

[
pΛL∇fβ

2

2
min(∆, 1)2

+

(
1− 1

∆

)
pΛL∇fβ

2

2
min(∆, 1)2

]
, (3.32)

≤ L∇f

2
∆2 + pΛL∇fβ

2∆min(∆, 1)2, (3.33)

=
L∇f

2
∆2 + pΛL∇fβ

2∆2, (3.34)

where we use (3.10) to get the fourth inequality, and the last line follows from ∆ > 1. Instead
if ∆ ≤ 1, then y ∈ B(x,min(∆, 1)) ∩ C already, and so (3.9) immediately gives

|f(y)−m(y)| = |f(y)− f(x)−∇f(x)T (y − x)|+
∣∣m(y)− f(x)−∇f(x)T (y − x)

∣∣ , (3.35)

≤ L∇f

2
∆2 +

pΛL∇fβ
2

2
min(∆, 1)2, (3.36)

≤ L∇f

2
∆2 +

pΛL∇fβ
2

2
∆2. (3.37)

Either way, we get the desired value of κef.
To get κeg we now �x an arbitrary ỹ ∈ B(x, 1) ∩ C and again consider the cases ∆ ≥ 1 and

∆ < 1 separately. First, if ∆ ≥ 1, then ỹ ∈ B(x,min(∆, 1)) ∩ C. From (3.11) we get

|(ỹ − x)T (g −∇f(x))| ≤ pΛL∇fβ
2 min(∆, 1)2 ≤ pΛL∇fβ

2∆, (3.38)

where the second inequality follows from ∆ ≥ 1. Alternatively, if ∆ < 1 then the convexity of C
implies that ŷ := x+∆(ỹ−x) ∈ B(x,∆)∩C = B(x,min(∆, 1))∩C. Again from (3.11) we get

|(ỹ − x)T (g −∇f(x))| = 1

∆
|(ŷ − x)T (g −∇f(x))|, (3.39)

≤ pΛL∇fβ
2∆−1 min(∆, 1)2, (3.40)

= pΛL∇fβ
2∆, (3.41)

where the last line follows from ∆ < 1. Again, either way we get the desired value of κeg.

4 Underdetermined Quadratic Interpolation Models

We now consider the case of forming C-fully linear quadratic interpolation models. Our approach
follows that of [26] for the unconstrained case, although the fully linear error bounds for this
approach were shown later in [16]. We note that this approach is di�erent to the underdetermined
quadratic interpolation used in [14].

Here, we aim to construct a quadratic model

f(y) ≈ m(y) := c+ gT (y − x) +
1

2
(y − x)TH(y − x), (4.1)
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where c ∈ R, g ∈ Rn and H ∈ Rn×n with H = HT . We assume that our interpolation set is
{y1, . . . ,yp} with p ∈ {n+ 2, . . . , (n+ 1)(n+ 2)/2}. The case p = (n+ 1)(n+ 2)/2 corresponds
to full quadratic interpolation [13, Section 4.2]. We exclude the case p = n+1 which, from (4.2)
below, corresponds to linear interpolation and was analyzed (in the convex-constrained case) in
[22, Section 4].

If n+2 ≤ p < (n+1)(n+2)/2 then there are in�nitely many models satisfying the interpolation
conditions f(yt) = m(yt) for all t = 1, . . . , p. So, following [26] we choose the model with
minimum Frobenius norm Hessian by solving

min
c,g,H∈R×Rn×Rn×n

1

4
∥H∥2F , (4.2a)

s.t. f(yt) = m(yt), ∀t = 1, . . . , p. (4.2b)

This is a convex quadratic program, and (as shown in [26]), reduces to solving the (p+ n+1)×
(p+ n+ 1) linear system

F


λ1

...
λp

c
g

 :=

[
Q M
MT 0

]


λ1

...
λp

c
g

 =


f(y1)

...
f(yp)
0
0

 ∈ Rp+n+1, (4.3)

where M ∈ Rp×(n+1) is from the linear regression problem (3.3) and Q ∈ Rp×p has entries
Qi,j = 1

2 [(yi − x)T (yj − x)]2 for i, j = 1, . . . , p. The solution to (4.3) immediately gives us c
and g; the (symmetric) model Hessian is given by H =

∑p
t=1 λt(yt−x)(yt−x)T . We note that

Q is symmetric positive semide�nite [26, eq. 2.10], and λ1, . . . , λp are the Lagrange multipliers
associated with constraints (4.2b).

The Lagrange polynomials associated with our interpolation set are

ℓt(y) := ct + gT
t (y − x) +

1

2
(y − x)THt(y − x), ∀t = 1, . . . , p, (4.4)

where ct, gt and Ht come from solving (4.2) with (4.2b) replaced bym(ys) = δs,t for s = 1, . . . , p.
Equivalently, we have

F

λt

ct
gt

 = et, ∀t = 1, . . . , p, (4.5)

and Ht =
∑p

s=1[λt]s(ys − x)(ys − x)T . This gives

ℓt(y) = ct + gt(y − x) +
1

2

p∑
s=1

[λt]s
[
(y − x)T (ys − x)

]2
, (4.6)

=

λt

ct
gt

T { 12 [(y − x)T (ys − x)
]2}s=1,...,p

1
y − x


︸ ︷︷ ︸

=:ϕ(y)

, (4.7)

= eTt F
−1ϕ(y). (4.8)

Given (4.3) and (4.5), we conclude thatλ1

...
λp

 =

p∑
t=1

f(yt)λt, c =

p∑
t=1

f(yt)ct, and g =

p∑
t=1

f(yt)gt, (4.9)
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which gives

m(y) =

p∑
t=1

f(yt)ℓt(y). (4.10)

We now have our new de�nition of Λ-poisedness:

De�nition 4.1. Given Λ ≥ 1, the interpolation set {y1, . . . ,yp} ⊂ C is Λ-poised for minimum
Frobenius norm interpolation in B(x,∆) ∩ C if F is invertible, and

max
t=1,...,p

|ℓt(y)| ≤ Λ, ∀y ∈ C ∩B(x,min(∆, 1)). (4.11)

Lemma 4.2. If the set {y1, . . . ,yp} ⊂ C is Λ-poised for minimum Frobenius norm interpolation,
then it is

√
pΛ-poised for linear regression.

Proof. Since F is invertible, the sub-matrix M has full column rank by [4, Theorem 3.3], and so
{y2 − y1, . . . ,yp − y1} spans Rn. The remainder of this proof is based on the argument in [16,
p. 83]. We note that since H = 0 is a global minimizer of the objective function (4.2), that if f
is linear then we have exact interpolation, m = f . Applying this to the functions f(y) = 1 and
f(y) = (y − x)Tei for i = 1, . . . , n, we get from (4.10) that

1 =

p∑
t=1

ℓt(y), (y − x)Tei =

p∑
t=1

(yt − x)Tei · ℓt(y), ∀i = 1, . . . , n. (4.12)

Denoting ℓ(y) ∈ Rp as the vector of all ℓ1(y), . . . , ℓp(y), these are equivalent to

MT ℓ(y) =

[
1

y − x

]
. (4.13)

Hence ℓ(y) is another solution to the (underdetermined) system (3.15). Since the minimal norm
solution to (3.15) was α(y), we must have ∥α(y)∥ ≤ ∥ℓ(y)∥. However from (3.17) we know
α(y) = ℓreg(y), where ℓreg(y) are the Lagrange polynomials associated with linear regression
for {y1, . . . ,yp}. Thus ∥ℓreg(y)∥ ≤ ∥ℓ(y)∥. Now, �xing any y ∈ B(x,min(∆, 1)) ∩ C we get

∥ℓreg(y)∥∞ ≤ ∥ℓreg(y)∥ ≤ ∥ℓ(y)∥ ≤
√
p ∥ℓ(y)∥∞ ≤

√
pΛ, (4.14)

and we are done.

We are now in a position to construct our fully linear error bounds. We will begin by proving
a bound on the size of the model Hessian, which requires the following technical result.

Lemma 4.3. Fix t > 1 and c1, c2 ≥ 0. If a, b ∈ R satisfy |a + b| ≤ c1 and |ta + b| ≤ c2 then
|a| ≤ (c1 + c2)/(t− 1) and |b| ≤ (tc1 + c2)/(t− 1).

Proof. We �rst prove the bound on |a|. To �nd a contradiction, �rst suppose that a > (c1 +
c2)/(t − 1) and so a > 0. Since a + b ≥ −c1 we have b ≥ −c1 − a, which means ta + b ≥
(t − 1)a − c1 > c2, contradicting |ta + b| ≤ c2. Instead, suppose that a < −(c1 + c2)/(t − 1)
and so a < 0. Then a + b ≤ c1 means b ≤ c1 − a and so ta + b ≤ (t − 1)a + c1 < −c2, again
contradicting |ta+ b| ≤ c2.

The bound on |b| follows from similar reasoning. First suppose that b > (tc1+c2)/(t−1) and
so b > 0. Since a+ b ≤ c1 we have a ≤ c1 − b and so ta+ b ≤ tc1 − (t− 1)b < −c2, contradicting
|ta+ b| ≤ c2. Instead suppose that b < −(tc1 + c2)/(t− 1) and so b < 0. Then since a+ b ≥ −c1
we have a ≥ −c1 − b and so ta+ b ≥ −tc1 − (t− 1)b > c2, again contradicting |ta+ b| ≤ c2.

We can now give our bound on the model Hessian. In the existing (unconstrained) theory,
this is presented as a bound on ∥H∥ [16, Theorem 5.7], but here we only need to consider speci�c
Rayleigh-type quotients.
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Lemma 4.4. Suppose f and C satisfy Assumptions 2.1 and 2.2 respectively. Then if x ∈
C, {y1, . . . ,yp} is Λ-poised for underdetermined quadratic interpolation in B(x,∆) ∩ C and
∥yt−x∥ ≤ βmin(∆, 1) for all t = 1, . . . , p and some β > 0, then the model m generated by (4.2)
has Hessian H satisfying

max
s,t=1,...,p

|(ys − x)TH(yt − x)|
β2 min(∆, 1)2

≤ κH := L∇fp
[
8Λβ2 + 36Λβ + 58Λ + 6

]
. (4.15)

Proof. First, �x u ∈ {1, . . . , p} and consider the associated Lagrange polynomial

ℓu(y) = cu + gT
u (y − x) +

1

2
(y − x)THu(y − x). (4.16)

Additionally, �x s, t ∈ {1, . . . , p}, and we will �rst provide a bound on

|(ys − x)THu(yt − x)|. (4.17)

To do this, we consider the value of ℓu at �ve di�erent points: x, ys, yt, plus

ŷs := x+
1

β̂
(ys − x), and ŷt := x+

1

β̂
(yt − x), (4.18)

where β̂ := max(β, 2). Since ∥ys − x∥ ≤ βmin(∆, 1) we have ∥ŷs − x∥ ≤ β

β̂
min(∆, 1) ≤

min(∆, 1), and ŷs ∈ C by convexity, since x,ys ∈ C. Similarly, we also have ŷt ∈ B(x,min(∆, 1))∩
C. For these points, from the de�nition of Λ-poisedness we know |ℓu(x)|, |ℓu(ŷs)|, |ℓu(ŷt)| ≤ Λ
and by de�nition of Lagrange polynomials we have ℓu(ys), ℓu(yt) ∈ {0, 1} and so |ℓu(ys)|, |ℓu(yt)| ≤
1.

From |ℓu(x)| ≤ Λ we have |cu| ≤ Λ, and so |ℓu(ŷs)| ≤ Λ implies

Λ ≥
∣∣∣∣cu + gT

u (ŷs − x) +
1

2
(ŷs − x)THu(ŷs − x)

∣∣∣∣ , (4.19)

=

∣∣∣∣cu +
1

β̂
gT
u (ys − x) +

1

2β̂2
(ys − x)THu(ys − x)

∣∣∣∣ , (4.20)

≥ 1

β̂2

∣∣∣∣β̂gT
u (ys − x) +

1

2
(ys − x)THu(ys − x)

∣∣∣∣− |cu|, (4.21)

where the last line follows from the reverse triangle inequality. Together with |ℓu(ys)| ≤ 1, we
get ∣∣∣∣gT

u (ys − x) +
1

2
(ys − x)THu(ys − x)

∣∣∣∣ ≤ 1 + |cu| ≤ Λ + 1, (4.22)∣∣∣∣β̂gT
u (ys − x) +

1

2
(ys − x)THu(ys − x)

∣∣∣∣ ≤ 2Λβ̂2. (4.23)

Since β̂ > 1 by de�nition, applying Lemma 4.3 we conclude

∣∣gT
u (ys − x)

∣∣ ≤ Λ + 1 + 2Λβ̂2

β̂ − 1
, (4.24)

1

2

∣∣(ys − x)THu(ys − x)
∣∣ ≤ β̂(Λ + 1) + 2Λβ̂

β̂ − 1
. (4.25)

Since s was arbitrary, the same inequalities hold with ys replaced by yt.
Now, consider the point

ŷs,t := x+
1

2
(ŷs − x) +

1

2
(ŷt − x). (4.26)
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Since x, ŷs, ŷt ∈ C, we have ŷs,t ∈ C, and also

∥ŷs,t − x∥ ≤ 1

2
∥ŷs − x∥+ 1

2
∥ŷt − x∥ ≤ min(∆, 1), (4.27)

and so |ℓu(ŷs,t)| ≤ Λ. Written in full, this is∣∣∣∣cu +
1

2β̂
gT
u (ys − x) +

1

2β̂
gT
u (yt − x)

+
1

2

(
1

2β̂
(ys − x) +

1

2β̂
(yt − x)

)T

Hu

(
1

2β̂
(ys − x) +

1

2β̂
(yt − x)

)∣∣∣∣∣ ≤ Λ. (4.28)

That is,

1

4β̂2
|(ys − x)THu(yt − x)| ≤ Λ + |cu|+

1

2β̂

(
|gT

u (ys − x)|+ |gT
u (yt − x)|

)
+

1

8β̂2

(
|(ys − x)THu(ys − x)|+ |(yt − x)THu(yt − x)|

)
.

(4.29)

Applying |cu| ≤ Λ, (4.24) and (4.25), we conclude

1

4β̂2
|(ys − x)THu(yt − x)| ≤ 2Λ +

Λ + 1 + 2Λβ̂2

β̂(β̂ − 1)
+

β̂(Λ + 1) + 2Λβ̂

2β̂2(β̂ − 1)
, (4.30)

or

|(ys − x)THu(yt − x)| ≤ κ̃, (4.31)

for all s, t, u = 1, . . . , p, where

κ̃ := 8Λβ̂2 +
4Λβ̂ + 4β̂ + 8Λβ̂3

β̂ − 1
+

2β̂(Λ + 1) + 4Λβ̂

β̂ − 1
= 8Λβ̂2 +

8Λβ̂3 + 10Λβ̂ + 6β̂

β̂ − 1
. (4.32)

More simply, we have

κ̃ = 8Λβ̂2 +
8Λ(β̂ − 1)3 + 24Λ(β̂ − 1)2 + (34Λ + 6)(β̂ − 1) + 18Λ + 6

β̂ − 1
, (4.33)

≤ 8Λ(β + 2)2 + 8Λ(β + 1)2 + 24Λ(β + 1) + 34Λ + 6 + 18Λ + 6, (4.34)

= 16Λβ2 + 72Λβ + 116Λ + 12, (4.35)

using 2 ≤ β̂ = max(β, 2) ≤ β + 2 to get the inequality. Now let us turn our attention to the
model m (4.2). Note that we may add/subtract a linear function to f(y) without changing H
(since this just changes c and g in (4.2)). So, we consider the model m̃ generated by interpolation

to f̃(y) := f(y)− f(x)−∇f(x)T (y − x). From (4.10) we may write

H = H̃ =

p∑
u=1

f̃(yu)Hu, (4.36)

where Hu are the Hessians of the Lagrange polynomials. From Assumption 2.1, we also have
|f̃(y)| ≤ L∇f

2 ∥y − x∥2. Then for any s, t = 1, . . . , p we conclude

|(ys − x)TH(yt − x)| ≤
p∑

u=1

|f̃(yu)| · |(ys − x)THu(yt − x)|, (4.37)

≤
p∑

u=1

L∇f

2
κ̃∥yu − x∥2, (4.38)

≤ L∇f

2
κ̃pβ2 min(∆, 1)2. (4.39)

and we are done after applying (4.35).
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Remark 4.5. In the unconstrained case, [16, Theorem 5.7] gives the bound

∥H∥ ≤ 4(p+ 1)

√
(n+ 1)(n+ 2)

2
L∇fΛmax(1,∆2

max), (4.40)

where ∆max is an upper bound for ∆. This result assumes ∥yt − x∥ ≤ ∆, and so to match our
assumptions it requires ∥yt − x∥ ≤ βmin(∆, 1) where β = ∆max. Thus we see that Lemma 4.4
improves on [16, Theorem 5.7] by a factor of O(n).

Next, we can prove an analogous result to Lemma 3.3.

Lemma 4.6. Suppose the assumptions of Lemma 4.4 are satis�ed. Then the model m generated
by (4.2) satis�es∣∣c+ gT (y − x)− f(x)−∇f(x)T (y − x)

∣∣ ≤ 1

2
p3/2Λ(L∇f + κH)β2 min(∆, 1)2, (4.41)

for all y ∈ B(x,min(∆, 1)) ∩ C. Furthermore if x ∈ C, we have

|c− f(x)| ≤ 1

2
p3/2Λ(L∇f + κH)β2 min(∆, 1)2, (4.42)

and

|(g −∇f(x))T (y − x)| ≤ p3/2Λ(L∇f + κH)β2 min(∆, 1)2, (4.43)

for all y ∈ B(x,min(∆, 1)) ∩ C.

Proof. Fix y ∈ B(x,min(∆, 1)) ∩ C. From Lemma 4.2, our interpolation set is
√
pΛ-poised for

linear regression. Therefore there exist constants {αt(y)}pt=1 such that[
1

y − x

]
=

p∑
t=1

αt(y)

[
1

yt − x

]
, (4.44)

where |αt(y)| = |ℓregt (y)| ≤ √pΛ (provided the minimal norm solution is taken as in (3.15)).
Thus we have∣∣c+ gT (y − x)− f(x)−∇f(x)T (y − x)

∣∣
=

∣∣∣∣∣
[

c− f(x)
g −∇f(x)

]T [
1

y − x

]∣∣∣∣∣ , (4.45)

≤
p∑

t=1

√
p Λ

∣∣∣∣∣
[

c− f(x)
g −∇f(x)

]T [
1

yt − x

]∣∣∣∣∣ , (4.46)

=
√
p Λ

p∑
t=1

∣∣∣∣m(yt)− f(x)−∇f(x)T (yt − x)− 1

2
(yt − x)TH(yt − x)

∣∣∣∣ , (4.47)

≤ √p Λ
p∑

t=1

[∣∣f(yt)− f(x)−∇f(x)T (yt − x)
∣∣+ 1

2

∣∣(yt − x)TH(yt − x)
∣∣] , (4.48)

≤ p3/2Λ

(
L∇f

2
β2 min(∆, 1)2 +

κH

2
β2 min(∆, 1)2

)
, (4.49)

using Assumption 2.1 and Lemma 4.4 in the last line, and we have (4.41). To get (4.42), we just
take y = x in (4.41). Finally, to get (4.43), we use

|(g −∇f(x))T (y − x)| ≤ |c+ gT (y − x)− f(x)−∇f(x)T (y − x)|+ |c− f(x)|, (4.50)

together with (4.41) and (4.42).
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Finally, we can give our fully linear error bounds for underdetermined quadratic interpolation
models.

Theorem 4.7. Suppose f and C satisfy Assumptions 2.1 and 2.2 respectively. Then if x ∈
C, {y1, . . . ,yp} is Λ-poised for underdetermined quadratic interpolation in B(x,∆) ∩ C and
∥yt−x∥ ≤ βmin(∆, 1) for all t = 1, . . . , p and some β > 0, then the model m generated by (4.2)
is fully linear in B(x,∆) (in the sense of De�nition 2.4) with constants

κef =
1

2
L∇f +

3

2
p3/2Λ(L∇f + κH)β2 +

1

2
pΛ2κHβ2, and κeg = p3/2Λ(L∇f + κH)β2, (4.51)

in (2.4), where κH is de�ned in Lemma 4.4.

Proof. First �x y ∈ B(x,∆) ∩ C and we will derive κef by considering the cases ∆ ≥ 1 and
∆ < 1 separately. If ∆ ≥ 1 then ŷ := x+∆−1(y−x) is in B(x, 1) = B(x,min(∆, 1)) and ŷ ∈ C
since C is convex. We then apply Lemma 4.6 to get

|(y − x)T (g −∇f(x))| = ∆|(ŷ − x)T (g −∇f(x))|, (4.52)

≤ p3/2Λ(L∇f + κH)β2∆min(∆, 1)2, (4.53)

≤ p3/2Λ(L∇f + κH)β2∆2, (4.54)

where the last inequality follows from min(∆, 1)2 = 1 ≤ ∆. Also, from (4.44) we have ŷ − x =∑p
t=1 αt(ŷ)(yt − x) with |αt(y)| ≤

√
pΛ, and so from Lemma 4.4,

|(y − x)TH(y − x)| = ∆2|(ŷ − x)TH(ŷ − x)|, (4.55)

≤ ∆2

p∑
s,t=1

∣∣αs(ŷ)αt(ŷ)(ys − x)TH(yt − x)
∣∣ , (4.56)

≤ pΛ2κHβ2∆2 min(∆, 1)2, (4.57)

= pΛ2κHβ2∆2, (4.58)

again using ∆ ≥ 1 in the last line.
Instead, if ∆ < 1 then y ∈ B(x,min(∆, 1)) ∩ C and we apply Lemma 4.6 directly to get

|(y − x)T (g −∇f(x))| ≤ 1

2
p3/2Λ(L∇f + κH)β2 min(∆, 1)2, (4.59)

= p3/2Λ(L∇f + κH)β2∆2. (4.60)

Also, using Lemma 4.4 we have

|(y − x)TH(y − x)| ≤
p∑

t=1

∣∣αs(y)αt(y)(ys − x)TH(yt − x)
∣∣ , (4.61)

≤ pΛ2κHβ2 min(∆, 1)2, (4.62)

= pΛ2κHβ2∆2. (4.63)

In either case, we use (4.54) and (4.58), or (4.60) and (4.63), with Assumption 2.1 and Lemma 4.6
to get

|f(y)−m(y)| ≤ |f(y)− f(x)−∇f(x)T (y − x)|

+ |c+ gT (y − x) +
1

2
(y − x)TH(y − x)− f(x)−∇f(x)T (y − x)|, (4.64)

≤ 1

2
L∇f∆

2 + |c− f(x)|+ |(y − x)T (g −∇f(x))|+ 1

2
|(y − x)TH(y − x)|,

(4.65)

≤ 1

2
L∇f∆

2 +
1

2
p3/2Λ(L∇f + κH)β2 min(∆, 1)2

+ p3/2Λ(L∇f + κH)β2∆2 +
1

2
pΛ2κHβ2∆2, (4.66)
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and we get the value of κef after min(∆, 1) ≤ ∆.
To get κeg we now �x an arbitrary ỹ ∈ B(x, 1) ∩ C and again consider the cases ∆ ≥ 1 and

∆ < 1 separately. First, if ∆ ≥ 1, then ỹ ∈ B(x,min(∆, 1)) ∩ C, and applying Lemma 4.6 we
get

|(ỹ − x)T (g −∇f(x))| ≤ p3/2Λ(L∇f + κH)β2 min(∆, 1)2, (4.67)

≤ p3/2Λ(L∇f + κH)β2∆, (4.68)

since min(∆, 1)2 = 1 ≤ ∆. Alternatively, if ∆ < 1 then the convexity of C implies that
ŷ := x+∆(ỹ − x) ∈ B(x,∆) ∩ C = B(x,min(∆, 1)) ∩ C. Again we apply Lemma 4.6 and get

|(ỹ − x)T (g −∇f(x))| = ∆−1|(ŷ − x)T (g −∇f(x))|, (4.69)

≤ p3/2Λ(L∇f + κH)β2∆−1 min(∆, 1)2, (4.70)

= p3/2Λ(L∇f + κH)β2∆. (4.71)

The value for κeg then follows from (4.68) and (4.71).

Remark 4.8. The fully linear error bounds for the unconstrained case [14, 16] give κef, κeg =
O(p3/2Λ(L∇f + κH)), so Theorem 4.7 matches the bound for κeg up to a factor of β2 (but with
a value of κH which is O(n) smaller than the unconstrained case; see Remark 4.5). Our value of
κef has an extra term of size O(pΛ2κHβ2) and so may be larger depending on the relative sizes
of p and Λ.

5 Constructing Λ-Poised Quadratic Models

To meet all the requirements of Algorithm 1, we require procedures which can verify whether or
not a given model is C-fully linear, and if not, modify it to be C-fully linear. From Theorem 4.7
it is clear that it su�ces to verify/ensure that {y1, . . . ,yp} is Λ-poised for underdetermined
quadratic interpolation in B(x,∆) ∩ C and ∥yt − x∥ ≤ βmin(∆, 1) for all t = 0, . . . , p.

In the �rst case�verifying whether not the interpolation set is Λ-poised�we may follow
the approach in [22, Section 4.3.1] and simply maximize/minimize each ℓt in B(x,min(∆, 1)) ∩
C. Checking ∥yt − x∥ ≤ βmin(∆, 1) is straightforward. Although maximizing/minimizing ℓt,
a possibly nonconvex quadratic function, in B(x,min(∆, 1)) ∩ C may not be straightforward
depending on the structure of C, we only need to know if the solution is above/below Λ and
not the exact solution. Existing solvers, including potentially global optimization solvers, are
su�cient for this.

We now consider the situation where {y1, . . . ,yp} is not Λ-poised, and we wish to construct
a new interpolation set which is Λ-poised. There are two possible scenarios:

� The associated matrix F in (4.3) is not invertible; or

� The matrix F is invertible but |ℓt(y)| > Λ for some t = 1, . . . , p and y ∈ B(x,min(∆, 1))∩
C.

We will describe how to handle both of these situations in Section 5.2, but we will �rst need a
technical result about how the matrix F in (4.3) changes as interpolation points are changed.

5.1 Updating the matrix F

In this section we analyze changes in the determinant of the matrix F as interpolation points
are updated. These results are based on ideas from [26, Section 4], which considers changes in
F−1 from updating interpolation points, rather than det(F ).

Lemma 5.1. If A is a symmetric, invertible matrix and we form Ã by changing the t-th row
and column of A to ṽ, then

det(Ã) =
[
(eTt A

−1ṽ)2 + (eTt A
−1et)ṽ

T (et −A−1ṽ)
]
det(A). (5.1)
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Proof. Denote the t-th row and column of A by v := Aet. We �rst note that Ã can be written
as a symmetric rank-3 update of A:

Ã = A+ (ṽ − v)eTt + et(ṽ − v)T − (ṽt − vt)ete
T
t . (5.2)

The �rst two update terms add ṽ−v to the t-th column and row respectively, and the last term
corrects for the double update of At,t from the �rst two updates. We can then apply the matrix
determinant lemma2 to get

det(Ã)

det(A)
= det

 1 + eTt A
−1(ṽ − v) eTt A

−1et eTt A
−1et

(ṽ − v)TA−1(ṽ − v) 1 + (ṽ − v)TA−1et (ṽ − v)TA−1et
−(ṽt − vt)e

T
t A

−1(ṽ − v) −(ṽt − vt)e
T
t A

−1et 1− (ṽt − vt)e
T
t A

−1et

 ,

(5.3)

= det

1 + τ α α
β 1 + τ τ
−γτ −γα 1− γα

 , (5.4)

where α := eTt A
−1et, β := (ṽ − v)TA−1(ṽ − v), γ := ṽt − vt and τ := eTt A

−1(ṽ − v) =
(ṽ − v)TA−1et since A−1 is symmetric. Directly computing, we get

det(Ã)

det(A)
= (1 + τ) [(1 + τ)(1− γα) + τγα]− β

[
α(1− γα) + γα2

]
− γτ [ατ − α(1 + τ)] , (5.5)

= (1 + τ) [1 + τ − γα]− βα+ γτα, (5.6)

= (1 + τ)2 − α(γ + β). (5.7)

Finally, since v = Aet, we get

τ = eTt A
−1(ṽ − v) = eTt A

−1ṽ − eTt A−1v︸ ︷︷ ︸
=et

= eTt A
−1ṽ − 1, (5.8)

and

γ + β = (ṽ − v)Tet + (ṽ − v)TA−1(ṽ − v), (5.9)

= ṽTet − vTet + ṽTA−1ṽ − 2ṽTA−1v + vTA−1v, (5.10)

= ṽTet − vTet + ṽTA−1ṽ − 2ṽTet + vTet, (5.11)

= ṽT (A−1ṽ − et). (5.12)

Our result then follows from (5.7) combined with the de�nition of α, (5.8) and (5.12).

Theorem 5.2. Suppose the interpolation set {y1, . . . ,yp} ∈ Rn is such that the matrix F in
(4.3) is invertible. If the point yt for some t ∈ {1, . . . , p} is changed to a new point y ∈ Rn, then

the new interpolation set yields a new matrix F̃ in (4.3) which satis�es

|det(F̃ )| ≥ ℓt(y)
2|det(F )|. (5.13)

Proof. If ℓt(y) = 0, then the result holds trivially, so we assume without loss of generality that
ℓt(y) ̸= 0.

Changing the interpolation point yt to y requires replacing the t-th row and column of F by
ṽ, where

ṽs =
1

2

[
(y − x)T (ys − x)

]2
, if s ∈ {1, . . . , p} except for s = t, (5.14a)

ṽt =
1

2

[
(y − x)T (y − x)

]2
, (5.14b)

ṽp+2 = 1, (5.14c)

ṽp+2+i = [y − x]i, ∀i = 1, . . . , n. (5.14d)

2That is, det(A+ UV T ) = det(I + V TA−1U) det(A) if A is invertible, e.g. [21, Corollary 18.1.4].
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Algorithm 2 Construct an underdetermined quadratic interpolation set with invertible F (4.3).

Input: Trust region center x ∈ C and radius ∆ > 0, number of interpolation points p ∈
{n+ 2, . . . , (n+ 1)(n+ 2)/2}.

1: Generate an initial collection of p points {y1, . . . ,yp} ⊂ B(x,min(∆, 1)) using the method
from [29, Section 2].

2: while there exists t ∈ {1, . . . , p} with yt /∈ C do

3: Calculate Lagrange polynomial ℓt and �nd y ∈ B(x,min(∆, 1)) ∩ C with ℓt(y) ̸= 0.
4: Replace the interpolation point yt by y.
5: end while

6: return interpolation set {y1, . . . ,yp}.

That is, ṽ is the same as ϕ(y) from (4.8) except for the t-th entry. Speci�cally, we have

ṽ = ϕ(y) + ηtet, (5.15)

where

ηt =
1

2

[
(y − x)T (y − x)

]2 − 1

2

[
(y − x)T (yt − x)

]2
=

1

2
∥y − x∥4 − ϕ(y)Tet. (5.16)

Given this, Lemma 5.1 gives us (denoting αt := eTt F
−1et for notational convenience)

det(F̃ )

det(F )
=
(
eTt F

−1ϕ(y) + ηte
T
t F

−1et
)2

+ (eTt F
−1et)(ϕ(y) + ηtet)

T (et − F−1(ϕ(y) + ηtet)),

(5.17)

= (ℓt(y) + ηtαt)
2
+ αt

(
ϕ(y)Tet − ϕ(y)TF−1ϕ(y)− ηtℓt(y) + ηt − ηtℓt(y)− η2tαt

)
,

(5.18)

= ℓt(y)
2 + αt

(
ϕ(y)Tet − ϕ(y)TF−1ϕ(y) + ηt

)
. (5.19)

So from the de�nition of ηt, we get

det(F̃ ) =
(
ℓt(y)

2 + αtβt

)
det(F ), (5.20)

where βt :=
1
2∥y − x∥4 − ϕ(y)TF−1ϕ(y). Finally, [26, Lemma 2] gives us αt, βt ≥ 0 provided

ℓt(y) ̸= 0, which gives us the result.3

Remark 5.3. Theorem 5.2 does not require any of the points y1, . . . ,yp or y to be in C. We will
use this when constructing interpolation sets for which F is invertible (Algorithm 2).

Remark 5.4. A similar analysis to the above holds for linear interpolation (p = n), where

Theorem 5.2 simpli�es to |det(F̃ )| = |ℓt(y)| · |det(F )| as shown in [8, Section 4.2]. This allows
us to use an approach like Algorithm 3 below to construct Λ-poised sets for linear interpolation,
a simpler method than the one outlined in [22, Section 4.3].

5.2 Constructing Λ-Poised Sets

We begin by describing how to construct an initial interpolation set, contained inB(x,min(∆, 1))∩
C for which F is invertible. The full process for this is given in Algorithm 2. We �rst generate
an initial set {y1, . . . ,yp} in B(x,min(∆, 1)), but not necessarily in C, for which F is invertible.
We can do this using the approach outlined in [29, Section 2], which chooses points of the form
x ± min(∆, 1)et or x ± min(∆, 1)es ± min(∆, 1)et for some s, t ∈ {1, . . . , n} in a speci�c way.
We then replace any of these points which are not in C by new points in B(x,min(∆, 1)) ∩ C
while maintaining an invertibile F .

3That ℓt(y) ̸= 0 is not explicitly assumed in the statement of [26, Lemma 2] but is required as the proof relies
on [26, Theorem, p. 196].
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Algorithm 3 Construct a Λ-poised underdetermined quadratic interpolation set.

Input: Trust region center x ∈ C and radius ∆ > 0, number of interpolation points p ∈
{n+ 2, . . . , (n+ 1)(n+ 2)/2}, optional initial interpolation set {y1, . . . ,yp} ⊂ C, poisedness
constant Λ > 1.

1: if initial interpolation set not provided or yields singular F (4.3) or maxt=1,...,p ∥yt − x∥ >
min(∆, 1) then

2: Set {y1, . . . ,yp} to be the output of Algorithm 2.
3: end if

4: while maxy∈B(x,min(∆,1))∩C maxt=1,...,p |ℓt(y)| > Λ do

5: Find t ∈ {1, . . . , p} and y ∈ B(x,min(∆, 1)) ∩ C with |ℓt(y)| > Λ.
6: Replace the interpolation point yt by y and recalculate Lagrange polynomials.
7: end while

8: return interpolation set {y1, . . . ,yp}.

Theorem 5.5. For any x ∈ C, ∆ > 0 and p ∈ {n + 2, . . . .(n + 1)(n + 2)/2}, the output of
Algorithm 2 is an interpolation set {y1, . . . ,yp} ⊂ B(x,min(∆, 1)) ∩ C for which F (4.3) is
invertible.

Proof. Firstly, Algorithm 2 terminates after at most p iterations, since an index t can only ever
be selected once (after which the new yt ∈ C).

Next, all points in the output set were either originally generated in line 1, in which case
they must have originally been in both B(x,min(∆, 1)) (from the construction in line 1) and C
(in order to never be replaced in the main loop), or were a y ∈ B(x,min(∆, 1)) ∩ C chosen in
line 3. Hence {y1, . . . ,yp} ⊂ B(x,min(∆, 1)) ∩ C.

Finally, the initial collection {y1, . . . ,yp} from [29, Section 2] generates an invertible F ,
with an explicit formula for F−1 given in [29, eqns. 2.11�2.15]. Hence the initial F satis�es
|det(F )| > 0. Then at each iteration replace yt with a point y for which ℓt(y) ̸= 0, and so the
new F also satis�es |det(F )| > 0 by Theorem 5.2. Thus the output interpolation set has an
invertible F .

We can now present our algorithm to generate a Λ-poised set for minimum Frobenius norm
interpolation, given in Algorithm 3. This algorithm is very similar to existing methods for
unconstrained linear/quadratic (e.g. [16, Algorithm 6.3]) or constrained linear poisedness ([22,
Algorithm 4.2]). Essentially we �rst ensure we have an interpolation set with invertible F (so
we can construct the associated Lagrange polynomials), and we then iteratively �nd indices t
and points y with |ℓt(y)| > Λ, replacing yt with y.

Theorem 5.6. For any x ∈ C, ∆ > 0, p ∈ {n + 2, . . . .(n + 1)(n + 2)/2} and Λ > 1, Al-
gorithm 3 produces an interpolation set {y1, . . . ,yp} which is Λ-poised for minimum Frobenius
norm interpolation in B(x,∆) ∩ C and for which ∥yt − x∥ ≤ min(∆, 1) for all t = 1, . . . , p.

Proof. If Algorithm 3 terminates, then by the de�nition of the loop check it must satisfy the
requirements of the theorem, so it su�ces to show that the `while' loop terminates.

At the start of the `while' loop in line 4, we have that {y1, . . . ,yp} ⊂ B(x,min(∆, 1))∩C and
F is invertible (either because the `if' statement in line 1 evaluates to false or by Theorem 5.5).
Hence at the start of the `while' loop we have |det(F )| > 0. Let us call this value d0 > 0.

In each iteration of the `while' loop, we increase |det(F )| by a factor of at least Λ2 by
Theorem 5.2. Hence after k iterations of the loop, we have |det(F )| ≥ Λ2kd0. However, since
by construction our interpolation set is contained in the compact set B(x,min(∆, 1))∩C, there
is a global upper bound dmax on |det(F )| (which is a continuous function of the interpolation
points). Hence the loop must terminate after at most log(dmax/d0)/(2 log Λ) iterations.

Remark 5.7. In the unconstrained case C = Rn, Theorem 5.6 and in particular its reliance on
Theorem 5.2 clari�es the argument behind [16, Theorem 6.6].

Theorems 4.7 (with β = 1) and 5.6 then give us the following.
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Corollary 5.8. Suppose f and C satisfy Assumptions 2.1 and 2.2 respectively. Then for any
x ∈ C, ∆ > 0, p ∈ {n+2, . . . .(n+1)(n+2)/2} and Λ > 1, Algorithm 3 produces an interpolation
set {y1, . . . ,yp} for which the model m generated by (4.2) is fully linear in B(x,∆).

6 Conclusions and Future Work

In [22], a weaker notion of fully linear models was used to construct convergent algorithms
for (1.1) (namely Algorithm 1), and it was shown that linear interpolation models constructed
only with feasible points can yield such models. Here, we show that Algorithm 1 can also be
implemented using underdetermined quadratic interpolation models in the minimum Frobenius
sense of [26], which is a much more useful construction in practice. As an extra bene�t, it
also establishes the same results for linear regression models, as a strict generalization of the
analysis in [22] that is independently useful in the case where only noisy objective evaluations
are available.

The natural extension of this work is to the construction and analysis of second-order accurate
models (�fully quadratric� in the language of [16]) built only using feasible points. A concrete
implementation of Algorithm 1 with quadratic interpolation models would also be a useful way
to extend the implementation from [22] (which only considers nonlinear least-squares objectives,
for which linear interpolation models can be practically useful).
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