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Abstract In recent work, Schmitt and Singh [22] propose a new quadratic facility location model to
address ecological challenges faced by policymakers in Bavaria, Germany. Building on this previous work,
we significantly extend our understanding of this new problem. We develop connections to traditional
combinatorial optimization models and show the problem is NP-hard. We then develop several classes of
easy-to-implement heuristics to solve this problem. These are rooted in solving special cases of the gen-
eralized quadratic assignment problem as a subproblem; this subproblem is also NP-hard. On moderate
sized instances from Bavaria—that were previously intractable—our proposed heuristics compute feasi-
ble solutions that are 0.5% (on average) improved over the naive solution method in just over a minute
(on average), even when the naive solver runs for 20,000 seconds. Larger instances show an improvement
of 5% (on average) compared to the naive solution method in an average of 410 seconds.
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Mathematics Subject Classification (2000) 90C27 · 90C59

1 Introduction

We revisit a recently proposed model of the undesirable facility location problem (FLP) that seeks to
assign users to so-called obnoxious facilities in a fair manner [22]. Here, the authors develop a frame-
work for systematic closures of facilities—such as, airports, recycling centers, and landfills—which are
necessary for public use yet exert a negative impact when used in an imbalanced manner. Their specific
motivation is the pervasive shutdown of recycling centers in the German state of Bavaria over the last
two decades due the damaging ecological impact by operation of these facilities, see, e.g., [2]. The au-
thors formulate this relevant and timely problem as a quadratic optimization model with binary variables
thereby distinguishing it from most other FLPs that include a linear objective function. This model seeks
to assist policymakers by maintaining a balanced usage of existing recycling centers while still ensuring
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high levels of access for the populations visiting them. Our work significantly extends this new body of
literature in ways we describe below.

Due to the computational intractability of the model proposed in [22], the authors are unable to
solve it for all the considered users and facilities in Bavaria. Thus, they resort to a number of ad-
hoc computational enhancements, e.g., relaxations of equality constraints to inequalities or ignoring
users far away from facilities. Although such enhancements provide practically viable solutions, a formal
understanding of this new problem’s structure is left unattended. As a result, extending the problem from
Bavaria to all of Germany is practically untenable: the model generation alone takes several hours even on
a high performance computer. Our work seeks to fill this gap by systematically investigating this recent
problem from both a theoretical and a computational perspective. To this end, we study the complexity
of this problem (and, an associated subproblem) as well as the relationship with a number of other
combinatorial optimization models. These relationships lead us to develop several classes of heuristics
tractable for problem sizes an order of magnitude larger than those previously considered. Specifically,
we seek to show how relatively simple heuristics, including those rooted in traditional procedures, when
implemented smartly obviate the need for more sophisticated schemes.

Employing the same notation as that in [22], we consider a set of users i ∈ I with populations Ui > 0,
a set of facilities j ∈ J with capacities Cj > 0, preferences of users to facilities 0 < Pij < 1, and a budget
B ≤ |J | of the number of open facilities. Then, the following is the central optimization model proposed
in [22]:

z∗ = min
x,y

∑
j∈J

Cj

(
1−

∑
i∈I

UiPijxij

Cj

)2

(1a)

s.t.
∑
j∈J

yj ≤ B (1b)

∑
i∈I

UiPijxij ≤ Cj ∀j ∈ J (1c)∑
j∈J

xij = 1 ∀i ∈ I (1d)

xij ≤ yj ∀i ∈ I, j ∈ J (1e)

yj ∈ [0, 1] ∀j ∈ J (1f)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J. (1g)

In model (1), the decision variables yj and xij indicate whether facility j is opened, and whether user i is
assigned to facility j, respectively; the binary restrictions in constraints (1g) with the model’s structure
ensures an optimal solution has binary values for the y variables in constraint (1f) as well. Then, con-
straint (1e) ensures that users are only assigned to open facilities. The quantity Wij = UiPij is interpreted
as the discounted population of user i actually visiting facility j if i is assigned to j. Constraint (1c)
restricts the number of assigned users to a facility by its capacity, while constraint (1b) bounds the
number of open facilities by the parameter B. Constraint (1d) and (1g) jointly ensure that every user is
assigned to exactly one facility. The key novelty in model (1) lies in the objective function (1a) that seeks

to ensure a low variance in the utilization of the facilities (given by uj =
∑

i∈I
UiPijxij

Cj
,∀j ∈ J) while

simultaneously maximizing overall access of users to the recycling facilities (given by
∑

j∈J,i∈I
UiPijxij∑

i∈I
Ui

).
The structure of this optimization model, especially as driven by the objective function, provides several
interesting properties that we investigate in this work. We study this model as presented in this form;
for further details on the model including the choice of this particular objective function, see [22]. We
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name the problem defined by model (1) as the Balanced Facility Location Problem (BFLP), and state its
decision version in Section 2.

The feasible region of model (1), defined by constraints (1b)-(1g), is closely related to several classes
of traditional FLPs. As an example, consider the capacitated FLP (CFLP) defined as follows:

min
x,y

∑
i∈I

∑
j∈J

eijdixij +
∑
j∈J

fjyj (2a)

s.t.
∑
i∈I

dixij ≤ Cjyj ∀j ∈ J (2b)∑
j∈J

xij = 1 ∀i ∈ I (2c)

yj ∈ {0, 1} ∀j ∈ J (2d)

xij ∈ [0, 1] ∀i ∈ I, j ∈ J. (2e)

The CFLP and BFLP differ foremost in the form of their objective functions due to the former’s consider-
ation of costs: the CFLP minimizes the cost of operating facilities, f , and transporting users to facilities,
e. Another difference is in the parameter di that denotes demands (or equivalently, fulfillment levels) of
user i. This is analogous to the parameter UiPij of the BFLP but does not consider preferences of users
to facilities; i.e., the BFLP enriches the CFLP by allowing different levels of demand satisfaction based on
preferred facilities. Model (7) of [22] presents a special case of the BFLP that removes these preferences
by setting Pij ← Pi,∀i ∈ I, j ∈ J ; then, the authors prove that an optimal solution for this model has
exactly the same level of utilization for all the open facilities. This result is related to the classical notion
of proportional fairness, see, e.g., [9]. The third difference is that the BFLP includes a budget on the
number of open facilities, B. This imposes an additional combinatorial layer over the constraints of the
CFLP as the BFLP selects at most B of the |J | facilities to provide an assignment of users. Including this
constraint makes the feasible region of model (1) comparable to the traditional p-median problem whose
feasible region is modeled by constraints (1b) (with an equality), (1d)-(1g). Finally, the x variables are
fractional in the CFLP unlike those in the BFLP. Although the BFLP allows a continuous relaxation of the
binary restrictions on the y variables without loss of optimality, it does not allow the same for the binary
restrictions on the x variables; this is again due to the structure of the objective function (1a). This fact
is unlike the p-median problem that does allow a continuous relaxation of the x variables without loss
of optimality.

Most variants of FLPs are NP-hard, see, e.g., [10]; thus, a variety of heuristics are available for
their solution. In this work, we choose the well-studied ADD and DROP heuristics, and adapt these
for the BFLP. These heuristics were originally presented in [11] and [6], respectively, and have been
extensively studied over the last few decades, see, e.g., [7,23]. The key idea of these heuristics is
to sequentially add or drop particular facilities, from a given set, that are determined as good to
open or close by another procedure. Typically, this second procedure involves computing an assign-
ment of users to a new but known set, S ⊆ J , of facilities; i.e., the procedure involves solving a
generalized assignment problem (GAP). The GAP has a feasible region given by constraints (2b)-(2e)
with the y variables fixed; i.e., yj = 1,∀j ∈ S and yj = 0,∀j ∈ J \ S. Thus, the feasible region
is

{
x :

∑
i∈I dixij ≤ Cj ,∀j ∈ S;

∑
j∈S xij = 1,∀i ∈ I; xij ∈ {0, 1},∀i ∈ I, j ∈ S

}
. Finding a feasible so-

lution to this region is known to be NP-complete [13].
The above-mentioned schemes decompose a hard problem into subproblems that are also, unfortu-

nately, hard; however, solving the latter problem is typically easier than the former. If the subproblem
is also computationally intractable, as we find in our experiments, tailored solution methods are used
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for its solution. For example, to solve the hard GAP subproblem several polynomial time approximation
algorithms are available [17]. Further, local search approaches based on so-called λ-moves that reassign
at most λ users between facilities are also frequently employed to solve the GAP, see, e.g., [14,15]. The
heuristics we develop to solve the BFLP are in a similar spirit. In Section 2, we show that model (1) is
NP-hard. This observation is not surprising, given that the computational results of the original work
in [22] demonstrate intractability to solve the model naively. Next, we develop schemes to smartly fix
a set of facilities as open. The arising subproblem is then a special case of the Generalized Quadratic
Assignment Problem (GQAP) instead of the GAP due to the structure of the objective function. Despite
the special case, this subproblem is still NP-hard as we show in Section 2. However, unlike the GAP,
this subproblem is computationally intractable even for moderate sized instances; thus, in Section 3, we
derive an additional set of heuristics for its solution. This subproblem of the BFLP for a fixed set of open
facilities, S ⊆ J (where, |S| ≤ B) is as follows.

z∗
S =

∑
j∈J\S

Cj + min
x

∑
j∈S

Cj

(
1−

∑
i∈I

UiPijxij

Cj

)2
(3a)

s.t. (1c), (1d), (1g). (3b)

The continuous relaxation of model (3) (we revisit this later in model (9)) is a convex optimization model,
see, Proposition S1 in Appendix A; thus, a standard mixed-integer-programming (MIP) solver, such as
Gurobi, is sufficient to solve model (9) to optimality [24]. We name the problem defined by model (3)
as the Balanced User Assignment Problem (BUAP), and again state its decision version in Section 2. A
feasible solution for model (3) extends to model (1) by setting yj = 1,∀j ∈ S; yj = 0,∀j ∈ J \S; further,
it follows from Proposition S3 in Appendix A that z∗

S ≥ z∗,∀S ⊆ J , where |S| ≤ B).
With this background, the following are the key contributions of this work:

(i) we formally define the BFLP and the BUAP and show both are NP-hard;
(ii) we extend and compare several heuristic methods available for FLPs to both these problems;
(iii) we provide extensive computational experiments on two real-world case studies from Bavaria as

well as two artificially generated instances from Germany to guide public policymakers facing
similar problems;

(iv) We publicly release all our code and instances to allow further developments to this new problem,
as well as related FLPs.

The rest of this article is structured as follows. In Section 2, we define the decision versions of our two
problems and study their theoretical hardness. Motivated by this finding, we then derive heuristics for
both these problems. Section 3 presents two algorithms, plus local search enhancements for each, to solve
model (3). In Section 4, we employ these heuristics as procedures and develop three algorithms to solve
model (1). In Section 5, we present the original data we use as well as new data we synthesize for our
computational experiments that we report in Section 6. These computations compare the heuristics to
each other and also to a naive solution of the underlying models. We conclude in Section 7 and provide
further proofs, pseudocodes, examples, and analysis in the appendices. We provide all associated datasets
and our code at the GitHub repository mentioned below.

2 Complexity

In this section, we study the theoretical complexity of the two problems central to this work mentioned
in Section 1: the BFLP and the BUAP defined by model (1) and model (3), respectively. Without loss of
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generality, we drop the constant term in the objective function of model (3) in this section. We begin by
defining their decision versions.

Definition 2.1 The Balanced User Assignment Problem (BUAP)
Instance: Given a set of users i ∈ I = {i1, i2, . . . , i|I|}, |I| ≥ 2, a set of facilities j ∈ S = {j1, j2, . . . , j|S|}
with corresponding capacities Cj ∈ Z+, weights Wij ∈ R+ of assigning user i to facility j and a number
M ∈ R+.

Question: Do there exist subsets of users Ij ⊆ I, ∀j ∈ S such that the Ij form a partition of I (i.e.,⋃
j∈S Ij = I and Ij ∩ Ij′ = ∅,∀j ̸= j′ ∈ S) with

∑
i∈Ij

Wij ≤ Cj ,∀j ∈ S such that
∑

j∈S Cj

(
1 −∑

i∈Ij
Wij

Cj

)2
≤M?

Definition 2.2 The Balanced Facility Location Problem (BFLP)
Instance: Given a set of users i ∈ I = {i1, i2, . . . , i|I|}, |I| ≥ 2, a set of facilities j ∈ J = {j1, j2, . . . , j|J|}
with corresponding capacities Cj ∈ Z+, weights Wij ∈ R+ of assigning user i to facility j, a budget
B ≤ |J | ∈ Z+ and a number M ∈ R+.

Question: Does there exist a subset of facilities S ⊆ J with |S| ≤ B and subsets of users Ij ⊆ I, ∀j ∈ S

such that the Ij form a partition of I (i.e.,
⋃

j∈S Ij = I and Ij ∩ Ij′ = ∅,∀j ̸= j′ ∈ S) with
∑

i∈Ij
Wij ≤

Cj ,∀j ∈ S and
∑

j∈J Cj

(
1−

∑
i∈Ij

Wij

Cj

)2
≤M?

We next show that the BUAP is NP-complete even for two facilities and even in the absence of an
objective function; i.e., determining a feasible solution of model (3) itself is NP-complete. To this end,
we define the following problem—given by constraints (1c), (1d), and (1g)—that determines feasibility
of model (3); we also use this problem in our algorithms in Section 3.

Definition 2.3 The User Assignment Problem (UAP)
Instance: Given a set of users i ∈ I = {i1, i2, . . . , i|I|}, |I| ≥ 2, a set of facilities j ∈ S = {j1, j2, . . . , j|S|}
with corresponding capacities Cj ∈ Z+, and weights Wij ∈ R+ of assigning user i to facility j.

Question: Do there exist subsets of users Ij ⊆ I, ∀j ∈ S such that the Ij form a partition of I (i.e.,⋃
j∈S Ij = I and Ij ∩ Ij′ = ∅∀j ̸= j′ ∈ S) with

∑
i∈Ij

Wij ≤ Cj ,∀j ∈ S?

Lemma 2.1 ( [13, Chapter 7]) The UAP is NP-complete.

We also provide a slightly different and detailed proof of Lemma 2.1 in Appendix A in Theorem 2.1.
Although—as Lemma 2.1 shows—determining a feasible solution for model (3) is NP-hard in general,
solutions to special cases of instances of the UAP are easy. For example, relaxing constraint (1d) from
an equality to an inequality renders the model always feasible (xij = 0,∀i ∈ I, j ∈ S is feasible). A
more interesting special case occurs when the capacities are large enough to accommodate any user:
Cj ≥

∑
i∈I Wij ,∀j ∈ S; a trivial feasible solution is then obtained by assigning any user to any facility.

Next, we show that although feasibility of the problem in this special case is easy, determining an optimal
set of facilities is still NP-hard. In Appendix A, we provide two examples, Example S1 and Example S2
for how other similarly intuitive solutions to this particular problem are suboptimal. We define the
decision version of this special case of the BUAP as follows.

Definition 2.4 The Sufficient Capacity User Assignment Problem (SCUAP)
Instance: Given a set of users i ∈ I = {i1, i2, . . . , i|I|}, |I| ≥ 2, a set of facilities j ∈ S = {j1, j2, . . . , j|S|}
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with corresponding capacities Cj ∈ Z+, weights Wij ∈ R+ of assigning user i to facility j s.t. Cj ≥∑
i∈I Wij ,∀j ∈ S and a number M ∈ R+.
Question: Do there exist subsets of users Ij ⊆ I, ∀j ∈ S such that the Ij form a partition of I (i.e.,⋃

j∈S Ij = I and Ij ∩ Ij′ = ∅, ∀j ̸= j′ ∈ S) with
∑

j∈S Cj

(
1−

∑
i∈Ij

Wij

Cj

)2
≤M?

Our proof rests on reduction from the partition problem, whose definition and complexity we state
below, and a proposition whose proof being straightforward we reserve for A.

Definition 2.5 The Partition Problem (PP)
Instance: Given a set of positive integers T = {t1, . . . , t|T |}, |T | ≥ 2; i.e., tk ∈ Z+,∀k = 1, 2, . . . , |T |.
Question: Does there exist a subset L ⊆ {1, . . . , |T |} such that

∑
k∈L tk = 1

2
∑

t∈T t =
∑

k∈{1,...,|T |}\L tk?

Lemma 2.2 ([8]) The partition problem is NP-complete.

Proposition 2.1 Given y ∈ R+ the function f(x1, x2) = (1− x1
y )2 + (1− x2

y )2 subject to x1 + x2 = y,
where x1, x2 ∈ R+, is uniquely minimized at x1 = 1

2 y = x2; hence, f( 1
2 y, 1

2 y) = 1
2 .

Proof. See Appendix A.

Theorem 2.1 The SCUAP is NP-complete.

Proof. Given an instance of PP, we construct an instance of SCUAP as follows:

– I ← {1, . . . , |T |};
– S ← {1, 2};
– C1 = C2 ←

∑
t∈T t;

– Wi1 = Wi2 ← ti∀i ∈ I;
– M ← 1

2
∑

t∈T t.

Note that our hypothesis of sufficient capacity is satisfied since
∑

i∈I Wij =
∑

k∈I tk =
∑

t∈T t =
Cj ,∀j ∈ S. Also, observe that the SCUAP is in NP and that the construction of the instance of the SCUAP

is polynomial in the input size |T |. Next, we show that an instance of the PP is a YES instance, if and
only if the transformed instance is a YES instance for the SCUAP.

=⇒ First, consider a YES instance of the PP given by a subset L ⊆ {1, . . . , |T |}. We then construct
subsets of the users leading to a YES instance of the SCUAP as follows: I1 ← L and I2 ← {1, . . . , |T |} \L.
Then, I1 ∪ I2 = L ∪ ({1, . . . , |T |} \ L) = {1, . . . , |T |} = I and I1 ∩ I2 = L ∩ ({1, . . . , |T |} \ L) = ∅; thus,

this assignment is a partition of I. This solution has an objective value
∑

j∈S Cj

(
1−

∑
i∈Ij

Wij

Cj

)2
=

C1
(

1−

∑
i∈I1

Wi1

C1

)2
+ C2

(
1−

∑
i∈I2

Wi2

C2

)2
(4a)

=
∑
t∈T

t
(

1−

∑
k∈L

tk∑
t∈T

t

)2
+

∑
t∈T

t
(

1−

∑
k∈{1,...,|T |}\L

tk∑
t∈T

t

)2
(4b)

=
∑
t∈T

t
(

1−
1
2

∑
t∈T

t∑
t∈T

t

)2
+

∑
t∈T

t
(

1−
1
2

∑
t∈T

t∑
t∈T

t

)2
(4c)

= 2
∑
t∈T

t
(

1−
1
2
)2

=
1
2

∑
t∈T

t (4d)

= M. (4e)
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Equation (4a) follows from the definition of the SCUAP instance, equation (4b) holds by construction,
equation (4c) holds since the PP instance is a YES instance, equation (4d) is a simplification, while equa-
tion (4e) holds by construction from the definition of M . As equality holds throughout, the constructed
instance is a YES instance of the SCUAP.
⇐= Next, consider a YES instance of the SCUAP given by two subsets I1 and I2. We now construct a

partition leading to a YES instance of the PP. Consider L← I1. It follows that {1, . . . , |T |} \L = I2 since
I1, I2 partition I = {1, .., |T |}. It remains to be shown that

∑
k∈L tk =

∑
k∈{1,...,|T |}\L tk.

Consider the optimal objective function value of this SCUAP instance.

1
2

∑
t∈T

t = M ≥
∑
j∈S

Cj

(
1−

∑
i∈Ij

Wij

Cj

)2
(5a)

= C1
(

1−

∑
i∈I1

Wi1

C1

)2
+ C2

(
1−

∑
i∈I2

Wi2

C2

)2
(5b)

=
∑
t∈T

t
(

1−

∑
k∈L

tk∑
t∈T

t

)2
+

∑
t∈T

t
(

1−

∑
k∈{1,...,|T |}\L

tk∑
t∈T

t

)2
. (5c)

Equation (5a) follows since the optimal objective function value is at most M by definition, where
M = 1

2
∑

t∈T T by construction. Equations (5b) and (5c) follow from the definition of the SCUAP instance
and our definition of L. Dividing throughout by

∑
t∈T t > 0 simplifies equation (5) to

1
2 ≥

(
1−

∑
k∈L tk∑
t∈T t

)2 +
(
1−

∑
k∈{1,...,|T |}\L tk∑

t∈T t

)2
. (6)

We now use Proposition 2.1 with y ←
∑

t∈T t > 0. Then, the function(
1− x1∑

t∈T t

)2 +
(
1− x2∑

t∈T t

)2
, (7)

subject to x1 + x2 =
∑

t∈T t, with x1, x2 ∈ R+ is uniquely minimized at x∗
1 = x∗

2 = 1
2

∑
t∈T t giving a

value of 1
2 . For the feasible solution x1 ←

∑
k∈L tk and x2 ←

∑
k∈{1,...,|T |}\L tk we then have,

1
2 ≤

(
1−

∑
k∈L tk∑
t∈T t

)2 +
(
1−

∑
k∈{1,...,|T |}\L tk∑

t∈T t

)2
. (8)

Since the minimum is attained uniquely, equations (6) and (8) together yield x∗
1 = x∗

2 =
∑

k∈L tk =∑
k∈{1,...,|T |}\L tk; i.e., the considered set L indeed defines a YES instance of the PP.

In Appendix A, we provide an example of this mapping. The above discussion directly leads us to
our main results of this section that both model (3) and model (1) are NP-hard.

Theorem 2.2 The BUAP is NP-complete.

Proof. This follows directly from Lemma 2.1, or from Theorem 2.1 since the SCUAP is a special case of
the BUAP.

Theorem 2.3 The BFLP is NP-complete.

Proof. This follows directly from Theorem 2.2 since the BUAP is a special case of the BFLP. In particular,
an instance of the BUAP with given inputs I ′, S′ and M ′ reduces to the BFLP by setting I ← I ′, J ←
S′, B ← |J | and M ←M ′.
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In the proceeding sections, we develop heuristics to solve both these problems. Fortunately, we find
that despite the theoretical hardness of the UAP and the BUAP we can still obtain feasible and high-quality
solutions via our heuristics; our computational experiments in Section 6.2 further corroborate this. This
observation is similar to finding solutions for the PP that we use for our reduction proofs above, which
despite its hardness allows for high-quality heuristic solutions, e.g., the so-called Longest Processing Time
scheduling algorithm [19].

3 Heuristics for model (3)

Next, we present three heuristics for solving the BUAP formulated in model (3): the greedy algorithm
proposed in [21], an algorithm based on rounding a fractional solution, and an algorithm based on a
local search. In what follows, we let arg max{·} denote the value of one index at which the input set
takes its maximum value; if there is more than one such index, we arbitrarily pick one while if there is
none the output is empty. We define a function sort(L, Al, ascending/descending) that sorts elements
l ∈ L depending on their value Al in ascending or descending order. We define the auxiliary variable

uj =
∑

i∈Ij
Wijxij

Cj
,∀j ∈ J ; Further, we let [x], [y], and [u] denote the entire set of decision variables

corresponding to xij , yj , and uj of appropriate dimension. An “assignment” is a solution, [x], to the BUAP,
while an “incomplete assignment” is a solution, [x], to the always feasible model (3), where constraint (1d)
is relaxed to

∑
j∈S xij ≤ 1. This means that not all users are assigned a facility. To distinguish between

heuristics for the BUAP and the BFLP, we call the former as procedures and latter as algorithms. Finally,
we let z̄S ≥ z∗

S and z̄ ≥ z∗ denote the objective function values of model (3) and (1) obtained from any
heuristic. For simplicity, we use Wij to denote UiPij .

3.1 The greedy algorithm of [21]

The algorithm of [21] seeks to provide a feasible solution to the BFLP; however, in this section, we are only
interested in a solution for the BUAP. Thus, we extract the relevant parts of this scheme, and summarize
it in Procedure 1; we later compare our results with those obtained by this scheme. For each user, we
first determine their most preferred facility from those that have sufficient capacity to accommodate it
(line 5). If no such facility is available, we terminate reporting infeasibility. Else, we consider each facility
sequentially, and assign users to it in order of their preferences until the facility’s capacity is exhausted
(lines 8 - 12). We repeat this assignment until all users are allocated. For details, see [21].

3.2 A basic rounding algorithm

In this section, we provide a basic scheme based on rounding the fractional solution x obtained from the
continuous relaxation of model (3). Consider the following convex optimization model:

zS = min
x

∑
j∈S

Cj

(
1−

∑
i∈I

UiPi,jxi,j

Cj

)2
, s.t.(1c), (1d), xi,j ∈ (0, 1),∀i ∈ I, j ∈ S. (9)

Procedure 2 seeks to determine binary assignments of the xij variables from the solution of model (9).
We begin by assigning user i to the facility with the largest xij value (line 2). We denote the subset of
users assigned to a j by Ij ⊆ I. We adapt this solution if the capacities of some facilities are exceeded.
We denote by S′ (line 5) the subset of facilities whose capacities are exceeded. We then seek to reassign
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Procedure 1 greedy assign (adapted from [21])
Input: an instance of model (3).
Output: status f ∈ {feasible, infeasible} for the given inputs; if feasible: solution [x], utilization [u], and objective

function value zS ; if infeasible: [x]← 0, [u]← 0, zS ← +∞.
1: Initialize: I′ ← I; [x]← 0; Rj ← Cj , ∀j ∈ S.
2: while I′ ̸= ∅ do
3: Mj ← ∅, ∀j ∈ S.
4: for i ∈ I′ do
5: j′ ← arg max{j∈S:Wij ≤Rj }{Pij} .
6: Mj′ ←Mj′ ∪ {i}.

7: if Mj = ∅, ∀j ∈ S, return f ←infeasible; [x]← 0; [u]← 0; zS ← +∞; “heuristic failed”.

8: for j ∈ S do
9: I′′ ← sort(Mj , Pij , descending).

10: for i ∈ I′′ do
11: if Wij ≤ Rj

12: Rj ← Rj −Wij ; I′ ← I′ \ {i}; xij ← 1.

13: return f ← feasible; [x]; uj ←
∑

i∈I
Wij xij

Cj
, ∀j ∈ J ; zS ←

∑
j∈J

Cj(1− uj)2.

users of these facilities to others that have available capacity. Consider a given j ∈ S′. We begin the
reassignment by computing the subset of users assigned to this j that have Wij > Cj , since these users
cannot be assigned to j in a binary solution; we denote this subset as I ′

j (line 7). Then, all users in the
set I ′

j need to be reassigned. We reassign them to the facility other than j that they most prefer and
that still has capacity for them in lines 8-11. If we are within the capacity for this facility j, we continue
to the next facility (line 12). If we are still over capacity, we further reassign users but now do so seeking
to keep assignments in order of preferences; i.e., we first remove users that have low preferences to j

(lines 13-18). We stop this reassignment for j when the capacity constraint is satisfied, and go to the
next facility (line 18).

Similar to Procedure 1, Procedure 2 can fail to determine a feasible solution even if such a solution
exists. This failure is determined in lines 10 or 19; i.e., if a facility with a violated capacity cannot
be reassigned, we exit immediately and report a failure. However, the key difference is that unlike
Procedure 1, Procedure 2 begins with a complete although infeasible assignment. This assignment comes
from a fractional solution that we now seek to make feasible. The similarity is in the steps taken to make
this solution feasible; specifically, we (re)assign users to facilities with the highest preference that have
sufficient capacity for them.

3.3 Local search approach

Finally, we investigate a few local search heuristics to improve a given feasible solution for model (3).
We seek to ensure feasibility of the solution in each refinement, and consider two schemes motivated
by [18]: (i) reassigning one user to a different facility, and (ii) swapping the assignments of two users.
For each reassignment or swap, we compute the change in the objective function value; here, we only
consider facilities that have sufficient capacity available to accommodate the new user. If this change
indicates an improvement, we perform the reassignment or swap. As we show in Section 6.2, this decision
is computationally cheap. We continue these random reassignments or swaps until a certain time limit
or sufficient improvement in the objective function is reached. Such schemes are simple to implement,

9



Procedure 2 relaxation rounding
Input: an instance of model (3); a scalar nr ≤ |S|.
Output: status f ∈ {feasible, infeasible} for the given inputs; if feasible: solution [x], utilization [u], and objective

function value zS ; if infeasible: [x]← 0, [u]← 0, zS ← +∞.
1: solve model (9) with nr “most preferred” facilities for each user, get continuous x.
2: ai ← {arg maxj∈S{xij}},∀i ∈ I.
3: Ij ← {i ∈ I : ai = j} ⊆ I, ∀j ∈ S.
4: Rj ← Cj −

∑
i∈Ij

Wi,j ,∀j ∈ S.
5: S′ ← {j ∈ S : Rj < 0} ⊆ S.
6: for j in S′ do
7: I′

j ← {i ∈ Ij : Wij > Cj} ⊆ Ij .
8: for i ∈ I′

j do
9: k ← arg maxk′{Pik′ : Rk′ −Wik′ ≥ 0, k′ ̸= j}.

10: if k = ∅, return f ← infeasible; [x]← 0; [u]← 0; zS ← +∞; “heuristic failed”.

11: Ik ← Ik ∪ {i}; Ij ← Ij \ {i}; Rk ← Rk −Wik; Rj ← Rj + Wij .

12: if Rj ≥ 0, break. Continue with next iteration of outer for loop (line 6).

13: I′′
j = sort(Ij \ I′

j , Pij , ascending)
14: for i ∈ I′′

j do
15: k ← arg maxk′{Pik′ : Rk′ −Wik′ ≥ 0, k′ ̸= j}.
16: if k = ∅, break. Continue with next iteration of for loop (line 14).

17: Ik ← Ik ∪ {i}; Ij ← Ij \ {i}; Rk ← Rk −Wik; Rj ← Rj + Wij .
18: if Rj ≥ 0, break. Continue with next iteration of outer for loop (line 6).

19: if Rj < 0, return f ← infeasible; [x]← 0; [u]← 0; zS ← +∞; “heuristic failed”.

20: return f ← feasible; xij ← 1, ∀i ∈ Ij , else xij ← 0; uj ←
∑

i∈I
Wij xij

Cj
, ∀j ∈ J ; zS ←

∑
j∈J

Cj(1− uj)2.

and are well-known in the literature on local search, see, e.g., [16]. We adapt these for our models, and
provide specific procedures and details for both these schemes in Appendix B.1.
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4 Heuristics for the BFLP

4.1 Background

In this section, we return to our central problem—the BFLP as defined by model (1)—and study heuristics
for its solution. These heuristics utilize those we investigate in Section 3 for the BUAP. A key difference
between these two problems is the additional combinatorial restriction imposed by the BFLP of opening
at most B out of |J | facilities. If model (1) is feasible, there exists an optimal solution that opens exactly
B facilities; see Proposition S2 in Appendix A. However, a feasible solution, or even an optimal solution,
of the BUAP with B arbitrarily chosen facilities might still be suboptimal for the BFLP. The aim of this
section is to determine not only a good user assignment, but also a good set of B facilities corresponding
to this assignment. To this end, we develop three schemes adapted from classical solution methods of
the FLP.

Our first two schemes, that we study in Section 4.2 and Section 4.3, build upon the so-called DROP and
ADD algorithms. These classic schemes rely on a given set of existing facilities from which we sequentially
close and open facilities, respectively. We adapt these algorithms for the specifics of our problem. As
such, the termination criteria in our adaptations is when exactly B facilities are open. Additionally, we
employ a local search heuristic to improve solutions provided by the above two schemes. For each of
our schemes, we use the BUAP heuristics discussed in Section 3 as internal procedures or subroutines. In
Section 6, we provide computational results that compare each of these schemes with each other, the
results of the naive solution and with a local search heuristic from [21]. We begin with a summary of
these heuristics based on model (2) and then provide specific details later in this section.

Input: an instance of model (2).
Output: a set of open facilities S.
1: S ← J ; δ∗ ← 1.
2: while δ∗ > 0 do
3: δj ← fj + T (I, S)

−T (I, S \ {j}),∀j ∈ S.
4: j∗ ← arg maxj∈S δj ;

δ∗ ← maxj∈S δj .
5: if δ∗ > 0 , S ← S \ {j∗}.

6: return S.
(a) DROP

Input: an instance of model (2); an additional facility j′ with a
large cost and a large capacity.

Output: a set of open facilities S.
1: S ← {j′}; δ∗ ← 1.
2: while δ∗ > 0 do
3: δj ← T (I, S)− T (I, S ∪ {j})

−fj , ∀j ∈ S.
4: j∗ ← arg maxj∈S δj ; δ∗ ← maxj∈S δj .
5: if δ∗ > 0 , S ← S ∪ {j∗}.

6: return S \ {j′}.

(b) ADD

Fig. 1: The DROP and ADD algorithms of [7].

Let T (I, S) denote the objective function value of model (2) for S facilities. We summarize the generic
DROP scheme [6,7] in Algorithm 1a for model (2). Beginning with all the facilities as open (yj = 1,∀j ∈ J)
we compute the facility closing (or “dropping”) which leads to the largest decrease in the objective
function value. Due to the structure of the BFLP, its objective function value increases as we close
facilities (Proposition S3 in Appendix A); however, for model (2) dropping facilities is not guaranteed
to decrease its objective function value. Another difference from the classical FLP is that we additionally
have a budget on the number of facilities to keep open. We thus adapt the classical procedure to continue
until at most B facilities remain open, as opposed to the classical DROP algorithm that continues until
no more facilities can be dropped without increasing the objective function. We present details of how
we adapt the DROP algorithm to the BFLP in Section 4.2.
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The ADD algorithm [11,7] is similar and is summarized in Figure 1b. The difference here is that we
begin with a given set of facilities (e.g., the empty set), which could be infeasible for model (2). Jacobsen
circumvents this issue by including a fake facility, j′, to begin with that has a large enough cost and
capacity [7]; for appropriately large costs, this facility is no longer needed to satisfy user demands as the
algorithm progresses. The rest of the algorithm proceeds in a similar way to the DROP algorithm, but by
adding facilities sequentially. We present details of our adaptation to the BFLP in Section 4.3.

Our local search ideas are extensions of perturbation procedures to improve given feasible solutions of
the CFLP, see, e.g., [23]. In general, these procedures begin with a solution of the CFLP and select a facility
to close. Then they run one iteration of the ADD algorithm to determine a facility to open that provides
the largest decrease in the objective function value. This process is repeated until no improvement is
achieved. Analogously, these procedures open a single facility and then run one iteration of the DROP

algorithm. Our local search scheme combines both these ideas into our third algorithm, distinguishing it
from the traditionally separate improvement procedures of [23], to solve the BFLP. We present details in
Section 4.4.

As we repeatedly use several methods to solve the BUAP defined by model (3), for brevity we de-
fine these in Procedure 3. Here, the procedure takes as input a set of |I| users and |S| ≤ |J | fa-
cilities, and constructs an assignment using method m; choices of m include those we study in Sec-
tion 3, e.g., greedy assign, greedy assign with localsearch reassignment, relaxation rounding,
or relaxation rounding with localsearch swap.

Procedure 3 user assignment
Input: an instance of model (3); a method m to construct a feasible solution of the instance.
Output: status f ∈ {feasible, infeasible} for the given inputs; if feasible: solution [x], utilization [u], and objective

function value zS ; if infeasible: [x]← 0, [u]← 0, zS ← +∞.
1: Run assignment method m on the input instance and return the result.

4.2 The close greedy algorithm

Our first scheme begins with a simple idea based on the DROP procedure, that we build up in three
versions; in Section 6.3.1 we provide computational experiments that compare the progression in the
objective function’s value and runtime at each version. We denote the class of heuristics within this
section as close greedy, and the algorithms corresponding to the first and third versions as close

greedy basic and close greedy improved, respectively. The second version changes only a single line
of close greedy basic, so for brevity we do not provide an additional pseudo-code for this.

Algorithm 1 summarizes the first version. We input an instance of model (1), and some schemes,
m, m′, for user assignment methods that the proposed algorithm makes repeated use of via Procedure 3.
We begin with method m with all facilities, J , open (line 1). Iteratively, we reduce the number of
facilities to the allowed B, closing one facility in each iteration (lines 2-9). However, rather than choose
facilities to close from the entire set, we restrict our search to a candidate pool of nc facilities with the
lowest utilization values (line 3); here, we follow the suggestion in [22]. Although, this means we do not
necessarily make the best choice, even locally, this step helps reduces computational effort. We note there
is a natural trade-off between computational effort and nc; e.g., see, Table S1a in Appendix D that shows
the average run time increases from 1,973 seconds to 6,757 seconds when nc is increased from 5 to 20.
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We determine “good” facilities to close—that increase the objective function value the least—via
method m in the loop in lines 5-7. Once exactly B facilities are open, we run user assignment again
(line 10), but this time with a possibly different method m′, to check if a better assignment than the one we
determined so far is readily available. In Section 6.3.1, we find advantage in using the computationally
cheap method m = greedy assign multiple times when closing facilities throughout the algorithm
coupled with the slower but better method m′ = relaxation rounding with local search reassign

after the set of open facilities is determined. We return the obtained solution in line 13. If no feasible
assignments can be determined for a closure, we skip and ignore this closure (line 7); while, if none of
the closures result in a feasible assignment we report a failure (line 8). This concludes the first version.

The strength of such a scheme rests on the ability to compute good, although suboptimal, user assign-
ments multiple times and speedily; it is here that the quick implementation methods we discuss in Sec-
tion 3 come useful. For example, in our computational experiments, we find each user assignment call
takes about two-thirds of a second for instances with |I| = 2, 060, |J | = 1, 394 for m = greedy assign.
Next, we seek to further improve this. Rather than compute the entire assignment from scratch, we now
compute these just for the users previously assigned to the one facility, j′, that is closed and keep all
other assignments same. Procedure 4, directly adapted from Procedure 1, provides a quick scheme to this
effect. Although the value of this procedure decreases when several facilities are closed, this adaptation
significantly reduces the computational effort required for the BUAP by allowing us to increase nc by an
order of magnitude while still keeping runtimes reasonable; see, computational results in Section 6.3.1.
To summarize, we simply replace line 6 in Algorithm 1 with a call to greedy reassign with inputs
I, S, j′ and [x]. This completes our second version of the algorithm.

Algorithm 1 close greedy basic
Input: an instance of model (1); methods m, m′ for user assignment defined in Procedure 3; scalar nc ≤ |J |.
Output: status f ∈ {feasible, infeasible} for the given inputs; if feasible: [x], [y], z.
1: Initialize: S ← J ; [f, x, u, z]← user assignment(I, S, m).
2: while |S| > B do
3: J ′ ← {indices of smallest nc values of uj , j ∈ S} ⊆ J .
4: [f∗, x∗, u∗, z∗, j∗]← [infeasible, 0, 0, +∞, “none”].
5: for j′ ∈ J ′ do
6: [f ′, x′, u′, z′]← user assignment(I, S \ {j′}, m).
7: if f ′ = feasible and z′ < z∗, [f∗, x∗, u∗, z∗, j∗]← [f ′, x′, u′, z′, j′].

8: if f∗ = infeasible, return f ← infeasible; “heuristic failed”.
9: S ← S \ {j∗}; [f, x, u, z]← [f∗, x∗, u∗, z∗].

10: [f ′, x′, u′, z′]← user assignment(I, S, m′).
11: if f ′ = feasible and z′ < z, [f, x, u, z]← [f ′, x′, u′, z′].

12: yj = 1, ∀j ∈ S; else, yj = 0.
13: return f ; [x]; [y]; z.

Procedure 4 close greedy reassign
Input: an instance of model (3); a facility to close j′; an assignment [x] of I to S.
Output: status f ∈ {feasible, infeasible} for the given inputs; if feasible: solution [x], utilization [u], and objective

function value zS ; if infeasible: [x]← 0, [u]← 0, zS ← +∞.
1: Initialize: I′ ← {i ∈ I : xij′ = 1}; xij′ ← 0, ∀i ∈ I′; S ← S \ {j′}; Rj ← Cj −

∑
j∈I

UiPijxij ,∀j ∈ S.
2: Lines 2 - 13 from Algorithm 1.
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Algorithm 2 close greedy improved
Input: an instance of model (1); methods m, m′ for user assignment defined in Procedure 3; scalar nc ≤ |J |.
Output: status f ∈ {feasible, infeasible} for the given inputs; if feasible: [x], [y], z.
1: Initialize: S ← J ; J ′ ← J ; δj ← 0,∀j ∈ J ; [f, x, u, z]← user assignment(I, S, m).
2: while |S| > B do
3: [f∗, x∗, u∗, z∗, j∗]← [infeasible, 0, 0, +∞, “none”].
4: for j′ ∈ J ′ do
5: [f ′, x′, u′, z′]← greedy reassign(I, S, j′, x).
6: δj′ ← z′ − z.
7: if f ′ = feasible and z′ < z∗, [f∗, x∗, u∗, z∗, j∗]← [f ′, x′, u′, z′, j′].

8: if f∗ = infeasible, return f ← infeasible; “heuristic failed”.
9: S ← S \ {j∗}; [f, x, u, z]← [f∗, x∗, u∗, z∗].

10: J ′ ← {j ∈ S : indices of smallest nc values of δj} ⊆ J .

11: [f ′, x′, u′, z′]← user assignment(I, S, m′).
12: if f ′ = feasible and z′ < z, [f, x, u, z]← [f ′, x′, u′, z′].

13: yj = 1, ∀j ∈ S; else, yj = 0.
14: return f ; [x]; [y]; z.

In the third version, we consider a different way to choose the candidate pool of facilities, J ′. So far,
we determine these facilities as the ones with the lowest utilization. However, since the BFLP balances
both access and utilization, this idea might not be the best choice. We now determine the candidate pool
by considering facilities that were good candidates to close in previous iterations but were not chosen.
Algorithm 2 summarizes this scheme that we describe next.

As in close greedy basic, we initialize with all the available facilities, J , and solve the BUAP (line 1).
Now, let δj denote the change in the objective function value that closing facility j brings to the objective
function of model (3) (line 6); we compute the objective function value in line 5 via step 2 as described in
Procedure 4. Here, z̄, z′ denote the objective function value for model (3) before and after closing facility
j, respectively. At each iteration, we then determine the nc facilities among those that are still open
that had the smallest values of δj in the last iteration it was calculated. The reasoning behind our choice
of small values of δj is that we seek to keep the increase in the objective function of the minimization
problem small. If the BUAP is solved to optimality, then δj ≥ 0 since the the objective function value
cannot decrease when a facility is closed (this follows from Proposition S3 in Appendix A.1). However,
since we do not solve the BUAP to optimality, it is possible that δj < 0 as well. We note that δ values
are updated only for facilities within the set J ′ at each iteration. Hence, when closing the first facility,
we also initialize δ, by considering J ′ to be the entire set of facilities. In Appendix B.2, we provide an
additional discussion on the δ parameter.

We further note that the for loops over the set J ′ can be implemented in parallel, saving potentially
significant computational effort. Swapping between several different methods in the while loop, rather
than staying with a single method m, is another suggestion for improvement. A computationally cheap
local search heuristic, similar to what we describe in Section 4.4, could also be implemented within
the algorithms. Finally, we note that using greedy reassign is expected to decrease the quality of the
assignments when used over a lot of iterations. To counter this effect, one could recompute the complete
assignment after every few iterations; however, in our computational experiments this enhancement did
not lead to any significant improvement.
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4.3 The open greedy algorithm

Our second scheme is motivated by ADD-styled algorithms and seeks to sequentially open facilities rather
than closing them as in the DROP-styled algorithms. As mentioned in Section 4.1, a key difference in
these two algorithms is how infeasible iterations are handled; infeasibility arises when some users are left
unassigned to any facility due to capacity restrictions. Since we seek to use the improvements discussed
for close greedy directly now, we need a method for adapting an assignment when a facility is opened,
analogous to Procedure 4. This procedure accomplishes two tasks: for a previously infeasible assignment,
we assign the unassigned users to the newly opened facility; and for a previously feasible assignment, we
reassign appropriate users to the newly opened facility.

Procedure 5 greedy reassign open
Input: an instance of model (3); a facility to open j∗ ∈ J \S; a (incomplete/complete) assignment, [x]; the depth d of the

local search reassignment.
Output: status f ∈ {feasible, infeasible} for the given inputs; solution [x], utilization [u], and objective function value

zS .
1: Initialize: S ← S ∪ {j∗}; I′ ← {i ∈ I : xij = 0, ∀j ∈ J}; Rj ← Cj −

∑
j∈I

UiPijxij ,∀j ∈ S.
2: Lines 2-12 from Procedure 1 with line 7 replaced by “break to line 3 in this algorithm”.
3: J ′ ← {j∗}; k ← 0.
4: while k < d do
5: if J ′ = ∅, break to line 18.
6: J ′

k = ∅.
7: for j′ ∈ J ′ do
8: I′′ ← sort({i ∈ I : UiPij′ ≤ Rj , xij′ = 0}, Pij′ , descending).
9: for i ∈ I′′ do

10: if i ∈ I′ and UiPij′ ≤ Rj′

11: xij′ ← 1; Rj′ ← Rj′ − UiPij′ ; I′ ← I′ \ {i}.
12: else
13: j′′ ← arg maxj∈J{xij}
14: if if reassignment better(i, j′, j′′, Rj) = True
15: xij′′ ← 0; xij′ ← 1; Rj′′ ← Rj′′ + UiPij′′ ; Rj′ ← Rj′ − UiPij′ .
16: J ′

k ← J ′
k ∪ {j

′′}.

17: J ′ ← J ′
k; k ← k + 1.

18: if I′ = ∅, f ← feasible; else f ← infeasible.

19: return f ; [x]; uj ←
∑

i∈I
Wij xij

Cj
, ∀j ∈ J ; zS ←

∑
j∈J

Cj(1− uj)2.

Procedure 5 executes both these tasks, and we summarize it next. Here, we begin with a possibly
incomplete assignment of users to the available set of facilities, S, plus a facility j∗ that we consider
opening. This incomplete assignment could arise from a previous iteration of the open greedy algorithm,
or from a previous call to greedy reassign open. The set I ′ is the set of users that are currently
unassigned; this set is empty if we begin with a complete (or, feasible) assignment. Procedure 5 then
determines a (potentially, still incomplete) assignment to the S ∪ {j′} available facilities. If I ′ is not
empty, we use parts of Procedure 1 to greedily assign these users to the available facilities. Afterwards,
or if I ′ is empty, we seek to compute a better assignment. The set J ′ ⊆ J denotes a candidate pool of
facilities we seek to assign users to. The rest of the algorithm conducts a local search to compute the
users assigned to j∗, plus a potential reassignment of users to the S facilities due to the corresponding
increase in their available capacity. We explain this search below.
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For each facility j′ ∈ J ′, we determine the set of users, I ′′, that are candidates for its assignment.
We do so in line 8 accounting for the facility’s capacity and prioritizing by the preferences of users. We
distinguish two cases for each of these candidate users: those that are currently unassigned (line 10),
and those that are currently assigned (line 12). The former case exists only for incomplete assignments;
here, we simply check whether the facility has sufficient capacity for the user (line 10), assign the user,
update the facility’s remaining capacity, and remove the user from set of unassigned users (line 11). This
improves the objective function since previously unassigned users are now assigned. The latter case is for
complete assignments; here, we determine if a reassignment of the user from its existing facility j′′ to j′

is beneficial (line 14). We do so via the if reassignment better procedure defined in Procedure S1 in
Appendix B.1. If so, we conduct the reassignment, update the remaining capacities of the two facilities
involved (line 15), and include the facility j′′ to the candidate pool of facilities J ′

k considered in the next
iteration. After considering all the facilities in J ′, we go to the next iteration. If no reassignments are
made in the previous iteration, we terminate (line 5). Otherwise, the next iteration of the outer while
loop probes deeper within the set of facilities in J ′ in search of an even better assignment. In this sense,
the parameter d determines the “depth” of the local search. Thus, d = 1 indicates that we only seek to
reassign users to j∗, while larger values of d indicate that we additionally reassign users to all the facilities
that lost their users in the immediately previous iteration. Despite this probing, the final assignment
could still be incomplete; we check this in line 18. Even if only an incomplete assignment is computed,
we still return it as it is beneficial in an algorithm that uses this subroutine. Line 19 returns the output.

To summarize, Procedure 5 combines the greedy assign procedure with a local search. This local
search is necessary for ADD-styled algorithms because, unlike DROP-styled algorithms, a natural candidate
set of users to assign to the new facilities is unavailable. If the input assignment is incomplete, then such
a set of users is readily available; however, even then a local search improves on an input assignment.
Next, we describe an algorithm to solve the BFLP, based on the ADD procedure that uses Procedure 5 as
a subroutine.

Algorithm 3 open greedy
Input: an instance of model (1); methods m, m′ for Oracle user assignment defined in Procedure 3; the number of facilities

to consider at each iteration, nc ≤ |J |; a depth d for Procedure 5; a scalar nf ≤ |J | for number of iterations after which
to recompute assignment.

Output: status f ∈ {feasible, infeasible} for the given inputs; if feasible: [x], [y], z.
1: Initialize: S ← ∅; J ′ ← J ; δj ← 0, ∀j ∈ J ; [f, x, u, z]← [infeasible, 0, 0,

∑
j∈J

Cj ].
2: while |S| < B do
3: [f∗, x∗, u∗, z∗, j∗]← [infeasible, 0, 0, +∞, “none′′].
4: for j′ ∈ J ′ do
5: [f ′, x′, u′, z′]← greedy reassign open(I, S, j′, x, d).
6: if (f ′ = feasible or f ′ = f) and z′ < z∗, [f∗, x∗, u∗, z∗, j∗]← [f ′, x′, u′, z′, j′].

7: δj′ ← z′ − z.

8: S ← S ∪ {j∗}; [f, x, u, z]← [f∗, x∗, u∗, z∗].
9: J ′ ← {j ∈ J \ S : indices of smallest nc values of δj} ⊆ J .

10: if |S| ≡ 0 (mod nf )
11: [f ′, x′, u′, z′]← user assignment(I, S, m).
12: if

(
f ′ = feasible and z′ < z

)
, [f, x, u, z]← [f ′, x′, u′, z′].

13: [f ′, x′, u′, z′]← user assignment(I, S, m′).
14: if f ′ = feasible and z′ < z, [f, x, u, z]← [f ′, x′, u′, z′].

15: yj = 1, ∀j ∈ S; else, yj = 0.
16: return f ; [x]; [y]; z.
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Algorithm 3 summarizes this scheme. We initialize the set S of open facilities as empty, and the
candidate pool of facilities to consider at each iteration, J ′, as J (line 1). Since the algorithm begins
with no open facilities, the initial few iterations are infeasible. We thus allow infeasible solutions, until a
feasible solution is available from the previous iterations (line 6). We update the parameter δj whenever
we recompute the change in objective of opening facility j (line 7). We further update the set of open
facilities to include the best facility to open, j∗, (line 8), while we update the candidate pool of facilities
for the next iteration with those that were the best to open in previous iterations based on values of δj

(line 9). As we mention in Section 4.2, we recompute assignments from scratch every nf iterations in
lines 10-12, if needed. Finally, once all the facilities are open, we run a final assignment method, m′, that
potentially improves the constructed assignment (lines 13-14).

As with close greedy, possible improvements include considering a certain number of random fa-
cilities and parallelizing the for loop. We discuss the performance of Algorithm 3 in Section 6.3.2.

4.4 BFLP local search

In this section, we combine two local search algorithms based on ADD and DROP as discussed in [23] into
a single local search algorithm. The central idea of this algorithm is to open and close a facility at each
iteration, where at least one of these is done in the best possible way. If this interchange leads to a better
solution, it is accepted as the current solution. Algorithm 4 presents this scheme that we summarize
below; we present computational results in Section 6.3.3. The algorithm relies on two procedures whose
details we reserve for Appendix B.2: (i) initialize change (Procedure S5) computes the change in
the objective function value, δj , if facility j is closed or opened, and (ii) choose fac based on change

(Procedure S6) chooses randomly the best facility to either open or close.
Algorithm 4 considers two cases whether j′ is currently open (lines 5-13) or closed (lines 14-22).

Consider the first case; the second follows analogously. First, we compute the assignment for when j′ is
closed and update δj′ correspondingly (line 6). Then, we choose a candidate pool of nc facilities, J ′′, to
consider opening from the set of closed facilities, based on the smallest δj values (line 7). We then consider
each facility in J ′′ and find the one to open that leads to the smallest objective function value, based on
j′ being closed and the corresponding assignment [x′] (lines 8). If the objective function improves, we
update the set of open facilities, S, by closing j′ and opening j∗ and update the assignment (line 12).
Additionally, we update J ′ to include all facilities again and negate the values of δ for the two facilities
considered (line 13). We update J ′ as after performing a change facilities that we considered opening or
closing previously might lead to an improvement if we consider them again. We update δ values since
the facilities have swapped from being open to being closed (or vice versa), and the change in objective
function of undoing this is exactly the opposite. We recompute the assignment from scratch after exiting
the while loop (line 23), and update the assignment if required (line 24). Finally, the resulting set of
open facilities S, the assignment x and the objective function value is returned (line 26).

Our computational results in Section 6.3.3 show that Algorithm 4 significantly improves poor fea-
sible solutions. However, good feasible solutions achieved by open greedy and close greedy improve
minimally before stalling the algorithm. Possible extensions to prevent this include beginning with a low
value of nc and increasing it every few iterations, or random perturbation to escape a local optimum,
see e.g. [12,3,4].
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Algorithm 4 BFLP local search
Input: an instance of model (1); a feasible solution to the model (assignment [x], the set of open facilities S with yj = 1,

the objective function value z); method m′ for Oracle user assignment defined in Procedure 3; the number of facilities
to consider each iteration, nc ≤ |J |; a depth d for Procedure 5; an iteration limit l for the main while loop.

Output: status f ∈ {feasible, infeasible}; if feasible, [x], [y], z.
1: Initialize: δ ← initialize change(x, S, z, d); J ′ ← J ; k ← 0.
2: while |J ′| > 0 and k < l do
3: j′ ← choose fac based on change(J, J ′, S, δ); J ′ ← J ′ \ {j′}; k ← k + 1.
4: [f∗, x∗, u∗, z∗, j∗]← [infeasible, 0, 0, +∞, “none′′].
5: if j′ ∈ S

6: [f ′, x′, u′, z′]← greedy reassign(I, S, j′, x); δj′ ← z′ − z .
7: J ′′ ← {j ∈ J \ S : indices of smallest nc values in δj}.
8: for j′′ ∈ J ′′ do
9: [f ′′, x′′, u′′, z′′]← greedy reassign open(I, S \ {j′}, j′′, x′, d); δj′′ ← z′′ − z.

10: if f ′′ = feasible and z′′ < z∗, [f∗, x∗, u∗, z∗, j∗]← [f ′′, x′′, u′′, z′′, j′′].

11: if f∗ = feasible and z∗ < z

12: S ← (S ∪ {j∗}) \ {j′}; [f, x, u, z]← [f∗, x∗, u∗, z∗].
13: J ′ ← J ; δj′ ← −δj′ ; δj∗ ← −δj∗ .

14: else
15: [f ′, x′, u′, z′]← greedy reassign open(I, S, j′, x, d); δj′ ← z′ − z.
16: J ′′ ← {j ∈ S : indices of smallest nc values in δj}.
17: for j′′ ∈ J ′′ do
18: [f ′′, x′′, u′′, z′′]← greedy reassign(I, S ∪ {j′}, j′′, x′); δj′′ ← z′′ − z.
19: if f ′′ = feasible and z′′ < z∗ [f∗, x∗, u∗, z∗, j∗]← [f ′′, x′′, u′′, z′′, j′′].

20: if f∗ = feasible and z∗ < z

21: S ← (S ∪ {j′}) \ {j∗}; [f, x, u, z]← [f∗, x∗, u∗, z∗].
22: J ′ ← J ; δj′ ← −δj′ ; δj∗ ← −δj∗ .

23: [f ′, x′, u′, z′]← user assignment(I, S, m′).
24: if f ′ = feasible and z′ < z, [f, x, u, z]← [f ′, x′, u′, z′].

25: yj = 1, ∀j ∈ S; else, yj = 0.
26: return f ; [x]; [y]; z.

5 Data Sources and Estimation

In this section, we summarize the data we use for our computational experiments in Section 6. An instance
of model (1) requires four parameters: Cj , Ui, Pi,j ,∀i ∈ I, j ∈ J , and B. We solve all instances by varying
the budget parameter B in increments of 10% of |J |; we consider B = |J | × {0.1, 0.2, . . . , 0.9}. We refer
to an average for an instance as that over these nine budgets. We then develop four classes of instances,
two of which employ actual data from Bavaria while two are synthetically generated. Our first instance
class is derived from the set of |I| = 2,060 users and |J | = 1,394 facilities in Bavaria; for details, we refer
to the original data set described in [22]. We refer to this class as Instance I. In previous work, instances
of this class are generally computationally intractable to solve naively. We create a second instance class
that is smaller than the first using only a subset of users and facilities. Here, we choose Bavarian ZIP
codes that begin with 90, 91 or 92. This is the region including Nuremberg, Fürth, Erlangen and the
rural area around them, up to the eastern border of Bavaria. This instance includes |I| = 368 users and
|J | = 234, and we refer to it as Instance II.

Heuristics to solve the BUAP, that we describe in Section 3, additionally require the set of open
facilities, S, as an input. For our computational experiments for the BUAP, we thus derive four additional
instance classes as follows. We first solve the BFLP naively—for both Instance I and Instance II—with
a time limit of 20,000 seconds with B = 0.3|J | and B = 0.9|J |. We then let S be the set of facilities
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opened in the best feasible solution of this MIP for these four instance classes. We refer to these four
instances as Instance I-30, Instance I-90, Instance II-30 and Instance II-90, respectively. For the BUAP,
Instance I-90 and Instance II-90 include a larger number of decision variables than Instance I-30 and
Instance II-30, respectively. However, Instance I-30 and Instance II-30 have a lower available capacity
per user which leads to a computationally more challenging model; e.g., the ratio

∑
j Cj/

∑
i Ui is 0.71

and 1.01 for Instance I-30 and Instance I-90, respectively. Additionally, we create two instances of the of
SCUAP with sufficient capacity by taking Instance I, but forcing Cj =

∑
i∈I UiPij ,∀j ∈ J . We then follow

the above procedure to create Instance I-S30 and Instance I-S30.
Next, we describe the construction of our two artificial data classes. We do so to further test the

performance of our heuristics on new data, and consider these in Section 6.3.4 alone. We reserve details
on the construction of this data set for Appendix C, and only summarize our estimation procedure
here. We begin by randomly choosing n pairs of longitudes and latitudes to construct a “rectangle”. By
varying the size of this rectangle, we encompass different subareas of Germany (potentially including all
of Germany). We restrict Ui to uniformly random values within a range. We artificially place facilities
near the geodesic coordinates of the users with a small Gaussian probability, and choose Cj again within
a uniform range. Finally, we estimate the parameter Pij using the exponential decay formula based on
the distance between user and facility used in [22]. With this procedure, we create two instances : a large
but sparse (n = 5, 000) and a small but dense (n = 1, 500) instance. We refer to these two instances
as Instance III and Instance IV, respectively. The former instance includes a rectangle nearly the size
of Germany with |I| = 5,000 users and |J | = 2,497 facilities. The latter instance has |I| = 1,500 users
and |J | = 425 facilities with users having larger preferences for facilities than the first instance. The
average number of facilities within a 5 kilometer radius of any user is 0.84 and 1.20, for Instance III and
Instance IV, respectively; i.e., there are more facilities near each user in Instance IV.

6 Computational Results and Analysis

6.1 Setup

Next, we provide computational results for the heuristics discussed in Section 3 and Section 4. We begin
in Section 6.2 with our results for the BUAP. We then present results for the BFLP: (i) in Section 6.3.1, we
show that the two progressions of the close greedy algorithm indeed lead to improved solutions, (ii) in
Section 6.3.2, we present results for the open greedy algorithm, (iii) while in Section 6.3.3, we examine
whether our BFLP local search heuristic improves the previously obtained results. Finally, in Section 6.3.4,
we compare the different heuristics against each other and also against the algorithm developed in [21].

We perform all computational experiments on the DelftBlue [5] system with 1 core on an Intel XEON
E5-6248R 24C 3.0GHz processor with Pyomo version 6.4.2 and Gurobi version 9.5.2. We run all models
with the default setting of the Gurobi parameters, apart from setting NodeMethod to 2 when solving the
BFLP MIP. Our code and data is available at https://github.com/Malena205/heuristics_quadratic_

facility_location. In what follows, we compare the solutions of our heuristics to the best feasible
solution achieved by naively solving the MIP. We do so in two ways: (i) by allowing the MIP to run for
20,000 seconds, and (ii) by running it for exactly the same time as that taken by the heuristic (which is
significantly lesser). For fairness of comparison, in the latter case, we do include the time taken to build
the optimization model, while the 20,000 seconds are only the time for running the actual optimization,
not including the time to build the model. Then, we report results for the quantity objMIP −objh

objMIP
, and

denote it by ∆MIP and ∆S for the two above-mentioned cases, respectively; here, objMIP and objh
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denote the objective function values obtained naively and using a heuristic, respectively. Then, positive
values of ∆ denote that the heuristic outperforms the naive solver. We use a 1% tolerance for |∆|; i.e.,
we consider all values of |∆| ≤ 0.01 as zero and denote these with a dash (-).

In the implementation of relaxation rounding, we reduce the number of x variables by considering
only nr < |S| facilities to determine a user’s most preferred facilities; i.e., we reduce the |I||S| combina-
tions to |I|nr. We do so since a suboptimal fractional solution for the BUAP that is obtained fast serves
our purpose. The choice of nr is arbitrary — fewer facilities are required if they are sufficiently spread
out. In our computational experiments, we find nr = 20 performs well; if we use relaxation rounding

as the final assignment method, m′, we use nr = 50. If the corresponding models are infeasible, we
rebuild with a new set of 20 preferred facilities. This idea is different from that proposed in [22], where a
cut-off for the preference is used. Specifically, in [22] only (i, j) pairs where Pij ≥ 0.2 are considered and,
further, constraint (1d) is relaxed to an inequality. This requires a post-processing model, as some users
are left unassigned [22]. Our approach obviates this need, and requires neither the post-processing model
nor the relaxation to an inequality. However, we include these cutoffs in the implementation of the local
search heuristics, since it ensures a greater likelihood of obtaining improved solutions and significantly
reduces computational effort, see, e.g., [20].

6.2 Analysis: Heuristics for the BUAP

We now discuss our computational results for the greedy assign and relaxation rounding procedures,
that we mention in Section 3, to solve the BUAP; further, we compare both the heuristics with and without
the two local search additions of Section 3.3 (reassign and swap). Table 1 presents results for both the
SCUAP (first two columns) and BUAP (last four columns). The first observation we make is that all our
heuristic methods succeed in finding feasible solutions no more than 1.3% worse than those obtained
naively; further, the heuristics achieve the same or better solution in 18 of the 36 cases we present in
Table 1. Importantly, the heuristics take no more than 12 seconds — while the naive solution method
can still fail to achieve the corresponding objective function value even in 20,000 seconds.

Table 1: Results of the different BUAP heuristics on different instances. A “-” indicates a gap of zero within our considered
tolerance. Times are rounded up to the nearest integer. ∆MIP is defined in Section 6.1. Within 20,000 seconds,
Instance I-30, Instance I-90, and Instance I-S90 are solved to a MIP gap of 0.02%, 0.35%, and 90.9%, respectively, while
all other instances are solved optimally. relaxation rounding is run with nr = 20. For details, see section 6.2.

Instance
I-S30

Instance
I-S90

Instance
I-30

Instance
I-90

Instance
II-30

Instance
II-90

Heuristic
Local
search

Run
time

[s]

∆MIP

[%]

Run
time

[s]

∆MIP

[%]

Run
time

[s]

∆MIP

[%]

Run
time

[s]

∆MIP

[%]

Run
time

[s]

∆MIP

[%]

Run
time

[s]

∆MIP

[%]

relaxation
rounding

none 9 - 12 6.55 12 -0.28 11 -0.09 7 - 3 -

reassign 9 - 12 6.55 12 -0.09 11 -0.05 7 - 3 -

swap 9 - 12 6.55 12 -0.26 11 -0.05 7 - 3 -

greedy
assign

none 1 - 1 6.55 1 -1.31 1 -1.13 1 -1.05 1 -0.71

reassign 1 - 2 6.55 1 -0.25 2 -0.17 1 -0.21 1 -0.03

swap 1 - 2 6.55 1 -1.12 2 -0.99 1 -1.04 1 -0.68
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Within the considered time limit, we naively obtain an optimal solution in 6,567, 15, and 31 seconds
for Instance I-S30, Instance II-30, and Instance II-90, respectively, including the time to build the models.
For Instance I-S90, Instance I-30, and Instance I-90 we terminate with an optimality gap of 90.9%, 0.02%,
and 0.35%, respectively. We first discuss the two SCUAP instances. The small Instance I-S30 is solved to
optimality both naively and by each of the six heuristics; however, the larger Instance I-S90 is challenging
to solve naively. Here, the naive solver spends its entire quota of 20,000 seconds on the root node itself,
terminating with an optimality gap of 91%. In contrast, the heuristics take only a few seconds and still
achieve solutions over 6.6% better than those obtained naively. For the other four columns, relaxation

rounding achieves nearly the same objective function value as that obtained naively on 6 of the 12 cases.
In contrast, greedy assign fails to do so for even a single case. However, invoking these procedures
multiple calls could still slow algorithms for the BFLP, e.g., a single run of relaxation rounding takes
about 10 seconds for the larger four instances. Interestingly, run times for relaxation rounding are
marginally larger for smaller budgets than the larger ones, suggesting more reassignments are required
to make the solution feasible after rounding. Further, run times of relaxation rounding are five to
ten times larger than greedy assign, although the former achieves better solutions. These observations
suggest invoking greedy assign multiple times for user assignment within algorithms that solve the
BFLP, while using relaxation rounding only as the final user assignment method in our algorithms.
This empirical observation our proposal for different choices of m and m′ in Section 4, and we follow
this in the forthcoming sections. Finally, comparing the local search heuristics, local search reassign

demonstrates the most value. ∆ values for it are at least as good (i.e., large) as both no local search or
swap for all of the eight cases with comparable run times. In contrast, local search swap does not lead
to any significant improvements.

We now summarize our recommendations for which heuristics to use for the BUAP. Since we call these
procedures several times, our aim here is to achieve solutions with very little computational effort. Our
results suggest significant value in using the local search additional to the heuristics, as it is fast and
significantly improves the previously obtained solution. Comparing our two local search schemes, we find
reassigning users to be superior than swapping them both in terms of improving the objective function
value and the run times. Overall, we find the greedy assign with local search reassign to be the
best performer. In contrast, if run times are a lesser concern we suggest using relaxation rounding

with local search reassign since it leads to results identical or better than the MIP for 4 out of the
6 instances while greedy assign with local search reassign only achieves this on 2 out of the 6
instances.

6.3 Results heuristics BFLP

In this section, we discuss the results of the heuristics we mention in Section 4 to solve the BFLP.
We begin by studying the effect of the improvements made to close greedy basic, and determining
sensible values of the nc parameter for close greedy. Then, we present results for the open greedy

algorithm by varying the nc, nf and d parameters. For the BFLP local search algorithm, we discuss
how many iterations are needed and whether employing the δj parameter to choose facilities has value.
We conclude with a summary and recommendations of the choice of the heuristics. Following our results
from Section 6.2, we use m′ =relaxation rounding with local search reassign as the final user
assignment method all throughout.
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6.3.1 Analysis: close greedy

We now present results for the close greedy algorithm as it progresses through its three versions. We
provide detailed computational results in Table S1-Table S3 in Appendix D.1, while Figure 2 displays
the improvements of the algorithm across its different versions. We use nr = 20 for Step 1 and nr = 50
for Step 2 and 3, and vary the parameters m and nc.

We start by discussing the results of close greedy basic. On the smaller instance (Instance II),
average values for ∆MIP and ∆S using m = greedy assign and nc = |J | are -0.13% and 0.23%,
respectively. With a run time of (on average) only 371 seconds, the close greedy achieves nearly the
same solution as that obtained naively — even without any of the two forthcoming versions. Within
nearly this same time, using m = relaxation rounding and nc = 5 instead performs relatively poorly:
∆MIP and ∆S values are on, average, at -19.72% and -19.24%, respectively. This provides further support
from our conclusions drawn from Section 6.2 in favor of using m = greedy assign and m′ = relaxation

rounding. On the larger instance (Instance I), using nc = |J | is computationally prohibitive even with
m = greedy assign; instead, we use nc = 5 which provide average ∆MIP and ∆S values of -24.63%
and -22.07%, respectively. The latter average is only taken over the budgets where the MIP solver finds
a solution by the time the heuristic terminates, which is only the case for three budgets. The run time
is 1,973 seconds on average, which suggests increasing nc further is computationally prohibitive. As the
∆ values in Table S1 of Appendix D.1 demonstrate, the first version (or, Step 1) of close greedy does
not provide a strong competition to the naive solver.

(a) Instance I (b) Instance II

Fig. 2: Performance of the close greedy algorithm for its three steps. The initial and final assignment methods are m =
greedy assign with local search reassign and m′ = relaxation rounding with local search reassign, respectively.
We use nr = 50 for both Step 2 and Step 3; for Step 1, we do not use local search and use nr = 20. For details, see
Section 6.3.1.

Although increasing nc is computationally demanding, it is one way to reduce the ∆. As we mention
in Section 4.2, in the second version we reuse the previous iteration’s assignment thereby speeding up the
algorithm. Since this requires the method m to only be used once, from now onward we include local

search reassign with m. Step 2 speeds up the algorithm; alternatively, this version can be viewed as
being able to increase nc for Instance I while keeping similar run times. For Instance I and Instance II
being run with nc = 200 and nc = |J |, respectively, average ∆MIP values are now -4.58% and -0.11%,
respectively, and average run times are 1,979 and 20 seconds, respectively (Table S2a and Table S2b
in Appendix D.1). Thus, for Instance II, average run time decrease by an order of magnitude from 372
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seconds to 20 seconds while still being able to maintain nc = |J |. This large decrease in run time is
depicted in Figure 2b.

The third and final version instead allows us to decrease nc while still improving the ∆ values; see
Table S2-Table S3 in Appendix D.1. As we mention in Section 4.2, this step changes the way we choose
the nc facilities to consider at each iteration. For Instance II, with nc = 5 the algorithm only takes three
seconds on average while having the same average ∆MIP value as in the previous step. Increasing nc to
50 increases the run time to only seven seconds (on average) while each of the nine ∆MIP values are
now the same as in the previous step. For Instance I, the results follow a similar trend: at both nc = 5
and nc = 50 an average ∆MIP of 0.41% is achieved with average run times of 115 and 560 seconds,
respectively. We further note that not even a single feasible solution is obtained naively in the entire
time of completion of the heuristic.

To conclude, both the additional steps to the algorithm we discuss in Section 4.2 significantly improve
its performance. Not completely recomputing the assignment but instead adapting it leads to a large
decrease in run time, while choosing which facilities to consider based on their performance in previous
iterations leads to a large improvement in the objective function value achieved. With this latter im-
provement, even when only five facilities are considered at each iteration, the results are significantly
improved and further increasing nc only improves the solution quality marginally. These results suggest
that our heuristics manage to select the “correct” facilities—even when our candidate pool of facilities
shrinks to nc as opposed to |J |—since the objective function values are at least those obtained naively.

6.3.2 Analysis: open greedy

We now present results for the open greedy algorithm by varying its parameters; we again reserve
detailed computational results for Appendix D.2. Similar to Section 6.3.1, we use m = greedy assign

with local search reassign and m′ = relaxation rounding with local search reassign for the
initial and final assignment methods. There are three important parameters to consider: nf , nc and d. For
most budget values, we observe no significant change (results not shown) by varying nf that determines
the frequency of recomputing assignments; thus, we do not recompute assignments from scratch. We
consider nc = 5, 50, and |J | that determines the size of the candidate pool of facilities at each iteration.

Similar to our results for close greedy, varying nc provides little improvement in the objective
function values; see, Table S4b and Figure 3b for details. For Instance II, the average ∆MIP values are
-0.05%, -0.02%, and -0.02% with average run times of 3.5, 9.8 and 28.8 seconds for nc = 5, 50 and |J |,
respectively, when d = 1; i.e., the improvements are marginal. Thus, fixing nc = 5, we vary the parameter
d next. For d = 1, 2, 3, the average ∆MIP values are −0.05%, −0.03% and −0.01% with corresponding
run times of 3.5, 4.6 and 5.3 seconds, respectively. Similar observations follow on Instance I, except with
larger run times, see Table S4a and Figure 3a. For d = 1, 2, 3, the corresponding ∆MIP values are 0.44%,
0.50% and 0.50% with run times of 98, 149 and 195 seconds, respectively (for nc = 5). Varying nc from
5 to 50, again has little effect: ∆MIP values improve by only 0.02, 0.01 and 0.02 percentage points for
d = 1, 2, 3, respectively. We thus conclude that increasing d from 1 to 2 improves the results as expected
— but by only a small magnitude; increasing d to 3 is not worth the extra computational effort.

Summarizing, our results follow a similar trend as close greedy. Varying the parameter values
naturally affects the obtained solutions, however the heuristics are sufficiently capable of finding high
quality feasible solutions without any major effort in tuning the parameters. In this sense, the algorithms
are robust against parameter choices. Small value of nc and d = 2 both achieve feasible solutions within
half percent of those obtained naively in run times that are two orders of magnitude lesser.
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(a) Instance I (b) Instance II

Fig. 3: Performance of the open greedy algorithm for choices of nc and d. The initial and final assignment methods are
m = greedy assign with local search reassign and m′ = relaxation rounding with local search reassign,
respectively. We use nr = 50. For details, see Section 6.3.2.

6.3.3 Analysis: BFLP local search

We now present results for the BFLP local search. To determine the value of such an additional local
search, we conduct two experiments. First, we check its performance when initialized with a poor quality
feasible solution. For this, we consider the initial solution of basic close greedy with m = greedy

assign on Instance I, which has an average ∆MIP of -24.6%. We run local search with nc = 50 and
d = 2; higher values of d do not provide any benefit. In 200 iterations of Algorithm 4, the average ∆MIP

increases to -0.67% in an average of 373 seconds; while, after 1,000 iterations, the average ∆MIP increases
to 0.2% in an average of 1,287 seconds. This demonstrates the significant value of BFLP local search

in improving feasible solutions. For more detailed results of this experiment, see the left half (“With
δ”) of Table S5 in Appendix D.3 and also Figure 4a. Second, we ascertain the value of employing the
δ parameter; in Section 6.3.1, we demonstrated this value for close greedy. We compare our results
against a scenario that does not use the δ parameter and instead randomly chooses facilities; see right
half (“With random choices”) of Table S5. Then, in 200 iterations of BFLP local search, the average
∆MIP increases to only −8.14% (as opposed to -0.67% using δ). This experiment again demonstrates
the importance of a tailored procedure such as that we employ in achieving high quality solutions.

Next, we consider the performance of BFLP local search when initialized with good output solutions
from close greedy and open greedy. Our best feasible solution (until now) for Instance I is obtained
through open greedy with nc = 50, d = 3; the corresponding average ∆MIP value is 0.52%. The local
search is unable to improve upon this average ∆MIP value further in 200 iterations with nc = 50 and
d = 2; see, Table S6 in Appendix D.3. With the same parameters for the local search, only a marginal
improvement for close greedy’s best solution is achieved: starting with an average ∆MIP of 0.41%, the
local search increases this to 0.46%, 0.48%, and 0.49% after 20, 100, and 200 iterations respectively; see,
Table S7a and Figure 4b. We observe that even this small improvement is made within the early few
iterations and larger values of the depth parameter, d, and the parameter nc do not create significant
differences either (average ∆MIP is also 0.46% after 20 iterations when using nc = 5, d = 1 while taking
an average of 87 seconds instead of the 130 seconds with nc = 50, d = 2). Table S7b in Appendix D.3
provides additional details on the computations with nc = 5, d = 1.

To summarize, small values of both nc and d are sufficient for improvement via BFLP local search;
further, only a few iterations are necessary. This also demonstrates that the solutions of close greedy
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and open greedy are already close to a local optimal. These results are in part due to the sophisticated
choices of the δ parameters in all of our three heuristics.

(a) Initialized with solution from close greedy Step 1 (b) Initialized with solution from close greedy Step 3

Fig. 4: Performance of the BFLP local search with nc = 50, d = 2 on Instance I. The final assignment method is m′ =
relaxation rounding with local search reassign. We use nr = 50. These run times are for the local search alone. For
details, see Section 6.3.3

.

6.3.4 Analysis and Recommendations: Comparison of all heuristics

As we mention before, the aim of this work is to find good feasible solutions with reasonable computational
effort. We now summarize our findings of Section 6.3.1-6.3.3 to provide recommendations on which
algorithms are best suited for this purpose. To further support these recommendations, we also present
results of how the heuristics perform with the chosen parameters on two additional instances, which are
described in Section 5. Although our suggestions are based on the BFLP, we believe the general guidance
extends to other, and, possibly, new FLPs as well.

We start by comparing all our presented algorithms—namely close greedy and open greedy with
and without BFLP local search and the algorithm of [21]—to each other. In this sense, we externally
validate how robust our algorithms are, while still using the parameters we identified to be the best
in Section 6.3.1-6.3.3. Specifically, we run open greedy with d = 2 and nf = |J | (since recomputing
assignments from scratch did not lead to any major improvements), open greedy and close greedy

with nc = 5, BFLP local search with nc = 5, d = 1 for 100 iterations, and the algorithm of [21] until
there is no change for 100 iterations. Table 2 provides this summary of these five algorithms.

First, all our considered heuristics perform better than the previously proposed method of [21]; across
the 36 cases, close greedy with and without BFLP local search and open greedy with and without
BFLP local search improve average ∆MIP values by 3.13, 3.19, 3.16 and 3.21 percentage points. Thus,
in what follows, we compare our heuristics against the naive solution method, as indicated by ∆MIP .
Our heuristics perform better than the naive solver for almost all cases of the more challenging Instance I
and Instance III, especially at lower budgets; this is likely due to the naive solver struggling with the
greater number of combinatorics involved see, panels “Instance I” and “Instance III” of Table 2.

Our results indicate no clear consensus between the performance of open greedy and close greedy

across the four instances; this observation is different to that made in [1] where a greedy algorithm
for the critical node problem based on dropping elements clearly outperforms a greedy algorithm that
adds elements. On Instance I, Instance II, and Instance IV, open greedy is slightly better than close

greedy with an average improvement in ∆MIP of 0.09, 0.08, and 0.08 percentage points, respectively.
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On Instance III, close greedy performs better by an average improvement of ∆MIP of 0.15 percentage
points. This is likely due to nc = 5 not being sufficiently high for this very large instance for open greedy.
By increasing nc to 10 in open greedy, the ∆MIP improves by an average of 0.15 compared to the open

greedy solution with nc = 5, making the average the same as for close greedy with nc = 5. Increasing
nc further to 50 improves this average by less than 0.01 percentage points compared to the open greedy

nc = 10 solution, suggesting that nc = 10 is sufficient for this large instance. Based on this observation,
we suggest considering at least 0.5% of all the facilities in each iteration, i.e. nc ≈ 0.005|J |. However,
we also observe worse performance when nc = 0.005|J | ≈ 1 is used on the smallest instance, Instance II.
In particular, when using close greedy the average ∆MIP on this instance is -0.34% when nc = 1 and
-0.11% when nc = 5 while average run times are identical; see, details in Table S3b in Appendix D.1.
Hence, we additionally recommend an absolute lower bound of nc ≥ 5.

The budget, B, provides an indicator of the choice between close greedy and open greedy. Run
times are larger at lower budgets for close greedy and larger at larger budgets for open greedy.
Thus, for a budget of more than half the total number of facilities, we recommend using close greedy;
otherwise, we suggest using open greedy. There are no significant differences in the ∆MIP between these
two heuristics.

We find the parameter d is guided by how “dense” an instance is; i.e., the number of facilities a user
prefers in some radius. For denser instances, we recommend increasing d to two, but not more. This
is preferable than increasing nc; as our results in Section 6.3.1 and Section 6.3.2 show increasing nc

beyond our recommended value increases the run time without any significant effect on ∆MIP . Finally,
recomputing assignments from scratch did not lead to any improvements in our experiments, and thus
the parameter nf is of no use.

The BFLP local search results in only marginal improvements as our results in Section 6.3.3 and
Table 2 show. For Instance I to Instance IV, across both open greedy and close greedy, the BFLP

local search results in an average improvement in ∆MIP of only 0.03, 0.05, 0.07 and 0.07 percentage
points, respectively. Further, running the local search beyond 100 iterations leads to very small or no
improvement, and we do not recommend running it beyond this point.

Summarizing, our results demonstrate value on employing such tailored heuristics on the BFLP. This
value is especially significant for larger and computationally challenging instances, such as those of the
size of Germany or those with insufficient capacities to accommodate all users. We recall that our results
do not include the time taken to build the model naively, which for the largest instance, Instance III,
is itself about an hour. Despite this, the heuristics always achieve solutions comparable or better than
those obtained naively in run times that are two or three orders of magnitude lesser.

7 Conclusion

We conclude with a summary of our main findings from this work. We perform a theoretical and compu-
tational study of two new problems for the discrete optimization community: the BFLP and the BUAP. We
begin our work by showing that both these problems are NP-complete. Motivated by this result, and also
from computational evidence of the MIP solver struggling to solve large instances with limited capacity,
we developed heuristics for both of these problems. Our heuristics for the BUAP were further inspired by
use as subroutines for the heuristics of the BFLP, however they also have value within their own right.
We show that our relaxation rounding heuristic outperforms the greedy algorithm developed in [21].
Additionally, we find that a local search that reassigns users performs significantly better than a local
search that swaps assignments of users.
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For the BFLP we developed two tailored algorithms, close greedy and open greedy, and one local
search algorithm, the BFLP local search. Our algorithms are rooted in ideas prevalent in the FLP
literature, especially those for solving the CFLP as described in [7]. However, adapting these to our
problems requires several amendments leading them into an almost new form. We found two factors to
be particularly relevant in improving the performance of the algorithms. The first important observation
is that it suffices to adapt an assignment instead of completely recomputing it. In particular, if a single
facility is closed (or, opened) it is sufficient to start with the original assignment and simply reassign
users where this is necessary. The second idea that performs very well in our experiments is to choose a
candidate set of facilities to close (or, open) based on a measure of how good they were to close (or, open)
in a previous iteration. As instances become larger, it becomes intractable to consider all facilities at all
steps of an algorithm. This choice of restricting the algorithm to only a few facilities worked exceedingly
well in practice; even considering only 5 facilities on instances that have more than 1, 000 facilities shows
merit.

Our heuristics outperform both the previously proposed greedy heuristic in [21] as well as the naive
solver. Specifically, such computational challenges arise from either the size of the problem (e.g., facilities
throughout Germany) or insufficient capacity. In this setting, our heuristics achieve comparable or better
results in less than 15 minutes than what a naive solution method achieves in 5.5 hours. Importantly, the
heuristics do not require detailed fine tuning of the parameters — typically, even the primitive version
of our algorithms is sufficient to achieve good performance. For example, the local search algorithm
developed for the BFLP only marginally improves upon the results achieved by both close greedy and
open greedy; however, we show that the local search algorithm is especially good at quickly improving
poor starting solutions.

Future work could consider extensions on at least two grounds. First, it could investigate in greater
detail reasons that the same pool of candidate facilities at different iterations of close greedy and
open greedy performs well. Here, a study of the δ parameter could be performed as well. Second,
the performance of the heuristics on the generic generalized quadratic assignment problem and the
corresponding facility location problem could be considered.
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