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ABSTRACT

The effectiveness of machine learning (ML) algorithms is deeply intertwined with the quality and
diversity of their training datasets. Improved datasets, marked by superior quality, enhance the
predictive accuracy and broaden the applicability of models across varied scenarios. Researchers
often integrate data from multiple sources to mitigate biases and limitations of single-source datasets.
However, this extensive data amalgamation raises significant ethical concerns, particularly regarding
user privacy and the risk of unauthorized data disclosure. Various global legislative frameworks
have been established to address these privacy issues. While crucial for safeguarding privacy,
these regulations can complicate the practical deployment of ML technologies. Privacy-Preserving
Machine Learning (PPML) addresses this challenge by safeguarding sensitive information, from
health records to geolocation data, while enabling the secure use of this data in developing robust ML
models. Within this realm, the Non-Readily Identifiable Data Collaboration (NRI-DC) framework
emerges as an innovative approach, potentially resolving the ’data island’ issue among institutions
through non-iterative communication and robust privacy protections. However, in its current state,
the NRI-DC framework faces model performance instability due to theoretical unsteadiness in
creating collaboration functions. This study establishes a rigorous theoretical foundation for these
collaboration functions and introduces new formulations through optimization problems on matrix
manifolds and efficient solutions. Empirical analyses demonstrate that the proposed approach,
particularly the formulation over orthogonal matrix manifolds, significantly enhances performance,
maintaining consistency and efficiency without compromising communication efficiency or privacy
protections.

Keywords Privacy-Preserving Machine Learning · Data Collaboration Analysis · Orthogonal Procrustes Analysis ·
Matrix Manifold Optimization

1 Introduction

The effectiveness of machine learning (ML) algorithms is deeply intertwined with the quality and diversity of their
training datasets. Improved datasets, marked by superior quality, enhance the predictive accuracy and broaden the
applicability of models across varied scenarios. Researchers often integrate data from multiple sources to mitigate
biases and limitations of single-source datasets. However, this extensive data amalgamation raises significant ethical
concerns, particularly regarding user privacy and the risk of unauthorized data disclosure.

The issue of data breaches further escalates these privacy concerns. Emerging research highlights an increasing wariness
about the risks associated with the extensive collection and processing of personal data [50]. Additionally, ML models
are vulnerable to several inference attacks that malicious entities could exploit. For example, membership inference
attacks allow attackers to deduce whether data from specific individuals were used in training datasets [20]. Other
significant threats include model inversion attacks [11], property inference attacks [13], and the risk of privacy violations
through gradient sharing in distributed ML systems [63].

In response to these privacy issues, legislative frameworks such as the European General Data Protection Regulation
(GDPR), the California Consumer Privacy Act (CCPA), and Japan’s amended Act on the Protection of Personal
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Figure 1: (Figure 4 in [59]) Trade-offs regarding the creation of PPML solutions.

Information (APPI) have been implemented. These regulations, aimed at mitigating privacy challenges, establish
stringent protocols for data management. While essential for privacy protection, they introduce complexities that may
hinder the practical application of ML technologies. A notable complication is the emergence of ’data islands’ [33],
which are isolated data segments within the same sector, often observed in fields like medicine, finance, and government.
These segments typically contain limited data, which is insufficient for training comprehensive models representative
of larger populations. A collaborative model training on a combined dataset from these islands would be ideal, but
this is frequently unfeasible due to the regulations above. The field of Privacy-Preserving Machine Learning (PPML)
is dedicated to overcoming this challenge, striving to protect sensitive information, ranging from health records to
geolocation data, while facilitating the secure utilization of this data in the development of robust ML models.

Many PPML methodologies have emerged in recent years, driven by various factors: the implementation of established
privacy measures, the development of innovative privacy-preserving techniques, the continuous evolution of ML models,
and the enforcement of strict privacy regulations. In their comprehensive analysis, [59] provides an overview of
current PPML methodologies and underscores the ongoing challenges and open problems in devising an optimal PPML
solution:

(i) "In terms of privacy protection, how can a PPML solution be assured of adequate privacy protection by the trust
assumption and threat model settings? Generally, the privacy guarantee should be as robust as possible from the
data owners’ standpoint."

(ii) "In terms of model accuracy, how can we ensure that the trained model in the PPML approach is as accurate as the
model trained in the contrasted vanilla machine learning system without using any privacy-preserving settings?"

(iii) "In terms of model robustness and fairness, how can we add privacy-preserving capabilities without impairing the
model’s robustness and fairness?"

(iv) "In terms of system performance, how can the PPML system communicate and compute as effectively as the
vanilla machine learning system?"

The exploration of trade-offs in PPML, as depicted in Figure 1, highlights the intricate challenges in this field.
These challenges primarily revolve around embedding adequate privacy protections into ML frameworks without
compromising their core functions, namely model performance and system efficiency. A quintessential example of
PPML methodologies stems from the domain of Secure Computation, a concept introduced by Andrew Yao in 1982
[61]. Secure computation aims to enable multiple parties to collaboratively compute an arbitrary function on their
respective inputs while ensuring that only the function’s output is disclosed. This approach effectively maintains the
confidentiality of the input data.

Several techniques in the field of secure computation stand out for their effectiveness and application. Among these are
additive blinding methods [52, 7, 8], which obscure data elements by adding noise; garbled circuits [58, 3], facilitating
secure function evaluation; and Homomorphic Encryption, which enables computations on encrypted data [42, 1].
Despite its over forty-year history, secure computation remains crucial in PPML advancements. Its ongoing relevance
is demonstrated by its incorporation into contemporary applications [4, 14] and the development of complete PPML
frameworks centered around it [51]. However, employing secure computation in PPML frameworks often introduces
significant computation and communication overhead challenges. This challenge is particularly evident when handling
large datasets or complex functions, even with the most recent implementations [62].

Federated Learning (FL) [43, 31] stands out in PPML for its scalable, cross-device capabilities. Its core lies in
collaboratively training a global model (or enhanced individual models) across multiple parties while keeping data
localized, securely enhancing model performance over individual local models. A notable use case is the Google
Keyboard [60], which uses FL for improved query suggestions without compromising privacy. A key FL algorithm is
Federated Averaging (FedAvg) [43], where a central server distributes a model to clients for local improvements. The
server aggregates these enhancements to refine the global model in an iterative process, as shown in Figure 2a.
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Figure 2: (Figure 2 in [33]) Federated Learning frameworks

SimFL, developed by Li et al. [31], offers a decentralized alternative instead of the centralized FedAvg model. Its key
feature is the absence of a central server. Participants in SimFL independently update their local models using their
data. Uniquely, instead of sending gradients to a central server after updates, they are shared with a randomly chosen
participant. This participant integrates the received gradients into their model, which is then shared network-wide.
This gradient exchange and model updating process is repeated for a set number of iterations, culminating in a jointly
developed final model, as shown in Figure 2b.

One of the critical open problems in FL is addressing its inherent privacy challenges, as recent surveys and studies have
pointed out [29, 41]. Once considered secure, the standard practice in FL of sharing gradients instead of raw data now
reveals vulnerabilities to model inference attacks [11] by the potential of data leakage from gradients, as recent research
indicates [63]. Moreover, FL is prone to poisoning attacks, where adversaries aim to degrade the model’s accuracy or
manipulate its outputs [2]. In response, researchers are exploring hybrid approaches that meld FL with advanced secure
computation techniques [55] or the incorporation of differential privacy [9]. While these methods enhance security, they
also introduce trade-offs, such as increased computational demands and potential reductions in model performance [59].
These trade-offs exemplify the complexity of achieving robust privacy in FL without impairing the learning models’
efficiency and effectiveness.

Addressing non-identically and independently distributed (non-IID) data is also a significant challenge in FL, as
highlighted in recent studies [32]. This challenge becomes particularly pronounced in cross-silo FL, which involves
entities like banks, hospitals, and insurance companies, each with large, diverse datasets as ’data islands’. The inherent
data heterogeneity in these environments renders assumptions of IID data distributions impractical. Consequently,
standard FL techniques, especially FedAvg, face substantial challenges under these non-IID conditions [36]. Recent
research has focused on developing advanced FL methods such as FedProx [35], SCAFFOLD [30], FedRobust [49], and
FedDF [38], each tailored to manage non-IID data better. Despite these advancements, fully resolving the complexities
associated with non-IID data in FL remains a formidable open problem in the field [34].

Specifically in cross-silo FL, another significant challenge is the necessity for iterative communication between
institutions during each model training phase. This challenge is especially critical in sectors handling sensitive data, like
healthcare, where medical institutions often operate within isolated networks. Traditional FL approaches rely heavily
on iterative communication for model training, a bedrock issue in these environments.

In response, Data Collaboration (DC) analysis [24, 26, 23] has emerged as a notable alternative. Unlike typical FL
frameworks that focus on model sharing, DC centralizes dimensionally reduced, secure intermediate representations of
the raw data, eliminating the need for iterative model update exchanges. Although DC has limitations in cross-device
contexts due to computational and scalability constraints, it effectively addresses other issues in cross-silo FL, especially
in handling non-IID data distributions [44] and aligning misaligned feature spaces [45]. DC has been proven to have a
double layer of privacy protection: the first layer for honest-but-curious participants and the second layer for malicious
collusion between participants and man-in-the-middle attacks [22]. A recent variant, Non-Readily Identifiable DC
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(NRI-DC) analysis [25], further enhances privacy by ensuring that intermediate representations are not easily traceable
to individuals or entities, aligning with global data privacy regulations.

The privacy-preserving aspect of DC analysis relies on sharing dimensionally reduced intermediate representations of
raw data rather than the raw data itself. Each entity independently generates these representations using its unique, secret
dimension reduction functions in this process, creating a robust privacy framework. While this technique is akin to data
preprocessing approaches in PPML like differential privacy or k-anonymity [9, 54], it uniquely addresses the common
challenge of reduced model utility. DC analysis overcomes this by ’aligning’ these intermediate representations into
a unified collaborative representation with minimal distortion to their structures. This collaborative representation
is created using a shared anchor dataset uniformly distributed to all entities. Each entity applies the same dimension
reduction function to this anchor dataset as used on their raw data. With the anchor datasets being identical, a
collaboration function is formulated to align the intermediate representations of the anchor data, aiming to minimize
Frobenius norm error. When applied to the raw data’s intermediate representations, this collaboration function yields a
collaborative representation suitable for training the global model. Chapter 2 and 3 will explore this methodology in
greater detail.

This research is centered on developing an optimized collaboration function, a critical factor for the efficacy of the
final ML model in DC frameworks. Constructing this function involves two primary steps: (i) defining a collaboration
function optimization problem using the intermediate representations of the anchor data and (ii) resolving this problem
efficiently. Present methods in the literature for crafting the collaboration function [24, 64] often exhibit theoretical
gaps in their formulation phase, resulting in an unstable performance of ML models. This research endeavors to lay
down a theoretically robust framework for the collaboration function’s formulation and to introduce a potent solution
approach. The guiding research question is:

Can we develop a collaboration function formularization that is both robust and efficient, such that it not only enhances
the performance and stability of the model but also adheres to the constraints of computational efficiency without

undermining non-iterative communication and privacy guarantees of the DC framework?

To realize this objective, we propose optimization formulations over matrix manifolds, focusing on maximizing structure
retainment of the intermediate representations. We achieve efficient problem-solving by utilizing established Procrustean
analysis methods [15] and cutting-edge Riemannian optimization strategies [21, 6]. Our approaches are expected to
improve the functionality and stability of the collaboration function significantly.

The key contributions of this research are outlined as follows:

1. Development of a novel and theoretically grounded formulation for the collaboration function in the Non-
Readily Identifiable Data Collaboration (NRI-DC) framework.

2. Introduction of a practical solution approach for this formulation using established Procrustean analysis
methods and Riemannian optimization algorithms.

3. Empirical evaluation using public datasets and various machine learning models, demonstrating the stable
and superior performance of our proposed methods compared to existing approaches within the NRI-DC
framework.

The organization of this research is as follows:

Section 2 provides an in-depth review of the Non-Readily Identifiable Data Collaboration (NRI-DC) framework. This
section details the privacy-preserving mechanisms integral to the NRI-DC framework. In Section 3, we delve into the
detailed process of formulating the collaboration function. We start by examining existing methodologies and then
introduce our novel approaches, which include formulating optimization problems over matrix manifolds. We aim
to establish that our method provides a more theoretically robust and valid approach to optimizing the collaboration
functions, focusing on maximizing structure retainment of the intermediate representations. Section 4 presents empirical
studies to assess the effectiveness of our proposed method. Comparing it with current methods using various public
datasets and ML models, we aim to empirically show that our approach yields stable results and often excels in
performance compared to traditional methods while maintaining computational efficiency. Section 5 concludes the
research. This final section summarizes the main findings, discusses their implications, and offers perspectives on future
research avenues.

2 Non-Readily Identifiable Data Collaboration Framework

This section examines the Non-Readily Identifiable Data Collaboration (NRI-DC) framework by Imakura et al. [25].
It begins with defining data identifiability and emphasizing its relevance to international data privacy regulations.
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Subsequently, we delve into the mechanics of the NRI-DC algorithm. We conclude the section with an analysis of the
algorithm’s inherent privacy-preserving mechanisms.

2.1 Definition of Identifiability

In data analysis involving personal information, adherence to various privacy laws, professional responsibilities, and
custodial obligations is imperative. This adherence becomes particularly critical when such analyses are outsourced,
compelling the analytical organization to conform to the exact stringent requirements. The scope of these obligations
extends beyond data that is directly identifiable. It also encompasses data that, although not directly linked to personal
identifiers, can be amalgamated with other information to identify individuals indirectly. Key global legislations define
personal information as follows:

• GDPR (EU): Article 4(1) - "Personal data" means any information relating to an identified or identifiable
natural person (’data subject’); an identifiable natural person is one who can be identified, directly or indirectly.

• CCPA (USA): Section 1798.140(o) - "Personal information" means information that identifies, relates to,
describes, is capable of being associated with, or could reasonably be linked, directly or indirectly, with a
particular consumer or household.

• Amended APPI (Japan): Article 2 - "Personal information" in this Act means that information relating to
a living individual . . . (including those which can be readily collated with other information and thereby
identify a specific individual).

Given these legislations, the identifiability of shared information emerges as a pivotal element in privacy-preserving
analysis since readily identifiable data are subject to the same stringent regulations as personal information. Therefore,
for practical privacy preservation in analyses involving multiple datasets that contain personal information, it is
imperative to ensure that the shared data are non-readily identifiable from the original data. This approach forms
the bedrock of maintaining confidentiality and complying with global data protection standards. [25] provides a
mathematical definition for the identifiability of data that follows these standards:
Definition 2.1. (Definition 1. in [25]) Definition of Identifiability
Let xp

i and xnp
i represent paired data for the i-th individual from a set of n people, including and excluding personal

information that can directly identify an individual, respectively. Define χp = {xp
1, x

p
2, . . . , x

p
n} as the dataset of

personal information and χnp = {xnp
1 , xnp

2 , . . . , xnp
n } as the dataset of non-personal information, for the same set of n

individuals.
The non-personal dataset χnp is considered "readily identifiable" from the personal dataset χp, if and only if a third
party holds a key (or a precise approximation) that can correctly associate xnp ∈ χnp with xp ∈ χp, or if the data
owner can independently derive such a key (or a precise approximation).

Common unique identifiers and specific features can be used as keys to collating data. Furthermore, precise approxima-
tions of these features can also act as keys, enabling the correct association of corresponding data elements. [25] also
establishes the following property on readily identifiable data:
Proposition 2.2. (Proposition 1. in [25])
If either of the following conditions holds, we can say χnp is readily identifiable from χp.

• The data holder of χp possesses or can independently generate a function v (or a precise approximation) such
that xnp

i = v(xp
i ).

• The data holder of χnp possesses or can independently generate a function w (or a precise approximation)
such that xp

i = w(xnp
i ).

Proof. In the case where the data holder of χp holds the function v such that xnp
i = v(xp

i ) or can generate the function
on their own, they can obtain pairs of (xp

i , x
np
i ) corresponding to any xp

i ∈ χp using the function v. Therefore, using
xnp
i as a key, for non-personal information xnp ∈ χnp, the corresponding personal information xp ∈ χp can be collated

accurately.

In the same manner, in the case where the data holder of χnp holds the function w such that xp
i = w(xnp

i ) or can
generate the function by their own, they can obtain pairs of (xp

i , x
np
i ) corresponding to any xnp

i ∈ χnp using the function
w. Therefore, using xp

i as a key, for non-personal information xnp ∈ χnp, the corresponding personal information
xp ∈ χp can be collated accurately.

A counter-intuitive example of Proposition 2.2 is the case of datasets encrypted for homomorphic encryption computa-
tion. Such datasets are deemed readily identifiable despite the encryption because the original data owner possesses
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encryption and decryption capabilities. Indeed, privacy-preserving machine learning frameworks that ensure the shared
datasets are non-readily identifiable from the raw data have a significant advantage in social implementation regarding
the current global legislation.

2.2 NRI-DC Algorithm

Algorithm 1: (Algorithm 2 in [25]) Overview of the NRI-DC algorithm

Input: For worker-side: Xi ∈ Rni×m, Yi ∈ Rni×l, and Xtest
i ∈ Rntest

i ×m individually.

Output: For worker-side: Y pred
i (i = 1, 2, . . . , c).

Worker-side (i = 1, 2, . . . , c)
——————————————————————————–
1. Generate Xanc ∈ Rr×m and share to all workers.
2. Generate random permutation matrix Pi ∈ Rni×ni

that cannot be reconstructed.
3. Generate random matrix Ei ∈ Rni×m that cannot be

reconstructed and choose perturbation parameter δi.
4. Generate PCA linear dimension reduction function

Fi ∈ Rm×m̃ based on Xi + δiEi.

5. Compute X̃ ′
i = PiXiF

′
i , X̃anc

i = XancF ′
i , and Ỹi = PiYi.

6. Erase F ′
i and Pi.

7. Share X̃ ′
i , X̃

anc
i , and Ỹ ′

i to master and erase them.

Master-side
————————————————————–

8. ↘ Obtain X̃ ′
i , X̃

anc
i , and Ỹ ′

i for all i.

9. Compute Gi ∈ Rm̃×m̃ from X̃anc for all i.

10. Compute X̂i = X̃ ′
iGi for all i, and set X̂ ′, Y ′.

11. Analyze X̂ ′ to obtain h such that Y ′ ≈ h(X̂ ′).

12. Compute Y anc
i = h(X̂anc

i ).
13. ↙ Return Y anc

i to each worker.

Worker-side (i = 1, 2, . . . , c)
——————————————————————————–
14. Obtain Y anc

i .
15. Analyze Xanc to obtain ti such that Y anc

i ≈ ti(X
anc).

16. Compute Y pred
i = ti(X

test
i ).

This section reviews the NRI-DC framework proposed by Imakura et al. [25]. This framework focuses on supervised
machine learning for classification tasks for multiple entities, each with strict privacy protocols. The goal is to construct
a prediction or classification model from labeled training datasets.

Consider a dataset Xall consisting of n training samples with m features each and a corresponding label set Y all with
l labels. Specifically, Xall = [x1, x2, . . . , xn]

⊤ ∈ Rn×m and Y all = [y1, y2, . . . , yn]
⊤ ∈ Rn×l represent the training

data and labels, respectively. For privacy-preserving analysis across multiple entities, we examine a scenario where the
dataset is horizontally partitioned across c different entities. This partitioning is formalized as:
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Figure 3: (Figure 2 in [25]) Overview of the non-readily identifiable DC framework

Xall =


X1

X2

...
Xc

 , Y all =


Y1

Y2

...
Yc

 ,

where each entity i possesses a subset of the data, Xi ∈ Rni×m and labels Yi ∈ Rni×l, with the total number of
samples given by n =

∑c
i=1 ni. Note that the NRI-DC framework can be applied to more sophisticated distributions

such as partially common features [45] and horizontally or (and) vertically partitioned data [26].

The framework operates with two roles: worker and master. Workers have their private dataset and corresponding
ground truth, Xi and Yi, and aim to improve their local classification model by using insights from other workers’ data
without sharing their own. The master facilitates this process.

Initially, each worker creates a common anchor dataset, denoted as Xanc ∈ Rr×m. This dataset comprises either public
data or synthetically generated dummy data. Generally, a random matrix is effective for this purpose [24, 26, 27].
Importantly, this anchor data remains concealed from the master.

Each worker then creates a row-wise dimension reduction function f ′
i : Rp×m → Rp×m̃ (where p denotes an arbitrary

number of rows) that transforms raw data into the secure, non-readily identifiable intermediate representations. For
simplicity, we choose a linear dimension reduction matrix F ′

i ∈ Rm×m̃ for f ′
i , specifically a Principal Component

Analysis (PCA) [12] transformation matrix based on the raw data plus random permutation Xi + δiEi. Here, Ei ∈
Rni×m is a random matrix whose entries are uniform random numbers in [−1, 1] and δi ∈ (0, 1) are perturbation
parameters chosen by each worker. Additionally, workers create a random permutation matrix Pi ∈ Rni×ni and use
these components to calculate the intermediate representations:

X̃ ′
i = PiXiF

′
i , X̃anc

i = XancF ′
i , Ỹ ′

i = PiYi. (1)

Workers then share the intermediate representations X̃ ′
i, X̃

anc
i , and Ỹ ′

i with the master. To prevent identification of
the raw data from these representations, each worker deletes F ′

i and Pi after use. In classification tasks, Pi cannot be
inferred from Ỹ ′

i and Yi due to the non-uniqueness of their rows. The exact F ′
i cannot be regenerated because it is

created based on the raw data plus a random permutation Xi + δiEi that cannot be reconstructed.

On the master’s side, the task is to align the workers’ intermediate representations X̃ ′
i into a common, lower-dimensional

space with a similar orientation to make them comparable. This is achieved using linear mapping functions, denoted as
Gi ∈ Rm̃×m̃. Linear mappings are chosen because of their simplicity, and non-linear mappings are an essential topic
for future exploration. However, numerical experiment results in contemporary research show that linear mappings
perform adequately [44, 23]. Gi are created leveraging that the X̃anc

i were identical across all workers before being
transformed by PCA. The specifics of creating Gi are detailed in Chapter 3 since it is the crux of this research. In this
chapter, we assume Gi has been effectively established, allowing us to focus on the framework’s overview and privacy
implications.
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Once we have Gi, we compute the collaborative representations as follows:

X̂ ′ = [(X̃ ′
1G1)

⊤, (X̃ ′
2G2)

⊤, ..., (X̃ ′
cGc)

⊤]⊤, Y ′ = [Ỹ ′
1

⊤
, Ỹ ′

2

⊤
, ..., Ỹ ′

c

⊤
]⊤. (2)

We analyze X̂ ′ and Y ′ to create a supervised classification model h:

Y ′ ≈ h(X̂ ′).

Using the model h, we leverage prediction results Y anc
i of the anchor data Xanc:

Y anc
i = h(X̂anc

i ), X̂anc
i = X̃anc

i Gi ∈ Rr×m̃.

The prediction results Y anc
i obtained from Xanc are sent back to the ith worker. Subsequently, each worker constructs

the prediction model ti using supervised machine learning or deep learning techniques based on the data Xanc and the
corresponding predictions Y anc

i :

Y anc
i ≈ ti(X

anc).

For the prediction phase, the prediction result Y pred
i of Xtest

i is obtained by

Y pred
i = ti(X

test
i ).

The overview of the NRI-DC framework is summarized in Algorithm 1 and Figure 3. Note that the framework only
requires three cross-institutional communications, namely Steps 1, 7, and 13 in Algorithm 1.

2.3 Discussions on Privacy

This section reviews the privacy implications and limitations of the NRI-DC framework analyzed in [22, 25]. Here, we
assume that the workers and the master are honest-but-curious, meaning they adhere to the framework’s procedures
but may attempt to glean private data Xi using any accessible vulnerabilities. [22] claims the framework incorporates
dual-layer privacy protection. The first layer safeguards against breaches from individual users and the master. The
second layer addresses potential external man-in-the-middle attacks and collusion between the workers and the master.

Privacy against the honest-but-curious master
Theorem 2.3. (Theorem 2 in [22]) The master cannot infer the users’ private datasets Xi when adhering strictly to the
procedures of the NRI-DC framework and does not collide with any of the users.

Proof. Under the algorithm’s framework, the master gains access to X̃ ′
i and X̃anc

i , but not to F ′
i , or Xanc. The master

only encounters the outputs X̃ ′
i and X̃anc

i of the dimension reduction process F ′
i , which offers no information about

Xi and Xanc. Since F ′
i is a dimension reduction function, it does not provide any features that could link Xi and

X̃ ′
i. Furthermore, F ′

i is a PCA transformation matrix tailored to the private dataset Xi, and even if the exact method
of constructing F ′

i is known, the matrix F ′
i itself remains undetermined. Thus, if the master follows the NRI-DC

framework’s procedures and does not collide with any users, it cannot access the private dataset Xi.

Privacy against the honest-but-curious workers
Theorem 2.4. (Theorem 3 in [22]) Any user i cannot infer the other users’ private datasets Xj(i ̸= j) when adhering
strictly to the procedures of the NRI-DC framework and does not collide with the master.

Proof. Under the algorithm’s framework, the user i gains access to Xanc, but not to X̃ ′
j , X̃

anc
j , F ′

j . User i only
encounters the input Xanc of any other user j’s dimension reduction process F ′

j , which obviously offers no information
about Xj , X̃ ′

j and X̃anc
j . Since we can use a random matrix for Xanc, no information can be inferred about Xj from

Xanc.

Privacy against the collusion between user and master

When user i and the master collude, they gain access to Xanc, X̃anc
j , and X̃ ′

j . In this scenario, they possess both the
input Xanc and the output X̃anc

j of the dimension reduction function F ′
j used by the target user j. The risk here is the

potential reconstruction of the dimension reduction F ′
j to infer Xj from X̃ ′

j . Although Fj is a dimension reduction
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function and does not allow for an exact inverse, the Moore-Penrose pseudoinverse F ′†
j can serve as a reasonable

approximation, assuming the raw datasets are standardized. Reference [46] provides a formal definition of privacy in
the context of dimension reduction, termed ε-DR Privacy:
Definition 2.5. (ε-DR Privacy) (Definition 1 in [46]) A Dimension Reduction Function F (·) satisfies ε-DR Privacy if
for each i.i.d. m-dimension input sample x drawn from the same distribution D, and for a certain distance measure
dist(·, ·), we have

E[dist(x, x′)] ≥ ε,

where E[·] is the expectation, ε ≥ 0, x̃ = F (x), x′ = R(x̃), and R(·) is the Reconstruction Function.

[22] examines the privacy assurances related to ϵ-DR Privacy within the DC framework. Below, we summarize their
key points and define ϵ-DR Privacy for the DC framework:
Definition 2.6. (ε-DR Privacy for DC) For a given ε ≥ 0, a linear dimension reduction function F ′ ∈ Rm×m̃ satisfies
ε-DR Privacy regarding an m-feature data sample set χ = {x1, x2, ..., xn}, if we have

min
x∈χ

||x− xF ′F ′†||2
||x||2

≥ ε, (3)

where F ′† denotes the Moore-Penrose pseudoinverse of F ′.

Regarding this definition, [22] introduces a down-sampling technique that eliminates samples that do not satisfy (3)
for a pre-determined ε. Their numerical experiments show that despite the down-sampling, the effect on the resulting
model’s recognition performance is insignificant.

Privacy against external attacks

When utilizing secure data transmission protocols like Transport Layer Security (TLS), where information is encrypted
using the private keys of the involved parties, the collaborative data analysis framework safeguards the private dataset Xi

from potential man-in-the-middle attacks. It is important to note that this approach relies on encrypted communication
for non-private data rather than secure multi-party computation techniques.

However, without such secure data transmission protocols, the scenario resembles a situation where workers and the
master collude. In this case, man-in-the-middle attackers could deduce F ′

i using Xanc and X̃anc
i , leading to the potential

inference of Xi. This risk resembles the threat posed when workers and the master collude.

Identifiability of the intermediate representations

The identifiability of the intermediate representations X̃ ′
i are analyzed through the following considerations:

• There are no common features linking Xi and X̃ ′
i due to the nature of the function F ′

i .

• The absence of common sample IDs between Xi and X̃ ′
i is ensured by using a random permutation Pi that is

irreproducible.
• The function F ′

i is effectively non-existent for analysis purposes, as it cannot be reconstructed as it is based on
raw data plus some random permutation Xi + δiEi and is deleted prior to the sharing of X̃ ′

i. It can only be
reconstructed through the collusion of the ith worker and the master by examining X̃anc

i and Xanc.

Therefore, based on Definition 2.1 and Proposition 2.2, the intermediate representations X̃ ′
i are non-readily identifiable

from the original data Xi, provided that both X̃anc
i and Xanc are not accessible to any single entity. Even in extreme

scenarios where we assume collusion between the workers and the master and both X̃anc
i and Xanc are exposed, no

inverse function F ′−1
i exists to retrieve Xi from X̃ ′

i , given the dimension reduction property of F ′
i . The accuracy of the

approximation F ′†
i can be reduced by down-sampling as required by ε-DR Privacy (2.6), with minimal impact on the

utility of the model.

3 The Collaboration Function

This section focuses on the construction of collaboration functions Gi using the intermediate representations X̃anc
i from

the anchor dataset, as outlined in Step 9 of Algorithm 1. Subsection 3.1 lays out the necessary conditions for developing
the collaborative function, setting the framework for the data collaboration problem, and emphasizing the importance of
preserving the structure in the intermediate representations. In Subsection 3.2, we review current methodologies for

9
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formulating Gi. Subsection 3.3 introduces our novel approaches for constructing Gi, framing the concept of structure
retention in intermediate representations as optimization problems on matrix manifolds. Efficient resolution techniques
are discussed, employing established Procrustean analysis methods and advanced Riemannian optimization strategies.

3.1 The Data Collaboration Problem

As briefly discussed in Section 2.2, the intermediate representations X̃ ′
i = PiXiF

′
i ∈ Rni×m̃ for each worker are

created using a PCA transformation matrix F ′
i ∈ Rm×m̃ learned on each worker’s raw data plus some random matrix

Xi + δEi ∈ Rni×m and a random perturbation Pi ∈ Rni×ni (1). These intermediate representations are generally not
comparable across different i ∈ {1, 2, ..., c} = [c] because intuitively the features generally correspond to different
principal components derived from different datasets Xi + δEi.

More formally, since the m̃-dimensional feature space spanned by the orthonormal column vectors of F ′
i generally

differ in terms of its dimensionality and its orientation in the higher m-dimensional space, it is meaningless to compare
the intermediate representations X̃ ′

i from different workers.

To overcome this difficulty, the master finds the optimal linear collaboration functions Gi ∈ Rm̃×m̃, such that they
map X̃ ′

i to a lower m̃-dimensional space which is most similar in terms of their orientation in the higher dimensional
space. In other words, the master aims to align the features of X̃ ′

i to ensure comparability across different workers.
This can be formulated as F ′

iGi = F ′
jGj (∀i, j ∈ [c]), but such Gi may not exist depending on F ′

i and the choice of
m̃. We attempt to approximate this relationship by finding Gi, Gj for any pair of workers i, j ∈ [c] such that, given an
arbitrary m-dimensional data sample x, F ′

iGi and F ′
jGj will map x to approximately the same point on the lower m̃

dimensional space:
x⊤F ′

iGi ≈ x⊤F ′
jGj .

Here, we also need to constrain Gi such that it minimizes distortion of the relationships in X̃ ′
i . Formally, for an arbitrary

pair of m-dimensional data samples x, y and an arbitrary relationship D(x, y) between them:

D(x, y) ≈ D(x⊤F ′
iGi, y

⊤F ′
iGi).

We summarize the necessary conditions for optimal linear collaboration functions:

Conditions for optimal linear collaboration functions
Given an arbitrary pair of workers i, j ∈ [c] with their corresponding PCA transformation matrices F ′

i ∈ Rm×m̃, F ′
j ∈

Rm×m̃ and an arbitrary pair of m-dimensional data samples x, y ∈ Rm, the corresponding linear collaboration functions
Gi ∈ Rm̃×m̃, Gj ∈ Rm̃×m̃ are optimal only if the following conditions hold:

(i) x⊤F ′
iGi ≈ x⊤F ′

jGj ,

(ii) D(x, y) ≈ D(x⊤F ′
iGi, y

⊤F ′
iGi),

where D(·, ·) denotes an arbitrary relationship between two data samples.

Since the PCA transformation matrices F ′
i are not revealed to the master, the intermediate representations of the

cross-worker-equivalent anchor dataset X̃anc
i ∈ Rr×m̃ are used instead. These conditions can be transformed using

X̃anc
i as follows:

Problem 3.1. (The Data Collaboration Problem)
Given an arbitrary pair of workers i, j ∈ [c] with their corresponding intermediate representations of the anchor data
matrices X̃anc

i ∈ Rr×m̃, X̃anc
j ∈ Rr×m̃, the corresponding linear collaboration functions Gi ∈ Rm̃×m̃, Gj ∈ Rm̃×m̃

are optimal only if the following conditions hold:

(i) X̃anc
i Gi ≈ X̃anc

j Gj ,

(ii) D′(X̃anc
i ) ≈ D′(X̃anc

i Gi),

where D′(X) denotes an arbitrary relationship between data samples of matrix X.

We denote this problem the Data Collaboration Problem, and we aim to find a theoretically robust mathematical
formulation and an efficient approach to find the best-performing collaboration functions Gi.

10
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3.2 Existing Methods

3.2.1 Least-Square Method

Imakura et al. (2020) [24] introduced a practical method for computing the collaboration function. They formulated
equation (i) in (3.1) as the minimization problem of the sum of squared Frobenius norm distance between all pairs of
X̃anc

i Gi, X̃
anc
j Gj :

min
Gi(i∈[c])

∑
i,j

||X̃anc
i Gi − X̃anc

j Gj ||2F. (4)

Since Gi has a trivial solution Gi = 0 in this formulation, they chose an objective matrix Z = U1 such that:

[X̃anc
1 , . . . , X̃anc

c ] = [U1, U2]

[
Σ1

Σ2

] [
V ⊤
1

V ⊤
2

]
≈ U1Σ1V

⊤
1 . (5)

Where U1 denotes the first m̃ columns of the left matrix of the singular value decomposition (SVD) of [X̃anc
1 , . . . , X̃anc

c ]
corresponding to the larger m̃ singular values. Using Z = U1 as the objective matrix, they transform (4) to the following
least square formulation:

min
Gi(i∈[c])

∑
i

||X̃anc
i Gi − Z||2F. (6)

They provide an approximate analytical solution to this formulation:

G∗i = (X̃anc
i )†Z. (7)

3.2.2 Generalized Eigenvalue Problem Method

Kawakami noted in his master’s thesis [64] that the least-square approach for determining Gi (6) may be overly
restrictive. He pointed out that selecting an objective matrix Z constrained to have orthonormal columns (5), limits the
search space for Gi.

His method first decomposes Gi into column vectors

Gi = [gi1, . . . , gik, . . . , gim̃], (8)

and adds 2-norm constraints to equation (4) to handle the trivial solutions:

min
gik

∑
i,j

||X̃anc
i gik − X̃anc

j gjk||22,

s.t.
c∑

i=1

||X̃anc
i gik||22 − 1 = 0.

(9)

By defining matrices A and B, vectors vk:

A =


2(c− 1)X̃anc⊤

1 X̃anc
1 −2X̃anc⊤

1 X̃anc
2 · · · −2X̃anc⊤

1 X̃anc
c

−2X̃anc⊤
2 X̃anc

1 2(c− 1)X̃anc⊤
2 X̃anc

2 · · ·
...

...
...

. . .
...

−2X̃anc⊤
c X̃anc

1 · · · · · · 2(c− 1)X̃anc⊤
c X̃anc

c

 , (10)

B =


X̃anc⊤

1 X̃anc
1 · · · O

O X̃anc⊤
2 X̃anc

2 · · ·
...

...
...

. . .
...

O O · · · X̃anc⊤
c X̃anc

c

 , (11)

11
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vk =


g1k
g2k

...
gck

 , (12)

we can equivalently transform equation (9):

min
gik

f(vk) =
∑
i,j

||X̃anc
i gik − X̃anc

j gjk||22

= v⊤k Avk,

s.t. c(vk) =

c∑
i=1

||X̃anc
i gik||22

= v⊤k Bvk − 1 = 0.

(13)

Let λk denote the Lagrange multiplier, we have the Lagrange function L(vk, λk):

L(vk, λk) = f(vk)− λkc(vk) = v⊤k Avk − λk(v
⊤
k Bvk − 1).

The first-order conditions are:

∂L

∂vk
= 2Avk − 2λkBvk = 0,

∂L

∂λk
= v⊤k Bvk − 1 = 0,

(14)

which gives us the following generalized eigenvalue problem on matrices A and B with norm constraints on the
generalized eigenvectors vk.

Avk = λkBvk (v⊤k Bvk = 1). (15)

By solving (15), and computing the first m̃ generalized eigenvectors vk corresponding to the smaller m̃ generalized
eigenvalues (λ1 < λ2 < · · · < λm̃) we can efficiently compute the collaboration functions Gi from (8) and (12).

3.3 Proposed Methods

3.3.1 Orthogonal Procrustes Problem Method

We have examined that the existing approaches formulate the data collaboration problem as the minimization problem
of the sum of squared Frobenius norm distance between all pairs of X̃anc

i Gi, X̃
anc
j Gj :

min
Gi(i∈[c])

∑
i,j

||X̃anc
i Gi − X̃anc

j Gj ||2F, (16)

and add additional constraints to handle the trivial solution of this formulation. The least-square method sets the target
matrix Z = U1 (5), while the generalized eigenvalue approach imposes 2-norm constraints on the columns of the
transformed matrix (9). As outlined in Section 3.1, our main objective is to maintain the structure of X̃i even after the
transformation by Gi, beyond avoiding trivial solutions. We argue that constraining Gi to orthogonal matrices is a
natural choice for achieving minimal distortion in linear transformations since it would preserve distances and angles
between X̃i’s data samples. Our first proposed approach to the data collaboration problem (3.1) can be formulated as
follows:

min
Gi∈Rm̃×m̃ (∀i∈[c])

c∑
i=1

||X̃anc
i Gi − Z||2F,

s.t. G⊤
i Gi = GiG

⊤
i = I.

(17)

12
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Where Z = U1 is the same objective matrix used for the least-square approach 5. Notice that the problem is formulated
over the orthogonal matrix manifold, denoted as Om̃ := {X ∈ Rm̃×m̃ : X⊤X = XX⊤ = I}, which is inherently
non-convex and compact. This characteristic implies that only constant functions are geodesically convex on the
manifold for any given geodesic [5], making (17) a non-convex program. However, this problem, also known as the
Orthogonal Procrustes Problem, is well-explored in the literature [15] and possesses an established analytical solution
[53, 57].
Proposition 3.2. The optimization problem (17) can be equivalently transformed to the following program:

max
Gi∈Om̃ (∀i∈[c])

tr(Z⊤X̃anc
i Gi). (18)

Proof. Using ||X||2F = tr(X⊤X) where tr(·) is the matrix trace, we can write:

||X̃anc
i Gi − Z||2F = tr((X̃anc

i Gi − Z)⊤(X̃anc
i Gi − Z))

= tr((X̃anc
i Gi)

⊤X̃anc
i Gi)− 2tr(Z⊤X̃anc

i Gi) + tr(Z⊤Z)

= tr(X̃anc⊤
i X̃anc

i GiG
⊤
i )− 2tr(Z⊤X̃anc

i Gi) + tr(Z⊤Z)

= ||X̃anc
i ||2F + ||Z||2F − 2tr(Z⊤X̃anc

i Gi).

Here we used the properties of the matrix trace and G⊤
i Gi = GiG

⊤
i = I . Since individually minimizing ||X̃anc

i Gi −
Z||2F for each Gi minimizes

∑c
i=1 ||X̃anc

i Gi − Z||2F for all Gi(∀i ∈ [c]), solving 17 can be done by maximizing
tr(Z⊤X̃anc

i Gi) for each Gi.
Proposition 3.3. The optimal solutions G∗

i of Problem (17) (and (18)) are given by:

G∗
i = V ′

i Im̃U ′⊤
i , (19)

where, U ′
iΣ

′
iV

′⊤
i = Z⊤X̃anc

i is the singular value decomposition.

Proof. Given problem (18) we can write:

tr(Z⊤X̃anc
i Gi) = tr(U ′

iΣ
′
iV

′⊤
i Gi) = tr(Σ′

iV
′⊤
i GiU

′
i) = tr(Σ′

iWi) =

m̃∑
s=1

σi,(s,s)wi,(s,s), (20)

where Wi = V ′⊤
i GiU

′
i and σi,(s,t), wi,(s,t) denotes element (s, t) of matrices Σ′

i,Wi, respectively. Since Wi ∈ Rm̃×m̃

is orthogonal, wi,(s,t) ≤ 1 for all s = 1, · · · , m̃ and t = 1, · · · , m̃. Therefore, the sum (20) is maximized if Wi = Im̃,
and the solution of problem (17) is given by G∗

i = V ′
i Im̃U ′⊤

i .

Indeed, the orthogonal Procrustes problem method for creating the collaboration function Gi can be summarized as
follows:

1. Compute U1 ∈ Rr×m̃ by SVD:

[X̃anc
1 , . . . , X̃anc

c ] = [U1, U2]

[
Σ1

Σ2

] [
V ⊤
1

V ⊤
2

]
≈ U1Σ1V

⊤
1 .

2. Compute U ′
iΣ

′
iV

′⊤
i = Z⊤X̃anc

i by SVD for all i ∈ [c].

3. Obtain optimal G∗
i = V ′

i Im̃U ′⊤
i for all i ∈ [c].

3.3.2 Generalized Orthogonal Procrustes Problem Method

Kawakami [64] highlights a potential limitation in the formulations (6) and (17), specifically regarding the choice of the
objective matrix Z = U1, which is constrained to have orthogonal columns by SVD. We suggest that leveraging the
properties of orthogonal matrix manifolds, which are compact, could allow for treating Z as an optimization variable in
(17), thereby expanding the search space for Gi without falling into trivial solutions:

min
Gi∈Om̃ (∀i∈[c]),Z∈Rr×m̃

c∑
i=1

||X̃anc
i Gi − Z||2F. (21)
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This formulation is known as the Generalized Orthogonal Procrustes Problem, which is self-explanatoryly the
generalized version of the orthogonal Procrustes problem (17). A primitive yet effective alternating minimization
algorithm exists for this problem [15]. This algorithm alternatively fixes either of the optimization variables Z or Gi

in each step and computes the solutions until Z converges. If we fix Z, we have the ordinary orthogonal Procrustes
problem (17). On the other hand, if we fix Gi, we have the following convex program:

Proposition 3.4. The convex program

min
Z∈Rr×m̃

c∑
i=1

||X̃anc
i Gi − Z||2F, (22)

has the solution

Z∗ =
1

c

c∑
i=1

X̃anc
i Gi. (23)

Proof. Given Gi ∈ Om̃, we can write:
c∑

i=1

||X̃anc
i Gi − Z||2F =

c∑
i=1

tr((X̃anc
i Gi − Z)⊤(X̃anc

i Gi − Z))

=

c∑
i=1

tr((X̃anc
i Gi)

⊤X̃anc
i Gi − 2Z⊤X̃anc

i Gi + Z⊤Z)

=

c∑
i=1

tr(X̃anc⊤
i X̃anc

i GiG
⊤
i )−

c∑
i=1

tr(2Z⊤X̃anc
i Gi − Z⊤Z)

=

c∑
i=1

||X̃anc
i ||2F −

c∑
i=1

tr(2Z⊤X̃anc
i Gi − Z⊤Z).

Therefore, it suffices to maximize
∑c

i=1 tr(2Z
⊤X̃anc

i Gi − Z⊤Z). Since (22) is a convex program, the first-order
condition is sufficient for the global optimizer:

∂

∂Z

c∑
i=1

tr(2Z⊤X̃anc
i Gi − Z⊤Z) =

c∑
i=1

(2X̃anc
i Gi − 2Z) = 0.

Hence, we have Z = 1
c

∑c
i=1 X̃

anc
i Gi.

Indeed, the alternating minimization algorithm consists of the following steps:

1. Initialize Z = Z0 with Z0 = U1 where

[X̃anc
1 , . . . , X̃anc

c ] = [U1, U2]

[
Σ1

Σ2

] [
V ⊤
1

V ⊤
2

]
≈ U1Σ1V

⊤
1 .

2. Given Z0, the problem becomes the ordinary orthogonal Procrustes problem with the solution

Gi = V ′
i Im̃U ′⊤

i (U ′
iΣ

′
iV

′⊤
i = Z⊤

0 X̃anc
i ).

3. Given Gi, the problem becomes a convex optimization problem with the solution

Z1 =
1

c

c∑
i=1

X̃anc
i Gi.

4. If ||Z1 − Z0||F > ϵ for a predetermined threshold ϵ, then substitute Z0 with Z1 and go back to step 2.

The problem defined in (21) is a non-convex program inherently susceptible to the risk of converging to local optima
or other fixed points rather than the global optimum. While a recent study [40] has theoretically discussed global
convergence under specific initial conditions (Step 1), their findings do not directly translate to our settings, highlighting
a critical area for future research. However, despite these theoretical limitations, extensive practical evaluations of the
algorithm have demonstrated its effectiveness, as documented in [15, 39].
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3.3.3 Rank-Deficiency Penalization Method

In revisiting the data collaboration problem (3.1), we consider the trade-off between minimizing alignment error
(condition (i)) and maximizing structure retention (condition (ii)). Our proposed approaches strictly maintain the
structure of intermediate representations by confining the search space to orthogonal matrices. These approaches,
however, may limit flexibility, particularly when achieving minimal alignment error is more critical, albeit at the expense
of some structure distortion and scaling. Our subsequent approach addresses this issue by relaxing the constraints of
orthogonal matrices, introducing a penalty for rank-deficient matrices based on a predetermined parameter:

min
Gi∈Mi (∀i∈[c])

1

2

c∑
i=1

c∑
j=1

||X̃anc
i Gi − X̃anc

j Gj ||2F + η

c∑
i=1

(log(det(G⊤
i Gi)))

2, (24)

Mi = {Rm̃×m̃ : Rank(Gi) = m̃}. (25)

The penalty term in (24) is designed to regulate the extent of distortion in the intermediate representations. This term,
leveraging the log-det function, emphasizes matrices nearing rank deficiency and applies smaller weights to those with
larger scales. More specifically, the term log(det(G⊤

i Gi)) will apply exponential penalties to matrices Gi when their
Gram determinants decrease from 1 and approach 0, and logarithmic penalties matrices as they increase away from 1. It
smoothly provides room for further minimizing alignment error (condition (i) in (3.1)) for the cost of some structure
distortion and scaling (condition (ii) in (3.1)), given that orthogonal matrices strictly provide log(det(G⊤

i Gi)) = 0. The
extent of this penalization is governed by the hyperparameter η > 0. Notably, due to the smoothness of this term, η does
not impose a rigid boundary but instead serves as a moderate penalizer, discouraging undesirable matrix configurations.
This subtlety in penalization makes selecting the hyperparameter more manageable than dealing with strict inequality
constraints.

We adopt Riemannian optimization techniques for an efficient and numerically stable solution to this formulation. To
ensure stability, as per the logarithmic function’s requirements, we maintain det(G⊤

i Gi) > 0, restricting our search
to full-rank matrices. We approach this problem as a Riemannian optimization task over the Riemannian full-rank
(fixed-rank) matrix manifold, defined in [56]. This manifold is implemented in the ’Manopt’ optimization solver as
the ’fixedrankembeddedfactory’ [6]. We employ the Riemannian BFGS algorithm [21], also available in Manopt for
problem-solving.

The optimization landscape of our Riemannian problem needs to be clarified for any geodesic, presenting a challenge
for theoretical exploration in future research. Currently, the selection of initial points is crucial. A viable starting point
could be the analytical solutions from the least-square method (7) and the orthogonal Procrustes problem approach
(3.3). These solutions inherently provide full-rank matrices for Gi, assuming that X̃anc

i is full-rank for the least-square
method. Note that this method includes our published work form [47].

4 Numerical Experiments

This chapter outlines the methodology and outcomes of our numerical experiments. Subsection 4.1 describes the
experimental procedure and setup. Subsection 4.2 presents the results from experiments conducted on three distinct
datasets, including a brief overview of each. Finally, Subsection 4.3 discusses these results, identifying the most
effective method for collaborative function creation in terms of model performance and efficiency.

4.1 Experiment Methodology

We evaluated the performance of our approaches on the following public datasets: the "Pima Indians Diabetes",
the "Heart Disease", and the "Credit-Rating Historical". The details of these datasets are briefly reviewed in the
corresponding subsubsections of 4.2. Our experiment follows Algorithm 1, and the specific settings are summarized
in Algorithm 2. We randomly allocated 50 data samples to each worker and 100 samples for the test data, assuming
identical test data across workers for consistent performance evaluation. However, this identical test data assumption
would be unrealistic in real-world applications. For the anchor dataset Xanc in Step 1, a random matrix from the
standard normal distribution was selected (Xanc ∈ Rr×m, with r = 1000). In Step 3, the matrix Ei ∈ Rni×m was
generated using the standard normal distribution, and the perturbation parameter was set to δ = 0.05. The PCA
dimension reduction matrix Fi ∈ Rm×m̃ (the PCA function from the scikit-learn library in Python) was configured to
reduce dimensions to m̃ = 0.8m, rounded down to the nearest integer.

In Step 9, we compute the collaboration functions Gi ∈ Rm̃×m̃ using the following methods:
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• Least-Square (LS) Method (7)

• Generalized Eigenvalue Problem (GEP) Method (15)

• Orthogonal Procrustes Problem (OPP) Method (3.3)

• Generalized Orthogonal Procrustes (GOPP) Method (21)

• Rank-Deficiency Penalty (RDP) Method (24) (with least-square initialization) (RDP-LS)

• RDP Method (24) (with orthogonal Procrustes initialization) (RDP-OPP)

In our experimental setup, we defined the minimum dimension m̃ as 0.8m. For the machine learning models h and ti
in Steps 11 (master side) and 15 (worker side), logistic regression, multi-layer perceptrons (MLP) [16], and random
forest classifiers [19] were employed, utilizing the scikit-learn package [48] in Python with default parameters. Model
performance ti was assessed using the area under the receiver operating characteristic curve (ROC-AUC) metric [10],
relative to the test data’s ground truth. We compared the mean performance of these results across all workers to the
performance of the centralized model, which combines all worker datasets as if no privacy constraints existed, and
to the mean performance of local models, where each worker trains a model with only their data. This process was
replicated 100 times for each dataset and ML model combination under different random distribution scenarios.

All experiments were executed on a Windows 11 Pro machine with an AMD Ryzen 7 5800X 8-Core Processor (3.80
GHz) and 32.0 GB of RAM. The code was implemented using Python 3.10.10 and MATLAB R2023a using the Python
MATLAB engine API. We used the "numpy", "pandas", "scikit-learn", and "scipy" packages in Python and the "manopt"
package in MATLAB.

4.2 Experiment Results

4.2.1 Pima Indians Diabetes (PID) Dataset

The Pima Indians Diabetes (PID) dataset, sourced from the National Institute of Diabetes and Digestive and Kidney
Diseases, aims to predict the presence of diabetes in patients. It includes diagnostic measurements from females of at
least 21 years of age, all of Pima Indian descent. The dataset’s purpose is to enable the diagnostic prediction of diabetes
("Outcome") based on the following features:

1. Pregnancies: Number of times pregnant.

2. Glucose: Plasma glucose concentration 2 hours after an oral glucose tolerance test.

3. BloodPressure: Diastolic blood pressure (mm Hg).

4. SkinThickness: Triceps skin fold thickness (mm).

5. Insulin: 2-hour serum insulin (mu U/ml).

6. BMI: Body mass index calculated as weight in kg divided by the square of height in meters.

7. DiabetesPedigreeFunction: A function representing diabetes pedigree.

8. Age: Age in years.

9. Outcome: Class variable indicating diabetes status (0 = no diabetes, 1 = diabetes).

For preprocessing, missing values in "Glucose" and "BloodPressure" were replaced with their mean values. At the
same time, "SkinThickness", "Insulin", and "BMI" had missing values substituted with their median values due to their
distributions. Except for "Outcome", all features are numerical and have been standardized. From the original 769
samples, 750 were randomly selected with the same proportion of target variables, ensuring a representative subset for
analysis. Therefore, the number of workers would be 13, and the dimensions of the intermediate representations would
be six (m̃ = 6).

Box plots in Figures 4, 5, and 6 display the ROC-AUC scores for logistic regression (LR), multi-layer perceptron
(MLP), and random forest (RF) models, respectively. The y-axis lists the methods used to generate collaboration
functions Gi and their associated collaborative models (ti), alongside benchmarks of centralized (Central) and local
(Local) models. The x-axis shows the ROC-AUC scores for the ML models (mean score across all workers in the local
and collaborative settings). These plots highlight the effect of different collaboration function creation methods on
the performance of collaborative models compared to centralized and local models in various distribution scenarios
(100 random distributions for each ML model type). The red dot denotes the mean. Detailed statistical values of the
ROC-AUC scores for LR, MLP, and RF are provided in Tables 1, 2, and 3, respectively. Additionally, Table 4 details
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Algorithm 2: Overview of the Numerical Experiment Settings for NRI-DC

Input: For worker-side: Xi ∈ R50×m, Yi ∈ R50, and Xtest
i ∈ R100×m individually. Distributions are chosen

randomly for each iteration (total of 100).

Output: For worker-side: Y pred
i (i = 1, 2, . . . , c)

Worker-side (i = 1, 2, . . . , c)
——————————————————————————–
1. Generate Xanc ∈ Rr×m and share to all workers

(random entries from the standard normal distribution).
2. Generate random permutation matrix Pi ∈ Rni×ni

that cannot be reconstructed.
3. Generate random matrix Ei ∈ Rni×m

that cannot be reconstructed (random entries from the standard normal distribution )
and choose perturbation parameter δ = 0.05.

4. Generate PCA linear dimension reduction function Fi ∈ Rm×0.8m based on Xi + 0.05Ei.

5. Compute X̃ ′
i = PiXiF

′
i , X̃anc

i = XancF ′
i , and Ỹi = PiYi.

6. Erase F ′
i and Pi.

7. Share X̃ ′
i , X̃

anc
i , and Ỹ ′

i to master and erase them.

Master-side
————————————————————–

8. ↘ Obtain X̃ ′
i , X̃

anc
i , and Ỹ ′

i for all i.

9. Compute Gi ∈ R0.8m×0.8m from X̃anc for all i.

10. Compute X̂i = X̃ ′
iGi for all i, and set X̂ ′, Y ′.

11. Analyze X̂ ′ to obtain h such that Y ′ ≈ h(X̂ ′).

12. Compute Y anc
i = h(X̂anc

i ).
13. ↙ Return Y anc

i to each worker.

Worker-side (i = 1, 2, . . . , c)
——————————————————————————–
14. Obtain Y anc

i .
15. Analyze Xanc to obtain ti such that Y anc

i ≈ ti(X
anc).

16. Compute Y pred
i = ti(X

test
i ).
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Figure 4: ROC-AUC box plot of logistic regression with PID dataset

Central Local LS GEP OPP GOPP RDP(LS) RDP(OPP)

mean 0.835 0.791 0.536 0.5 0.820 0.821 0.817 0.816
std 0.051 0.045 0.073 0.0 0.050 0.050 0.050 0.050
min 0.652 0.642 0.500 0.5 0.648 0.651 0.645 0.645
25% 0.809 0.764 0.500 0.5 0.794 0.794 0.785 0.783
50% 0.836 0.792 0.500 0.5 0.818 0.818 0.813 0.813
75% 0.867 0.823 0.546 0.5 0.857 0.857 0.852 0.851
max 0.941 0.887 0.804 0.5 0.936 0.937 0.930 0.930

Table 1: ROC-AUC statistical table of logistic regression with PID dataset

the computation time (in seconds) required for each collaboration function generation method to compute all Gi from
X̃anc

i across all ML model types (total of 300 iterations).

Our results demonstrate comparable performance across all ML model types using our methods. They consistently
outperform local models, particularly in logistic regression scenarios where contemporary methods like LS and GEP
are less effective (Figure 4). In logistic regression, our methods significantly surpass LS and GEP while achieving
comparable results with LS in MLP and random forest models. Regarding computation time (Table 4), GEP emerges as
the most efficient, followed by OPP and LS, with RDP-based methods lagging significantly in computational efficiency.

4.2.2 Heart Disease (HD) Dataset

The Heart Disease (HD) dataset [28] comprises 13 numerical features aimed at predicting the presence of heart disease.
The target variable for binary classification is "TARGET," indicating the presence (1) or absence (0) of heart disease.
The dataset’s features include:

Central Local LS GEP OPP GOPP RDP-LS RDP-OPP

mean 0.836 0.778 0.820 0.799 0.825 0.826 0.827 0.825
std 0.053 0.041 0.049 0.045 0.049 0.049 0.050 0.050
min 0.671 0.632 0.654 0.645 0.671 0.662 0.663 0.663
25% 0.803 0.754 0.791 0.771 0.792 0.792 0.798 0.794
50% 0.843 0.780 0.820 0.797 0.832 0.833 0.830 0.825
75% 0.871 0.811 0.856 0.831 0.859 0.860 0.862 0.861
max 0.934 0.848 0.922 0.901 0.938 0.940 0.949 0.949

Table 2: ROC-AUC statistical table of MLP with PID dataset
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Figure 5: ROC-AUC box plot of MLP with PID dataset
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Figure 6: ROC-AUC box plot of random forest with PID dataset

Central Local LS GEP OPP GOPP RDP-LS RDP-OPP

mean 0.824 0.777 0.805 0.742 0.804 0.805 0.806 0.803
std 0.052 0.043 0.052 0.055 0.052 0.052 0.051 0.051
min 0.670 0.649 0.645 0.571 0.654 0.659 0.657 0.660
25% 0.795 0.752 0.777 0.713 0.779 0.778 0.774 0.772
50% 0.826 0.776 0.806 0.741 0.806 0.806 0.810 0.804
75% 0.860 0.808 0.845 0.771 0.842 0.847 0.845 0.842
max 0.934 0.891 0.921 0.860 0.923 0.927 0.926 0.911

Table 3: ROC-AUC statistical table of random forest with PID dataset
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LS GEP OPP GOPP RDP-LS RDP-OPP

mean 0.033 0.007 0.025 0.038 7.886 10.356
std 0.016 0.002 0.003 0.007 1.115 3.332
min 0.023 0.006 0.022 0.030 4.931 5.870
25% 0.025 0.006 0.023 0.033 7.102 8.331
50% 0.026 0.006 0.023 0.035 7.813 9.811
75% 0.030 0.007 0.026 0.043 8.610 11.471
max 0.106 0.031 0.036 0.060 11.391 37.868

Table 4: Table of the computation time (sec) of Gi with PID dataset

1. Age : (Numerical) Patient age in years.
2. Sex: (Categorical) Gender of the patient (1 = male, 0 = female).
3. CP (Chest Pain Type): (Categorical) Type of chest pain experienced.
4. TRESTBPS: (Numerical) Resting blood pressure in mm Hg at hospital admission.
5. CHOL: (Numerical) Serum cholesterol level in mg/dl.
6. FPS (Fasting Blood Sugar): (Categorical) Indicates if fasting blood sugar is greater than 120 mg/dl (1 = true,

0 = false).
7. RESTECG: (Categorical) Results of resting electrocardiographic tests.
8. THALACH: (Numerical) Maximum heart rate achieved.
9. EXANG: (Categorical) Presence of exercise-induced angina (1 = yes, 0 = no).

10. OLDPEAK: (Numerical) ST depression induced by exercise relative to rest.
11. SLOPE: (Categorical) Slope of the peak exercise ST segment.
12. CA: (Categorical) Number of major vessels colored by fluoroscopy (0-3).
13. THAL: (Categorical) Thalassemia status (3 = normal; 6 = fixed defect; 7 = reversible defect).
14. TARGET: (Categorical) Presence (1) or absence (0) of heart disease.

For preprocessing, categorical columns in the dataset are one-hot encoded, with the first column of each category
removed to avoid multicollinearity. Numerical columns are standardized for consistency. From the 1026 samples, 1000
were randomly selected, maintaining the same proportion of the target variables, to ensure a representative subset for
analysis.

Box plots in Figures 7, 8, and 9 display the ROC-AUC scores for logistic regression (LR), multi-layer perceptron
(MLP), and random forest (RF) models, respectively. The y-axis lists the methods used to generate collaboration
functions Gi and their associated collaborative models (ti), alongside benchmarks of centralized (Central) and local
(Local) models. The x-axis shows the ROC-AUC scores for the ML models (mean score across all workers in the local
and collaborative settings). These plots highlight the effect of different collaboration function creation methods on
the performance of collaborative models compared to centralized and local models in various distribution scenarios
(100 random distributions for each ML model type). The red dot denotes the mean. Detailed statistical values of the
ROC-AUC scores for LR, MLP, and RF are provided in Tables 5, 6, and 7, respectively. Additionally, Table 8 details
the computation time (in seconds) required for each collaboration function generation method to compute all Gi from
X̃anc

i across all ML model types (total of 300 iterations).

In logistic regression, Figure 7 and Table 5 show our methods outperforming local models, with LS and GEP less
effective and Procrustean methods (OPP and GOPP) slightly better than RDP methods (RDP-LS and RDP-OPP). For
MLP, as per Figure 8 and Table 6, LS and our approaches exceed local model performance, ranking Procrustean methods
highest, followed by RDP and then LS. In the random forest analysis (Figure 9 and Table 7), only LS and Procrustean
methods equaled local model performance. Computation time analysis (Table 8) revealed GEP as the most efficient,
followed by OPP and LS, with RDP methods being significantly less efficient, mirroring findings from the PID dataset.

4.2.3 Credit-Rating Historical (CRH) Dataset

The Credit-Rating Historical (CRH) dataset is a simulated collection designed for credit rating analysis derived from
MATLAB’s Statistics and Machine Learning Toolbox. The primary goal is to predict credit ratings, categorized from
"AAA" to "CCC". The dataset comprises financial ratios and industry classifications:
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Figure 7: ROC-AUC box plot of logistic regression with HD dataset

Central Local LS GEP OPP GOPP RDP(LS) RDP(OPP)

mean 0.936 0.880 0.872 0.760 0.924 0.923 0.907 0.908
std 0.021 0.025 0.033 0.114 0.023 0.023 0.028 0.028
min 0.852 0.789 0.767 0.500 0.843 0.844 0.821 0.821
25% 0.922 0.864 0.855 0.699 0.911 0.911 0.888 0.888
50% 0.935 0.884 0.875 0.795 0.926 0.925 0.914 0.914
75% 0.950 0.897 0.894 0.847 0.940 0.940 0.927 0.927
max 0.980 0.930 0.935 0.916 0.971 0.971 0.967 0.967

Table 5: ROC-AUC statistical table of logistic regression with HD dataset
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Figure 8: ROC-AUC box plot of MLP with HD dataset
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Central Local LS GEP OPP GOPP RDP(LS) RDP(OPP)

mean 0.996 0.884 0.912 0.875 0.940 0.940 0.925 0.926
std 0.007 0.023 0.027 0.027 0.021 0.021 0.025 0.025
min 0.958 0.805 0.824 0.780 0.858 0.861 0.843 0.844
25% 0.995 0.872 0.895 0.856 0.929 0.928 0.913 0.911
50% 0.998 0.886 0.918 0.879 0.941 0.941 0.926 0.926
75% 1.000 0.900 0.932 0.894 0.956 0.956 0.943 0.943
max 1.000 0.930 0.958 0.930 0.977 0.978 0.980 0.981

Table 6: ROC-AUC statistical table of MLP with HD dataset
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Figure 9: ROC-AUC box plot of random forest with HD dataset

Central Local LS GEP OPP GOPP RDP(LS) RDP(OPP)

mean 1.0 0.889 0.891 0.815 0.892 0.892 0.885 0.884
std 0.0 0.023 0.031 0.032 0.031 0.031 0.033 0.033
min 1.0 0.814 0.805 0.712 0.789 0.804 0.772 0.774
25% 1.0 0.873 0.872 0.798 0.878 0.873 0.867 0.865
50% 1.0 0.893 0.895 0.817 0.896 0.896 0.892 0.893
75% 1.0 0.904 0.917 0.837 0.912 0.915 0.909 0.909
max 1.0 0.934 0.955 0.886 0.948 0.948 0.955 0.935

Table 7: ROC-AUC statistical table of random forest with HD dataset
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LS GEP OPP GOPP RDP-LS RDP-OPP

mean 0.160 0.085 0.105 0.228 66.179 72.334
std 0.084 0.023 0.012 0.031 15.941 18.276
min 0.107 0.072 0.096 0.176 0.847 51.240
25% 0.112 0.074 0.098 0.206 60.509 64.059
50% 0.115 0.076 0.099 0.221 64.613 68.302
75% 0.189 0.092 0.107 0.242 71.305 74.339
max 0.539 0.365 0.186 0.384 149.614 203.950

Table 8: Table of the computation time (sec) of Gi with HD dataset

Central Local LS GEP OPP GOPP RDP-LS RDP-OPP

mean 0.973 0.950 0.879 0.5 0.963 0.963 0.955 0.957
std 0.014 0.021 0.058 0.0 0.017 0.017 0.027 0.021
min 0.930 0.885 0.542 0.5 0.902 0.901 0.813 0.890
25% 0.966 0.941 0.852 0.5 0.955 0.956 0.946 0.946
50% 0.974 0.953 0.883 0.5 0.964 0.965 0.960 0.960
75% 0.984 0.964 0.922 0.5 0.975 0.976 0.973 0.973
max 0.993 0.986 0.965 0.5 0.989 0.989 0.990 0.990

Table 9: ROC-AUC statistical table of logistic regression with CRH dataset

1. WC_TA (Working Capital / Total Assets): Proportion of working capital to total assets.

2. RE_TA (Retained Earnings / Total Assets): Ratio of retained earnings to total assets.

3. EBIT_TA (Earnings Before Interests and Taxes / Total Assets): Profitability measure before interests and
taxes relative to total assets.

4. MVE_BVTD (Market Value of Equity / Book Value of Total Debt): Comparison of equity market value to
total debt book value.

5. S_TA (Sales / Total Assets): Ratio of total sales to total assets.

6. Industry: Numerical labels (1-12) for industry sectors.

7. Rating: Credit ratings: "AAA", "AA", "A", "BBB", "BB", "B", "CCC".

Preprocessing includes one-hot encoding of the "Industry" column, removing the first category to prevent multicollinear-
ity. Numerical columns are standardized. The target variable, "Rating," is binarized: ratings "BBB" and above are
labeled 1, and lower ratings are labeled 0. From the total 3932 samples, 1000 were randomly selected, ensuring
representation across target variables for analysis.

Box plots in Figures 10, 11, and 12 display the ROC-AUC scores for logistic regression (LR), multi-layer perceptron
(MLP), and random forest (RF) models, respectively. The y-axis lists the methods used to generate collaboration
functions Gi and their associated collaborative models (ti), alongside benchmarks of centralized (Central) and local
(Local) models. The x-axis shows the ROC-AUC scores for the ML models (mean score across all workers in the local
and collaborative settings). These plots highlight the effect of different collaboration function creation methods on
the performance of collaborative models compared to centralized and local models in various distribution scenarios
(100 random distributions for each ML model type). The red dot denotes the mean. Detailed statistical values of the
ROC-AUC scores for LR, MLP, and RF are provided in Tables 9, 10, and 11, respectively. Additionally, Table 12 details
the computation time (in seconds) required for each collaboration function generation method to compute all Gi from
X̃anc

i across all ML model types (total of 300 iterations).

In logistic regression, Figure 7 and Table 5 show that only Procrustean methods (OPP and GOPP) surpassed local model
performance. For MLP, as demonstrated in Figure 8 and Table 6, all collaborative methods outdid the local models, with
RDP methods leading, followed closely by Procrustean methods, then LS, and finally GEP. Figure 9 and Table 7 indicate
that collaborative methods did not exceed local model performance in the random forest analysis. Computation time
analysis (Table 12) mirrors findings from the PID and HD datasets, with GEP being the most time-efficient, followed by
OPP and LS, while RDP methods are significantly less efficient.
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Figure 10: ROC-AUC box plot of logistic regression with CRH dataset
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Figure 11: ROC-AUC box plot of MLP with CRH dataset

Central Local LS GEP OPP GOPP RDP-LS RDP-OPP

mean 0.974 0.930 0.950 0.943 0.960 0.960 0.963 0.963
std 0.014 0.022 0.022 0.023 0.017 0.017 0.017 0.016
min 0.930 0.856 0.872 0.871 0.903 0.902 0.903 0.907
25% 0.966 0.923 0.937 0.935 0.952 0.952 0.956 0.956
50% 0.976 0.933 0.956 0.947 0.961 0.962 0.964 0.964
75% 0.985 0.946 0.964 0.960 0.974 0.973 0.974 0.974
max 0.995 0.972 0.982 0.983 0.985 0.985 0.988 0.987

Table 10: ROC-AUC statistical table of MLP with CRH dataset
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Figure 12: ROC-AUC box plot of random forest with CRH dataset

Central Local LS GEP OPP GOPP RDP-LS RDP-OPP

mean 0.972 0.958 0.952 0.927 0.950 0.948 0.950 0.950
std 0.013 0.016 0.020 0.024 0.021 0.022 0.020 0.020
min 0.930 0.912 0.902 0.857 0.891 0.893 0.892 0.882
25% 0.962 0.948 0.935 0.912 0.933 0.933 0.938 0.935
50% 0.973 0.961 0.956 0.928 0.953 0.950 0.952 0.952
75% 0.981 0.971 0.967 0.943 0.966 0.964 0.965 0.964
max 0.994 0.984 0.987 0.968 0.983 0.984 0.984 0.984

Table 11: ROC-AUC statistical table of random forest with CRH dataset

LS GEP OPP GOPP RDP-LS RDP-OPP

mean 0.090 0.057 0.075 0.222 23.157 23.759
std 0.023 0.034 0.007 0.064 8.031 8.503
min 0.074 0.035 0.069 0.144 0.736 2.046
25% 0.076 0.036 0.071 0.184 20.274 19.143
50% 0.079 0.037 0.072 0.206 22.484 21.970
75% 0.094 0.076 0.078 0.234 24.830 25.432
max 0.254 0.170 0.162 0.636 80.653 87.054

Table 12: Table of the computation time (sec) of Gi with CRH dataset
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Conclusion

4.3 Discussions

From the overall numerical experiment results, we observed that Procrustean-based methods generally excelled in
recognition performance across various datasets and ML models, affirming our hypothesis that preserving the structure
of intermediate representations for model performance is critical. The constraint of Gi to the orthogonal matrix
manifold significantly contributed to this effectiveness. However, RDP methods outperformed in some instances (11,
10), suggesting that minimizing alignment error can be more crucial in some scenarios despite potential structure
distortion. Notably, the choice of initial points in the RDP method did not lead to significant performance variations.
Likewise, no substantial differences were observed between OPP and GOPP despite their differences in incorporating
the target matrix Z in optimization. This finding prompts further investigation into GOPP’s optimization landscape
and the practicality of using dominant singular vectors as the target matrix, thus providing a vital avenue for future
theoretical research.

Regarding computation time, GEP consistently emerged as the most efficient collaboration method, followed by OPP,
LS, GOPP, and RDP methods, which were significantly less efficient. Using the Big-O notation, GEP’s computational
time complexity is O(r(m̃N)2 + (m̃N)3), with the first term representing the time complexity up to formulating
the generalized eigenvalue problem, and the second term for solving it [64]. For OPP and LS, the complexities are
O(rm̃N min(r, m̃N) + N(rm̃min(r, m̃) + rm̃2) and O(rm̃N min(r, m̃N) + N(rm̃2 + 2m̃3), respectively [37].
Both methods involve computing the target matrix Z via SVD, represented by the first term. The difference arises in
the second term: OPP computes the SVD of Z⊤X̃anc

i ∈ Rm̃×m̃, while LS calculates the Moore-Penrose inverse of
X̃anc

i ∈ Rr×m̃. Given that the dominant complexity in Moore-Penrose inversion is SVD, and considering m̃ << r in
our experiment settings, this accounts for the faster performance of OPP compared to LS. GEP’s efficiency advantage is
due to the second term being r-independent.

Our experimental results conclude that the OPP method is the most practical collaboration function creation method
in addressing our research question. It has proved to enhance the performance and stability of collaborative models,
maintaining computational efficiency and aligning with the non-iterative communication and privacy tenets of the DC
framework.

5 Conclusion

We introduced innovative methods for creating collaboration functions within the NRI-DC framework, focusing
on preserving the structure of intermediate representations. We established the necessary conditions for practical
collaboration functions and built our proposed methods on these conditions, ensuring a solid theoretical foundation. Our
methods can be divided into two categories: those formulated over the orthogonal matrix manifold and those formulated
over the full-rank manifold. The orthogonal matrix manifold formulation benefits from established Procrustean analysis
methods, while the full-rank manifold formulation is amenable to Riemannian optimization algorithms, proving efficient
approaches for these formulations. Through empirical analysis of three public datasets using diverse machine learning
models, we found that the orthogonal matrix manifold formulation, particularly with the orthogonal Procrustes solution,
excels in practical application, consistently enhancing model performance with efficiency.

Future research directions include strengthening the theoretical foundation of this study. A fundamental assumption
is the exclusive use of linear dimensionality reduction functions like PCA. However, to more effectively capture the
structure of original data matrices, exploring alternatives like LPP [17] or tSNE [18] is necessary, potentially requiring
reevaluation of the origin shifts and the current target matrix Z setting. Another crucial area for exploration is the
privacy-preserving aspect of the NRI-DC framework. Further assessing its vulnerabilities and ensuring strict compliance
with global privacy regulations are vital for its broader societal application. Alternatively, clarifying the framework’s
privacy limits may lead to optimizing the framework for enhanced simplicity and efficiency without undermining
privacy protections, which is a significant area of future research.
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