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Abstract. We study network design problems for nonlinear and nonconvex flow
models under demand uncertainties. To this end, we apply the concept of adjustable
robust optimization to compute a network design that admits a feasible transport for
all, possibly infinitely many, demand scenarios within a given uncertainty set. For
solving the corresponding adjustable robust mixed-integer nonlinear optimization
problem, we show that a given network design is robust feasible, i.e., it admits a
feasible transport for all demand uncertainties, if and only if a finite number of
worst-case demand scenarios can be routed through the network. We compute these
worst-case scenarios by solving polynomially many nonlinear optimization problems.
Embedding this result for robust feasibility in an adversarial approach leads to an
exact algorithm that computes an optimal robust network design in a finite number
of iterations. Since all of the results are valid for general potential-based flows, the
approach can be applied to different utility networks such as gas, hydrogen, or water
networks. We finally demonstrate the applicability of the method by computing
robust gas networks that are protected from future demand fluctuations.

1. Introduction

Network design problems have been widely studied in the optimization literature due
to their relevance in different applications such as transportation (Raghunathan 2013),
telecommunication (Koster et al. 2013), or supply chains (Santoso et al. 2005). These
problems typically involve optimizing a network design and the corresponding operation
so that specific demand predictions are met and the overall costs are minimized. In most
of the cases, these models contain uncertain parameters, which represent the deviation
of the predictions from the actual demand in the future.

In this paper, we address these uncertainties for the class of mixed-integer nonlinear
network design problems with demand uncertainties by using adjustable robust opti-
mization (ARO). In a nutshell, the considered adjustable robust mixed-integer nonlinear
optimization problem aims at minimizing the network expansion costs and has the
following structure. We first decide on the so-called here-and-now decisions that represent
the network expansion and have to be decided before the uncertain demand is known.
Afterward, the uncertainty realizes in a worst-case manner within an a priori given
uncertainty set. Finally, we have to guarantee that this worst-case scenario can be
transported through the built network. Consequently, a solution of this problem yields
a robust and resilient network, which is protected from all, possibly infinitely many,
different demand fluctuations in the uncertainty set.

To model the physics of the network, we use nonlinear and nonconvex potential-
based flows; see Gross et al. (2019). These flows are an extension of capacitated linear
flows, which are typically used in network design problems. The main advantages of
potential-based flows consist of their accurate representation of the underlying physics
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and their broad applicability to model different types of utility networks such as gas,
hydrogen, water, or lossless DC power flow networks. In the following, we particularly
focus on the nonlinear and nonconvex cases. Thus, we aim to combine mixed-integer
nonlinear optimization and robust optimization to compute resilient network designs
while accurately considering the underlying physics and taking into account demand
uncertainties.

Since the research on network design is rather extensive, we focus on the literature
about robust network design and only start with a brief review regarding the works for
nonlinear network design without uncertainties. Multiple approaches to solve nonlinear
network design problems are based on different relaxations of the original problem.
Raghunathan (2013) and Humpola and Fügenschuh (2015) develop different convex
relaxations and embed the results in specific branch-and-bound frameworks to solve
nonlinear network design problems. For the case of gas networks, Borraz-Sánchez et
al. (2016) develop a mixed-integer second-order cone relaxation, which provides small
gaps w.r.t. the optimal objective value of the corresponding mixed-integer nonlinear
optimization problem (MINLP) in many cases. In the recent work by Li et al. (2024),
the authors combine a convex reformulation and an efficient enumeration scheme to solve
a specific gas network design problem. For a more detailed literature review on nonlinear
network design without uncertainties, we refer to Li et al. (2024) for the case of gas
networks and to D’Ambrosio et al. (2015) for the case of water networks.

A large part of the literature on robust network design with uncertain demand focuses
on capacitated linear flow models. The approaches often distinguish between two different
concepts of routing the flows. On the one hand, there are approaches that consider
a so-called static routing. In this case, for each uncertain demand the corresponding
flows have to follow a specific routing template, e.g., a linear function depending on the
uncertain demand. This concept has been applied to robust network design problems
with uncertain traffic (Koster et al. 2013; Ben-Ameur and Kerivin 2005). On the other
hand, there are approaches using so-called dynamic routing, in which for each uncertain
demand the flows can be chosen individually. Following this more general concept leads
to an adjustable (or two-stage) robust mixed-integer linear network design problem; see,
e.g., Atamtürk and Zhang (2007). These problems can be solved by specific branch-and-
cut methods (Cacchiani et al. 2016) or by general methods of ARO; see Yanıkoğlu et al.
(2019). A comparison of static and dynamic routing in addition to a so-called affine
routing is discussed in Poss and Raack (2013).

We now turn to the considered case of adjustable robust network design for nonlinear
flows, which is much less researched than the case of linear flows. For robust gas pipeline
network expansion, Sundar et al. (2021) consider a box uncertainty set for the demand
of sinks only. In this case, the authors show that two worst-case scenarios suffice to
guarantee robust feasibility if there are no restrictions on the demand of the sources.
For tree-shaped potential-based networks and a specific box uncertainty set for the
demand of sinks and sources, Robinius et al. (2019) prove that polynomially many
worst-case demand scenarios guarantee robust feasibility. To obtain these scenarios,
the authors exploit the tree structure of the network and apply the obtained result
to compute a robust diameter selection for hydrogen networks. A different notion of
robustness of potential-based networks is investigated in Klimm et al. (2023), in which
network topologies are characterized as robust if the maximal potential differences do
not increase for decreasing demands. Moreover, Pfetsch and Schmitt (2023) compute
robust potential-based networks, in which no demand uncertainties are considered, but
the obtained robust network is protected from specific arc failures. For the related field
of adjustable robust operation of potential-based networks, we refer to Aßmann et al.
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(2019) as well as Kuchlbauer et al. (2022) and the references therein. Details about
stochastic network design can be found in the recent work by Bertsimas et al. (2023).

In this paper, we develop an exact algorithm to solve an adjustable robust mixed-integer
nonlinear network design problem with demand uncertainties. To this end, we focus on
nonlinear and nonconvex potential-based flows and consider general demand uncertainty
sets. Exploiting properties of potential-based flows and the underlying network, we
show that adjustable robust feasibility of a given network expansion can be equivalently
characterized by solving polynomially many optimization problems. These optimization
problems consist of maximizing, respectively minimizing, specific network characteristics
such as arc flows or potential differences w.r.t. the uncertainty set. Solving the latter
problems leads to a finite set of worst-case demand scenarios, which prove adjustable
robust feasibility or infeasibility of the considered network expansion. Embedding this
characterization in an exact adversarial approach leads to an algorithm that solves the
considered adjustable robust mixed-integer nonlinear optimization problem in a finite
number of iterations. The algorithm starts with a small subset of demand scenarios
that is iteratively augmented by worst-case demand scenarios obtained by the developed
characterization of robust feasibility. We finally demonstrate the applicability of the
developed approach by computing adjustable robust gas networks that are protected
from future demand fluctuations. The numerical results show that only a small number
of worst-case scenarios suffices to obtain an adjustable robust network design in practice.

The paper is organized as follows. In Section 2, we introduce potential-based flows and
state the considered adjustable robust mixed-integer nonlinear network design problem
under demand uncertainties. In Section 3, we derive an characterization of adjustable
robust feasibility of a given network expansion based on finitely many worst-case demand
scenarios. Subsequently, we embed this result in an exact adversarial approach that solves
the uncertain network design problem. We present different solution techniques that
speed up the performance of the developed approach in Section 4. Using an academic
example, we then discuss that the number of necessary worst-case demand scenarios
in the algorithm can significantly vary depending on the capacity of the sources; see
Section 5. We finally demonstrate the applicability of the developed approach using the
example of gas networks in Section 6, followed by a discussion of possible future research
directions in Section 7.

2. Problem Statement

We now introduce the considered nonlinear potential-based flow model in Section 2.1
before we state the adjustable mixed-integer nonlinear network design problem in Sec-
tion 2.2.

2.1. Potential-Based Networks. We consider potential-based flows to model the
underlying physical laws of the network flow. Potential-based flows form an extension of
classic linear capacitated flow models and we now formally introduce them based on Gross
et al. (2019) and Labbé et al. (2020). Let G = (V,A) be a directed multi-graph consisting
of a set of nodes V and a set of arcs A. The set of nodes V is partitioned into nodes V+
at which flow is injected, nodes V− at which flow is withdrawn, and inner nodes V0 at
which neither flow is injected nor withdrawn. Furthermore, the set A represents the
arcs of the network and consists of triples (u, v, `). Here, u and v represent the start
and end node of the arc a and ` is the label of the arc. This modeling choice allows to
consider multiple parallel arcs between two nodes, which often occurs in real-word utility
networks.

In addition to the classic flow variables q ∈ RA, we consider nodal potential lev-
els π ∈ RV . Due to technical restrictions, both the flow and the potential variables are
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bounded, i.e.,
π−u ≤ πu ≤ π+

u , u ∈ V, q−a ≤ qa ≤ q+a , a ∈ A.
To model the case of unbounded potentials or uncapacitated flows, we can set the
potential bounds π−u ≤ π+

u , u ∈ V, and the arc flow bounds q−a ≤ q+a , a ∈ A, to ±∞.
For a given arc a ∈ A, the incident potentials and the corresponding arc flow are

coupled by a so-called potential function Φa : R→ R. The potential function is usually
nonlinear and nonconvex. We further assume that the properties

(i) Φa is continuous,
(ii) Φa is strictly increasing, and
(iii) Φa is odd, i.e., Φa(−x) = −Φa(x),

hold, which are natural in the context of utility networks. The coupling between potentials
and arc flows is given by

πu − πv = Φa(qa), a = (u, v, `) ∈ A.
We further consider a demand vector d ∈ RV≥0 that represents the injections and with-

drawals at every node of the network. Hence, it holds du = 0 for each inner node u ∈ V0.
Since we consider stationary flows, this demand d ∈ RV≥0 has to be balanced, i.e., the total
amount of injections equals the total amount of withdrawals:

∑
u∈V+

du =
∑
u∈V−

du.
We further have to impose mass flow conservation by

∑
a∈δout(u)

qa −
∑

a∈δin(u)

qa =


du, u ∈ V+,
−du, u ∈ V−,

0, u ∈ V0.
Combining the previous constraints leads to the formal definition of a potential-based

flow.

Definition 1. For a given demand d ∈ RV≥0 with du = 0 for all u ∈ V0, a tuple (q, π) is
a feasible potential-based flow if and only if it satisfies

∑
a∈δout(u)

qa −
∑

a∈δin(u)

qa =


du, u ∈ V+,
−du, u ∈ V−,

0, u ∈ V0,
πu − πv = Φa(qa), a = (u, v, `) ∈ A,
π−u ≤ πu ≤ π+

u , u ∈ V,
q−a ≤ qa ≤ q+a , a ∈ A.

One of the main advantages of using potential-based flows lies in their strong modeling
capabilities w.r.t. flows in utility networks. In Gross et al. (2019), explicit potential
functions for stationary gas (ΦG), water (ΦW), and lossless DC power-flow networks
(ΦDC) are presented. For an arc a ∈ A and a corresponding arc flow qa, these potential
functions are explicitly given by

ΦG(qa) = Λaqa |qa| , ΦW(qa) = Λasgn(qa) |qa| 1.852, ΦDC(qa) = Λaqa, (1)

where Λa > 0 is an arc specific constant depending on the application.

2.2. Robust Network Design. We now present an adjustable robust network expansion
model that takes demand uncertainties into account. For modeling the underlying physics
of the network flows, we use the potential-based flows as previously introduced.

In general, demand forecasts that are considered in the network design process are
affected by uncertainties. Taking into account these demand uncertainties is of high
relevance since even small perturbations of the injections and withdrawals can render the
planned network design infeasible, i.e., the demand cannot be transported through the
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network. We now address these demand uncertainties by applying the well-established
concept of (adjustable) robust optimization; see, Yanıkoğlu et al. (2019) and the references
therein. To this end, we consider the demand uncertainty set

U :=

d ∈ RV≥0 :
∑
u∈V+

du =
∑
u∈V−

du, du = 0, u ∈ V0

 ∩ Z, (2)

of balanced demands, where Z ⊂ RV is a non-empty and compact set. We note that the
general choice of the uncertainty set allows to consider convex, nonconvex, or discrete
uncertainty sets.

With this uncertainty set at hand, the task of computing an adjustable robust network
design consists of finding a cost-optimal network design such that for each demand
uncertainty d ∈ U , there is a feasible transport through the built network.

For stating a corresponding adjustable robust optimization model, we partition the set
of arcs A into existing arcs Aex and into candidate arcs Aca that can be built to enhance
the capacity of the network. This allows to design a network from scratch (Aex = ∅) as
well as to increase the capacity of existing networks (Aex 6= ∅). We further introduce
binary variables x ∈ X ⊆ {0, 1}Aca . Here, for an arc a ∈ Aca, the binary variable xa
equals one if the candidate arc a is built and otherwise, it is zero. Further, expanding
the network by an arc a ∈ Aca results in costs ca > 0. The set X can contain additional
constraints on the expansion decisions such as that only one out of multiple parallel arcs
in Aca can be built. The latter occurs in the discrete selection of pipeline diameters in
gas networks; see, e.g., Li et al. (2024). We are now ready to state a model that computes
an adjustable robust network design that guarantees that each demand scenario in the
uncertainty set U can be transported:

ν(U) := min
x,q,π

∑
a∈Aca

caxa (3a)

s.t. x ∈ X, (3b)

∀d ∈ U ∃
(
qd, πd

)
with (3c)

∑
a∈δout(u)

qda −
∑

a∈δin(u)

qda =


du, u ∈ V+,
−du, u ∈ V−,

0, u ∈ V0,
(3d)

πdu − πdv = Φa(qda), a = (u, v, `) ∈ Aex, (3e)

πdu − πdv ≤ Φa(qda) + (1− xa)M+
a , a = (u, v, `) ∈ Aca, (3f)

πdu − πdv ≥ Φa(qda) + (1− xa)M−a , a = (u, v, `) ∈ Aca, (3g)

q−a ≤ qda ≤ q+a , a ∈ Aex, (3h)

q−a xa ≤ qda ≤ q+a xa, a ∈ Aca, (3i)

π−u ≤ πdu ≤ π+
u , u ∈ V. (3j)

In the objective function (3a), we minimize the costs associated to the chosen network
design. Constraints (3b) impose additional restrictions on the network design. Then,
for every demand uncertainty d ∈ U , we determine flows qd and potentials πd such that
mass flow conservation (3d) and the potential bounds (3j) are satisfied. Furthermore, we
ensure by Constraints (3e)–(3g) that the coupling between the potentials and the arc
flows is satisfied for all existing arcs and all candidate arcs that are built. Moreover,
we guarantee that for existing and new arcs specific flow capacities are satisfied. If a
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candidate arc a ∈ Aca is not built, i.e., xa = 0, then the corresponding arc flow is set to
zero; see Constraints (3i).

In line with Schmidt and Thürauf (2022), we now discuss that for each arc (u, v, `),
the big-M values

M+
a = π+

u − π−v , M−a = π−u − π+
v , (4)

are valid. Here, valid means that if a candidate arc a = (u, v, `) ∈ Aca is not built,
i.e., xa = 0, the Constraints (3f) and (3g) are redundant and we have no coupling
between the incident potentials and the corresponding arc flow. To see this, let us
consider a candidate arc a ∈ Aca with xa = 0 and an arbitrary uncertain demand d ∈ U .
Then, from Constraints (3i), it follows qda = 0. Consequently, from Constraints (3j) and
Φa(0) = 0, we obtain M−a = π−u − π+

v ≤ πdu − πdv ≤ π+
u − π−v = M+

a , which corresponds
to Constraints (3f) and (3g).

From the perspective of robust optimization, Problem (3) is an adjustable robust
optimization problem. The expansion variables x represent the first-stage or so-called
“here-and-now” decisions and the flows qd as well as the potentials πd are second-stage or
so-called “wait-and-see” decisions, which are adapted for each uncertainty d ∈ U .

Remark 1. For linear potential functions Φa, Problem (3) is an adjustable robust
mixed-integer linear optimization problem that can be tackled by standard methods of
adjustable linear robust optimization, e.g., by methods based on column-and-constraint
generation; see Zhao and Zeng (2012) and Lefebvre et al. (2022).

In the light of this remark, we now focus on nonlinear and nonconvex potential
functions Φa, which occur, e.g., in gas, hydrogen, or water networks; see (1). Thus, we
obtain an adjustable robust mixed-integer nonlinear optimization problem (3), for which
the set of applicable methods of the literature is scarce.

3. Exact Adversarial Approach

We now follow the idea of the well-known adversarial approach in robust optimiza-
tion (Bienstock and Özbay 2008), to solve Problem (3) to global optimality. The main
idea of the adversarial approach is to replace the original uncertainty set U by a finite
set S ⊆ U of “worst-case” scenarios. To this end, the approach starts with a small set
of scenarios S and then solves Problem (3) w.r.t. S instead of U . The latter problem is
now a mixed-integer nonlinear optimization problem consisting of finitely many variables
and constraints due to |S| < ∞. If the obtained solution is robust feasible, i.e., it is
feasible for the original problem w.r.t. U , then it is also optimal due to S ⊆ U . Otherwise,
there are scenarios U \ S that render the obtained point infeasible. If this is the case,
at least one of these scenarios is added to S and the procedure repeats by solving the
robust problem w.r.t. the updated S. When applying the adversarial approach, the most
important questions to answer are:

(i) How to verify that a given point is robust feasible?
(ii) How to compute a scenario in U \ S that certifies the infeasibility of a given

point?
(iii) Does the adversarial approach terminate after a finite number of steps?

For strict robust optimization, Questions (i) and (ii) are usually addressed by maximizing
the constraint violation w.r.t. the uncertainty set and a fixed “here-and-now” decision.
Furthermore, for linear constraints and polyhedral uncertainty sets, the method terminates
after a finite number of steps; see Bertsimas et al. (2016).

However, for the considered case of ARO, applying the adversarial approach is even
more challenging since we cannot directly transfer the idea to compute a violating scenario
of the strictly robust case to the adjustable robust one. This is mainly based on the fact
that in ARO, we can determine the second-stage decisions after the uncertainty realizes.
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For adjustable robust linear problems with polyhedral uncertainty sets, it is shown that
adding finitely many “worst-case” scenarios suffices; see Ayoub and Poss (2016). An
analogous result is shown for adjustable robust nonconvex optimization with uncertainty
sets being polytopes under specific quasi-convexity assumptions; see Takeda et al. (2008).
However, for the considered adjustable robust mixed-integer nonlinear problem and the
general choice of uncertainty set (2), these approaches cannot be directly applied.

We now exploit structural properties of potential-based flows and the underlying graph
to answer Questions (i)–(iii) for the considered Problem (3). In particular, we show
that for given first-stage decisions x ∈ X, we can verify robust feasibility, respectively
compute a violating scenario, by solving polynomially (in the encoding-length of the
underlying graph) many single-level nonlinear optimization problems. To this end, we
start with the case of weakly connected graphs and then extend these results to general
graphs. For a given expansion decision x ∈ X, we now consider three different classes
of nonlinear optimization problems. Solving these “adversarial” problems either verifies
robust feasibility of x or yields a demand scenario d ∈ U that certifies the infeasibility
of x.

First, for a given pair of nodes (u, v) ∈ V 2, we compute the maximum potential
difference between u and v within the uncertainty set U by

ϕu,v(x) := max
d,q,π

πu − πv s.t. (3d)–(3g), d ∈ U. (5)

In Problem (5), we explicitly dismiss the flow and potential bounds (3h)–(3j). The
intuition behind this is to compute scenarios that induce the most stress on the network
w.r.t. the potential levels, i.e., we are particularly interested in scenarios that violate the
potential bounds. For the given expansion decision x, we will later show that we can only
find feasible second-stage decisions π if and only if the objective value of Problem (5)
stays below specific bounds. Thus, solving Problem (5) for each pair of nodes leads
to finitely many “worst-case” scenarios regarding the potential levels π and the given
expansion decision x. We note that these worst-case scenarios are also considered in, e.g.,
Labbé et al. (2020), Aßmann et al. (2019), and Robinius et al. (2019) in the context of gas
market problems, of robust control of gas networks, and of robust selection of diameters
in tree-shaped networks. Moreover, solving Problem (5) can be done in polynomial time
for box uncertainty sets and tree-shaped networks (Robinius et al. 2019). However, it is
NP-hard for general potential-based flows in general graphs; see Thürauf (2022).

Second and third, we compute for each arc a ∈ A the minimum and maximum arc
flow within the considered uncertainty set U by

q
a
(x) := min

d,q,π
qa s.t. (3d)–(3g), d ∈ U (6)

and
q̄a(x) := max

d,q,π
qa s.t. (3d)–(3g), d ∈ U. (7)

We again dismiss potential and flow bounds in Problems (6) and (7) because we are
particularly interested in finding scenarios that violate the flow bounds. Analogously, we
will show that for the given expansion decision x, we can only find feasible second-stage
decisions q if and only if the objective values of (6) and (7) satisfy specific bounds. Thus,
solving these problems leads to a finite set of “worst-case” scenarios regarding the flows.

We now prove that we can verify robust feasibility of given first-stage decisions x ∈ X
by solving the polynomially many Problems (5)–(7). To this end, we use the following aux-
iliary lemma from the literature, which states that for a given demand the corresponding
flows and potential differences are unique.

Lemma 1. Let x ∈ X be fixed and let G′(x) = (V,Aex ∪ {a ∈ Aca : xa = 1}) be
the expanded graph. Further, we assume that G′(x) is weakly connected. For a fixed
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demand d ∈ U , there are potentials π′ and unique flows q such that the set of feasible
points that satisfies Constraints (3d)–(3g) and qa = 0 for each arc a ∈ {ã ∈ Aca : xã = 0}
is non-empty and given by

{(q, π) : π = π′ + 1η, η ∈ R}
where 1 is a vector of ones in appropriate dimension.

Proof. The lemma follows from Theorem 7.1 of Humpola et al. (2015) and the fact that
for every arc a with xa = 0, the corresponding flows are zero. �

We now characterize robust feasibility of given expansion decisions x ∈ X using
Problems (5)–(7) for the case of a weakly connected expanded graph.

Theorem 1. Let x ∈ X be fixed and let G′(x) = (V,A′(x)) be the expanded graph,
i.e., A′(x) := Aex ∪ {a ∈ Aca : xa = 1}. Further, we assume that G′(x) is weakly con-
nected. Then, Constraints (3c)–(3j) are satisfied w.r.t. x if and only if for every pair of
nodes (u, v) ∈ V 2, the corresponding maximum potential difference satisfies the potential
bounds

ϕu,v(x) ≤ π+
u − π−v (8)

and for each arc a ∈ A′(x), the minimum and maximum arc flow satisfies the correspond-
ing flow bounds, i.e.,

q
a
(x) ≥ q−a and q̄a(x) ≤ q+a . (9)

Proof. For a fixed expansion x ∈ X, let Constraints (3c)–(3j) be satisfied. We now
distinguish two cases. First, we assume for the sake of contradiction that an arc a ∈ A′(x)
exists such that q

a
(x) < q−a holds. Let (d, q, π) be a corresponding optimal solution

of (6). Applying Lemma 1 to demand d shows that there are unique flows q satisfying
Constraints (3d)–(3g) and qa = 0 for each arc a ∈ {ã ∈ Aca : xã = 0}. Due to
the feasibility of Constraints (3c)–(3j) w.r.t. x, these flows satisfy Constraints (3h)
and (3i). This contradicts the assumption q

a
(x) < q−a . Thus, qa(x) ≥ q−a is true for each

a ∈ A′(x). The case of the upper flow bound can be handled analogously. Consequently,
Conditions (9) hold.

Second, we now assume for the sake of contradiction that there is a pair of
nodes (u, v) ∈ V 2 such that ϕu,v(x) > π+

u − π−v . Let (d, q, π) be a corresponding optimal
solution of (5). Due to Lemma 1 and the feasibility of Constraints (3c)–(3j) w.r.t. x,
there is a point (d, q, π′) that is feasible for Constraints (3d)–(3j) and that satisfies qa = 0
for each arc a ∈ {ã ∈ Aca : xã = 0}. The potential bounds (3j) imply π′u−π′v ≤ π+

u −π−v .
From Lemma 1, it follows that there is an η ∈ R so that π′+1η = π holds. Consequently,
we obtain the contradiction

π+
u − π−v ≥ π′u − π′v = π′u + η − (π′v + η) = πu − πv = ϕu,v(x).

We now examine the reverse direction. Thus, for fixed expansion x ∈ X, Conditions (8)
and (9) are satisfied. Let d ∈ U be an arbitrary demand. Due to Lemma 1, there is
a feasible point (d, q, π) that satisfies Constraints (3d)–(3g) and qa = 0 for each arc
a ∈ {ã ∈ Aca : xã = 0}. In addition, Lemma 1 implies that we can shift the potentials so
that πu ≤ π+

u for every node u ∈ V holds and there is a node w with πw = π+
w . This

point (d, q, π) is feasible for Problems (6) and (7) since no arc flow or potential bounds
are present in these problems. Consequently, from Condition (9), it follows that the flow
bounds (3h) and (3i) are satisfied.

We now assume for the sake of contradiction that there is a node h ∈ V with πh < π−h .
Then, it follows

πw − πh = π+
w − πh > π+

w − π−h ,
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which is a contradiction to Condition (8) since (d, q, π) is a feasible point for Problem (5)
w.r.t. the pair of nodes (w, h). Consequently, for every node u ∈ V , πu ≥ π−u is satisfied.
We note that the potentials satisfy the upper potential bounds due to the specific choice
of the considered point (d, q, π). Hence, Constraints (3j) are also satisfied and the
point (d, q, π) is feasible for Constraints (3d)–(3j). Since d is an arbitrary demand in U ,
this concludes the proof. �

We now extend the obtained characterization of robust feasibility to the case that
the expansion decision x ∈ X leads to an expanded graph G′(x) that has at least two
connected components. To this end, for a given connected component Gi = (V i, Ai)1,
we consider another auxiliary problem for computing the maximal absolute flow that has
to be transported between the connected component Gi and the remaining network in
the uncertainty set. This problem reads

µGi(x) := max
d
|y| s.t. y =

∑
u∈V i∩V+

du −
∑

u∈V i∩V−

du, d ∈ U. (10)

The value µGi(x) is positive if and only if there is a scenario d ∈ U with excess demand
or excess supply regarding the connected component Gi. In this case, µGi(x) > 0, the
expansion decision x ∈ X is robust infeasible.

Lemma 2. Let x ∈ X be fixed and G′(x) = (V,Aex ∪ {a ∈ Aca : xa = 1}) be the
expanded graph. Furthermore, let G′(x) := {G1, . . . , Gn} with Gi = (V i, Ai) be the set
of connected components of the expanded graph G′(x). Then, Constraints (3c)–(3j) can
only be satisfied w.r.t. x if for every connected component Gi with i ∈ {1, . . . , n} of
the expanded network G′(x), the maximum excess demand or excess supply is zero, i.e.,
µGi(x) = 0.

Proof. If there is a connected component Gi with i ∈ {1, . . . , n} so that µGi(x) > 0 holds,
then there is a scenario d ∈ U such that there is excess demand or excess supply in Gi.
Consequently, this scenario cannot be transported through the network since mass flow
conservation (3d) cannot be satisfied in the connected component Gi. �

We note that if the graph consists only of a single connected component, then it
directly follows that the optimal objective value of Problem (10) is zero because we only
consider balanced demands in the uncertainty set (2). Using the previous lemma, we now
extend Theorem 1 to the case of multiple connected components in the expanded graph.

Theorem 2. Let x ∈ X be fixed and G′(x) = (V,Aex ∪ {a ∈ Aca : xa = 1}) be the
expanded graph. Furthermore, let G′(x) := {G1, . . . , Gn} with Gi = (V i, Ai) be the set
of connected components of the expanded graph G′(x). Then, Constraints (3c)–(3j) are
satisfied w.r.t. x if and only if

µGi(x) = 0 for all Gi ∈ G′(x), (11a)

ϕu,v(x) ≤ π+
u − π−v for all (u, v) ∈ (V i)2, Gi ∈ G′(x), (11b)

q
a
(x) ≥ q−a for all a ∈ Ai, Gi ∈ G′(x), (11c)

q̄a(x) ≤ q+a for all a ∈ Ai, Gi ∈ G′(x), (11d)

holds.

Proof. For a given expansion x ∈ X, let the Constraints (3c)–(3j) be satisfied. Then, from
Lemma 2, it follows that Condition (11a) holds. Hence, every d ∈ U is balanced w.r.t.
each connected component, i.e.,

∑
u∈V+∩V i du =

∑
u∈V−∩V i du for each i ∈ {1, . . . , n}.

1For the ease of presentation, we write Gi = (V i, Ai) instead of Gi(x) = (V i(x), Ai(x)) in the
following.
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Consequently, we can apply Theorem 1 to each connected component Gi while using as
uncertainty set the original uncertainty set projected onto the nodes V i of the connected
component. This proves that Conditions (11) are satisfied.

For fixed expansion x ∈ X, we now assume that Conditions (11) hold. Since Con-
ditions (11a) are satisfied, every d ∈ U is balanced w.r.t. each connected component.
Consequently, for each connected component, we can apply Lemma 1. Thus, for each de-
mand d ∈ U , there are potentials π′ and unique flows q such that the set of feasible points
satisfying Constraints (3d)–(3g) w.r.t. x and qa = 0 for each arc a ∈ {ã ∈ Aca : xã = 0}
is non-empty and given by

{(q, π) : (πu)u∈V i = (π′u + ηi)u∈V i , ηi ∈ R, i ∈ |G′(x)|} .
Using this statement, we can apply the second part of the proof of Theorem 1 to every
connected component Gi, which proves the claim. �

For a given expansion decision, Theorem 2 allows to verify robust feasibility by solving
at most |V |+ |V |2 + 2|A| many nonlinear optimization problems. Furthermore, in case of
robust infeasibility of the expansion decision, solving these problems provides violating
scenarios in U that render the expansion decision infeasible. Consequently, Theorem 2
resolves the main challenges (i) and (ii) when applying the adversarial approach to the
considered adjustable robust mixed-integer nonlinear optimization problem (3). We note
that for checking robust feasibility, we have to solve the nonconvex adversarial problems
to global optimality. In doing so, also the specific choice of the potential-based flow
model as well as the choice of the uncertainty set influence the computational complexity
of this task. However, in the conducted computational study the adversarial problems
are solved rather fast and the MINLPs (3) pose a much bigger computational challenge.

Embedding the results of Theorem 2 into the adversarial approach leads to Algorithm 1.
We note that there are multiple possibilities on how to integrate the characterization
of robust feasibility of Theorem 2 in an adversarial approach. In our implementation
of Algorithm 1, we aim to keep the size of the MINLP (3) w.r.t. S as small as possible
since solving this MINLP is computationally challenging. Since the size of this problem
increases with the size of the scenario set S, for an infeasible expansion decision, we only
add a single violating scenario to cut off this robust infeasible point. More precisely, we
first solve the adversarial problems (10) since these problems are typically less challenging
than Problems (5)–(7), which contain the constraints of the nonconvex potential-based
flows. If solving Problems (10) leads to violating scenarios, i.e., µGi(x) > 0 holds, then
we add this scenario to cut off the robust infeasible expansion decision x and start a
new iteration. Otherwise, we solve the adversarial problems (5), respectively (6) and (7),
and add a most violating scenario to the set of demands S if applicable. In general, it is
also possible to stop solving these adversarial problems after a first violating scenario
is computed as for the case of Problems (10). However, preliminary computational
results showed that adding a most violating scenario w.r.t. (5) leads to a lower number
of iterations of the algorithm. We finally note that all adversarial problems (10) and
(5)–(7) can also be solved in parallel since they do not depend on each other.

We conclude this section with a positive answer for the main challenge (iii).

Theorem 3. Algorithm 1 terminates after a finite number of iterations and either returns
an adjustable robust solution of Problem (3) or proves its infeasibility.

Proof. If we consider a robust infeasible expansion decision x ∈ X, i.e., it cannot be
extended to satisfy Constraints (3c)–(3j) for all d ∈ U , then there exists a demand d ∈ U
that violates one of the conditions in (11). Due to the construction of the algorithm, one
of these violating demands is added to the set of scenarios S if x is part of the optimal
solution in Line 2. Consequently, the considered network expansion x ∈ X is excluded in
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Algorithm 1: Adversarial approach to solve the network design problem (3)
Input: A Graph G = (V,Aex ∪Aca) and an uncertainty set U satisfying (2).
Output: An optimal adjustable robust expansion x ∈ X for Problem (3) or an

indication of infeasibility.
1 Determine a finite set of scenarios S ⊆ U .
2 Solve Problem (3) w.r.t. S (instead of U) to get (x, q, π).
3 if the problem is infeasible then
4 return The problem is infeasible.

5 Determine the set of all connected components G′(x) of the expanded graph
G′(x) = (V,Aex ∪ {a ∈ Aca : xa = 1}).

6 for Gi ∈ G′(x) do
7 Solve Problem (10) to get d′ with objective value µGi(x).
8 if µGi(x) > 0 then
9 S = S ∪ {d′} and go to Line 2.

10 Set ϕmax = 0.
11 for Gi ∈ G′(x) do
12 for (u, v) ∈ (V i)2 do
13 Solve Problem (5) w.r.t. Gi to get (d′, q′, π′) with objective value ϕu,v(x).
14 if ϕu,v(x) > π+

u − π−v and ϕu,v(x)− (π+
u − π−v ) > ϕmax then

15 Set ϕmax = ϕu,v(x)− (π+
u − π−v ) and dmax = d′.

16 if ϕmax > 0 then
17 S = S ∪ {dmax} and go to Line 2.

18 Set qmax = 0.
19 for Gi ∈ G′(x) do
20 for a ∈ Ai do
21 Solve Problem (6) w.r.t. Gi to get (d′, q′, π′) with objective value q

a
(x).

22 if q
a
(x) < q−a and q−a − qa(x) > qmax then

23 Set qmax = q−a − qa(x) and dmax = d′.

24 Solve Problem (7) w.r.t. Gi to get (d′, q′, π′) with objective value q̄a(x).
25 if q̄a(x) > q+a and q̄a(x)− q+a > qmax then
26 Set qmax = q̄a(x)− q+a and dmax = d′.

27 if qmax > 0 then
28 S = S ∪ {dmax} and go to Line 2.

29 return Optimal adjustable robust network design x ∈ X.

the next iteration. Thus, the algorithm terminates after a finite number of iterations
because we only have a finite number of possible assignments for x ∈ X ⊆ {0, 1}|Aca|.
Since Problem (3) w.r.t. S is a relaxation of Problem (3) w.r.t. U , the algorithm either
correctly returns an optimal solution or correctly verifies infeasibility. �

4. Enhanced Solution Techniques

When applying Algorithm 1, there are two main challenges from the computational
point of view. For verifying robust feasibility, the adversarial problems (5)–(7) have to
be solved to global optimality. In particular, solving |V |2 many problems (5) can be
computationally expensive. In addition, solving the MINLP (3) w.r.t. the worst-case
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scenarios S becomes more demanding from iteration to iteration due to the increasing
set of scenarios S. In the following, we present different techniques that address these
computational challenges.

4.1. Reducing the Number of Adversarial Problems. We now prove that under
specific assumptions on the potential bounds, we can significantly reduce the number of
adversarial problems (5) that have to be solved to verify robust feasibility. The intuition
is based on the observation that in the considered potential-based flow setting, there
is always a source node with maximal potential level and a sink node with minimal
potential level.

Observation 4. Let x ∈ X be fixed and let Gi = (V i, Ai) be a connected component of
the expanded graph G′(x) = (V,Aex ∪ {a ∈ Aca : xa = 1}). Further, let the point (d, q, π)
satisfy Constraints (3d)–(3g) w.r.t. Gi. Then, there is a source node w ∈ V i+ := V+ ∩ V i
with πw = maxv∈V i πv and a sink node u ∈ V i− := V− ∩ V i with πu = minv∈V i πv.

This observation follows from the assumption that for every arc a ∈ A, the potential
function Φa is strictly increasing. Consequently, sending flow from a source to a sink
node leads to a positive potential drop. Using this observation, we now prove that under
specific requirements for the potential bounds, we only have to compute the maximum
potential difference, i.e., solve Problem (5), between sources and sinks.

Lemma 3. Let x ∈ X be fixed and let Gi = (V i, Ai) be a connected component of
the expanded graph G′(x) = (V,Aex ∪ {a ∈ Aca : xa = 1}). For each source w ∈
V i+ := V+ ∩ V i, let the upper potential bound satisfy π+

w ≤ π+
v for all sinks and inner

nodes v ∈ (V− ∪V0)∩V i. For each sink u ∈ V i− := V− ∩V i, let the lower potential bound
satisfy π−u ≥ π−v for all sources and inner nodes v ∈ (V+ ∪ V0) ∩ V i. Then,

ϕu,v(x) ≤ π+
u − π−v for all (u, v) ∈ V i+ × V i− (12)

implies
ϕu,v(x) ≤ π+

u − π−v for all (u, v) ∈ (V i)2.

Proof. Let the inequalities in (12) be satisfied. We now contrarily assume that there is
a node pair (m,n) ∈ (V i)2 \ V i+ × V i− that satisfies ϕm,n(x) > π+

m − π−n . Hence, there
exists a solution (d, q, π) of Problem (5) with πm − πn > π+

m − π−n . From Observation 4,
it follows that there is a source w ∈ V i+ with πw = maxv∈V i πv and a sink u ∈ V i− with
πu = minv∈V i πv. We now conduct a case distinction.

If m ∈ (V− ∪ V0) ∩ V i and n ∈ (V+ ∪ V0) ∩ V i, we obtain the contradiction

ϕm,n(x) = πm − πn ≤ πw − πu ≤ ϕw,u(x) ≤ π+
w − π−u ≤ π+

m − π−n ,
where the last inequality follows from the assumptions on the potential bounds. Addi-
tionally, if m ∈ (V− ∪ V0) ∩ V i and n ∈ V i−, we obtain the contradiction

ϕm,n(x) = πm − πn ≤ πw − πn ≤ ϕw,n(x) ≤ π+
w − π−n ≤ π+

m − π−n .
Finally, if m ∈ V i+ and n ∈ (V+ ∪ V0) ∩ V i, then we obtain the contradiction

ϕm,n(x) = πm − πn ≤ πm − πu ≤ ϕm,u(x) ≤ π+
m − π−u ≤ π+

m − π−n . �

As a consequence of this lemma, we can reduce the maximal number of adversarial
problems (5) that have to be solved to check robust feasibility from |V |2 to at most
|V+| × |V−| many problems. In the case of real-world utility networks, this reduction is
significant because usually there are only a small number of sources in these networks.
Furthermore, the assumptions regarding the potential bounds are often satisfied in utility
networks such as gas or water networks.
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We additionally remark that we can add to the adversarial problems (5) w.r.t. (u, v)
the constraint

πu − πv ≥ π+
u − π−v .

If this constraint renders the adversarial problem infeasible, then we can directly conclude
that there is no violating scenario w.r.t. (u, v). Preliminary computational results have
shown that this approach significantly speeds up the computational process. Analogously,
we can add the constraints qa ≤ q−a to Problem (6) and qa ≥ q+a to Problem (7).

4.2. Computing Lower Bounds. We now focus on the algorithmic idea to iteratively
update a lower bound for the objective function of the MINLP (3) w.r.t. S by exploiting
the structure of Algorithm 1. Thus, we add to the MINLP (3) the constraint∑

a∈Aca

caxa ≥ κ, (13)

where κ ∈ R≥0 is a valid lower bound of the objective value of Problem (3) that we
iteratively update. Here, “valid” means that we do not cut off any optimal solution by
adding Constraint (13).

Since we increase the set of scenarios S in each iteration of Algorithm 1, we can use
the optimal objective value of Problem (3) of the previous iteration, i.e., without the
last added “worst-case” scenario d′, as a lower bound for the optimal objective value in
the next iteration. Thus, we can iteratively set κ = ν(S \ {d′}), where ν(S \ {d′}) is the
optimal objective value of Problem (3) w.r.t. the scenario set S \ {d′}. We note that
obtaining this lower bound is straightforward and computationally cheap since we already
solved the corresponding MINLPs in Algorithm 1. However, this bound can be improved
since it dismisses all information regarding the last added worst-case scenario d′. To do
so, we now present two relaxations of the MINLP (3) that can be solved prior to solving
Problem (3) to improve the lower objective bound κ.

First, we can solve the MINLP (3) only w.r.t. the last added “worst-case” scenario d′,
which is a relaxation of Problem (3) due to {d′} ⊆ S. The benefit of this simple
relaxation is that the size of the corresponding MINLP, i.e., the number of variables and
constraints, does not increase from iteration to iteration, in contrast to Problem (3) w.r.t.
the entire set S. In the following, we denote this relaxation as Reduced Relaxation. Our
computational results of Section 6.4 indicate that this relaxation is particularly useful at
the early iterations in Algorithm 1.

Second, we apply a well-known mixed-integer second-order cone relaxation for gas
networks, see Borraz-Sánchez et al. (2016), to the considered general potential-based
flows. This relaxation leads to a mixed-integer convex problem if for each arc a ∈ A,
the potential functions Φa are convex on the domain R≥0. This is the case, e.g., for
water and gas networks; see (1). In line with Borraz-Sánchez et al. (2016), we start
with an equivalent reformulation of the Constraints (3e)–(3g) using additional binary
variables that indicate the flow direction. To this end, for each arc a = (u, v, `) ∈ A and
demand d ∈ U , we introduce a binary variable yda ∈ {0, 1}. The binary variable equals
one if the flow is from node u to node v and otherwise, it is zero. This is ensured by the
constraints

q−a (1− yda) ≤ qda ≤ q+a yda, a ∈ A, (14)
where qd are the corresponding flows of Problem (3). We note that for an arc flow of
zero, i.e., qda = 0, the variable yda can be chosen arbitrarily. Moreover, we assume that for
each arc a ∈ A, the flow bounds satisfy q−a ≤ 0 ≤ q+a , which is a natural assumption in
the context of potential-based flows. Using the introduced binary variables for the flow
directions and the symmetry of the potential functions, i.e., Φa(−qda) = −Φda(qda), we can
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equivalently2 reformulate Constraints (3e)–(3g) as

(πdv − πdu) + 2yda(πdu − πdv) = Φa(
∣∣qda∣∣), a = (u, v, `) ∈ Aex, (15a)

(πdv − πdu) + 2yda(πdu − πdv) ≤ Φa(
∣∣qda∣∣) + (1− xa)M+

a , a = (u, v, `) ∈ Aca, (15b)

(πdv − πdu) + 2yda(πdu − πdv) ≥ Φa(
∣∣qda∣∣) + (1− xa)M−a , a = (u, v, `) ∈ Aca. (15c)

Analogously to (4), for each arc a = (u, v, `) ∈ Aca, we adapt the big-M values
to M+

a = max{π+
u − π−v , π+

v − π−u } and M−a = min{π−u − π+
v , π

−
v − π+

u }. We note that
the bilinear terms on the left-hand side of Constraints (15) can be linearized using the
inequalities of McCormick (1976); see Appendix A for the corresponding reformulations.
Using these constraints we can equivalently represent the expansion problem (3) by the
MINLP

ν(U) := min
x,q,π

∑
a∈Aca

caxa s.t. (3b)–(3d), (3h)–(3j), (14), (15). (16)

Analogously to Borraz-Sánchez et al. (2016), we now relax this problem by replacing (15a)
by inequalities and by dismissing (15b). This leads to the relaxation

min
x,q,π

∑
a∈Aca

caxa (17a)

s.t. (3b)–(3d), (3h)–(3j), (14), (15c), (17b)

(πdv − πdu) + 2yda(πdu − πdv) ≥ Φa(
∣∣qda∣∣), a = (u, v, `) ∈ Aex. (17c)

Using McCormick inequalities, this relaxation can again be reformulated as a convex
MINLP if the potential functions are convex on the nonnegative domain. In addition, for
the later considered gas networks, this problem turns into a mixed-integer second-order
cone problem. The corresponding reformulations are explicitly outlined in Appendix A.
Overall, in Algorithm 1, we can solve Problem (17) w.r.t. the scenario set S at the
beginning of each iteration to obtain a lower bound for the objective value of the
MINLP (3). Our computational results show that we do not only obtain a tight lower
bound, but it is also often the case that the relaxation provides a feasible and, thus,
optimal point for the MINLP (3). For more details see Section 6.4.

We finally remark that we also add the obtained lower bounds for the objective value
of the MINLP (3) to the described relaxations as well. The important difference is
that adding these bounds possibly cut off solutions of the relaxations. However, it will
preserve all optimal solutions of the MINLP (3) w.r.t. U in the feasible region of the
relaxations. Thus, adding these lower bounds for the objective value can strengthen the
presented relaxations.

4.3. Acyclic Inequalities. We now briefly review the valid inequalities for potential-
based flows derived in Habeck and Pfetsch (2022). Adding these inequalities to the
MINLP (3) significantly speeds up the computations. These valid constraints exploit that
in the considered setting of potential-based flows, there cannot be any cyclic flow. To see
this, let C be a cycle in the undirected version of the network G = (V,A). Considering
this cycle in the original directed graph G leads to two subsets of arcs C1, C2 ⊆ A. Here,
C1 represents the corresponding forward arcs of the cycle and C2 represents the backward
arcs, i.e., those arcs have the opposite direction in the original graph. Summing up the
corresponding potential constraints (3e) along the cycle leads to∑

a∈C1

Φa(qda)−
∑
a∈C2

Φa(qda) =
∑

a=(u,v,`)∈C1

πu − πv −
∑

a=(u,v,`)∈C2

πu − πv = 0.

2Here, equivalent means in terms of the feasible expansion decisions.
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Since the potential functions are strictly increasing and symmetric w.r.t. zero, this
implies that there cannot be any cyclic flow. As described in Habeck and Pfetsch (2022),
using the flow direction variables yda, this acyclic property can be translated to the valid
inequalities∑

a∈C1

yda +
∑
a∈C2

(1− yda) ≤ |C| − 1,
∑
a∈C1

(1− yda) +
∑
a∈C2

yda ≤ |C| − 1. (18)

In our computational study, we add these valid inequalities not only to the MINLP (3),
but also to the relaxations of the previous section since these relaxations preserve the
acyclic property of potential-based flows.

We emphasize that we can add these inequalities for each cycle of the graph that
contains all existing arcs and all candidate arcs. This is based on the observation that if
such a cycle contains an arc a that is not built, then the corresponding flow is zero and
we can arbitrarily choose the flow direction variable yda. Consequently, the corresponding
acyclic inequality (18) is redundant.

We also exploit these acyclic inequalities to tighten the given arc flow bounds w.r.t. a
given demand vector a priori to solving the relaxations, respectively the MINLP (3). To
this end, for each demand vector d ∈ S and arc a ∈ A, we solve the mixed-integer linear
optimization problems

max
qd

qda s.t. (3d), (18), min
qd

qda s.t. (3d), (18), (19)

to obtain a upper and lower bound for the arc flow qda. We note that Problem (19) is a
simple uncapacitated linear flow problem with the additional restriction that the flows
are acyclic.

5. How Many Scenarios Do We Need?

We analyze the number of added worst-case scenarios in Algorithm 1 using an academic
example. The considered graph appears in similar ways as subnetworks in many real-
world utility networks. On the one hand, we show that the considered topology can
theoretically lead to many different worst-case scenarios. On the other hand, we highlight
that under realistic assumptions on the capacities of the sources, the latter most likely
does not occur, which we also empirically observe in our computational study.

We now consider the existing network G = (V,A) with a single source V+ = {u}, a sin-
gle inner node V0 = {0}, and the sinks V− = {1, . . . , n} with n ≥ 2, i.e., V = V+ ∪ V− ∪ V0.
The arcs are given by A = {(u, 0, ex)} ∪ {(0, i, ex) : i ∈ {1, . . . , n}}. Here, “ex” represents
the label for the existing arcs. For the ease of presentation, we now focus on gas networks,
i.e., we consider the potential functions Φa(qa) = Λaqa|qa|. For each arc a ∈ A, we
further choose Λa = 1 and for each node w ∈ V , we set the upper and lower potential
bounds [π−w , π

+
w ] = [1, 5]. In addition, we dismiss arc flow bounds. A visualization of this

network is given by Figure 1 (A).
We now apply Algorithm 1 to robustify the existing network G. To do so, we have the

expansion candidates Aca = {(u, 0, ca)}∪{(0, i, ca) : i ∈ {1, . . . , n}} with Λa = 1, a ∈ Aca,
i.e., for each arc, we have an identical expansion arc in parallel to the existing one. Further,
we consider the box uncertainty set

U =

d ∈ RV≥0 : du =
∑
v∈V−

dv, dw ∈ [0, 2], w ∈ V, d0 = 0

 .

For applying Algorithm 1 to this instance, we have to solve in each iteration the adversarial
problems (5). Afterward, if applicable, we add the scenario that violates the corresponding
potential bounds most.
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1 2 . . . n

(A) Existing network

u

0

1 2 . . . n

(B) Expanded network after
the first iteration

u

0

1 2 . . . n

(C) Robust optimal solution

Figure 1. Academic network: existing arcs in solid black, expanded
arcs in dashed red.

In the first iteration, for one of the node pairs (u, v) with v ∈ V−, we add the
worst-case scenario d ∈ U given by du = dv = 2 and the remaining demands are zero.
The corresponding flows q are given by q(u,0) = q(0,v) = 2 and the remaining flows are
zero. Further, we set the potentials πu = 8, πv = 0, and the remaining potentials have
value 4. We note that these potentials do not have to satisfy any potential bounds
in the adversarial problem (5). The point (d, q, π) is a solution of the adversarial
problem (5) w.r.t. (u, v) with objective value 8 and, thus, violates the corresponding
potential bounds 8 > 4 = 5− 1 = π+

u − π−v . We note that this potential drop is maximal
since for each arc of the unique path from u to v the flow is maximal w.r.t. U and
the potential function is strictly increasing. Solving the network expansion MINLP (3)
w.r.t. S = {d} leads to the expansion decisions x(u,0,ca) = x(0,v,ca) = 1, i.e., we expand
the capacity along the unique path from u to v; see Figure 1 (B) in which w.l.o.g. v = 1
is assumed. In the expanded network, the previous worst-case scenario is now feasible.
However, for each other node pair (u,w) with w ∈ V− \ {v}, the worst-case scenario with
the same structure, i.e., d̃u = d̃w = 2 and the remaining demands are zero, is infeasible.
Further, this scenario can again be extended to a solution of the adversarial problem (5)
w.r.t. (u,w) in the expanded network and has an objective value of 5, which violates the
corresponding potential bounds. Adding this scenario to the worst-case uncertainty set
implies that the candidate arc (u,w, ca) has to be built, i.e., x(u,w,ca) = 1. Consequently,
in the following iterations of Algorithm 1, we add for each node pair (u,w) with w ∈ V−
the corresponding worst-case scenario with the previously described structure. Thus,
Algorithm 1 terminates after n iterations with a robust network, in which every candidate
arc is built; see Figure 1 (C). To obtain this robust network, the algorithm considered
the described set of demand scenarios

S = {du = dv = 2, dw = 0, w ∈ V− \ {v} for all v ∈ V−},
which has a cardinality of |V−|. Consequently, the number of worst-case scenarios scales
with the number of sinks in the considered network.

However, this relatively large number of scenarios is based on the very small capacity
of the source that can only satisfy the maximal demand of a single sink at once. To see
this, we now consider an adapted instance in which the capacity of the source suffices to
satisfy all demands of the exits at once, i.e., the uncertainty set is given by

Ũ =

d ∈ RV≥0 : du =
∑
v∈V−

dv, dv ∈ [0, 2], v ∈ V−, d0 = 0, du ≤ 2 |V−|

 .
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We add another expansion arc (u, 0, large) to Aca with Λ(u,0,large) = 1/(2|V−| − 1)2. This
is necessary to guarantee robust feasibility since the maximal arc flow between u and 0
increases within the new uncertainty set Ũ , causing a larger potential drop between these
nodes. Applying Algorithm 1 to the adapted instance leads to the result that only a
single worst-case scenario is necessary to built a robust network. This worst-case scenario
is given by du = 2|V−|, d0 = 0, and the remaining exits are at their maximum, i.e.,
dv = 2, v ∈ V−. Considering this worst-case scenario leads to the same robust network
as in the original instance except that we built the larger arc between u and 0, i.e., we
built (u, 0, large) with Λ(u,0,large) = 1/(2|V−| − 1)2 instead of (u, 0, ca) with Λ(u,0,ca) = 1.
Consequently, Algorithm 1 terminates after a single iteration with an optimal solution.
More general, for the considered network, it can be shown that the number of worst-case
scenarios is bounded from above by d2|V−|/d+u e, where d+u is the maximal capacity of
the single source. This is based on the observation that for robustifying the considered
network, for each sink, it suffices that there is at least one scenario in which the demand
of the sink is at its maximum. The latter is not necessarily true for general networks.
Concluding, the number of worst-case scenarios necessary to obtain a robust network
directly depends on the capacity of the single source in the considered network topology.

We emphasize that this topology or related ones with the same behavior regarding the
worst-case scenarios are contained as subnetworks in many real-world instances of utility
networks. More precisely, the single source corresponds to the connection point to a
large distribution network and the remaining network corresponds to a local distribution
network. Thus, it is natural that the single source can provide the demand of all exits.
For this subnetwork only a single worst-case scenario is then sufficient to guarantee
robust feasibility. This illustrates that the approach is especially suitable for real-world
utility networks since, most likely, only a few worst-case scenarios are necessary to built
a robust network. This is in line with our computational study, in which we only need a
few worst-case scenarios and this number of scenarios is often close to the number of
different sources in the network.

6. Computational Study

We now apply the presented adversarial approach to gas networks. To this end, we
consider different use cases such as robustifying existing networks and building new ones
from scratch. In Sections 6.1 and 6.2, we discuss the considered gas network instances
and the uncertainty modeling. In the Section 6.3, we then specify the implementation
of Algorithm 1 and how we incorporate the enhanced solution techniques of Section 4.
Finally, we present and discuss the numerical results in Section 6.4.

6.1. Gas Networks. All the instances used in the computational study are based on
the GasLib library; see Schmidt et al. (2017). We consider the network GasLib-40 as
given in Schmidt et al. (2017). Moreover, we create one larger network based on the
significantly larger instance GasLib-135. In continuation of the GasLib notation, we call
the newly created instance GasLib-60, i.e., it has 60 nodes. We obtain this network by
removing the pipes pipe_46, pipe_93, pipe_96, pipe_103, pipe_104, and pipe_106 from
the GasLib-135 network. Then, GasLib-60 represents the weakly connected component
containing source_3. The resulting network has 60 nodes, 3 sources, 39 sinks, 61 pipes,
and 18 compressors.

For the networks G = (V,A) of GasLib-40 and GasLib-60, we now create different
instances as follows. The set V of nodes remains unchanged. Since we consider pipe-only
networks, we replace all occurring resistors, control valves, and compressors by so-called
short pipes, i.e., by pipes of zero length that do not induce any pressure loss (Λa = 0).
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We consider three options on how to choose the existing pipes Aex from the set A, which
consists of pipes and short pipes.

In the option unchanged, we set Aex = A, i.e., except for the replaced active elements,
the set Aex of existing arcs coincides with the set of arcs of the given GasLib instance. In
the option spanning tree, the existing network is assumed to be a spanning tree. Thus,
for the given gas network instance, we compute a spanning tree, which also contains all
short pipes of the network. The arcs of this spanning tree then represent the existing
network, i.e., these arcs are stored in Aex. In the option greenfield, we set Aex = ∅, i.e.,
we assume that no arcs are built yet.

To create the candidate arcs Aca, we apply the following procedure. All short pipes
that are already an element of Aex are not considered as possible candidate arcs and the
remaining short pipes are added once to the set of candidate arcs Aca. For each pipe of the
original network G = (V,A), we then add multiple candidate arcs in parallel with different
choices for the corresponding diameter. To do so, we introduce factors τ1, . . . , τm ∈ (0,∞)
with m ≥ 1 and then each pipe is added m times with the reported diameter of the GasLib
multiplied once by τi with i ∈ {1, . . . ,m}. For the instances unchanged and spanning tree,
we consider the factors {0.3, 0.7, 1.0, 1.3}, i.e., for each expansion candidate, we have four
diameter options. For the even more challenging greenfield instances, we choose three
diameter options per expansion candidate given by the factors {0.5, 1.0, 1.5}.

For estimating the investment costs of building new pipes, we follow the cost estimation
of Mischner et al. (2015) and Reuß et al. (2019). Consequently, the costs of building
a pipe a (in AC/m, i.e., per length) depend on the corresponding diameter Da (in mm).
These investment costs are computed using 278.24 exp(1.6Da). We further do not charge
any costs for building short pipes.

We now briefly discuss the implementation of the potential-based flow model for
the considered case of gas networks. For an arc a ∈ Aex ∪ Aca, the potential function
is explicitly given by Φa(qa) = Λaqa|qa|; see Gross et al. (2019). The pressure loss
coefficient Λa ≥ 0 is computed using the formula

Λa =

(
4

π

)2

λa
RsTmLazm,a

D5
a

with λa being the pipe’s friction factor given by the formula of Nikuradse, Rs the specific
gas constant, Tm a constant mean temperature, La the pipe’s length, and Da the pipe’s
diameter. In addition, zm,a is the pipe’s mean compressibility factor given by the formula
of Papay and an a priori estimation of the mean pressure. Furthermore, we set Λa = 0 if
a is a short pipe. For more information and detailed explanations, we refer to Fügenschuh
et al. (2015).

6.2. Uncertainty Modeling. In the computational study, we consider four different
polyhedral uncertainty sets. We start with a baseline scenario dbase ∈ RV≥0, which then is
affected by certain demand fluctuations. For GasLib-40, we choose the scenario reported
in Schmidt et al. (2017) as the baseline scenario. For the newly created instance GasLib-60,
we choose the following baseline scenario. The demand is set to 520 (1000 Nm3/h) for all
sources and to 40 (1000 Nm3/h) for all sinks.

As introduced in Equation (2), each uncertainty set consists of all balanced demands

L :=

d ∈ RV≥0 :
∑
u∈V+

du =
∑
u∈V−

du, du = 0, u ∈ V0


intersected with a non-empty and compact set Z ⊂ RV . We now discuss our polyhedral
choices for this compact set Z.
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Table 1. Parameterization of the uncertainty sets.

z− z̄− z+ z̄+ i ī d̄ w

0.6 1.4 0.7 1.3 0.8 1.2 0.1 80

We start with a simple box as a first uncertainty set, i.e., lower and upper bounds for
the injections and withdrawals are additionally imposed. For the sinks, we consider a
lower bound z− ∈ [0, 1] and an upper bound z̄− ∈ [1,∞), which indicate the percentage
deviation from the baseline scenario. Analogously, for the sources, we define a lower
bound z+ ∈ [0, 1] and an upper bound z̄+ ∈ [1,∞). Then, the box uncertainty set is
given by

Ubox :=
{
d ∈ L : du ∈ [z−dbase

u , z̄−dbase
u ], u ∈ V−, du ∈ [z+dbase

u , z̄+dbase
u ], u ∈ V+

}
.

For z− = z+ = 0, this uncertainty set allows that sinks or sources fail completely, i.e.,
they are switched off.

Based on this box uncertainty set, we define three further uncertainty sets. For the
first modification, we ensure by two additional inequalities that the total amount of
injections does not exceed or drop below a certain level regarding the total injections in
the baseline scenario. Hence, we introduce a percentage bound for the lower (i ∈ [0, 1])
and upper (̄i ∈ [1,∞)) level of total injections. Then, the box uncertainty set with
additional bounds on the total injections is given by

Usum := Ubox ∩

d ∈ L : i
∑
u∈V+

dbase
u ≤

∑
u∈V+

du ≤ ī
∑
u∈V+

dbase
u

 .

For the next modification of the box uncertainty set Ubox, we bound the absolute
difference of deviations from the baseline scenario for selected pairs of withdrawals. To do
so, we consider a randomly chosen subset of the sinks Ṽ− ⊂ V− and an upper bound for
the absolute difference d̄ ≥ 0. Then, for a balanced demand d ∈ L, we add the inequality∣∣(dbase

u )−1du − (dbase
v )−1dv

∣∣ ≤ d̄, (u, v) ∈ Ṽ− × Ṽ−. (20)

This leads to the third uncertainty set

Ucorr := Ubox ∩ {d ∈ L : (20) holds} .
Before we continue with the fourth uncertainty set, let us discuss some details about

Condition (20) and its implementation. The idea behind this condition is that there
could be withdrawals that follow the same consumption pattern, e.g., due to temperature
dependency in case of an energy carrier used for heating. In our computational study, we
obtain the set Ṽ− in (20) by randomly selecting sinks from V− until a certain percentage
w of the number of sinks is reached or just exceeded. The selected sinks form the set Ṽ−.

The fourth uncertainty set is the intersection of all three previously defined uncertainty
sets. Thus, it is given by

Uall := Ubox ∩ Usum ∩ Ucorr.

Table 1 provides an overview of the specific parameterization of the uncertainty sets
used. We consider the case that the demand of sinks fluctuates slightly more than
the demand of sources, i.e., [z+, z̄+] ⊂ [z−, z̄−] holds. Moreover, in case of correlated
demands, i.e., Ucorr and Uall, we assume that not all but 80 % of the sinks are correlated.
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6.3. Algorithmic and Computational Setup. We now briefly discuss the implemen-
tation of the enhanced solution techniques of Section 4 in Algorithm 1. More precisely,
we consider two different configurations of this algorithm in the following. For both
approaches, we model the MINLP for the expansion decision with flow direction variables,
i.e., we use Model (16). Analogously, we also model the adversarial problems (5) with
flow direction variables, which we outline in Appendix A. For doing so, we use a single
flow direction variable for parallel pipes because parallel pipes always have the same
flow direction. Further, we require by additional constraints that only a single expansion
pipe can be built in parallel to an existing one. This is legitimate because building
multiple new parallel pipes can be equivalently reformulated as building a single pipe;
see Lenz and Schwarz (2016). Based on preliminary computational results, we add the
acyclic inequalities, see Section 4.3, to the occurring MINLPs and also to the convex
relaxations (17). As explained in Section 4.2, we further use the optimal objective value
of the expansion decision of the previous iteration as a lower bound for the objective
value of the MINLPs (16) and the upcoming relaxations Reduced Relaxation as well
as Problems (17). The considered pipe-only gas networks typically do not impose any
bounds on the arc flow because the flow is implicitly bounded by the potential bounds at
the incident nodes. Consequently, we can dismiss the very large flow bounds of the GasLib
instances and we do not have to solve the adversarial problems (6) and (7). However,
prior to each iteration, we apply some basic presolve to compute tighter lower and upper
arc flow bounds by solving Problems (19) in order to strengthen the formulations. We
note that all instances satisfy the requirements of Lemma 3 and, thus, we check robust
feasibility using the characterization of this lemma. Finally, for both approaches, the
scenario set S only contains the baseline scenario dbase in the first iteration, i.e., we
set S = {dbase}.

After these adaptions, we denote as the baseline approach (MINLP_Acyclic) the plain
version of Algorithm 1. For the second approach (Reduced_Convex), we extend this
baseline approach by two methods to compute tighter lower bounds for the optimal
objective value of the robust network design problem (16), which are computed iteratively.
More precisely, before solving the expansion problem, i.e., before Line 2 in Algorithm 1,
we first solve the relaxation Reduced Relaxation (except for the first iteration), i.e., we
solve the expansion problem only w.r.t. the last added scenario; see Section 4.2. Second,
we solve the mixed-integer convex relaxation (17) w.r.t. S, i.e., we consider all found
worst-case scenarios. After solving each of these relaxations, we check if the obtained
solution is feasible for the network design problem (16) by solving the latter with fixed
expansion decisions. If this is the case, we directly go to Line 4 of Algorithm 1 and check
robust feasibility of the obtained network design. If applicable, we also update the best
known lower bound that we add to the upcoming MINLPs or convex relaxations to bound
the objective value from below. The main intuition behind the approach Reduced_Convex
consists of avoiding to solve the challenging MINLP (16), whose size increases from
iteration to iteration, by solving an MINLP of “fixed” size (Reduced Relaxation) or a
mixed-integer second-order cone problem (17).

We finally note that the models are implemented in Python 3.7 with Pyomo 6.7.0
(Bynum et al. (2021)) and we solve the models using Gurobi 10.0.3 (Gurobi Optimization,
LLC (2022)). The computations are carried out on a single node of a server3 with Intel
XEON SP 6126 CPUs. Further, we set a memory limit of 64 GB, a total time limit of 24 h,
and limit the number of threads to 4. Additionally, we use the Python package perprof-py
(Soares Siqueira et al. (2016)) to produce the performance profiles as described in Dolan
and Moré (2002).

3https://elwe.rhrk.uni-kl.de/elwetritsch/hardware.shtml

https://elwe.rhrk.uni-kl.de/elwetritsch/hardware.shtml


ADJUSTABLE ROBUST NONLINEAR NETWORK DESIGN 21

Table 2. Runtimes and number of adversarial scenarios of the ap-
proach MINLP_Acyclic. Left: Instances w.r.t. unchanged GasLib-40.
Right: Instances w.r.t. unchanged GasLib-60.

#Solved 4 of 4

Min Median Max

#Iterations 2 3 3
#Scenarios 1 2 2

Runtime (s) 807.65 1395.33 1578.68

#Solved 4 of 4

Min Median Max

#Iterations 2 2 2
#Scenarios 1 1 1

Runtime (s) 1117.37 1175.83 3009.57

Table 3. Runtimes and number of adversarial scenarios of the ap-
proach Reduced_Convex. Left: Instances w.r.t. unchanged GasLib-40.
Right: Instances w.r.t. unchanged GasLib-60.

#Solved 4 of 4

Min Median Max

#Iterations 2 3 3
#Scenarios 1 2 2

Runtime (s) 332.21 1149.98 2042.90

#Solved 4 of 4

Min Median Max

#Iterations 2 2 2
#Scenarios 1 1 1

Runtime (s) 564.06 995.62 1037.74

6.4. Numerical Results. We now apply the two presented variants MINLP_Acyclic
and Reduced_Convex of Algorithm 1 to the gas network instances described in Section 6.1
and the uncertainty sets described in Section 6.2. Consequently, for each network, we
obtain four different instances. For most of the instances checking robust feasibility,
i.e., solving the adversarial problems, only has a moderate contribution to the overall
runtimes. Relative to the runtimes of the algorithm, the total time spent to solve the
adversarial problems (10), which are MILPs, is below 1.3 %. For the more challenging
nonlinear adversarial problems (5), the median of the aggregated runtimes relative to
the runtimes of the algorithm is below 12.5 %. Only in some cases this percentage
increases to at most 88.26 %, which is often the case if the algorithm only needs two or
less iterations. For obtaining these moderate runtimes regarding the aggregated runtimes
of the adversarial problems, Lemma 3 is key. In particular, the approach benefits from
the property that utility networks typically contain a small number of sources, e.g., the
considered instances contain 3 sources. Since the runtimes of the adversarial problems
are moderate compared to the total runtimes of the algorithm in most cases, we only
focus on the total runtimes of Algorithm 1 in the following.

6.4.1. Robustifying Existing Networks. We start by applying our approach to robustify
the existing gas networks GasLib-40 and GasLib-60 by building new pipes in parallel to
existing ones. In this case, the majority of pipes is already existing and we selectively ex-
pand the capacity of the network to resolve bottlenecks and to guarantee robust feasibility.
In Table 2, we summarize the statistics of the total runtimes and the number of added ad-
versarial scenarios for the plain version of Algorithm 1, i.e., for the variant MINLP_Acyclic.
Analogously, we summarize the statistics for the variant Reduced_Convex in Table 3.
For these instances at most two adversarial scenarios are sufficient to compute a robust
network. We emphasize that this small number of adversarial scenarios can be most
likely traced back to the typical structure of gas networks that a small number of sources
can supply the majority of sinks. This usually leads to a small number of worst-case
scenarios as illustrated in Section 5. Regarding the runtimes, the variant Reduced_Convex
is slightly faster on the majority of instances but not on every instance. This can be
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Table 4. Runtimes and number of adversarial scenarios of the ap-
proach MINLP_Acyclic. Left: Instances w.r.t. spanning tree GasLib-40.
Right: Instances w.r.t. spanning tree GasLib-60.

#Solved 4 of 4

Min Median Max

#Iterations 2 2 2
#Scenarios 1 1 1

Runtime (s) 951.95 6281.03 7818.14

#Solved 4 of 4

Min Median Max

#Iterations 2 3 3
#Scenarios 1 2 2

Runtime (s) 274.42 1743.79 2875.57

Table 5. Runtimes and number of adversarial scenarios of the ap-
proach Reduced_Convex. Left: Instances w.r.t. spanning tree GasLib-40.
Right: Instances w.r.t. spanning tree GasLib-60.

#Solved 4 of 4

Min Median Max

#Iterations 2 2 2

#Scenarios 1 1 1
Runtime (s) 312.49 576.27 726.63

#Solved 4 of 4

Min Median Max

#Iterations 2 3 3

#Scenarios 1 2 2
Runtime (s) 215.01 805.01 1954.97

explained by the observation that in the approach Reduced_Convex all of the expansion
MINLPs (16) could be solved by the relaxations, i.e., by either the Reduced Relaxation or
the mixed-integer second-order cone relaxation (17). We note that this is not the case
in general and also does not hold for the following instances. Overall, both variants of
Algorithm 1 are very effective to robustify existing gas networks.

6.4.2. Extending Backbone Networks. We now consider the case that a spanning tree is
given as the existing network and we expand this network by new pipes, which are not
necessarily in parallel to the existing ones. We summarize the statistics of the considered
approaches in Tables 4 and 5. As before the number of adversarial scenarios is very
low, which can be explained as in the previous section. Regarding the runtimes, the
approach Reduced_Convex significantly outperforms the plain version of Algorithm 1.
For the GasLib-40, this can again be explained by the fact that all occurring MINLPs
could be solved by the relaxations. This is not the case for all instances of GasLib-60.
However, the majority of the obtained lower bounds for the optimal objective value of
the corresponding MINLP is close to the optimal value. More precisely, the mixed-integer
second-order cone relaxation (17) solves the MINLP 5 out of 7 times. Further, the gap4

between the optimal objective value of the relaxation and the one of the corresponding
MINLP is at most 0.85 %. Additionally, the Reduced Relaxation solves 4 out of 7 times the
MINLP to optimality and the maximal gap is 25 %. Thus, for the considered instances,
solving additional relaxations significantly speeds up the solution process. Overall, the
approach Reduced_Convex is to be preferred to extend existing networks in a robust way.

6.4.3. Greenfield Approach. We finally turn to the greenfield approach in which we design
a network from scratch. As expected this setup is significantly more challenging than the
previous ones, which is also reflected in the computational results. As outlined in Table 6,
the plain version of Algorithm 1 can only solve a single instance for the GasLib-40 and a
single one for the GasLib-60 network. Applying the enhanced variant Reduced_Convex
significantly improves the performance. In particular, it can solve 3 out of 4 instances

4We compute the gap as proposed by CPLEX under https://www.ibm.com/docs/en/icos/22.1.1?
topic=parameters-relative-mip-gap-tolerance.

https://www.ibm.com/docs/en/icos/22.1.1?topic=parameters-relative-mip-gap-tolerance
https://www.ibm.com/docs/en/icos/22.1.1?topic=parameters-relative-mip-gap-tolerance
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Table 6. Runtimes and number of adversarial scenarios of the ap-
proach MINLP_Acyclic. Left: Instances w.r.t. greenfield GasLib-40.
Right: Instances w.r.t. greenfield GasLib-60.

#Solved 1 of 4

Min Median Max

#Iterations 2 2 2
#Scenarios 1 1 1

Runtime (s) 7320.85 7320.85 7320.85

#Solved 1 of 4

Min Median Max

#Iterations 3 3 3
#Scenarios 2 2 2

Runtime (s) 81 895.84 81 895.84 81 895.84

Table 7. Runtimes and number of adversarial scenarios of the ap-
proach Reduced_Convex. Left: Instances w.r.t. greenfield GasLib-40.
Right: Instances w.r.t. greenfield GasLib-60.

#Solved 3 of 4

Min Median Max

#Iterations 2 4 4
#Scenarios 1 3 3

Runtime (s) 4066.79 39 963.87 50 183.53

#Solved 1 of 4

Min Median Max

#Iterations 3 3 3
#Scenarios 2 2 2

Runtime (s) 51 290.35 51 290.35 51 290.35

for the GasLib-40 and a single one for the GasLib-60; see Table 7. Compared to the
previous cases, one can observe that slightly more adversarial scenarios are necessary
to build a robust network from scratch. However, the approach still requires only
a moderate amount of worst-case scenarios. We note that the number of computed
adversarial scenarios matches the number of sources of the network, which is in line with
the explanations provided in Section 5. The improved performance w.r.t. the runtimes of
the approach Reduced_Convex can again be explained by tight gaps w.r.t. the objective
values of the relaxations and the corresponding MINLPs. More precisely, the Reduced
Relaxation solves the MINLP 4 out of 9 times and the gap is at most 1.65 %. The
mixed-integer second-order code relaxation (17) solves the MINLP 9 out of 9 times.
The good performance w.r.t. the gap between the optimal objective value of the mixed-
integer convex relaxation (17) and the MINLP (16) is in line with the computational
results of Borraz-Sánchez et al. (2016). However, we note that the runtimes for the
relaxation (17) and the MINLP (16) drastically increase from iteration to iteration. For
the unsolved instances, this results in reaching the time limit of 24 h. In these cases, for
the MINLPs and the mixed-integer convex relaxations (17), it seems to be the case that
proving optimality is the biggest challenge for the solvers during the solution process.
Thus, both approaches cannot solve all instances within the set time limit if designing a
network from scratch.

Overall, our computational study based on real-world instances reveals two main
insights. (i) For the considered instances, only a moderate number of worst-case scenarios
is necessary to compute a robust network design, which makes the presented approach
very effective in practice. (ii) The variant Reduced_Convex significantly outperforms
the plain version of Algorithm 1. Thus, for most of the instances, it is worth solving
additional relaxations to provide lower bounds for the objective value of the challenging
MINLPs, which then speed up the overall solution process. We finally highlight this
effect by the performance profile in Figure 2.
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Figure 2. Performance profile for the runtimes regarding all instances
that are solved by at least one approach.

7. Conclusion

We studied an adjustable robust mixed-integer nonlinear network design problem with
demand uncertainties. To this end, we considered nonlinear potential-based flows, which
allow to model different types of utility networks such as gas, hydrogen, or water networks.
For the considered problem, we developed an exact adversarial approach that exploits
the structural properties of the network and flows to obtain a robust network design
that is protected from demand uncertainties. Finally, we demonstrated the applicability
of the developed approach using the example of realistic gas networks instances. The
computational results highlight that for these instances only a very small number of
worst-case scenarios is necessary to obtain a robust network, which makes the presented
approach very efficient in practice.

One promising direction for future research consists of developing valid inequalities
for network expansion problems with nonlinear potential-based flows. In contrast to the
large literature on valid inequalities for network design problems with capacitated linear
flows, the corresponding literature on potential-based flows is rather scarce.
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Appendix A. Linearization of Bilinear Terms

We now derive an exact reformulation of the bilinear terms in the left-hand sides of
Constraints (15) using McCormick inequalities. To do so, for each arc a = (u, v, `), we
linearize the term 2yda(πdu − πdv) by introducing the additional variable γda ∈ R and the
four inequalities

2(πdu − πdv)− 2(1− yda)(π+
u − π−v ) ≤ γda , (21a)

2(πdu − πdv)− 2(1− yda)(π−u − π+
v ) ≥ γda , (21b)

2yda(π−u − π+
v ) ≤ γda , (21c)

2yda(π+
u − π−v ) ≥ γda . (21d)

If yda = 1 holds, then from Constraints (21a) and (21b), it follows γda = 2(πdu−πdv). Further,
every potential vector π ∈ RV that satisfies the potential bounds (3j) also satisfies together
with γda the Constraints (21c) and (21d). If yda = 0 holds, then from Constraints (21c)
and (21d), it follows γda = 0. Further, every potential vector π ∈ RV that satisfies the
potential bounds (3j), then also satisfies together with γda the Constraints (21a) and (21b).
Thus, for every vector (πdu, π

d
v , γ

d
a) that satisfies (21), it holds γda = 2yda(πdu − πdv).

Using the previous linearization, we can replace the bilinear terms in the left-hand
sides of (15) by γda . Consequently, Constraints (21) together with the constraints

(πdv − πdu) + γda = Φa(
∣∣qda∣∣), a = (u, v, `) ∈ Aex, (22a)

(πdv − πdu) + γda ≤ Φa(
∣∣qda∣∣) + (1− xa)M+

a , a = (u, v, `) ∈ Aca, (22b)

(πdv − πdu) + γda ≥ Φa(
∣∣qda∣∣) + (1− xa)M−a , a = (u, v, `) ∈ Aca, (22c)

leads to an equivalent reformulation of the Constraints (15).
Analogously, we can linearize the bilinear terms in the Relaxation (17). This then leads

to a mixed-integer second-order cone problem for the considered case of gas networks, in
which the potential function satisfies Φa(|qa|) = Λaq

2
a.

We finally discuss that we can use the previous linearization (21) and (22) with minor
adaptions to model the adversarial problems (5)–(7) as MINLPs. Since the adversarial
problems do not contain lower or upper potential bounds, we have to replace these
potential bounds in Constraints (21a)–(21d) by valid bounds so that the optimal value of
an optimal solution to the adversarial problems (5)–(7) is not changed. To this end, for
each arc a ∈ A, we can compute a lower and upper arc flow bound w.r.t. the uncertainty
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set by solving the optimization problems

max
qd,d

qda s.t. (3d), (18), d ∈ U, min
qd,d

qda s.t. (3d), (18), d ∈ U.

Similar to Problem (19), these problems compute upper and lower arc flow bounds by
solving an uncapacitated linear flow model with the additional restriction of acyclic
flows over the given demand uncertainty set. We now denote a corresponding bound
on the maximum absolute arc flow of a by q̃a. From this, we obtain the inequalities
−Λaq̃

2
a ≤ πdu − πdv ≤ Λaq̃

2
a, which are valid for all feasible points of the adversarial

problems (5)–(7). Consequently, for applying the McCormick inequalities and model
the adversarial problems (5)–(7) as MINLPs, we replace in the above linearization the
Constraints (21a)–(21d) by

2(πdu − πdv)− 2(1− yda)Λaq̃
2
a ≤ γda , 2(πdu − πdv) + 2(1− yda)Λaq̃

2
a ≥ γda ,

−2ydaΛaq̃
2
a ≤ γda , 2ydaΛaq̃

2
a ≥ γda .

We note that for this linearization, we can use any bound q̃a on the absolute flow. Finally,
we can fix the potential level of an arbitrary node in the adversarial problems (5)–(7)
due to Lemma 1.
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