
NEUR2BILO: Neural Bilevel Optimization

Justin Dumouchelle*1,2, Esther Julien3, Jannis Kurtz4 and
Elias B. Khalil1,2

1University of Toronto, Canada
2SCALE AI Research Chair in Data-Driven Algorithms for Modern Supply Chains, Canada

3TU Delft, The Netherlands
4University of Amsterdam, The Netherlands

March 15, 2024

Abstract

Bilevel optimization deals with nested problems in which a leader takes the first deci-
sion to minimize their objective function while accounting for a follower’s best-response
reaction. Constrained bilevel problems with integer variables are particularly notori-
ous for their hardness. While exact solvers have been proposed for mixed-integer linear
bilevel optimization, they tend to scale poorly with problem size and are hard to gener-
alize to the non-linear case. On the other hand, problem-specific algorithms (exact and
heuristic) are limited in scope. Under a data-driven setting in which similar instances of
a bilevel problem are solved routinely, our proposed framework, NEUR2BILO, embeds
a neural network approximation of the leader’s or follower’s value function, trained
via supervised regression, into an easy-to-solve mixed-integer program. NEUR2BILO
serves as a heuristic that produces high-quality solutions extremely fast for the bilevel
knapsack interdiction problem, the “critical node problem” from network security, a
donor-recipient healthcare problem, and discrete network design from transportation
planning. These problems are diverse in that they have linear or non-linear objec-
tives/constraints and integer or mixed-integer variables, making NEUR2BILO unique
in its versatility.

1 Introduction

A motivating application. Consider the following discrete network design problem
(DNDP) [50, 51]. A transportation planning authority seeks to minimize the average
travel time on a road network represented by a directed graph of nodes N and links
A1 by investing in constructing a set of roads (i.e., links) from a set of options A2,
subject to a budget B. The planner knows the number of vehicles that travel between

*Corresponding author: justin.dumouchelle@mail.utoronto.ca

1

mailto:justin.dumouchelle@mail.utoronto.ca

any origin-destination (O-D) pair of nodes. A good selection of links should take into
account the drivers’ reactions to this decision as it is not possible to centrally plan driver
routes. One common assumption is that drivers will optimize their O-D paths such that
a user equilibrium is reached. This is known as Wardrop’s second principle in the traffic
assignment literature, an equilibrium in which “no driver can unilaterally reduce their
travel costs by shifting to another route” [44]. This is in contrast to the system optimum,
an equilibrium in which a central planner dictates each driver’s route, an unrealistic
assumption which would not require bilevel modelling. A link cost function is used to
model the travel time on an edge as a function of traffic. Let cij ∈ R+ be the capacity
(vehicles per hour (vph)) of a link and Tij ∈ R+ the free-flow travel time (i.e., travel time
on the link without congestion). The US Bureau of Public Roads uses the following widely
accepted formula to model the travel time t(yij) on a link used by yij vehicles per hour:
t(yij) = Tij(1 + 0.15(yij/cij)

4). As the traffic yij grows to exceed the capacity cij, a large
quartic increase in travel time is incurred [44].

Bilevel optimization (BiLO) [4] models the DNDP and many other problems in which
an agent (the leader) makes decisions that minimize their cost function subject to another
agent’s (the follower’s) best response. In the DNDP, the leader is the transportation planner
and the follower is the population of drivers, giving rise to the following optimization
problem:

min
x∈{0,1}|A2|,y

∑
(i,j)∈A

t(yij)yij

s.t.
∑

(i,j)∈A2

gijxij ≤ B,

y ∈ argmin
y′∈R|A|

+

∑
(i,j)∈A

∫ y′ij

0

tij(v)dv =
∑

(i,j)∈A

Tijy
′
ij +

0.15Tij

5c4ij

(
y′ij

)5
s.t. y′ is a valid network flow,

xij = 0 =⇒ y′ij = 0,

where A2 ∩ A1 = ∅, A = A1 ∪ A2. The leader minimizes the total travel time across all
links subject to a budget constraint and the followers’ equilibrium which is expressed as
a network flow on the graph augmented by the leader’s selected edges that satisfies O-
D demands; the integral in the follower’s objective models the desired equilibrium and
evaluates to a degree-5 convex polynomial function in y′.

Going beyond the DNDP, Dempe [18] lists more than 70 applications of BiLO ranging
from pricing in electricity markets (leader is an electricity-supplying retailer that sets the
price to maximize profit, followers are consumers who react accordingly to satisfy their de-
mand [61]) to interdiction problems in security settings (leader inspects a budgeted subset
of nodes on a road network, follower selects a path such that they evade inspection [58]).

Scope of this work. In this work, we are interested in mixed-integer non-linear bilevel
optimization problems, simply referred to hereafter as bilevel optimization or BiLO, a very
general class of bilevel problems where all constraints and objectives may involve non-

2

linear terms and integer variables. At a high level, we have identified three limitations of
existing computational methods for BiLO:

(i.) The state-of-the-art exact solvers of Fischetti et al. [26] and Tahernejad et al. [56]
are limited to mixed-integer bilevel linear (MILP) problems and do not scale well.
When quick high-quality solutions to large-scale problems are sought after, such exact
solvers may be ineffective.

(ii.) Specialized algorithms, heuristic or exact, do not generalize beyond the single prob-
lem they were designed for. For instance, the state-of-the-art exact Knapsack Inter-
diction solver [59] only works for a single knapsack constraint and fails with two
or more, a significant limitation even if one is strictly interested in knapsack-type
problems.

(iii.) Existing methods, exact or heuristic, generic or specialized, are not designed for
the “data-driven algorithm design” setting [3] in which similar instances are rou-
tinely solved and the goal is to construct generalizable high-efficiency algorithms
that leverage historical data.

Contributions. NEUR2BILO (for Neural Bilevel Optimization) is a learning-based frame-
work for bilevel optimization that deals with these issues simultaneously. The following
series of observations make NEUR2BILO possible:

(i.) Data collection is “easy”: For a fixed leader’s decision, the optimal value of the
follower can be computed by an appropriate (single-level) solver (e.g., for mixed-
integer programming (MIP) or convex programming), enabling the collection of sam-
ples of the form (leader’s decision, follower’s value, leader’s value).

(ii.) Offline learning in the data-driven setting: While obtaining data online may be
prohibitive, access to historical training instances affords us the ability to construct,
offline, a large dataset of samples that can then serve as the basis for learning an
approximate value function using supervised regression. The output of this training
is a regressor mapping an instance-leader’s decision pair to an estimated follower or
leader value.

(iii.) MIP embeddings of neural networks: Should the regressor be MIP-representable,
e.g., a feedforward ReLU neural network or a decision tree, it is possible to use a MIP
solver to find the leader’s decision that minimizes the regressor’s output. This MIP,
which includes any leader constraints, thus serves as an approximate single-level
surrogate of the original bilevel problem instance.

(iv.) Follower’s constraints via the value function reformulation: The final ingredient
of the NEUR2BILO recipe is to include any follower’s constraints, some of which may
involve leader’s variables. This makes the surrogate problem a heuristic version of the
well-known value function reformulation (VFR) in BiLO. The VFR transforms a bilevel
problem into a single-level one, assuming that one can represent the follower’s value
(as a function of the leader’s decision) compactly. This is typically impossible as the

3

value function may require an exponential number of constraints, a bottleneck that
is circumvented by our rather small (approximate) regression models.

(v.) Theoretical guarantees: For interdiction problems, a class of BiLO problems that
attracts much attention, NEUR2BILO solutions have a constant, additive absolute
optimality gap which mainly depends on the prediction accuracy of the regression
model that approximates the follower’s value function.

Through a series of experiments on (i) the bilevel knapsack interdiction problem, (ii)
the “critical node problem” from network security, (iii) a donor-recipient healthcare prob-
lem, and (iv) the DNDP, we will show that NEUR2BILO is easy to train and produces, very
quickly, heuristic solutions that are competitive with state-of-the-art methods.

2 Background

Bilevel optimization (BiLO) deals with hierarchical problems where the leader (or upper-
level) problem decides on x ∈ X and parameterizes the follower (or lower-level) problem
that decides on y ∈ Y; the sets X and Y represent the domains of the variables (con-
tinuous, mixed-integer, or pure integer). Both problems have their own objectives and
constraints, resulting in the following model:

min
x∈X ,y

F (x,y) (1a)

s.t. G(x,y) ≥ 0, (1b)
y ∈ argmax

y′∈Y
{f(x,y′) : g(x,y′) ≥ 0}, (1c)

where we consider the general mixed-integer non-linear case with F, f : X × Y → R,
G : X × Y → Rm1 , and g : X × Y → Rm2 non-linear functions of the upper-level x and
lower-level variables y.

The applicability of exact (i.e., global) approaches severely depends on the nature of
the lower-level problem. In case of a continuous lower-level problem which admits strong
duality the Karush-Kuhn-Tucker (KKT) conditions can be used to reformulate the bilevel
problem into a single-level problem. Solving a BiLO problem with integers in the lower
level necessitates more sophisticated methods such as branch and cut [19, 26] along with
some assumptions; DeNegre and Ralphs [19] do not allow for coupling constraints (i.e.,
G(x,y) = G(x)), and both methods do not allow for continuous upper-level variables to
appear in the lower-level constraints g(x,y). Other approaches such as Benders decompo-
sition [27] are also applicable. Gümüş and Floudas [31] propose single-level reformula-
tions of mixed-integer non-linear BiLO problems to single-level problems using polyhedral
theory, an approach that only works for small problems. Later, “branch-and-sandwich”
methods were proposed [35, 48] where bounds on both levels’ value functions are used to
get an optimal solution. The methods for non-linear BiLO generally do not scale well. We
refer to Kleinert et al. [34] for a survey of exact methods for BiLO.

4

Assumptions. In this work, we make the following standard assumptions:

1. One or both of the following assumptions are met:

(a) The follower’s problem has a feasible solution for each x ∈ X ;

(b) There are no coupling constraints in the leader’s problem, i.e., G(x,y) = G(x).

2. The optimal follower value is always attained by a feasible solution [see 5, Section
7.2].

Value function reformulation. We consider the so-called optimistic setting: if the fol-
lower has multiple optima for a given leader’s decision, the one that optimizes the leader’s
objective is implemented. We can then rewrite problem (1) using the value function refor-
mulation (VFR):

min
x∈X ,y∈Y

F (x,y) (2a)

s.t. G(x,y) ≥ 0, (2b)
g(x,y) ≥ 0, (2c)
f(x,y) ≥ Φ(x), (2d)

with the optimal lower-level value function defined as

Φ(x) = max
y∈Y

{f(x,y) : g(x,y) ≥ 0}. (3)

Lozano and Smith [42] used this formulation to construct an exact algorithm (without
any public code) for solving mixed-integer non-linear BiLO problems with purely integer
upper-level variables. Sinha et al. [53, 54, 55] have proposed a family of evolutionary
heuristics for continuous non-linear BiLO problems that approximate the optimal value
function by using quadratic and Kriging (i.e., a function interpolation method) approxima-
tions. Taking it one step further, Beykal et al. [10] extends the framework of the previous
authors to handle mixed-integer variables in the lower level.

3 Related Work

3.1 Bilevel optimization

Besides the exact algorithms described in Section 2, there are many heuristics for BiLO as
surveyed recently by Camacho-Vallejo et al. [11]. The authors conclude that population-
based [7] approaches are the most commonly used meta-heuristics. Generally, these meth-
ods are not equipped to deal with hard constraints and therefore do not apply to combina-
torial optimization without extensive specialization.

Besides the approximation-based VFR approaches of Sinha et al. [53, 54, 55] and
Beykal et al. [10] discussed in Section 2, other learning-based methods have been in-
troduced to solve BiLO problems. Bagloee et al. [2] present a heuristic for DNDP which

5

uses a linear prediction of the leader’s objective function. The authors propose an itera-
tive algorithm that updates the prediction with new solutions and terminates after a pre-
determined number of iterations. Chan et al. [15] propose to simultaneously optimize the
parameters of a learning model for a subset of followers in a large-scale cycling network de-
sign problem. Here, only non-parametric or linear models are utilized as optimizing more
sophisticated learning models is generally challenging with MILP-based optimization.

Molan and Schmidt [45] make use of a neural network to predict the follower vari-
ables. The authors assume a setting with a black-box follower’s problem, a leader with
a single decision variable, and no coupling constraints. The trained neural network is
embedded in a single-level reformulation using a Lipschitz decomposition of the learned
neural network. Another learning-based heuristic is proposed by Kwon et al. [38] for a
bilevel knapsack problem. Their method uses a graph neural network to obtain the distri-
bution from which to sample the leader’s decisions. This approach is tailored to knapsack
and requires a sophisticated, GPU-based, problem-specific architecture for which no code
is publicly available.

For continuous unconstrained bilevel optimization, many methods have been proposed
recently due to interest in solving nested problems in machine learning (hyperparameter
tuning, meta-learning, etc.) [40]. State-of-the-art methods such as Kwon et al. [37] should
be used in such continuous unconstrained settings which are orthogonal to our interest in
mixed-integer constrained problems.

3.2 Data-driven optimization

The integration of a trained machine learning model into a MIP is a vital ele-
ment of NEUR2BILO. This is possible due to MILP formulations of neural networks
[16, 24, 52], and of other predictors like decision trees [9, 41]. These methods have
become easily applicable due to open software implementations [8, 14, 43] and the
gurobi-machinelearning library1 which can automatically generate variables and con-
straints to represent various trained linear, neural network, and decision tree models
from machine learning libraries. One such application is constraint learning when the
constraints are unknown [23].

More similar to our setting are the approaches in [21, 22, 36] for predicting value func-
tions of other nested problems such as two-stage stochastic and robust optimization. Our
method caters to the specificities of BiLO, particularly in the lower-level approximation
(Section 4.2) which leverages the VFR and performs well in highly-constrained BiLO set-
tings such as the DNDP, has approximation guarantees based on the error of the predictive
model, and computational results on problems with non-linear interactions between the
variables in each stage of the optimization problem; these aspects distinguish NEUR2BILO
from prior work.

1https://gurobi-machinelearning.readthedocs.io/en/stable/

6

https://gurobi-machinelearning.readthedocs.io/en/stable/

4 Methodology

NEUR2BILO refers to two learning-based single-level reformulations for general BiLO
problems. The reformulations rely on representing the thorny nested structure of a BiLO
problem with a trained regression model that predicts either the upper-level or lower-level
value function.

4.1 Upper-level approximation

The obvious bottleneck in solving BiLO problems is their nested structure. One rather
straightforward way of circumventing this difficulty is to get rid of the lower level alto-
gether in the formulation, but predict its optimal value. Namely, we predict the optimal
upper-level objective value function as follows

NNu(x; Θ) ≈ F (x,y⋆), (4)

where Θ are the weights of a neural network, F the objective function of the leader (2b),
and y⋆ an optimal solution to the lower level problem (3). To train such a model, one can
sample x from X , solve (3) to obtain an optimal lower-level solution y⋆, and subsequently
compute a label F (x,y⋆). Under Assumption 1(b), we can then model the single-level
problem as

min
x∈X

NNu(x; Θ) s.t. G(x) ≥ 0, (5)

where we only optimize for x and thus dismiss the lower-level constraints and objective
function. A trained feedforward neural network NNu(·; Θ) with ReLU activations can be
represented as a mixed-integer linear program (MILP) [24], where now the input (and
output) of the network are decision variables. With this representation, Problem (5) be-
comes a single-level problem and can be solved using an off-the-shelf MIP solver. Note that
linear and decision tree-based models also admit MILP representations [41].

This reformulation is similar to the approach by Bagloee et al. [2], wherein the upper-
level value function is predicted using linear regression. Our method differs in that it is not
iterative and does not require the use of “no-good cuts” (which avoid reappearing solutions
y). As such, our method is extremely efficient as will be shown experimentally.

The formulation of (5) only allows for problem classes that do not have coupling con-
straints, i.e., G(x,y) = G(x) (Assumption 1(b)). Moreover, the feasibility of a solution x
in the original BiLO problem is not guaranteed unless Assumption 1(a) is also satisfied, an
issue that will be addressed in Section 4.3.

4.2 Lower-level approximation

This variant of NEUR2BILO makes use of the VFR (2). The VFR moves the nested com-
plexity of a BiLO to constraint (2d), where the right-hand side is the optimal value of the
lower-level problem, parameterized by x. In practice, enforcing (2d) may require an ex-
ponential number of constraints, making it impossible to implement directly. Instead, we

7

introduce a learning-based VFR in which Φ(x) is approximated by a regression model with
parameters Θ:

NNl(x; Θ) ≈ Φ(x). (6)

Both NNl and NNu take in a leader’s decision as input and require solving the follower
(3) for data generation. By replacing Φ(x) with NNl(x; Θ) in (2d) and introducing a slack
variable s ∈ R+, the surrogate VFR reads as:

min
x∈X ,y∈Y

s≥0

F (x,y) + λs (7a)

s.t. G(x,y) ≥ 0, (7b)
g(x,y) ≥ 0, (7c)

f(x,y) ≥ NNl(x; Θ)− s. (7d)

All follower and leader constraints of the original BiLO problem are part of Problem (7).
However, without the slack variable, i.e., with s = 0, the problem could become infeasible
due to inaccurate predictions of the neural network. This happens when NNl(x; Θ) strictly
overestimates the follower’s optimal value for each x. In this case, there does not exist a
follower decision for which constraint (7d) is satisfied. A value of s > 0 can be used to
make constraint (7d) satisfiable at a cost of λs in the objective, guaranteeing feasibility.

4.3 Bilevel feasibility

Given a solution x⋆ or a solution pair (x⋆, ỹ) returned by our upper- or lower-level approxi-
mations, respectively, we would like to produce a lower-level solution y⋆ such that (x⋆,y⋆)
is bilevel-feasible, i.e., it satisfies the original BiLO in (1), or a certificate of infeasibility of
x⋆. The following procedure achieves this goal:

1. Compute the follower’s optimal value under x⋆, i.e., Φ(x⋆), by solving (3).

2. Compute a bilevel-feasible follower solution y⋆ by solving problem (2) with fixed x⋆

and the right-hand side of (2d) set to Φ(x⋆), a constant. Return (x⋆,y⋆).

If only Assumption 1(a) is satisfied, then only the lower-level approximation is applicable
and this procedure guarantees an optimistic bilevel-feasible solution for it. If only As-
sumption 1(b) is satisfied, then this procedure can detect in Step 1 that an upper-level
approximation’s solution x⋆ does not admit a follower solution, i.e., that it is infeasible, or
calculates a feasible y⋆ if one exists in Step 2. If both Assumptions 1(a) and 1(b) are satis-
fied simultaneously, then this procedure guarantees an optimistic bilevel-feasible solution
for either approximation. Proofs of these claims are provided in Appendix A.

8

4.4 Upper- v.s. lower-level approximation

Generality. The following example shows that under Assumption 1(b), it may happen
that (5) returns an infeasible solution while (7) does not. Consider the problem

min
x∈{0,1}

y

s.t. y ∈ argmax
y∈{0,1}

{y : 2x+ y ≤ 1} .

Solution x = 1 makes the follower’s problem infeasible. For solution x = 0, the optimal
follower solution is y = 1 leading to the optimal value 1. Assume that the same trained
neural network is used in both approaches; this is possible since leader and follower have
the same objective functions. If it predicts NN(0) = 2 and NN(1) = 0, then the upper-level
approximation problem (5) will return x = 1 which is infeasible whereas the lower-level
approximation (7) correctly returns x = 0.

Scalability. The upper-level approximation has fewer variables and constraints than its
lower-level counterpart as it does not represent the follower’s problem directly. For prob-
lems such as the DNDP in which the lower-level problem is large, e.g., necessitating con-
straints for each node and link to enforce a network flow in the follower solution, this
property makes the upper-level approximation easier to solve, possibly at a sacrifice in
final solution quality. This trade-off will be assessed experimentally.

4.5 Learning architecture

In previous sections, for ease of notation, all regression models consider the input to be
the upper-level decision variables. However, in our experiments, we leverage instance
information as well to train a single model that can be deployed on a family of instances.
This is done by leveraging information such as coefficients in the objective and constraints
for each problem. More details on the specific instance features for each problem are
described in Appendix D.1.

For the model’s architecture, our design philosophy consists of first explicitly rep-
resenting or learning instance-based features, then combining instance-based features
with (leader) decision variable information to make predictions. For problems wherein
instance-based features are learned, we use a set-based architecture akin to DeepSets [60]
but note that this can also be done via a feedforward or graph neural network depending
on the problem structure. NEUR2BILO is largely agnostic to the learning model utilized
as long as it is MILP-representable. In our experiments, we primarily focus on neural
networks, but for some problems also explore the use of gradient-boosted trees (GBT).

The overall architecture can be summarized as the following set of operations. Fix a
particular instance of a BiLO problem and let n be the number of leader variables, fi a vec-
tor of features for each leader variable xi (independently of the variable’s value), and h(xi)
a feature map that describes the ith leader variable for a specific value of that variable. The
functions Ψs,Ψd, and Ψv are neural networks with appropriate input-output dimensions;
the functions SUM, CONCAT, and AGGREGATE sum up a set of vectors, concatenate two

9

vectors into a single column vector, and aggregate a set of scalar values (e.g., by another
neural network or simply summing them up), respectively. Our final value predictions are
derived by:

(i.) Embedding the set of variable features {fi} using a set-based architecture, e.g., the
same network Ψd, summing up the resulting n variable embeddings, then passing the
resulting vector to network Ψs, yielding a vector we refer to as the INSTANCEEMBED-
DING:

INSTANCEEMBEDDING = Ψs(SUM({Ψd(fi)}ni=1)).

This is akin to the DeepSets approach of Zaheer et al. [60].

(ii.) Conditional on a specific assignment of values to the leader’s decision vector x, a per-
variable embedding is computed by network Ψv to allow for interactions between
the INSTANCEEMBEDDING and the specific assignment of variable i as represented by
h(xi):

VARIABLEEMBEDDING(i) = Ψv(CONCAT(h(xi), INSTANCEEMBEDDING)).

(iii.) The final value prediction for either of our approximations aggregates the variable
embeddings possibly after passing them through a function gi:

NN(x; Θ) = AGGREGATE({gi(VARIABLEEMBEDDING(i))}ni=1).

For example, if the follower’s objective is a linear function and VARIABLEEMBEDDING(i)
is a scalar, then it is useful to use the variable’s known objective function coefficient
di here, i.e.: gi(VARIABLEEMBEDDING(i)) = di · VARIABLEEMBEDDING(i). The final
step is to aggregate the per-variable gi(·) outputs, e.g., by a summation for linear or
separable objective functions.

The vector Θ includes all learnable parameters of networks Ψs,Ψd, and Ψv. More details
on the specific architectures for each problem can be found in Appendix D.1.

4.6 Approximation guarantees

4.6.1 Lower-level approximation

In this section we consider the lower-level approximation with NNl(x; Θ). All proofs are
deferred to Appendix B.

Since the prediction of the neural network is only an approximation of the true optimal
value of the follower’s problem Φ(x), NEUR2BILO may return sub-optimal solutions for
the original problem (1). In this section, we derive approximation guarantees for a specific
setup.

Let it be that Assumption 1(a) holds and that the neural network approximates the
optimal value of the follower’s problem up to an absolute error of α > 0, i.e.,∣∣NNl(x; Θ)− Φ(x)

∣∣ ≤ α for all x ∈ X . (8)

10

We consider the special case where the leader and the follower have the same objective
function, i.e., f(x,y) = F (x,y) for all x ∈ X ,y ∈ Y. We furthermore define the parameter
∆ as the maximum difference of functions values f(x,y) − f(x,y′) ≥ 0 over all x ∈
X ,y,y′ ∈ Y such that no ỹ ∈ Y exists which has function value f(x,y) > f(x, ỹ) >
f(x,y′). Note that ∆ can be strictly larger than zero if the follower decisions are integer.

For a fixed x ∈ X , y⋆
NN(x) denotes an optimal solution of (7). Furthermore, for any

given y ∈ Y we denote by s⋆(x,y) an optimal slack-value in Problem (7) if the upper- and
lower-level variables are fixed to x and y, respectively.

Observation 1. For any x ∈ X and y ∈ Y we have

s⋆(x,y) = max{0,NNl(x; Θ)− f(x,y)}.

Lemma 1. Assume the leader and the follower have the same objective function and λ > 1.
Then, for any given x ∈ X the following conditions hold for the optimal follower solution
y⋆

NN(x) of Problem (7):

– If NNl(x; Θ) ≥ Φ(x), then f(x,y⋆
NN(x)) = Φ(x), i.e., (x,y⋆

NN(x)) is feasible for the
original bilevel problem.

– If NNl(x; Θ) < Φ(x), then

NNl(x; Θ)− 1

λ
∆ ≤ f(x,y⋆

NN(x)) ≤ Φ(x).

The latter lemma states that if the neural network overestimates the follower value
for a solution x ∈ X , then the surrogate problem (7) still selects an optimal follower
response. However, if the neural network underestimates the value, the surrogate problem
may choose a follower response for which the objective value is either larger than the true
value or differs by at most 1

λ
∆. Note that the latter term can be controlled by increasing

the penalty λ.
By applying Lemma 1 we can bound the approximation error of the lower-level

NEUR2BILO. Let λ > 1. If the leader and the follower have the same objective function
and opt is the optimal value of (1), NEUR2BILO returns a feasible solution (x⋆,y⋆) for
Problem (1) with objective value

f(x⋆,y⋆) ≤ opt + 3α +
2

λ
∆.

4.6.2 Upper-level approximation

As the first example in Section 4.4 shows, it may happen that the upper-level surrogate
problem (5) returns an infeasible solution and hence no approximation guarantee can
be derived in this case. However, in the case where all leader solutions are feasible and
the neural network predicts for every x ∈ X an upper-level objective value that deviates at
most α > 0 from the true one, the returned solution trivially approximates the true optimal
value with an absolute error of at most 2α. This follows since the worst that can happen is
that the objective value of the optimal solution is overestimated by α while a solution with
objective value opt + 2α is underestimated by α and hence has the same predicted value
as the optimal solution. Problem (5) then may return the latter sub-optimal solution.

11

Problem Leader Follower Reference Baseline
x Obj. Cons. y Obj. Cons.

KIP (↓↑) B Lin Lin B Lin Lin [57] B&C [26]
CNP (↑↑) B BLin Lin B BLin Lin [13] B&C [26]
DRP (↑↑) C Lin Lin MI Lin BLin [29] B&C+ [29]
DNDP (↓↑) B NLin Lin C NLin Lin [50] MKKT [27]

Table 1: Problem class characteristics. All problems have a single knapsack (budget) con-
straint in the leader; for the follower, the DNDP has network flow constraints whereas
other problems have a knapsack constraint. The arrows refer to minimization (↓) or max-
imization (↑) in leader and follower, respectively. B = Binary, C = Continuous, MI =
Mixed-Integer, Lin = Linear, BLin = Bilinear, NLin = Non-Linear.

5 Experimental Setup

Benchmark problems. The characteristics of the four problems we evaluate on are sum-
marized in Table 1; their MIP formulations are deferred to Appendix C and brief descrip-
tions follow. We note that all four problems satisfy both Assumptions 1(a) and 1(b), mak-
ing it possible to obtain bilevel-feasible solutions using the procedure of Section 4.3. We
will only perform Step 1 as Step 2 is only necessary if there are multiple optima to the
follower problem, an unlikely situation given the random objective function coefficients in
KIP, CNP, and DRP; the DNDP follower is convex with a unique optimum.

– Knapsack interdiction (KIP) [12, 57]: The leader interdicts a subset of at most k items
and the follower solves a knapsack problem over the remaining (non-interdicted) items.
The leader aims to minimize the follower’s (maximization) objective.

– Critical node problem (CNP) [13, 20]: This problem regards the protection (by the
leader) of resources in a network against malicious attacks (by the follower), and has ap-
plications in the protection of computer networks against cyberattacks as demonstrated
by Dragotto et al. [20] on real data from an Ericsson cloud security system. The CNP
is a special case of the “critical node game” [20] which is a non-sequential multi-round
game that was adapted to the sequential multi-level (and particularly bilevel) setting
by Carvalho et al. [13].

– Donor-recipient problem (DRP) [46]: This problem relates to the donations given by
certain agencies to countries in need of, e.g., healthcare projects. The leader (the donor
agency) decides on which proportion of the cost, per project, to subsidize, whereas the
follower (a country) decides which projects it implements.

– Discrete network design problem (DNDP) [50]: This is the problem described in Sec-
tion 1. We build on the work of Rey [50] who provided benchmark instances for the
transportation network of Sioux Falls, South Dakota, and an implementation of the

12

state-of-the-art method of Fontaine and Minner [27]. This network and corresponding
instances are representative of the state of the DNDP in the literature.

Baselines. As previously mentioned, the branch-and-cut (B&C) algorithm by Fischetti
et al. [26] is considered to be state-of-the-art for solving mixed-integer linear BiLO. The
method is applicable if the continuous variables of the leader do not appear in the fol-
lower’s constraints. Both KIP and CNP meet these assumptions. This algorithm will act as
the baseline for these problems. For DRP, we compare against the results produced by an
algorithm in the branch-and-cut paradigm (B&C+) from Ghatkar et al. [29]. For DNDP,
the follower’s problem only has continuous variables, so the baseline is a method based on
KKT conditions (MKKT) [27].

Data collection & Training. For each problem class, data is collected by sampling feasi-
ble leader decisions x and then solving Φ(x) to compute either the upper- or lower-level
objectives as labels. We then train regression models to minimize the least-squares error
on the training samples. Typically, data collection and training take less than one hour, a
negligible cost given that for larger instances baseline methods require more time per in-
stance. Additionally, the same trained model can be used on multiple unseen test instances.
We report detailed times for data collection and training in Appendix D.2.

Computational setup. The experiments for three out of four benchmarks were run on
a computing cluster with an Intel Xeon CPU E5-2683 and Nvidia Tesla P100 GPU with
64GB of RAM (for training). The experiments for one benchmark were run on a vir-
tual machine with two Intel Xeon(R) CPUs at 2.20GHz and 12GB of RAM. Pytorch 2.0.1
[47] was used for all neural network models and scikit-learn 1.4.0 was used for gradient-
boosted trees in the DNDP [49]. Gurobi 11.0.1 [32] was used as the MILP solver and
gurobi-machinelearning 1.4.0 was used to embed the learning models into MILPs. For
evaluation in KIP, CNP, and DRP, all solving was limited to 1 hour. For DNDP, we con-
sider a more limited-time regime, wherein we compare NEUR2BILO to run for 5 seconds
against the baseline evaluated at 5, 10, and 30 seconds. For all problems, we evaluate
both the lower- and upper-level approximations with neural networks, namely NNl and
NNu. For DNDP, we additionally include GBT, i.e., GBTl and GBTu as the lower- and
upper-level approximations with 50 tree estimators. For NNl and GBTl we set λ = 1 for
all results presented in the main paper. Our code and data are at https://github.com/
khalil-research/Neur2BiLO.

6 Experimental Results

We now summarize the results as measured by average solution times and mean relative
errors (MREs). The relative error is computed as 100 · |objA−objbest|

|objbest|
, where objA is objective

found from method A and objbest is the best-known objective found by any of the meth-
ods. These results are reported in Tables 2-5. More detailed results that include absolute

13

https://github.com/khalil-research/Neur2BiLO
https://github.com/khalil-research/Neur2BiLO

NNl NNu G-VFA B&C
n k MRE Time MRE Time MRE Time MRE Time

18 5 1.48 0.59 1.48 0.34 1.82 0.14 0.00 9.55
18 9 1.51 0.59 1.51 0.43 3.97 0.22 0.00 5.81
18 14 0.00 0.22 0.00 0.17 64.22 0.03 0.00 0.39
20 5 0.41 0.62 0.41 0.45 2.19 0.25 0.00 23.18
20 10 0.99 0.66 0.99 0.58 0.99 0.36 0.00 10.27
20 15 3.57 0.32 3.57 0.19 23.39 0.02 0.00 0.94
22 6 0.71 0.19 0.71 0.18 0.42 0.18 0.00 42.30
22 11 1.01 0.28 1.01 0.28 1.08 0.33 0.00 16.26
22 17 14.43 0.24 14.43 0.15 14.43 0.13 0.00 0.68
25 7 0.44 2.66 0.44 2.42 0.44 0.64 0.00 137.96
25 13 1.42 2.75 1.42 2.79 3.85 1.24 0.00 48.43
25 19 2.49 0.48 2.49 0.38 2.49 0.13 0.00 1.77
28 7 0.39 0.67 0.39 0.74 0.26 0.62 0.00 309.18
28 14 0.75 2.10 0.75 1.45 1.37 1.29 0.00 120.74
28 21 1.14 0.45 1.14 0.49 3.16 0.31 0.00 4.92
30 8 0.00 1.54 0.00 1.54 0.43 0.97 0.00 792.44
30 15 0.49 3.64 0.49 3.06 0.75 1.35 0.00 187.23
30 23 2.29 1.08 2.29 0.73 4.48 0.25 0.00 5.65

100 25 0.93 10.02 0.93 8.40 0.00 4.19 8.09 3,600.40
100 50 0.96 51.68 0.96 49.28 0.04 53.74 8.96 3,600.44
100 75 0.08 24.69 0.08 23.78 0.12 35.27 5.87 3,600.52

Avg. n ≤ 30 1.86 1.06 1.86 0.91 7.21 0.47 0.00 95.43
Avg. n = 100 0.66 28.80 0.66 27.15 0.05 31.07 7.64 3,600.45

Table 2: Knapsack Results. n and k denote the number of items and the interdiction
budget, respectively. For n ≤ 30, we directly evaluate on the 180 instances (10 per size) of
Tang et al. [57]; each value is the average over 10 instances. For n = 100, our evaluation
instances (100 per size) are generated using the same procedure of Tang et al. [57]. The
no-learning baseline G-VFA is a VFR using the follower’s greedy solution as a lower-level
value function approximator. All times in seconds.

14

NNl NNu B&C
|V | MRE Time MRE Time MRE Time

10 3.20 0.04 2.75 0.02 1.01 4.24
25 2.60 0.23 1.77 0.05 0.73 3,244.20
50 1.42 0.38 0.98 0.10 0.67 3,600.30

100 1.12 0.48 0.56 0.42 1.79 3,600.65
300 2.01 1.12 0.33 0.83 2.32 3,600.54
500 1.33 1.69 0.45 1.19 2.47 3,600.80

Average 1.95 0.66 1.14 0.43 1.50 2,941.79

Table 3: Critical Node Problem Results. |V | denote the number of nodes. Each row av-
eraged over 300 instances that are randomly sampled using the procedure described in
Dragotto et al. [20]. All times in seconds.

Instance # Relative Error (%) Time
NNl NNu B&C+ NNl NNu B&C+

1 42.28 0.00 20.69 0.09 1.44 3,600.09
2 38.44 0.00 27.82 0.12 1.52 3,600.08
3 45.17 0.00 30.13 0.14 2.85 3,600.07
4 33.68 0.00 18.98 0.07 1.68 3,637.23
5 44.51 0.00 27.29 0.10 1.96 3,600.07
6 35.18 0.00 31.09 0.08 2.93 3,600.10
7 43.58 0.00 21.82 0.09 1.58 3,600.14
8 34.37 0.00 26.79 0.09 0.87 3,600.10
9 37.03 0.00 26.80 0.16 4.55 3,600.16
10 38.89 0.00 28.59 0.12 3.57 3,600.10

Average 39.31 0.00 26.00 0.11 2.30 3,603.82

Table 4: DRP objective results. Each row corresponds to a single instance from dataset 15,
the most challenging set of instances from Ghatkar et al. [29]. All times in seconds.

15

NNl NNu GBTl GBTu MKKT
of edges budget MRE Time MRE Time MRE Time MRE Time MRE-5 MRE-10 MRE-30

10 25% 0.88 2.89 4.97 0.01 1.21 4.02 1.11 0.04 6.08 0.51 0.10
10 50% 0.06 3.20 3.93 0.01 0.09 3.68 3.70 0.05 7.39 2.17 0.00
10 75% 0.13 2.15 1.49 0.01 0.24 2.21 2.00 0.03 5.88 0.05 0.06
20 25% 1.16 5.01 7.91 0.04 2.17 5.01 5.21 0.26 13.52 6.84 1.33
20 50% 1.45 5.01 4.30 0.05 1.02 5.00 2.65 0.15 16.39 9.02 0.84
20 75% 0.14 2.48 4.87 0.01 0.08 3.53 0.84 0.10 11.02 4.07 0.08

Average 0.64 3.46 4.58 0.02 0.80 3.91 2.58 0.11 10.05 3.78 0.40

Table 5: Discrete Network Design Problem results. Each value is an average across 10
instances from Rey [50]. The budget is a fraction of the total cost of all 30 possible
candidate links; see Appendix D.2 for more details. All times in seconds

objective values are in Appendix F and box-plots of the distributions of relative errors are
in Appendix G. Our experimental design answers the following questions:

Q1: Can NEUR2BILO find high-quality solutions quickly on classical interdiction
problems? Table 2 compares NEUR2BILO to the B&C algorithm of Fischetti et al. [26].
NEUR2BILO terminates in 1-2% of the time required by B&C on the smaller (n ≤ 30)
well-studied KIP instances of Tang et al. [57]. However, when the instance size increases
to n = 100, both NNl and NNu find much better solutions than NEUR2BILO in roughly
30 seconds, even when B&C runs for the full hour. Furthermore, Table 11 in Appendix F
shows that B&C requires 10 to 1, 000× more time than NNl or NNu to find equally good
solutions. In addition, the best solutions found by B&C at the termination times of NNl or
NNu are generally worse, even for small instances.

Q2: Do these computational results extend to non-linear and more challenging BiLO
problems? Interdiction problems such as the KIP are well-studied but are only a small
subset of BiLO. We will shift attention to the more practical problems, starting with the
CNP (Table 3). CNP includes terms that are bilinear (i.e., z = xy) in the upper- and lower-
level variables, resulting in a much more challenging problem for general-purpose B&C.
In this case, both NNl and NNu tend to outperform B&C as the problem size increases. In
addition, the results on incumbents reported in Table 12 in Appendix F are as good, if not
even stronger than those of KIP.

Secondly, we discuss DRP (Table 4), where we evaluate on the most challenging in-
stances from Ghahtarani et al. [28], all of which have gaps of ∼ 50% at a 1-hour time limit
with B&C+, a specialized B&C-based algorithm. Here NNu performs remarkably well: it
finds the best-known solutions on every single instance in roughly ∼ 0.1 seconds at an
average improvement in solution quality of 26% over B&C+.

Q3: How does NEUR2BILO perform on BiLO problems with challenging constraints?
Given that NEUR2BILO has strong performance on benchmarks with budget constraints,

16

the next obvious question is whether it can be applied to BiLO problems that have complex
constraints. To answer this, we will refer to the results in Table 5 for the DNDP. In this set-
ting, we focus on a limited-time regime wherein we compare NEUR2BILO with a 5-second
time limit to MKKT at time limits 5, 10, and 30 seconds. NNu can achieve high-quality
solutions much faster than any other method with only a minor sacrifice in solution qual-
ity, making it a great candidate for domains where interactive decision-making is needed
(e.g., what-if analysis of various candidate roads, budgets, or origin-destination demand
models).

NNl, on the other hand, takes longer than NNu but computes solutions that are com-
petitive with the baseline when it runs at least 6× longer. We suspect that the better
solution quality from NNl is due to its explicit modeling of feasible lower-level decisions
that “align” with the predictions, whereas NNu may simply extrapolate poorly. In terms of
computing time, one computational burden for NNl is the requirement to model the non-
linear upper- and lower-level objectives, which requires a piece-wise linear approximation
based on Fontaine and Minner [27], a step that introduces additional variables and con-
straints. In addition, the DNDP results include results for GBTl and GBTu, demonstrating
that other learning models, such as GBT, are directly applicable, and in some cases may
even lead to better solution quality, faster optimization, and simpler implementation.

Q4: Can approximations derived from heuristics be useful? We now refer back to
KIP and focus on the greedy value function approximation (G-VFA), a KIP-specific approx-
imation that relies on the fact that greedy algorithms are typically good for 1-dimensional
knapsack problems. Namely, the heuristic is based on ordering the items with their value-
to-weight ratio [17] and is used as the knapsack solution in the follower problem, while
still being parameterized by x. This heuristic is embedded in a single-level problem as this
heuristic is MILP-representable [1]; we note that we are not aware of uses in the literature
of this approximation and it may be of independent interest.

Generally, G-VFA performs quite well, and in some cases outperforms NNl and NNu, but
there are clear cases where NNl and NNu outperform G-VFA demonstrating that learning
is beneficial. In addition, heuristics like G-VFA can be utilized to compute features for NNl

and NNu. For KIP, the inclusion of these features derived from G-VFA strongly improves the
results (see Table 10 in Appendix E.3). This demonstrates that there is value in leveraging
any problem-specific MILP-representable heuristics as features for learning.

Q5: How does λ affect NNl? Table 9 in Appendix E.2 shows that a slack penalty of
λ = 0.1 notably improves the performance of both NNl and GBTl for DNDP, compared to
the λ = 1 reported in Table 5. As an alternative to adding slack, one can even dampen pre-
dictions of the value function to allow more flexibility using the empirical error observed
during training; see Table 8 in Appendix E.1.

17

7 Conclusion

In both its upper- and lower-level instantiations, NEUR2BILO finds high-quality solutions
in a few milliseconds to a few seconds across four benchmarks that span applications in
interdiction, network security, healthcare, and transportation planning. In fact, we are not
aware of any bilevel optimization method which has been evaluated across such a diverse
range of problems as existing methods make stricter assumptions that limit their applicabil-
ity. NEUR2BILO models are generic, easy to train, and accommodating of problem-specific
heuristics as features. Of future interest are potential extensions to bilevel stochastic op-
timization [6], robust optimization with decision-dependent uncertainty [30] (a special
case of BiLO), and multi-level problems beyond two levels, e.g. [39].

References

[1] David Avis, David Bremner, Hans Raj Tiwary, and Osamu Watanabe. Polynomial size
linear programs for problems in p. Discrete Applied Mathematics, 265:22–39, 2019.

[2] Saeed Asadi Bagloee, Mohsen Asadi, Majid Sarvi, and Michael Patriksson. A hybrid
machine-learning and optimization method to solve bi-level problems. Expert Systems
with Applications, 95:142–152, 2018.

[3] Maria-Florina Balcan. Data-driven algorithm design. arXiv preprint
arXiv:2011.07177, 2020.

[4] Jonathan F Bard. Practical bilevel optimization: algorithms and applications, vol-
ume 30. Springer Science & Business Media, 2013.

[5] Yasmine Beck and Martin Schmidt. A gentle and incomplete introduction to bilevel
optimization. Lecture notes, 2021.

[6] Yasmine Beck, Ivana Ljubić, and Martin Schmidt. A survey on bilevel optimization
under uncertainty. European Journal of Operational Research, 2023.

[7] Zahra Beheshti and Siti Mariyam Hj Shamsuddin. A review of population-based
meta-heuristic algorithms. Int. j. adv. soft comput. appl, 5(1):1–35, 2013.

[8] David Bergman, Teng Huang, Philip Brooks, Andrea Lodi, and Arvind U Raghu-
nathan. JANOS: an integrated predictive and prescriptive modeling framework. IN-
FORMS Journal on Computing, 34(2):807–816, 2022.

[9] Dimitris Bertsimas, Jack Dunn, and Yuchen Wang. Near-optimal nonlinear regression
trees. Operations Research Letters, 49(2):201–206, 2021.

[10] Burcu Beykal, Styliani Avraamidou, Ioannis PE Pistikopoulos, Melis Onel, and Efs-
tratios N Pistikopoulos. Domino: Data-driven optimization of bi-level mixed-integer
nonlinear problems. Journal of Global Optimization, 78:1–36, 2020.

18

[11] José-Fernando Camacho-Vallejo, Carlos Corpus, and Juan G Villegas. Metaheuristics
for bilevel optimization: A comprehensive review. Computers & Operations Research,
page 106410, 2023.

[12] Alberto Caprara, Margarida Carvalho, Andrea Lodi, and Gerhard J Woeginger. Bilevel
knapsack with interdiction constraints. INFORMS Journal on Computing, 28(2):319–
333, 2016.

[13] Margarida Carvalho, Gabriele Dragotto, Andrea Lodi, and Sriram Sankaranarayanan.
Integer programming games: a gentle computational overview. In Tutorials in Opera-
tions Research: Advancing the Frontiers of OR/MS: From Methodologies to Applications,
pages 31–51. INFORMS, 2023.

[14] Francesco Ceccon, Jordan Jalving, Joshua Haddad, Alexander Thebelt, Calvin Tsay,
Carl D Laird, and Ruth Misener. OMLT: Optimization & machine learning toolkit.
arXiv preprint arXiv:2202.02414, 2022.

[15] Timothy CY Chan, Bo Lin, and Shoshanna Saxe. A machine learning approach to
solving large bilevel and stochastic programs: Application to cycling network design.
arXiv preprint arXiv:2209.09404, 2022.

[16] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of
artificial neural networks. In International Symposium on Automated Technology for
Verification and Analysis, pages 251–268. Springer, 2017.

[17] George B Dantzig. Discrete-variable extremum problems. Operations research, 5(2):
266–288, 1957.

[18] Stephan Dempe. Bilevel optimization: theory, algorithms, applications and a bibliog-
raphy. Bilevel Optimization: Advances and Next Challenges, pages 581–672, 2020.

[19] Scott T DeNegre and Ted K Ralphs. A branch-and-cut algorithm for integer bilevel lin-
ear programs. In Operations research and cyber-infrastructure, pages 65–78. Springer,
2009.

[20] Gabriele Dragotto, Amine Boukhtouta, Andrea Lodi, and Mehdi Taobane. The critical
node game, 2023.

[21] Justin Dumouchelle, Rahul Patel, Elias B Khalil, and Merve Bodur. Neur2SP: Neural
two-stage stochastic programming. Advances in Neural Information Processing Sys-
tems, 35, 2022.

[22] Justin Dumouchelle, Esther Julien, Jannis Kurtz, and Elias B Khalil. Neur2RO: Neural
two-stage robust optimization. arXiv preprint arXiv:2310.04345, 2023.

[23] Adejuyigbe O Fajemisin, Donato Maragno, and Dick den Hertog. Optimization with
constraint learning: a framework and survey. European Journal of Operational Re-
search, 2023.

19

[24] Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer linear opti-
mization. Constraints, 23(3):296–309, 2018.

[25] Matteo Fischetti, Ivana Ljubić, Michele Monaci, and Markus Sinnl. Intersection cuts
for bilevel optimization. In Integer Programming and Combinatorial Optimization:
18th International Conference, IPCO 2016, Liège, Belgium, June 1-3, 2016, Proceedings
18, pages 77–88. Springer, 2016.

[26] Matteo Fischetti, Ivana Ljubić, Michele Monaci, and Markus Sinnl. A new general-
purpose algorithm for mixed-integer bilevel linear programs. Operations Research,
65(6):1615–1637, 2017.

[27] Pirmin Fontaine and Stefan Minner. Benders decomposition for discrete–continuous
linear bilevel problems with application to traffic network design. Transportation
Research Part B: Methodological, 70:163–172, 2014.

[28] Alireza Ghahtarani, Ahmed Saif, Alireza Ghasemi, and Erick Delage. A double-oracle,
logic-based benders decomposition approach to solve the k-adaptability problem.
Computers & Operations Research, 155:106243, 2023.

[29] Shraddha Ghatkar, Ashwin Arulselvan, and Alec Morton. Solution techniques for
bi-level knapsack problems. Computers & Operations Research, 159:106343, 2023.

[30] Marc Goerigk, Jannis Kurtz, Martin Schmidt, and Johannes Thürauf. Connections
and reformulations between robust and bilevel optimization. optimization-online pre-
print, 2023.

[31] Zeynep H Gümüş and Christodoulos A Floudas. Global optimization of mixed-integer
bilevel programming problems. Computational Management Science, 2:181–212,
2005.

[32] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https:

//www.gurobi.com.

[33] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[34] Thomas Kleinert, Martine Labbé, Ivana Ljubić, and Martin Schmidt. A survey on
mixed-integer programming techniques in bilevel optimization. EURO Journal on
Computational Optimization, 9:100007, 2021.

[35] Polyxeni-M Kleniati and Claire S Adjiman. A generalization of the branch-and-
sandwich algorithm: from continuous to mixed-integer nonlinear bilevel problems.
Computers & Chemical Engineering, 72:373–386, 2015.

[36] Jan Kronqvist, Boda Li, Jan Rolfes, and Shudian Zhao. Alternating mixed-integer
programming and neural network training for approximating stochastic two-stage
problems. arXiv preprint arXiv:2305.06785, 2023.

20

https://www.gurobi.com
https://www.gurobi.com

[37] Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. A fully
first-order method for stochastic bilevel optimization. In International Conference on
Machine Learning, pages 18083–18113. PMLR, 2023.

[38] Sunhyeon Kwon, Hwayong Choi, and Sungsoo Park. Solving bilevel knapsack prob-
lem using graph neural networks. arXiv preprint arXiv:2211.13436, 2022.

[39] Markus Leitner, Ivana Ljubić, Michele Monaci, Markus Sinnl, and Kübra Tanınmış.
An exact method for binary fortification games. European Journal of Operational
Research, 307(3):1026–1039, 2023.

[40] Risheng Liu, Jiaxin Gao, Jin Zhang, Deyu Meng, and Zhouchen Lin. Investigating
bi-level optimization for learning and vision from a unified perspective: A survey
and beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12):
10045–10067, 2021.

[41] Michele Lombardi, Michela Milano, and Andrea Bartolini. Empirical decision model
learning. Artificial Intelligence, 244:343–367, 2017.

[42] Leonardo Lozano and J Cole Smith. A value-function-based exact approach for the
bilevel mixed-integer programming problem. Operations Research, 65(3):768–786,
2017.

[43] Donato Maragno, Holly Wiberg, Dimitris Bertsimas, Ş İlker Birbil, Dick den Hertog,
and Adejuyigbe O Fajemisin. Mixed-integer optimization with constraint learning.
Operations Research, 2023.

[44] Tom V Mathew and KV Krishna Rao. Introduction to transportation engineering,
traffic assignment. Lecture notes, 2006.

[45] Ioana Molan and Martin Schmidt. Using neural networks to solve linear bilevel
problems with unknown lower level. Optimization Letters, pages 1–21, 2023.

[46] Alec Morton, Ashwin Arulselvan, and Ranjeeta Thomas. Allocation rules for global
donors. Journal of health economics, 58:67–75, 2018.

[47] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
PyTorch: An imperative style, high-performance deep learning library. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf.

[48] Remigijus Paulavičius and Claire S Adjiman. New bounding schemes and algorithmic
options for the branch-and-sandwich algorithm. Journal of Global Optimization, 77
(2):197–225, 2020.

21

[49] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[50] David Rey. Computational benchmarking of exact methods for the bilevel discrete
network design problem. Transportation Research Procedia, 47:11–18, 2020.

[51] David Rey. Optimization and game-theoretical methods for transportation systems. PhD
thesis, Toulouse 3 Paul Sabatier, 2023.

[52] Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and
counting linear regions of deep neural networks. In International Conference on Ma-
chine Learning, pages 4558–4566. PMLR, 2018.

[53] Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. Solving optimistic bilevel pro-
grams by iteratively approximating lower level optimal value function. In 2016 IEEE
Congress on Evolutionary Computation (CEC), pages 1877–1884. IEEE, 2016.

[54] Ankur Sinha, Zhichao Lu, Kalyanmoy Deb, and Pekka Malo. Bilevel optimization
based on iterative approximation of multiple mappings, 2017.

[55] Ankur Sinha, Samish Bedi, and Kalyanmoy Deb. Bilevel optimization based on krig-
ing approximations of lower level optimal value function. In 2018 IEEE congress on
evolutionary computation (CEC), pages 1–8. IEEE, 2018.

[56] Sahar Tahernejad, Ted K Ralphs, and Scott T DeNegre. A branch-and-cut algorithm
for mixed integer bilevel linear optimization problems and its implementation. Math-
ematical Programming Computation, 12:529–568, 2020.

[57] Yen Tang, Jean-Philippe P Richard, and J Cole Smith. A class of algorithms for mixed-
integer bilevel min–max optimization. Journal of Global Optimization, 66:225–262,
2016.

[58] Alan Washburn and Kevin Wood. Two-person zero-sum games for network interdic-
tion. Operations research, 43(2):243–251, 1995.

[59] Noah Weninger and Ricardo Fukasawa. A fast combinatorial algorithm for the bilevel
knapsack problem with interdiction constraints. In International Conference on Integer
Programming and Combinatorial Optimization, pages 438–452. Springer, 2023.

[60] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R
Salakhutdinov, and Alexander J Smola. Deep sets. Advances in neural information
processing systems, 30, 2017.

[61] Marco Zugno, Juan Miguel Morales, Pierre Pinson, and Henrik Madsen. A bilevel
model for electricity retailers’ participation in a demand response market environ-
ment. Energy Economics, 36:182–197, 2013.

22

A Proofs for Section 4.3

Proposition 1. When applied to a leader decision x⋆ returned by the upper-level approxima-
tion, the procedure described in Section 4.3 either produces a bilevel-feasible pair (x⋆,y⋆) or
declares x⋆ as infeasible.

Proof. If only Assumption 1(b) is satisfied, then Step 1 may detect that the problem Φ(x⋆)
is infeasible, i.e., that there does not exist a y′ ∈ Y that satisfies g(x⋆,y′) ≥ 0 (1c). If Step
1 is feasible, then Φ(x⋆) is the optimal follower’s value for leader decision x⋆. Note that if
both Assumptions 1(a) and 1(b) are satisfied, then Step 1 is guaranteed to be feasible. It
remains to obtain a corresponding follower solution y⋆ that minimizes F (x⋆, ·) (1a). Step
2 computes such a y⋆ and the bilevel-feasible pair (x⋆,y⋆) is returned. ■

Proposition 2. When applied to a leader-follower solution pair (x⋆, ỹ) returned by the lower-
level approximation, the procedure described in Section 4.3 produces a bilevel-feasible pair
(x⋆,y⋆).

Proof. The lower-level approximation (7) is guaranteed to return a leader decision x⋆ for
which there exists a follower decision y⋆ such that (x⋆,y⋆) is bilevel-feasible. To obtain
y⋆, Step 1 first computes the minimum follower value Φ(x⋆) that must be achieved by
any valid follower solution; note that this condition may not have been met by ỹ as the
latter only satisfies f(x⋆, ỹ) ≥ NNl(x⋆; Θ)− s (7d). Step 2 then selects a follower decision
which both satisfies f(x⋆,y⋆) ≥ Φ(x⋆) and minimizes F (x⋆, ·) (2b). The bilevel-feasible
pair (x⋆,y⋆) is returned. ■

B Proofs for Approximation Guarantees of Section 4.6.1

Proof of Lemma 1

Proof. Case 1: Let x ∈ X for which it holds NNl(x; Θ) ≥ Φ(x) and assume the opposite
of the statement is true, i.e., for the optimal reaction y⋆NN(x) in (7) it holds that Φ(x) >
f(x,y⋆

NN(x)). Since λ > 0 and due to Constraint (7d) the optimal slack value for solution
x in Problem (7) is s⋆(x,y) = NNl(x; Θ) − f(x,y). Assume y⋆(x) is the optimal follower
reaction in (2) for x, then it holds that:

f(x,y⋆
NN(x)) + λs⋆(x,y⋆

NN(x))

= f(x,y⋆
NN(x)) + λ

(
NNl(x; Θ)− f(x,y⋆

NN(x))
)

> f(x,y⋆
NN(x)) + λ

(
NNl(x; Θ)− f(x,y⋆

NN(x))
)
+ (λ− 1) (f(x,y⋆

NN(x))− f(x,y⋆(x)))

= f(x,y⋆(x)) + λ
(
NNl(x; Θ)− f(x,y⋆(x))

)
= f(x,y⋆(x)) + λs⋆(x,y⋆(x))

where the first inequality follows since λ > 1 and f(x,y⋆(x)) = Φ(x) > f(x,y⋆
NN(x)) and

the latter equality follows from NNl(x; Θ) ≥ Φ(x) = f(x,y⋆(x)). The latter result shows
that the solution (x,y⋆(x)) has a strictly better objective value in the surrogate problem
(7) than (x,y⋆

NN(x)) which contradicts the optimality of (x,y⋆
NN(x)).

23

Case 2: Let x ∈ X be a leader’s decision for which NNl(x; Θ) < Φ(x) and assume
the opposite of the statement, i.e., for the optimal reaction y⋆

NN(x) in (7) it holds that
NNl(x; Θ)− 1

λ
∆ > f(x,y⋆

NN(x)). Hence the optimal slack value in (7) is

s⋆(x,y⋆
NN(x)) = NNl(x; Θ)− f(x,y⋆

NN(x)) >
1

λ
∆. (9)

First, assume there exists another feasible solution ȳ(x) for Problem (7) with

f(x,y⋆
NN(x)) < f(x, ȳ(x)) < NNl(x; Θ)

then solution (x, ȳ(x)) has a strictly better objective value than (x,y⋆
NN(x)) in (7) since

increasing the value of f by δ decreases the value of the slack variable by δ which results
in a better objective value since λ > 1, which contradicts the optimality of (x,y⋆

NN(x)).
Second, assume there exists no other feasible solution ȳ(x) for Problem (7) with

f(x,y⋆
NN(x)) < f(x, ȳ(x)) < NNl(x; Θ).

Then there must exists a feasible solution ȳ(x) with f(x, ȳ(x)) ≥ NNl(x; Θ) and

f(x, ȳ(x))− f(x,y⋆
NN(x)) ≤ ∆, (10)

by definition of ∆. In this case, we have

f(x,y⋆
NN(x)) + λs⋆(x,y⋆

NN(x))− f(x, ȳ(x))− λs⋆(x, ȳ(x))

= f(x,y⋆
NN(x)) + λs⋆(x,y⋆

NN(x))− f(x, ȳ(x))

> f(x,y⋆
NN(x)) + ∆− f(x, ȳ(x)) ≥ −∆+∆ = 0,

where the first equality follows since s⋆(x, ȳ(x)) = 0, the first inequality follows from (9)
and the last inequality follows from (10). In summary, the latter results show that there
exists a solution (x, ȳ(x)) for (7) which has strictly better objective value than (x,y⋆

NN(x))
which is a contradiction.

Note that the inequality f(x,y⋆
NN(x)) ≤ Φ(x) follows directly from the definiton of

Φ(x). ■

Proof of Theorem 4.6.1

Proof. Let (x⋆
NN,y

⋆
NN) be an optimal solution of the surrogate problem (7). By Lemma 1

and by definition (8) it follows that

Φ(x⋆
NN) ≥ f(x⋆

NN,y
⋆
NN) ≥ NNl(x⋆

NN; Θ)− 1

λ
∆

≥ Φ(x⋆
NN)− α− 1

λ
∆.

(11)

Following the three steps presented in Section 4.3, NEUR2BILO returns a feasible solu-
tion (x⋆,y⋆) for Problem (2) where x⋆ = x⋆

NN and f(x⋆,y⋆) = Φ(x⋆). Hence the following
holds:

f(x⋆,y⋆) = Φ(x⋆) ≤ f(x⋆,y⋆
NN) + α +

1

λ
∆. (12)

24

Assume (x⋆⋆,y⋆⋆) is an optimal bilevel solution of Problem (1) and y⋆⋆
NN the optimal follower

response in the surrogate problem (7). Then we have

f(x⋆,y⋆
NN) + s∗(x⋆,y⋆

NN) ≤ f(x⋆⋆,y⋆⋆
NN) + s∗(x⋆⋆,y⋆⋆

NN)

since (x⋆
NN,y

⋆
NN) is an optimal solution of (7) with objective value given by (7a). From the

latter inequality we obtain

f(x⋆,y⋆
NN) ≤ f(x⋆⋆, y⋆⋆NN) + s∗(x⋆⋆,y⋆⋆

NN)− s∗(x⋆,y⋆
NN)

≤ f(x⋆⋆,y⋆⋆) + s∗(x⋆⋆,y⋆⋆
NN)

≤ f(x⋆⋆,y⋆⋆) + NNl(x⋆⋆; Θ)− f(x⋆⋆,y⋆⋆
NN)

≤ f(x⋆⋆,y⋆⋆) + Φ(x⋆⋆) + α− (Φ(x⋆⋆)− α− 1

λ
∆)

= opt + 2α +
1

λ
∆

where the second inequality follows from s∗(x⋆,y⋆
NN) ≥ 0 and y⋆⋆ being an optimal follower

solution for x⋆⋆. The third inequality follows from Observation 1 and the fourth inequality
follows from (8) and from (11) applied to x⋆⋆.

Together with (12), this completes the proof. ■

C Problem Formulations

C.1 Knapsack interdiction

The bilevel knapsack problem with interdiction constraints as described in Tang et al. [57]
is given by

min
x∈{0,1}n,y

n∑
i=1

piyi

s.t.
n∑

i=1

xi ≤ k,

y ∈ argmax
y′∈{0,1}n

n∑
i=1

piy
′
i

s.t.
n∑

i=1

aiy
′
i ≤ b,

y′i + xi ≤ 1, i ∈ [n],

where x are the leader’s variables and y are that of the follower. The leader decides to
interdict (a maximum of k) items of the knapsack solved in the follower’s problem with n
the number of items, pi the profits, ai the weight of item i, respectively, and the budget of

25

the knapsack is denoted by b. The original instances from Tang et al. [57] are available
here2 and all evaluation instances in the MibS input file format3 are available here4.

C.2 Critical node problem

The critical node problem is described in Carvalho et al. [13] as follows

max
x∈{0,1}n,y

n∑
i=1

(
pdi
(
(1− xi)(1− yi) + ηxiyi + ϵxi(1− yi) + δ(1− xi)yi

))
s.t.

n∑
i=1

dixi ≤ D,

y ∈ argmax
y′∈{0,1}n

n∑
i=1

(
pai
(
− γ(1− xi)(1− y′i) + (1− xi)y

′
i + (1− η)xiy

′
i

))
s.t.

n∑
i=1

aiy
′
i ≤ A,

where x and y are the leader’s and follower’s variables, respectively. Here, x denotes the
decisions of the leader (defender) who selects which nodes to deploy resources to defend
a set of nodes, while y are the decisions for the follower (attacker) for which nodes to
attack. di and ai are the costs for the xi and yi, respectively. D and A are the budgets
for the defender and attacker, respectively. In this problem, the bilinearity arises in the
objectives of both the leader and follower, which results in 4 outcomes for each possible
combination of defending and attacking a node i. The first outcome arises when both the
leader and follower do not select the node. In this case, the leader receives the full profit,
pdi , and the follower pays an opportunity cost of −γpai for not attacking an undefended
node. Second is a success attack, wherein the leader receives a reduced profit of δpdi and
the follower receives the full profit pai . Third is a mitigated attack, wherein the leader
receives a profit of ηpdi for a degradation in operations, while the follower receives a profit
of (1 − η)pai for a mitigated attack. Fourth is a mitigation without an attack, wherein the
leader receives a profit ϵpdi for a degradation in operations, while the follower receives a
profit of 0 for a mitigated attack. Our evaluation instances in the MibS input file format
are available here5.

2https://github.com/khalil-research/Neur2BiLO/tree/main/data/kp/BKPIns_ver2
3https://coral.ise.lehigh.edu/data-sets/bilevel-instances/
4https://github.com/khalil-research/Neur2BiLO/tree/main/data/kp/solver_instances
5https://github.com/khalil-research/Neur2BiLO/tree/main/data/cng/solver_instances

26

https://github.com/khalil-research/Neur2BiLO/tree/main/data/kp/BKPIns_ver2
https://coral.ise.lehigh.edu/data-sets/bilevel-instances/
https://github.com/khalil-research/Neur2BiLO/tree/main/data/kp/solver_instances
https://github.com/khalil-research/Neur2BiLO/tree/main/data/cng/solver_instances

C.3 Donor-recipient problem

The donor-recipient problem as described in Ghatkar et al. [29], and introduced in Morton
et al. [46], is formulated as

max
x∈[0,1]n,y,y0

n∑
i=1

wiyi

s.t.
n∑

i=1

cixi ≤ Bd,

(y, y0) ∈ argmax
y′∈{0,1}n,y′0∈[0,1]

n∑
i=1

viy
′
i + v0y

′
0

s.t.
n∑

i=1

(ci − cixi)y
′
i + c0y

′
0 ≤ Br,

where the leader’s decisions x represent those of the donor and the follower decisions
(y, y0) the ones of the recipient. The profit of project i is given as wi for the leader and vi
for the follower, the cost as ci, and the budget of the leader, resp. follower, as Bd and Br.
Next to the projects, the recipient can allocate its budget to external projects, for which
the profit is given as v0 and the cost c0. The evaluation instances dataset 15 for DRP are
available from the author6.

C.4 Discrete network design problem

We use the standard formulation from Section 1 following the computational benchmark-
ing study of Rey [50] and the code provided by the author7.

D Machine Learning Details

D.1 Models, Features, & Hyperparameters

For all problems, we derive features that correspond to each upper-level decision variable,
as well as general instance features.

D.1.1 KIP, CNP, DRP

For KIP, CNP, DRP, we have both n decisions in the upper- and lower-level of the problems.
For the learning model, we utilize a set-based architecture [60], wherein we first represent
the objective and constraint coefficients for each upper-level and lower-level decision, in-
dependent of the decision (fi). Each of these are passed through a feed-forward network
with shared parameters (Ψd) to compute an m-dimension embedding. The embeddings

6https://github.com/ashwin-1983/DR-BKP/
7https://github.com/davidrey123/DNDP/

27

https://github.com/ashwin-1983/DR-BKP/
https://github.com/davidrey123/DNDP/

are then summed and passed through another feed-forward network (Ψs) to compute the
instance’s k-dimensional embedding. This instance embedding is then concatenated with
features related to the upper- and lower-level that are dependent on the decision (h(xi)).
The concatenated vector is passed through a feed-forward network with shared parameters
(Ψv) to predict n scalar values (i.e., one for each decision). The final prediction is equal to
the dot product of the n predictions with the objective function coefficients of the upper-
or lower-level problem, depending on the type of value function approximation. This final
step exploits the separable nature of the objective functions in question as they can all
be expressed as

∑n
i=1 cizi, where ci is a known coefficient and zi is a decision variable or a

function of a set of decision variables with index i. The objectives for KIP, CNP, and DRP all
satisfy this property. We leverage this knowledge of the coefficients of separable objective
functions as an inductive bias in the design of the learning architecture to facilitate con-
vergence to accurate models. The decision-dependent and decision-independent features
are summarized in Table 6.

One minor remark for KIP is that since it is an interdiction problem, we multiply the
concatenated vector, i.e., the input to Φv, by (1 − xi) as a mask given that the follower
cannot select the same items as the leader.

For all instances, we do not perform systematic hyperparameter tuning. The sub-
networks Ψd, Ψs, Ψv are feed-forward networks with 1 hidden layer of dimension 128.
The decision-independent feature embedding dimension (m) is 64, and the instance em-
bedding dimension (k) is 32. We use a batch size of 32, a learning rate of 0.01, and Adam
[33] as an optimizer.

Problem Type Features

KIP fi
pi/ai

maxi{pi/ai} , pi, ai, k/n, xdg
i , ydgi , objdg/n

h(xi) fi, xi, y
g
i

CNP fi
pdi /di

maxi{pdi /di}
, pai /ai
maxi{pai /ai}

, di, ai, pai , p
d
i , γ, η, ϵ, δ, A, D

h(xi) fi, xi, −γ(1− xi), (1− xi), (1− η)xi

DRP fi
wi/ci

maxi{wi/ci} , vi/ci
maxi{ci/vi} , wi, vi, ci, Bd, Br

h(xi) fi, xi

Table 6: Features for KIP, CNP, and DRP. Most features are derived directly from the objec-
tive and constraint coefficients, so refer to Appendix C for the definitions. For KIP, addi-
tional features are computed using simple greedy heuristics. For the KIP DIF, we compute
xdg
i , ydgi , objdg, which correspond to a purely greedy strategy, i.e., the upper-level interdicts

the k items with the largest profit to cost ratio (pi/ai) and the lower-level decisions are
the largest remaining highest profit to cost ratio items. For h(xi) in KIP, we also include
lower-level decisions based on G-VFA (ygi).

28

D.1.2 DNDP

We train neural network models (one hidden layer, 16 neurons, a learning rate of 0.01 with
the Adam optimizer) and gradient-boosted trees (default scikit-learn hyperparameters,
except for n estimators = 50). The inputs to these models are 30-dimensional binary
vectors representing the subset of links selected by the leader.

D.2 Data Collection & Training Times

For KIP, CNP, DRP, we sample 1,000 instances according to the procedures specified in Tang
et al. [57], Dragotto et al. [20], and Ghatkar et al. [29], respectively. For each instance,
we sample 100 upper-level decisions, i.e., 100,000 samples in total. Additionally, for KIP,
CNP, DRP, the lower-level problems are solved with 30 CPUs in parallel. For training, we
train for 1,000 epochs. However, if the validation mean absolute error does not improve
in 200 iterations, we terminate early. Data collection and training times are reported in
Table 7.

For DNDP, we use the Sioux Falls transportation network provided by [50] along with
the author’s 60 test instances. All instances use the same base network with different sets
of candidate links to add and different budgets. There are 30 candidate links in total, and
each test instance involves a subset of 10 or 20 of these links. To construct a training set,
we sample 1000 leader decisions by first uniformly sampling an integer between 1 and 20,
then uniformly sampling that many candidate links out of the set of 30 options; samples
with total cost exceeding 50% of the total cost of all 30 edges are rejected as they are likely
to exceed realistic budgets.

E Ablation Studies

E.1 Lower-Level Value Function Constraints

In this section, we present an ablation study comparing alternative types of value function
approximation (VFA) for the lower-level approximation on the KIP. Namely, we compare
the approach used in the main paper, NNl, which utilizes a slack variable to ensure feasi-
bility. In addition, we include NNn which does not use a slack at all, and NNd, which uses
the largest error in the validation set to scale the prediction down. Table 8 reports objec-
tives, relative errors, and solving times of each method. In general, the solution quality of
NNl slightly exceeds that of NNd, while NNn does significantly worse. The latter results is
unsurprising given that any underestimation will cause a loss of feasibility for potentially
high quality upper-level decisions. NNl is additionally generally the fastest to optimize as
well.

E.2 The effect of λ

In this section, we present a brief set of results for the use of λ = 0.1 for DNDP. Table 9
presents relative error and solving times for this setting. Notably, this choice of λ tends to

29

Instance Data Collection Training Time
Lower Upper

KIP (n = 18) 142.08 2576.43 -
KIP (n = 20) 172.65 4714.88 -
KIP (n = 22) 141.61 2346.20 -
KIP (n = 25) 170.30 4007.75 -
KIP (n = 28) 142.34 2684.80 -
KIP (n = 30) 168.91 1835.27 -
KIP (n = 100) 164.16 3467.26 -

CNP (|V | = 10) 1,397.58 1839.60 4670.87
CNP (|V | = 25) 1,522.32 2072.60 4841.31
CNP (|V | = 50) 1,823.16 2103.50 2963.64
CNP (|V | = 100) 1,872.07 1944.08 2931.43
CNP (|V | = 300) 3,662.89 3800.02 3598.04
CNP (|V | = 500) 4,742.06 2263.68 6214.35

DRP 1939.24 1768.82 1784.15

DNDP ∼ 300.0 ∼ 5.0 ∼ 5.0

Table 7: Data collection and training times for all problems. Note that as KIP is an in-
terdiction problem, the same trained model can be used for the upper- and lower-level
approximation, so we simply leave the upper-level as - for this problem. All times in sec-
onds.

30

n k Objective Mean Relative Error (%) Times
NNl NNd NNn NNl NNd NNn NNl NNd NNn

18 5 308.30 308.40 318.40 0.00 0.03 3.28 0.59 0.83 1.06
18 9 145.60 145.60 152.90 0.00 0.00 6.70 0.59 1.21 0.81
18 14 31.00 37.50 40.00 0.00 16.91 48.23 0.22 0.32 0.35
20 5 390.30 390.30 413.90 0.00 0.00 6.48 0.62 0.79 1.38
20 10 165.40 165.40 175.90 0.00 0.00 6.60 0.66 1.47 1.76
20 15 33.40 32.50 55.70 3.33 14.29 100.91 0.32 0.38 0.96
22 6 385.50 386.80 403.00 0.00 0.27 4.56 0.19 0.37 0.80
22 11 163.20 162.10 179.20 0.55 0.07 11.83 0.28 0.85 1.23
22 17 35.20 35.20 49.00 5.15 4.63 69.91 0.24 0.19 0.41
25 7 438.20 438.20 446.50 0.00 0.00 1.98 2.66 2.40 3.85
25 13 194.90 195.50 206.50 0.00 0.26 6.67 2.75 3.25 4.83
25 19 43.30 43.30 64.40 1.69 1.69 92.49 0.48 0.74 1.84
28 7 518.30 518.30 532.20 0.00 0.00 2.80 0.67 0.83 2.37
28 14 224.90 224.90 234.70 0.00 0.00 4.60 2.10 2.69 3.72
28 21 46.70 49.90 60.70 0.00 7.48 37.45 0.45 0.83 1.67
30 8 536.30 537.10 537.70 0.00 0.18 0.25 1.54 1.86 3.07
30 15 231.20 231.20 232.80 0.16 0.16 0.82 3.64 4.18 5.03
30 23 49.00 50.70 51.90 0.00 2.79 4.48 1.08 1.50 1.76
100 25 2,164.71 2,164.13 2,168.52 0.04 0.01 0.22 10.02 12.28 19.81
100 50 965.37 965.26 974.28 0.03 0.02 1.01 51.68 61.09 72.86
100 75 245.01 245.10 262.66 0.04 0.08 8.18 24.69 30.48 81.30

Table 8: KIP results comparing NNl, NNd, and NNn. Each row averaged over 10 instances,
except for n = 100, which is average over 100 instances. All times in seconds.

31

provide higher quality solutions to λ = 1, as reported in the main paper in Table 5, which
motivates a clear direction for easy improvement of the already strong numerical results
reported for DNDP, as well as for the other problems.

of edges budget NNl NNu GBTl GBTu MKKT
MRE Time MRE Time MRE Time MRE Time MRE-5 MRE-10 MRE-30

10 25% 0.15 2.66 4.97 0.01 0.16 3.38 1.11 0.04 6.08 0.51 0.10
10 50% 0.03 2.43 3.93 0.01 0.03 3.46 3.70 0.05 7.39 2.17 0.00
10 75% 0.02 1.61 1.49 0.01 0.01 1.67 1.99 0.03 5.87 0.05 0.06
20 25% 1.85 5.01 7.42 0.04 1.48 5.00 4.70 0.26 12.98 6.44 0.86
20 50% 1.20 5.01 4.40 0.05 0.30 5.01 2.75 0.15 16.50 9.11 0.94
20 75% 0.07 2.23 4.87 0.01 0.07 2.79 0.84 0.10 11.02 4.07 0.08

Average 0.55 3.16 4.51 0.02 0.34 3.55 2.51 0.11 9.97 3.72 0.34

Table 9: DNDP results for λ = 0.1. Each is averaged across 10 instances. NNl and GBTl are
the learning-based formulations with slack for the lower-level approximation. NNu and
GBTu are the learning-based formulations for the upper-level approximation.

E.3 Greedy Features for Knapsack

This section explores the impact of the use of greedy features on the KIP problem. We
specifically compare a model trained purely on the coefficients to a model trained on
the coefficients with additional features derived from KIP-specific greedy heuristics. From
Table 10, there is a clear advantage with the greedy features in terms of solution quality
at the cost of increased solving time.

F Objective & Incumbent Results

This section reports the more detailed information related to the objective values for each
problem. Objective results for each problem are given in Tables 11-14. In addition, for
KIP and CNP, as the solver from Fischetti et al. [25] provides easily accessible incumbent
solutions, we include two additional metrics.

– The first metric “Solver Time Ratio” measures the time it takes the solver to obtain
an equally good (or better) incumbent solution, divided by the solving time of the
respective approximation. The number in brackets to the right indicates the number
of instances for which the solver finds an equivalent solution.

– The second metric “Solver Relative Error at Time” measures the relative error of the
best solution found by the solver compared to the respective approximation. The
value in brackets to the right indicates the number of instances for which the solver
finds an incumbent before the approximation is done solving.

32

n k Objective Mean Relative Error (%) Times
NNl greedy NNl no greedy NNl greedy NNl no greedy NNl greedy NNl no greedy

18 5 308.30 314.90 0.85 2.93 0.59 0.06
18 9 145.60 150.50 1.17 4.28 0.59 0.07
18 14 31.00 41.60 0.00 55.04 0.22 0.05
20 5 390.30 404.40 0.00 3.71 0.62 0.06
20 10 165.40 172.00 0.55 4.06 0.66 0.05
20 15 33.40 36.50 0.00 7.31 0.32 0.06
22 6 385.50 390.60 0.59 1.88 0.19 0.07
22 11 163.20 170.80 0.00 4.31 0.28 0.07
22 17 35.20 39.10 7.91 31.93 0.24 0.06
25 7 438.20 446.30 0.11 1.67 2.66 0.08
25 13 194.90 197.20 0.89 2.58 2.75 0.07
25 19 43.30 49.10 0.00 13.53 0.48 0.07
28 7 518.30 537.70 0.15 3.63 0.67 0.07
28 14 224.90 225.90 0.21 0.61 2.10 0.08
28 21 46.70 52.10 0.00 11.85 0.45 0.08
30 8 536.30 556.50 0.00 3.61 1.54 0.08
30 15 231.20 233.70 0.21 1.20 3.64 0.09
30 23 49.00 51.30 0.00 4.97 1.08 0.08

100 25 2,164.71 2,473.08 0.00 14.22 10.02 0.54
100 50 965.37 1,062.92 0.04 10.23 51.68 0.52
100 75 245.01 313.44 0.00 27.62 24.69 0.53

Table 10: KIP results comparing NNl with and without greedy-based features NNd. Each
row averaged over 10 instances, except for n = 100, which is an average over 100 in-
stances. All times in seconds.

n k Objective Mean Relative Error (%) Solving Time Solver Time Ratio Solver Relative Error at Time
NNl NNu G-VFA B&C NNl NNu G-VFA B&C NNl NNu G-VFA B&C NNl NNu G-VFA NNl NNu G-VFA

18 5 308.30 308.30 309.20 303.50 1.48 1.48 1.82 0.00 0.59 0.34 0.14 9.55 24.48 (10) 35.86 (10) 177.39 (10) - (0) - (0) - (0)
18 9 145.60 145.60 149.10 143.40 1.51 1.51 3.97 0.00 0.59 0.43 0.22 5.81 12.31 (10) 18.52 (10) 73.49 (10) - (0) - (0) - (0)
18 14 31.00 31.00 51.40 31.00 0.00 0.00 64.22 0.00 0.22 0.17 0.03 0.39 1.87 (10) 2.86 (10) 31.9 (10) 44.0 (2) 41.5 (2) - (0)
20 5 390.30 390.30 397.60 388.50 0.41 0.41 2.19 0.00 0.62 0.45 0.25 23.18 50.68 (10) 65.56 (10) 420.04 (10) - (0) - (0) - (0)
20 10 165.40 165.40 165.40 163.70 0.99 0.99 0.99 0.00 0.66 0.58 0.36 10.27 18.39 (10) 22.03 (10) 80.0 (10) - (0) - (0) - (0)
20 15 33.40 33.40 41.90 31.40 3.57 3.57 23.39 0.00 0.32 0.19 0.02 0.94 2.82 (10) 4.75 (10) 54.29 (10) - (0) - (0) - (0)
22 6 385.50 385.50 384.30 382.70 0.71 0.71 0.42 0.00 0.19 0.18 0.18 42.30 228.97 (10) 249.8 (10) 714.31 (10) - (0) - (0) - (0)
22 11 163.20 163.20 163.30 161.00 1.01 1.01 1.08 0.00 0.28 0.28 0.33 16.26 69.05 (10) 74.99 (10) 129.04 (10) - (0) - (0) - (0)
22 17 35.20 35.20 35.20 29.20 14.43 14.43 14.43 0.00 0.24 0.15 0.13 0.68 3.09 (10) 5.48 (10) 29.34 (10) 18.0 (1) - (0) - (0)
25 7 438.20 438.20 438.20 436.20 0.44 0.44 0.44 0.00 2.66 2.42 0.64 137.96 58.27 (10) 61.24 (10) 1102.38 (10) 28.69 (2) 28.69 (2) 28.69 (2)
25 13 194.90 194.90 199.90 191.50 1.42 1.42 3.85 0.00 2.75 2.79 1.24 48.43 21.14 (10) 25.13 (10) 67.86 (10) - (0) - (0) - (0)
25 19 43.30 43.30 43.30 41.80 2.49 2.49 2.49 0.00 0.48 0.38 0.13 1.77 3.98 (10) 4.81 (10) 38.29 (10) - (0) - (0) - (0)
28 7 518.30 518.30 517.60 516.10 0.39 0.39 0.26 0.00 0.67 0.74 0.62 309.18 671.57 (10) 518.35 (10) 1033.45 (10) 29.28 (8) 29.28 (8) 29.48 (8)
28 14 224.90 224.90 226.80 223.40 0.75 0.75 1.37 0.00 2.10 1.45 1.29 120.74 59.99 (10) 84.36 (10) 120.05 (10) 19.84 (2) 19.84 (2) 16.14 (2)
28 21 46.70 46.70 48.20 46.20 1.14 1.14 3.16 0.00 0.45 0.49 0.31 4.92 12.95 (10) 11.66 (10) 38.98 (10) - (0) - (0) - (0)
30 8 536.30 536.30 538.70 536.30 0.00 0.00 0.43 0.00 1.54 1.54 0.97 792.44 497.06 (10) 455.29 (10) 1924.47 (10) 27.07 (10) 27.07 (10) 26.58 (10)
30 15 231.20 231.20 231.90 230.00 0.49 0.49 0.75 0.00 3.64 3.06 1.35 187.23 56.14 (10) 66.07 (10) 254.88 (10) 86.11 (6) 86.11 (6) 85.19 (6)
30 23 49.00 49.00 50.40 47.50 2.29 2.29 4.48 0.00 1.08 0.73 0.25 5.65 7.5 (10) 8.79 (10) 48.27 (10) - (0) - (0) - (0)
100 25 2,164.71 2,164.69 2,145.07 2,318.99 0.93 0.93 0.00 8.09 10.02 8.40 4.19 3,600.40 - (0) - (0) - (0) 34.36 (100) 34.99 (100) 37.93 (100)
100 50 965.37 965.37 956.76 1,043.71 0.96 0.96 0.04 8.96 51.68 49.28 53.74 3,600.44 23.56 (5) 26.24 (5) - (0) 59.36 (100) 60.81 (100) 60.48 (100)
100 75 245.01 245.01 245.08 259.95 0.08 0.08 0.12 5.87 24.69 23.78 35.27 3,600.52 133.35 (4) 152.72 (4) 138.07 (5) 177.01 (100) 196.86 (100) 193.94 (100)

Table 11: KIP objective and incumbent results. Each row averaged over 10 instances,
except for n = 100, which is average over 100 instances. NNl and NNu specify the lower-
and upper-level approximations respectively. All times in seconds.

33

|V | Objective Mean Relative Error (%) Times Solver Time Ratio Solver Relative Error at Time
NNl NNu B&C NNl NNu B&C NNl NNu B&C NNl NNu NNl NNu

10 224.47 225.10 228.63 3.20 2.75 1.01 1.69 1.19 3,600.80 136.66 (288) 191.34 (289) 269.0 (1) - (0)
25 562.72 566.23 572.51 2.60 1.77 0.73 1.69 1.19 3,600.80 736.84 (275) 3934.02 (271) 2.22 (248) 2.57 (124)
50 1,139.27 1,143.95 1,148.17 1.42 0.98 0.67 1.69 1.19 3,600.80 718.74 (225) 3840.41 (183) 1.94 (295) 3.17 (190)

100 2,285.15 2,297.47 2,272.30 1.12 0.56 1.79 1.69 1.19 3,600.80 645.37 (131) 926.6 (90) 2.4 (283) 2.96 (278)
300 6,781.91 6,882.42 6,755.07 2.01 0.33 2.32 1.69 1.19 3,600.80 41.65 (166) 167.38 (47) 1.49 (245) 2.65 (243)
500 11,348.60 11,439.25 11,208.43 1.33 0.45 2.47 1.69 1.19 3,600.80 106.9 (83) 99.48 (15) 1.51 (206) 2.45 (205)

Table 12: CNP objective and incumbent results. Each row averaged over 300 instances.
All times in seconds.

Instance # Objective Relative Error (%) Times
NNl NNu B&C+ NNl NNu B&C+ NNl NNu B&C+

1 34,356.00 59,524.00 47,206.00 42.28 0.00 20.69 0.09 1.44 3,600.09
2 33,713.00 54,764.00 39,526.00 38.44 0.00 27.82 0.12 1.52 3,600.08
3 36,717.00 66,967.00 46,792.00 45.17 0.00 30.13 0.14 2.85 3,600.07
4 36,414.00 54,908.00 44,486.00 33.68 0.00 18.98 0.07 1.68 3,637.23
5 33,090.00 59,627.00 43,355.00 44.51 0.00 27.29 0.10 1.96 3,600.07
6 36,691.00 56,603.00 39,006.00 35.18 0.00 31.09 0.08 2.93 3,600.10
7 31,354.00 55,569.00 43,443.00 43.58 0.00 21.82 0.09 1.58 3,600.14
8 35,710.00 54,414.00 39,839.00 34.37 0.00 26.79 0.09 0.87 3,600.10
9 38,961.00 61,869.00 45,288.00 37.03 0.00 26.80 0.16 4.55 3,600.16

10 36,965.00 60,488.00 43,194.00 38.89 0.00 28.59 0.12 3.57 3,600.10

Averaged 35,397.10 58,473.30 43,213.50 39.31 0.00 26.00 0.11 2.30 3,603.82

Table 13: DRP objective results. Each row corresponds to a single instance from dataset
15, i.e., the most challenging instances from Ghatkar et al. [29]. All times in seconds.

of edges budget Objective Relative Error (%) Times
NNl NNu GBTl GBTu MKKT-5 MKKT-10 MKKT-30 NNl NNu GBTl GBTu MKKT-5 MKKT-10 MKKT-30 NNl NNu GBTl GBTu

10 25% 6,181.42 6,422.90 6,206.74 6,194.40 6,502.62 6,155.69 6,129.65 0.88 4.97 1.21 1.11 6.08 0.51 0.10 2.89 0.01 4.02 0.04
10 50% 5,495.55 5,706.80 5,497.17 5,691.26 5,901.07 5,618.41 5,492.23 0.06 3.93 0.09 3.70 7.39 2.17 0.00 3.20 0.01 3.68 0.05
10 75% 5,185.31 5,254.89 5,191.29 5,279.07 5,481.49 5,180.90 5,181.30 0.13 1.49 0.24 2.00 5.88 0.05 0.06 2.15 0.01 2.21 0.03
20 25% 5,207.84 5,554.08 5,263.34 5,415.21 5,842.68 5,539.32 5,215.02 1.16 7.91 2.17 5.21 13.52 6.84 1.33 5.01 0.04 5.01 0.26
20 50% 4,371.18 4,491.25 4,352.48 4,418.78 5,006.37 4,752.99 4,342.83 1.45 4.30 1.02 2.65 16.39 9.02 0.84 5.01 0.05 5.00 0.15
20 75% 4,049.98 4,239.73 4,047.25 4,078.57 4,484.67 4,226.19 4,047.56 0.14 4.87 0.08 0.84 11.02 4.07 0.08 2.48 0.01 3.53 0.10

Table 14: DNDP objective results. Each is averaged across 10 instances. All times in
seconds.

34

G Distributional Results for Relative Error

18 20 22 25 28 30 100
Items

0

2

4

6

8

10

12

14

R
el

at
iv

e
E

rr
or

NNs

NNu

G-VFA
B&C

Figure 1: Box plot of relative errors for KIP with interdiction budget of k = n/4.

18 20 22 25 28 30 100
Items

0

5

10

15

20

25

R
el

at
iv

e
E

rr
or

NNs

NNu

G-VFA
B&C

Figure 2: Box plot of relative errors for KIP with interdiction budget of k = n/2.

35

18 20 22 25 28 30 100
Items

0

25

50

75

100

125

150

175
R

el
at

iv
e

E
rr

or
NNs

NNu

G-VFA
B&C

Figure 3: Box plot of relative errors for KIP with interdiction budget of k = 3n/4.

10 25 50 100 300 500
Number of Nodes

0

10

20

30

40

50

60

R
el

at
iv

e
E

rr
or

NNs

NNs

B&C

Figure 4: Box plot of relative errors for CNP.

0.25 0.5 0.75
Budget

0

2

4

6

8

10

12

14

16

R
el

at
iv

e
E

rr
or

NNs

NNu

GBTs

GBTu

MKKT-5
MKKT-10
MKKT-30

Figure 5: Box plot of relative errors for DNDP with 10 edges. MKKT-{5,10,30} corresponds
to MKKT run with each respective time limit.

36

0.25 0.5 0.75
Budget

0

5

10

15

20

25

30

R
el

at
iv

e
E

rr
or

NNs

NNu

GBTs

GBTu

MKKT-5
MKKT-10
MKKT-30

Figure 6: Box plot of relative errors for DNDP with 20 edges. MKKT-{5,10,30} corresponds
to MKKT run with each respective time limit.

37

	Introduction
	Background
	Related Work
	Bilevel optimization
	Data-driven optimization

	Methodology
	Upper-level approximation
	Lower-level approximation
	Bilevel feasibility
	Upper- v.s. lower-level approximation
	Learning architecture
	Approximation guarantees
	Lower-level approximation
	Upper-level approximation

	Experimental Setup
	Experimental Results
	Conclusion
	Proofs for sec:bilevelfeas
	Proofs for Approximation Guarantees of sec:guarantees
	Problem Formulations
	Knapsack interdiction
	Critical node problem
	Donor-recipient problem
	Discrete network design problem

	Machine Learning Details
	Models, Features, & Hyperparameters
	KIP, CNP, DRP
	DNDP

	Data Collection & Training Times

	Ablation Studies
	Lower-Level Value Function Constraints
	The effect of
	Greedy Features for Knapsack

	Objective & Incumbent Results
	Distributional Results for Relative Error

