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Abstract

We describe a parametric univariate quadratic optimization problem for
which the moment-SOS hierarchy has finite but increasingly slow convergence
when the parameter tends to its limit value. We estimate the order of finite
convergence as a function of the parameter.

1 Introduction

The moment-SOS (sum of squares) hierarchy proposed in [9] is a powerful ap-
proach for solving globally non-convex polynomial optimization problems (POPs)
at the price of solving a family of convex semidefinite optimization problems (called
moment-SOS relaxations) of increasing size, controlled by an integer, the relaxation
order. Under standard assumptions, the resulting sequence of bounds on the global
optimum converges asymptotically, i.e., when the relaxation order goes to infinity
[6, 5, 15]. We say that convergence is finite if the bound matches the global opti-
mum at a finite relaxation order, i.e., solving the relaxation actually solves the POP
globally. In this case, we also say that the relaxation is exact. It is known that con-
vergence is finite generically [14], which means that POPs for which convergence is
not finite are exceptional. In the specific case of minimizing a univariate polynomial
of degree d over either the real line, a given closed interval or [0,∞), finite conver-
gence systematically occurs at the minimal relaxation order dd/2e as a consequence
of [4, 17] (see also [10, § 2.3] for a modern exposition) when the interval is described
with a proper set of linear/quadratic inequality constraints. In addition to finite
convergence occurring systematically in such univariate POPs, one can even bound
the running time required to compute the resulting SOS decompositions when the
input data involve rational coefficients [12, 13].
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Restricting our attention to POPs on compact sets, several elementary examples
without finite convergence are known. A simple example in the univariate case is
minx∈R x s.t. − x2 ≥ 0, see [1, Ex. 1.3.4] or [15, §2.5.2]. A less contrived bivariate
example is minx∈R2(1−x21)(1−x22)s.t.1−x21 ≥ 0, 1−x22 ≥ 0, see [2, Prop. 29]. Many
results on the speed of convergence of the moment-SOS hierarchy are now available,
see, e.g., [1, 19]. However, they are practically not useful since the rates are asymp-
totic, for very large values of the relaxation order. In practice, when implementing
the moment-SOS hierarchy on low-dimensional benchmark POPs, we observe a fi-
nite and fast convergence of the hierarchy, see, e.g., the original experiments carried
out in [7]. To the best of the authors’ knowledge, almost nothing is known about
the speed of convergence for small relaxation orders, when the convergence is finite.

The contribution of this note is to describe and study the elementary bounded
univariate quadratic POP

minx∈R x
s.t. 1− x2 ≥ 0

x+ (1− ε)x2 ≥ 0,

parametrized by a scalar ε ∈ [0, 1], such that the convergence of the moment-SOS
hierarchy is finite, but arbitrarily slow, when ε tends to zero. We estimate the order
of finite convergence as a function of ε.

Our contributions can be summarized as follows:

� Finite convergence holds for all ε ∈ [0, 1] and integer d (Theorem 1);

� There exist steps / threshold values εd ∈ [0, 1] for the exactness of the relax-
ation of order d (Theorem 2);

� We provide bounds εd ≤ εd ≤ εd to estimate the convergence speed of the
hierarchy (Theorem 3).

Interestingly, this implies that we are able to generate simple univariate POPs with
arbitrarily large convergence orders.

2 POP design

In this section we explain how our parametric univariate quadratic POP is designed.

2.1 Circle and two lines

The following example is motivated by sparse optimization problems involving the l0
pseudonorm: it was recently observed that such problems are well-structured when
projected onto the unit sphere, as l0(x) = L0(

x
||x||2 ), where L0 is a proper lower

semicontinuous convex function, introduced in [3]. Consequently, such problems
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log 1/ε v1(ε) v2(ε) v3(ε) v4(ε) v∗(ε)
1 −6.3212 · 10−1 0 0 0 0
2 −8.6466 · 10−1 0 0 0 0
3 −9.5021 · 10−1 −1.4794 · 10−1 0 0 0
4 −9.8168 · 10−1 −4.5993 · 10−1 0 0 0
5 −9.9326 · 10−1 −7.3383 · 10−1 0 0 0
6 −9.9752 · 10−1 −8.8837 · 10−1 −5.1426 · 10−2 0 0
7 −9.9909 · 10−1 −9.5672 · 10−1 −2.9832 · 10−1 0 0
8 −9.9966 · 10−1 −9.8376 · 10−1 −6.0489 · 10−1 0 0
9 −9.9988 · 10−1 −9.9398 · 10−1 −8.2055 · 10−1 −1.9947 · 10−3 0
∞ -1 -1 -1 -1 -1

Table 1: Lower bounds vd(ε) on the value v∗(ε) of POP (2) obtained with the
moment-SOS hierarchy, for increasing relaxation orders d and different values of ε.

can be reformulated as convex programs over the unit sphere, where L0 — hence l0
— can be approximated as closely as desired by a polyhedral function [11].

It is in this context that we introduced the following toy problem, which turns out
to be a bivariate quadratic POP:

v∗(ε) = minx∈R2 x1
s.t. x21 + x22 = 1

1− ε+ x1 − (1− ε)x2 ≥ 0
1− ε+ x1 + (1− ε)x2 ≥ 0

(1)

where ε ∈ [0, 1] is a given parameter. The non-convex feasible set is the half circle
{x ∈ R2 : x21 + x22 = 1, x1 ≥ 0}. The first affine constraint is saturated for x ∈
{(−1 + ε, 0), (0, 1)} and the second affine constraint is saturated for x ∈ {(−1 +
ε, 0), (0,−1)}. Geometrically it follows that v∗(ε) = 0 for all ε ∈ (0, 1] and v∗(0) =
−1, so that the value function is lower semi-continuous, with a discontinuity at 0.

2.2 Circle and parabola

Let us replace the two affine constraints in POP (1) with a parabolic constraint
saturated for x ∈ {(−1 + ε, 0), (0, 1), (0,−1)}:

v∗(ε) = minx∈R2 x1
s.t. x21 + x22 = 1

1− ε+ x1 − (1− ε)x22 ≥ 0
(2)

where ε ∈ [0, 1) is a given parameter. The value function v∗(ε) is unchanged.

On Table 1 we report the values of the lower bounds vd on the value v∗ of POP (2)
obtained with the moment-SOS hierarchy and the semidefinite solver SeDuMi, for
increasing relaxation orders d = 1, . . . , 4 and different values of log 1/ε. We report
0 when the bound is less than 10−7 in absolute value.
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Figure 1: Nested projections on the first degree moments of the moment relaxations
for increasing orders d = 1, . . . , 4, from dark to clear gray.

We observe that the hierarchy converges to the optimal value at finite relaxation
order, but convergence is slower when ε tends to zero.

On Figure 1 we represent the nested projections on the first degree moments of the
moment relaxations for orders d = 1, . . . , 4, for the case ε = 3 · 10−3. They are
outer approximations of the convex hull of the feasible set, namely the half disk
{x ∈ R2 : x21 + x22 ≤ 1, x1 ≥ 0}. While the relaxation of order 4 is the half disk, we
observe that the lower order relaxations are not tight.

2.3 Univariate parabolic reduction

Letting x22 = 1− x21, we can reformulate bivariate POP (2) as the univariate POP

v∗(ε) = minx∈R x
s.t. 1− x2 ≥ 0

x+ (1− ε)x2 ≥ 0
(3)

where the constraint 1 − x2 ≥ 0 keeps track of positivity of x22. The feasible set of
POP (3) is the segment [0, 1] if ε ∈ (0, 1]. If ε = 0, the feasible set is the non-convex
union of [0, 1] and {−1}. Next we recall the moment-SOS hierarchy of semidefinite
relaxations to approximate as closely as desired the solution of POP (3).

Let R[x]d denote the vector space of polynomials of x of degree up to d, and let
Σ[x]2d ⊂ R[x]2d denote the convex cone of polynomials that can be expressed as sums
of squares (SOS) of polynomials of degree up to d. Given p(x) =

∑2d
a=0 pax

a ∈ R[x]2d
and y ∈ R2d+1, define the linear functional `y such that `y(p(x)) =

∑2d
a=0 paya. The

relaxation of order d of the moment-SOS hierarchy for POP (3) consists of solving
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the primal moment problem

momd(ε) = infy∈R2d+1 `y(x)
s.t. `y(p(x)) ≥ 0,∀p ∈ Σ[x]2d

`y((1− x2)p(x)) ≥ 0,∀p ∈ Σ[x]2(d−1)
`y((x− (1− ε)x2)p(x)) ≥ 0,∀p ∈ Σ[x]2(d−1)
`y(1) = 1,

(4)

and the dual SOS problem

sosd(ε) = supq,r,s,v v
s.t. x− v = q(x) + r(x)(1− x2) + s(x)(x+ (1− ε)x2)

q ∈ Σ[x]2d, r ∈ Σ[x]2(d−1), s ∈ Σ[x]2(d−1), v ∈ R.
(5)

Thanks to the constraint 1 − x2 ≥ 0, these are semidefinite optimization problems
without duality gap [8]:

vd(ε) := momd(ε) = sosd(ε).

We say that the relaxation of order d is exact when vd(ε) = v?(ε). A sufficient
condition for exactness is when this latter value is attained in the SOS dual, namely

x− v?(ε) = q(x) + r(x)(1− x2) + s(x)(x+ (1− ε)x2), (6)

for some SOS polynomials q, r, s of appropriate degrees.

The values of the lower bounds vd(ε) on the value v∗(ε) of POP (3) obtained with
the moment-SOS hierarchy are the same as the one reported in Table 1.

3 Analysis

The aim of this section is to explain analytically how the numerical values of Table
1 follow the staircase pattern of Figure 2. The gray region on Figure 2 corresponds
to values of d and ε for which the relaxation is exact, i.e., vd(ε) = v∗(ε). The steps
of the staircase correspond to limit values εd such that for all ε ≥ εd, the relaxation
of order d is exact.

Theorem 1 shows that we indeed have a staircase geometry. Theorem 2 shows that
the staircase has genuine steps, i.e., the limit values εd can be attained. Finally,
Theorem 3 gives explicit lower and upper bounds on εd as functions of d, to quantify
the slope of the staircase.

3.1 Finite convergence

Theorem 1. For any ε ∈ [0, 1], the moment-SOS hierarchy converges in a finite
number of steps. In particular vd(0) = −1 for all orders d, and for all ε ∈ (0, 1] one
has vd(ε) = 0 for a finite relaxation order d depending on ε.
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Figure 2: Staircase pattern of the moment-SOS hierarchy: the gray region corre-
sponds to values of relaxation order d and parameter ε for which the relaxation is
exact. The steps correspond to threshold values ε2 ≥ ε3 ≥ · · · ε5 for each degree.

Proof. If ε = 0, Equation (6) admits the elementary solution v1(0) = v∗(0) = −1
for q = 0, r = 1 and s = 1, so the first relaxation is exact.

We now consider ε ∈ (0, 1]. POP (3) has a unique local and global minimizer x∗ = 0
over its feasibility set [0, 1].

Both the tangent cone and the linearized cone at x∗ are equal to R+, so that the
constraints are qualified.

We now introduce the Lagrangian

L(x, µ) = x− µ1(1− x2)− µ2(x+ (1− ε)x2) ,

which gives the following first-order necessary conditions of optimality:
1 + 2µ1x− µ2 − 2µ2(1− ε)x = 0 ,

µ1(1− x2) = 0 ,

µ2(x+ (1− ε)x2) = 0 ,

x ∈ [0, 1] , µ ≥ 0 .

We deduce that there exists a unique pair of optimal multipliers (µ1, µ2) = (0, 1).
Since moreover, x+ (1− ε)x2 ≥ 0 is the only active constraint at x∗ with associated
multiplier µ2 > 0, strict complementarity is satisfied.

Lastly, the Jacobian of the active constraint at x∗ is J(x∗) = 1, so that its null space
in R is reduced to {0}. With the second-order derivative ∇2

xL(x∗, µ∗) = −2(1− ε),
we check that the second-order necessary condition of optimality

xT∇2
xL(x∗, µ∗)x ≥ 0 , ∀x ∈ {0}

is satisfied, and so is the second-order sufficient condition of optimality

xT∇2
xL(x∗, µ∗)x > 0 , for all 0 6= x ∈ {0} .
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We conclude that the moment-SOS hierarchy converges in finitely many steps for
POP (3), from [14, Theorem 1.1].

We now prove that, beyond finite convergence, there always exist maximizers in (5).

Let ε ∈ [0, 1] and d ∈ N∗. We notice that, as v1(ε) ≤ vd(ε) ≤ v∗(ε), we must

have vd(ε) ∈ [−1, 0]. So let us denote by S
[−1,0]
d (ε) the feasible set of the SOS

relaxation (5) with the additional constraint v ∈ [−1, 0]. The supremum in (5) can

be equivalently searched over S
[−1,0]
d (ε).

Lemma 1. S
[−1,0]
d (ε) is compact.

Proof. The set S
[−1,0]
d (ε) is the preimage of the closed set {x} by the linear map

(q, r, s, v) 7→ v+q(x)+r(x)(1−x2)+s(x)(x+(1−ε)x2) defined on a finite dimensional
space. It is therefore a closed set.

We now concentrate on proving that it is bounded. Let (q, r, s, v) ∈ S[−1,0]
d (ε), which

thus satisfies x − v = q(x) + r(x)(1 − x2) + s(x)(x + (1 − ε)x2). Let I = [0.1, 0.9],
we recall that, for any n ∈ N, ||p||I = maxx∈I |p(x)| is a norm on R[x]n. Now, for
any σ ∈ {q, r, s} and its associated constraint gε ∈ {1, 1−x2, x+ (1− ε)x2}, it holds
that

x− v − σ(x)gε(x) ≥ 0 ,∀x ∈ I

with gε(x) > 0 over I. We deduce that

σ(x) ≤ max
x∈I,v∈[−1,0],ε∈[0,1]

x− v
gε(x)

, ∀x ∈ I

so that, as σ ≥ 0, ||σ||I ≤ U for any upper bound U > 0 larger than the right-hand
side in the above inequality. In particular, let us set U so that ||σ||I ≤ U for all
σ ∈ {q, r, s}. It follows that

S
[−1,0]
d (ε) ⊂ [−1, 0]× B||·||I (0, U)3 .

We conclude that S
[−1,0]
d (ε) is bounded, and thus compact.

We deduce from Lemma 1 that, besides finite convergence of the moment-SOS hi-
erarchy shown in Theorem 1, there always exists a solution (q, r, s, v) maximizing
(5).

We now consider the step value

εd := infε,q,r,s ε
s.t. x = q(x) + r(x)(1− x2) + s(x)(x+ (1− ε)x2)

ε ∈ [0, 1], q ∈ Σ[x]2d, r ∈ Σ[x]2(d−1), s ∈ Σ[x]2(d−1).
(7)

Theorem 2. The infimum in (7) is attained.
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Proof. A solution of q(x)+r(x)(1−x2)+s(x)(x+(1−ε)x2)−x = 0 in the variables
(ε, q, r, s) is equivalently characterized by a system of 2d+1 quadratic equations in ε
and the coefficients of (q, r, s). It follows that the feasible set of (7) is the preimage
of the closed set {0} by a continuous quadratic map: it is therefore a closed set.

Now, if (ε, q, r, s) is feasible for (7), then ε ∈ [0, 1] and (q, r, s, 0) ∈ Fd(ε). We deduce
from Lemma 1 that the feasible set of (7) is bounded, and thus compact.

Letting x = 0 in (7) implies that q(0) + r(0) = 0 and since both q and r are SOS
this implies q(0) = r(0) = 0 and hence both contain the factor x2, so the equality
constraint can be rewritten as

x = q(x)x2 + r(x)x2(1− x2) + s(x)(x+ (1− ε)x2), (8)

for q, s ∈ Σ[x]2(d−1), r ∈ Σ[x]2(d−2). Factoring out x and letting x = 0 implies that
s(0) = 1. Let

Sd(ε) := {q ∈ Σ[x]2(d−1), r ∈ Σ[x]2(d−2), s ∈ Σ[x]2(d−1) :
x− v?(ε) = q(x)x2 + r(x)x2(1− x2) + s(x)(x+ (1− ε)x2)}

denote the feasible set of the dual SOS problem when the relaxation is exact.

Lemma 2. If Sd(ε) is non-empty then Sd(ε+ δ) is non-empty for all δ ≥ 0.

Proof. Given (qε, rε, sε) ∈ Sd(ε), observe that (qε + δsεx
2, rε, sε) ∈ Sd(ε + δ) if

δ ≥ 0.

Theorem 2 implies that for every degree d, there is a minimal value of ε, denoted εd,
such that Sd(εd) is non-empty. In the sequel, we provide lower and upper bounds
estimates on εd. Section 3.2 is dedicated to lower relaxation orders, namely d ∈
{1, 2, 3}, while Section 3.3 focuses on arbitrary high relaxation orders.

3.2 Lower relaxations

3.2.1 First relaxation

Lemma 3. When ε = 0, the first relaxation is exact.

Proof. See the beginning of the proof of Theorem 1.

Lemma 4. When ε > 0, the first relaxation is never exact.

Proof. The first relaxation always yields the strict lower bound v1 = ε−1 < v∗(ε) =
0. Indeed equation (6) holds for q = 0, r = 1− ε, s = 1 and we can use the moment
dual to prove that this is optimal: the first moment relaxation for (3) writes

v1(ε) = miny∈R2 y1

s.t.

(
1 y1
y1 y2

)
� 0

1− y2 ≥ 0
y1 + (1− ε)y2 ≥ 0,
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and admits y = (ε − 1, 1) as a feasible point for any ε ∈ [0, 1]. It follows that
v1(ε) ≤ ε− 1.

3.2.2 Second relaxation

Lemma 5. ε2 ≤ 1−
√

3/2 ≈ 0.1340.

Proof. Denoting q(x) = q0 + q1x + q2x
2, r(x) = r0, s(x) = 1 + s1x + s2x

2 and
identifying like powers of x in equation (8) yields the linear system of equations 1 1 0

0 1− ε 1
−1 0 1− ε

 r0
s1
s2

+

 q0
q1
q2

 =

 −1 + ε
0
0

 .

Letting q0 = q1 = q2 = 0, it holds r0
s1
s2

 =
1

ε(2− ε)

 (1− ε)3
−1 + ε
(1− ε)2

 .

The polynomial s is SOS if and only if 4s2 ≥ s21 i.e. −4ε2 + 8ε − 1 = −4(ε −
1 −
√

3/2)(ε − 1 +
√

3/2) ≥ 0. It follows that the second relaxation is exact if
ε ≥ 1−

√
3/2. When ε = 1−

√
3/2, it holds r(x) = 3

√
3/2 and s(x) = (1−

√
3x)2.

3.2.3 Third relaxation

Lemma 6. ε3 ≤ 1−

√
3+12

√
10 sin

(
arctan(3

√
111)

3
+π

6

)
6

≈ 4.7125 · 10−3.

Proof. Let q(x) = 0, r(x) = r0 + r1 + r2s
2, s(x) = 1 + s1x + s2x

2 + s3x
3 + s4x

4,
identifying like powers of x in equation (8) yields the linear system of equations


1 0 0 1 0 0 0
0 1 0 1− ε 1 0 0
−1 0 1 0 1− ε 1 0
0 −1 0 0 0 1− ε 1
0 0 −1 0 0 0 1− ε





r0
r1
r2
s1
s2
s3
s4


=


−1 + ε

0
0
0
0

 ,

whose solutions can be parametrized with s3 and s4 as
r0
r1
r2
s1
s2

 =


(1−ε)3
ε(2−ε) + s3

(1− ε)s3 + s4
(1− ε)s4
−1+ε
ε(2−ε) − s3
(1−ε)2
ε(2−ε) − s4

 . (9)
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The polynomial r is SOS if and only if(
(1−ε)3
ε(2−ε) + s3

1−ε
2
s3 + 1

2
s4

1−ε
2
s3 + 1

2
s4 (1− ε)s4

)
� 0,

and the polynomial s is SOS if and only if 1 −1+ε
2ε(2−ε) −

1
2
s3 z

−1+ε
2ε(2−ε) −

1
2
s3

(1−ε)2
ε(2−ε) − s4 − 2z 1

2
s3

z 1
2
s3 s4

 � 0,

for some z ∈ R.

Assume that s(x) = (1 + ax + bx2)2 and r(x) = (c + dx)2 for a, b, c, d ∈ R, i.e., the
above positive semidefinite matrices have rank one. So let us express system (9) in
terms of the coefficients a, b, c, d:

c2

2cd
d2

2a
2b+ a2

 =


(1−ε)3
ε(2−ε) + 2ab

(1− ε)2ab+ b2

(1− ε)b2
−1+ε
ε(2−ε) − 2ab
(1−ε)2
ε(2−ε) − b

2

 .

Clearing up denominators, this is a system of 5 polynomial equations in 5 unknowns
a, b, c, d, ε. Using Maple’s Groebner basis engine we can eliminate a, b, c, d and obtain
the following polynomial

(64ε6 − 384ε5 + 944ε4 − 1216ε3 + 812ε2 − 216ε+ 1)(4ε2 − 8ε+ 1)5(ε− 1)8,

vanishing at each solution. The first factor is a degree 6 polynomial with 4 real
roots. The Galois group of this polynomial allows the roots to be expressed with
radicals. The smallest positive real root is

1−
√

1

12
+

5

3
α−

1
3 +

1

6
α

1
3 , α = −1 + 3i

√
111,

which can be expressed with trigonometric functions as in the statement of the
lemma. For this value of ε we have a ≈ −6.9296, b ≈ 6.6375, c ≈ −3.5866,
d ≈ 6.6219.

3.3 Higher relaxations

The aim of this section is to provide quantitative enclosures of εd for arbitrary
relaxation orders d. Our main result is as follows.

Theorem 3. For all d ∈ N, one has (1 + 2d(4e)d)−1 ≤ εd+1 ≤ 4−d.
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0−1 1

1
1

2−ε

1
ε

x

x 7→ 1
1+(1−ε)x

s

Figure 3: Constraints on SOS polynomial s (in bold).

The upper bound follows from Proposition 1 while the lower bound follows from
Proposition 2. The remaining part of this section is dedicated to proving both
propositions.

We start with a preliminary discussion to provide insights to the reader. Notice that
if (6) holds with v?(ε) = 0, namely if for all x ∈ R

x = q(x) + r(x)(1− x2) + s(x)(x+ (1− ε)x2), (10)

for some q ∈ Σ[x]2d, r, s ∈ Σ[x]2(d−1), then s satisfies the following inequality

x− s(x)(x+ (1− ε)x2) ≥ 0, for all x ∈ [−1, 1]. (11)

Conversely assume that there is a nonnegative polynomial s ∈ R[x]2(d−1), or equiv-
alently s ∈ Σ[x]2(d−1), satisfying (11). Then it is well known from [4] that there
exist q ∈ Σ[x]2d and r ∈ Σ[x]2(d−1) satisfying (10). Therefore we shall restrict our
attention to nonnegative polynomials s satisfying (11).

Assume first that x 6= 0. From (11), if x ∈ (0, 1] then s(x) ≤ 1/(1 + (1− ε)x), and
if x ∈ [−1, 0) then s(x) ≥ 1/(1 + (1 − ε)x). By continuity of s, this implies that
s(0) = 1. If x ∈ [0, 1] then 1+(1−ε)x ∈ [1, 2−ε] and 1/(1+(1−ε)x) ∈ [1/(2−ε), 1].
If x ∈ [−1, 0] then 1 + (1− ε)x ∈ [ε, 1] and 1/(1 + (1− ε)x) ∈ [1, 1/ε]. It follows that
s should be above resp. below the hyperbola x 7→ 1/(1 + (1 − ε)x) for x negative
resp. positive, and in particular s(−1) ≥ 1/ε, see Figure 3.

A particular choice suggested by Pauline Kergus is

s(x) = (ax− 1)2d

for appropriate parameters a ∈ R and d ∈ N. In particular one should have s(−1) =
(a+ 1)2d ≥ 1/ε and s(1) = (a− 1)2d ≤ 1/(2− ε).

Proposition 1. Let ε ∈ (0, 1], a ∈ [1, 2) and d ∈ N be greater than log(ε−1)
2 log(1+a)

and
log((2−ε)−1)
2 log(a−1) . Then the polynomial s = (ax− 1)2d satisfies (11) and the relaxation (5)

of order d+ 1 is exact.
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Proof. Let z := 1 − ε. To prove the claim, it is enough to show that s should be
above resp. below the hyperbola x 7→ 1/(1 + zx) on the interval [−1, 0] resp. [0, 1],
or equivalently that the polynomial function x 7→ f(x) = (ax − 1)2d(1 + zx) − 1 is
above resp. below the x-axis on [−1, 0] resp. [0, 1]. The derivative of f is given by

f ′(x) = 2da(ax− 1)2d−1(1 + zx) + z(ax− 1)2d

= (ax− 1)2d−1[z(a+ 2d)x+ 2d− z] .

The first factor is below resp. above the x-axis on [−1, a−1] resp. [a−1, 1]. The second
factor is below resp. above the x-axis on [−1, z−2d

z(a+2d)
] resp. [ z−2d

z(a+2d)
, 1]. Therefore f

is nondecreasing on [−1, z−2d
z(a+2d)

], nonincreasing on [ z−2d
z(a+2d)

, a−1] and nondecreasing

on [a−1, 1]. Since f(0) = 0 and 0 ∈ [ z−2d
z(a+2d)

, a−1], one just needs to verify the sign of

the values of f at −1 and 1. One has f(−1) = (1 + a)2d(1− z)− 1 = ε(1 + a)2d − 1
and f(1) = (a− 1)2d(1 + z)− 1 = (a− 1)2d(2− ε)− 1, thus by assumption one has
f(−1) ≥ 0 and f(1) ≤ 0, which yields the desired claim.

Remark 1. If one assumes that ε ∈ Q, ε > 0 then there is an algorithm com-
puting an exact SOS decomposition (10) with rational coefficients in boolean time1

Õ
(
log(1

ε
)4
)
. Indeed from Proposition 1 let us select a = 1, s = (x − 1)2d with

2d = O (log(ε−1)), so that t : x 7→ x− s(x)(x+ (1− ε)x2) is nonnegative on [−1, 1].

This nonnegativity condition is equivalent to nonnegativity of x 7→ (1+x2)2dt
(

x2−1
1+x2

)
on R. This latter polynomial has coefficients with maximal bit size upper bounded by
Õ(d). As a consequence of [12, Theorem 4.4], there exists an algorithm computing

an exact SOS decomposition of (1+x2)2dt
(

x2−1
1+x2

)
with rational coefficients in boolean

time Õ(d4).

We now focus on the upper bound estimate. Let ε ∈ (0, 1] and s ∈ Σ[x]2d satisfy-
ing (11). As discussed above, the following properties hold:

s(0) = 1 ,

s(x) ≤ 1 ,∀x ∈ [0, 1] ,

s(x) ≥ 0 ,∀x ∈ R .
(12)

We denote by Sd the set of polynomials of degree 2d satisfying (12).

Proposition 2. For any d ∈ N, maxs∈Sd s(−1) is upper bounded by 1 + 2d(4e)2d.

Proof. From [18, Lemma 4.1], one has |sk| ≤ (4e)2d max
0≤j≤2d

s

(
j

2d

)
≤ (4e)2d, for all

k ∈ {0, . . . , 2d} as s is upper bounded by 1 on [0, 1]. Thus, s(−1) =
2d∑
k=0

(−1)ksk ≤

1 + 2d(4e)2d.

1Õ(·) stands for the variant of the big-O notation ignoring logarithmic factors.
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Proposition 2 immediately implies the upper bound estimate from Theorem 3 since
any s ∈ Σ[x]2d satisfying (11) must in particular satisfy s(−1) ≥ 1/ε.

4 Concluding remarks

In this note we studied a specific SOS decomposition of a parametrized univariate
polynomial to design an elementary POP for which the moment-SOS hierarchy shows
finite yet arbitrarily slow convergence when the parameter tends to a limit.

In [16], the authors focus on finding similar SOS decompositions associated to the
minimization of the polynomial 1 + x+ ε (parametrized by ε > 0) on [−1, 1], where
the latter set is encoded as the super-level set of a power p of 1 − x2. They prove
in [16, Theorem 7] that finite convergence is reached after a number of iterations
proportional to the power p and the reciprocal 1/ε of the parameter. In our case
Theorem 3 shows that finite convergence is reached after a number of iterations
proportional to the parameter bit size inverse log(1/ε). Overall the results from
[16] imply that for univariate POPs the minimal relaxation order required for finite
convergence could be exponential in the bit size of the coefficients involved in the
objective function. Our complementary study shows that the minimal order could
be linear in the bit size of the coefficients involved in the constraints.

As in [16], the description of the set of constraints plays a crucial role in the behavior
of the moment-SOS hierarchy. For ε ∈ (0, 1], our considered set of constraints is the
interval [0, 1]. When this interval is described by either the super-level set of the
single quadratic polynomial x(1−x) or by the intersection of the ones of x and 1−x,
the hierarchy immediately converges at order 1. The present work shows that a slight
modification of this description, by means of only two quadratic polynomials, can
have significant impact on the efficiency of the moment-SOS hierarchy. In addition
to slow convergence behaviors, complementary studies such as [20] have emphasized
that inappropriate constraint descriptions may provide wrong relaxation bounds
when relying on standard double-precision semidefinite solvers. A possible remedy
consists of using instead a multiple precision semidefinite solver, which, again, might
slow down significantly the required computation.

Further investigation should focus on means to appropriately describe POP con-
straint sets, in order to obtain sound numerical solutions at lower relaxation orders
and with lower solver accuracy.

References

[1] L. Baldi. Représentations effectives en géométrie algébrique réelle et optimisa-
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[6] D. Henrion, M. Korda and J. B. Lasserre. The moment-SOS hierarchy. World
Scientific, 2020.

[7] D. Henrion, J. B. Lasserre. Solving global Optimization Problems over Polyno-
mials with GloptiPoly 2.1. LNCS 2861:43-58, Springer, 2003.

[8] C. Josz, D. Henrion. Strong duality in Lasserre’s hierarchy for polynomial op-
timization. Optim. Letters 1(10):3-10, 2016.

[9] J. B. Lasserre. Global optimization with polynomials and the problem of mo-
ments. SIAM J. Optimization 11(3):796–817, 2001.

[10] J. B. Lasserre. Moments, positive polynomials and their applications (Vol. 1).
World Scientific, 2009.

[11] A. Le Franc, J.P. Chancelier, M. De Lara. The Capra-subdifferential of the l0
pseudonorm. Optimization 73(4):1229-1251, 2022.

[12] V. Magron, M. Safey El Din, and M. Schweighofer. Algorithms for weighted sum
of squares decomposition of non-negative univariate polynomials. J. Symbol.
Comput. 93:200-220, 2019.

[13] V. Magron, M. Safey El Din, M. Schweighofer and T. H. Vu. Exact SOHS
decompositions of trigonometric univariate polynomials with Gaussian coeffi-
cients. Proc. Int. Symp. on Symbolic and Algebraic Comput. (ISSAC), 325-332,
2022.

[14] J. Nie. Optimality conditions and finite convergence of Lasserre’s hierarchy.
Math. Prog. 146:97-121, 2014.

[15] J. Nie. Moments and polynomial optimization. SIAM, 2023.

[16] V. Powers and B. Reznick. Polynomials that are positive on an interval. Trans.
Amer. Math. Soc., 352(10):4677-4692, 2000.
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