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Abstract
Robust Optimization (RO) is an approach to tackle uncertainties in the param-
eters of an optimization problem. Constructing an uncertainty set is crucial for
RO, as it determines the quality and the conservativeness of the solutions. In this
paper, we introduce an approach for constructing a data-driven uncertainty set
through volume-based clustering, which we call Minimum-Volume Norm-Based
Clustering (MVNBC), that leads to less conservative solutions. MVNBC extends
the concept of Minimum-Volume Ellipsoid Clustering by enabling customizable
regions containing clusters. These regions are defined based on a given set of
vector norms, hence providing great flexibility in capturing diverse data pat-
terns. We formulate a mixed-integer conic optimization problem for MVNBC.
To address computational complexities, we design an efficient iterative approxi-
mation algorithm where we reassign points to clusters and improve the volume
of the regions. Our numerical experiments demonstrate the effectiveness of our
approach in capturing data patterns and finding clusters with minimum total vol-
ume. Moreover, constructed uncertainty sets based on MVNBC result in robust
solutions with 10% improvement in the objective value compared to the ones
obtained by a recent data-driven uncertainty set. Therefore, using our uncer-
tainty sets in RO problems can generate less conservative solutions compared to
traditional uncertainty sets as well as other existing data-driven approaches.

Keywords: Robust Optimization, Uncertainty set, Clustering, Data-driven
Optimization, Mixed-Integer Non-linear Programming, Conic Optimization
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1 Introduction
The presence of uncertainty can significantly impact the performance of algorithms
applied to optimization models [1]. Robust Optimization (RO) is a widespread tech-
nique developed to address the challenge of uncertainty in optimization problems,
aiming to find a solution safeguarded against all scenarios in the so-called uncertainty
set [2].

Let us consider the following convex optimization problem containing uncertainty,

inf
x∈Rn

{g(x) | fj(x,u) ≤ 0, ∀j ∈ [m]}, (1)

where x ∈ Rn is the vector of decision variables, g : Rn → R is the objective function,
fj(·,u) : Rn → R, j ∈ [m], are closed, proper, and convex functions for any realization
of the uncertain parameter u, which lies in the uncertainty se U ⊂ Rd, and m is the
number of constraints. The robust counterpart of (1) reads as

inf
x∈Rn

{g(x) | fj(x,u) ≤ 0, ∀u ∈ U , j ∈ [m]}. (2)

A main criticism of RO is that it can provide an overly conservative solution [3],
meaning that a solution is found that is safeguarded against many scenarios that
are unlikely to happen. The role of uncertainty sets in shaping the conservatism
of solutions in RO problems is crucial [4, 5]. Although constructing classical uncer-
tainty sets, such as boxes, ellipsoids, or diamonds, without considering the patterns
of data requires little computational effort, they may not effectively represent data
patterns. Therefore, researchers have started to construct the uncertainty set using
data, forming the data-driven RO domain.

Data-driven uncertainty sets are constructed based on historical observations. By
considering historical data, the optimization problem is better equipped to deal with
similar patterns, leading to less conservative solutions [6]. There are various ways
to construct data-driven uncertainty sets, including statistical hypothesis tests [7],
kernel-based support vector clustering [8], principle component analysis [9, 10], and
neural networks [11]. We further discuss the literature in Section 1.1.

In our work, we present a method for defining uncertainty sets based on available
data. The fundamental idea is to use a clustering method to construct the uncertainty
set. Clustering is one of the methods in Machine Learning (ML) to capture data
characteristics. This method is known to be one of the most explainable ML methods
[12]. One of the approaches to clustering data is volume-based clustering.

We formulate a mathematical optimization problem for constructing an uncer-
tainty set incorporating clustering. The formulated problem is a Mixed Integer
Non-Linear Optimization (MINLO) aiming to find the best clusters of data by mini-
mizing the multi-dimensional volume of the clusters and being able to detect outliers
at a desired rate. To solve the problem, we first reformulate the MINLO problem as
a Mixed Integer Conic Optimization (MICO), and we then develop an algorithm that
reassigns points to clusters iteratively and reduces clusters’ volumes throughout this
process. The first numerical results demonstrate that the approach outperforms some
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typical clustering methods in finding clusters with minimum volumes. The results of
the second numerical experiment also show the effectiveness of our constructed uncer-
tainty set in RO, providing about 10% better objective value and highlighting the
potential for our data-driven uncertainty set construction approach to be applied to
a wide range of RO problems.

To explain our contribution in more detail, we first discuss the related literature in
Section 1.1, afterwhich, we explain our contributions in Section 1.2 explicitly. Finally,
we introduce the structure of the remainder of this paper in Section 1.3.

1.1 Related works
In this section, we first review the existing literature on constructing uncertainty sets
from data and identify a gap between the two streams of approaches. Next, we explore
different clustering methods to determine the most suitable one for constructing uncer-
tainty sets and conclude that volume-based clustering is adopted as our approach. We
then review the literature on minimum-volume ellipsoid clustering, which is the type
of clustering on which our clustering method builds.

1.1.1 Data-driven uncertainty sets
There are two major streams in the approaches to construct data-driven uncertainty
sets: the construction of classical uncertainty sets and the construction of ML-based
ones. One of the first papers to construct classical uncertainty sets is Bertsimas et al.
[7], where the authors integrate statistical hypothesis tests and goodness-of-fit with
prior assumptions on data distributions. Zhang et al. [13] develop classical uncertainty
sets like box, ellipsoidal, and polyhedral sets, with adjustable parameters derived from
confidence intervals of data distributions. The main disadvantage of considering the
classical uncertainty set is that when data do not follow a pattern that can be fitted in
classical uncertainty sets, using these sets may lead to overly conservative solutions.

There is quite some variety in the second stream of approaches. Shang et al.
[8] use kernel-based support vector clustering (SVC) to construct their uncertainty
set. Goerigk and Kurtz [11] employ deep neural networks to discover patterns in
data, which could also detect outliers, outperforming the kernel-based SVC. Ning and
You [9] utilize principal component analysis and kernel smoothing techniques such as
kernel density estimation to create an uncertainty set, which suffers from the curse of
dimensionality. Zhang et al. [10] utilize PCA to identify the patterns in the data and
create a polyhedral uncertainty set. They employ cutting-plane methods to capture
data patterns more accurately. However, this method still takes into account some less-
probable-to-happen scenarios. Furthermore, generating the cutting plane component
can be computationally complex. Asgari et al. [14] use a modified version of the SVC,
called position-regulated support vector clustering, to construct their uncertainty set.
However, the kernel function is not capable of capturing multiple patterns in data
points.

While classical uncertainty sets are interpretable, and using them results in a com-
putationally efficient robust counterpart, they often struggle to capture data patterns
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effectively. ML methods, on the other hand, lack interpretability and can be com-
putationally expensive while being able to detect data patterns. The volume-based
clustering approach can balance between computational efficiency and interpretability.

1.1.2 Minimum volume-based clustering
Clustering refers to an unsupervised learning technique in which related data points
are grouped together based on some similarities [15]. Fundamental clustering methods
can be classified into partitioning methods, hierarchical methods, and density-based
methods [16, pp. 383-385]. Partitioning algorithms, like K-means, divide a dataset
into K disjoint clusters, ensuring that each cluster contains at least one point and
each point belongs to exactly one group. Various algorithms in this class aim to
minimize an objective function, such as the total distance to the mean of each cluster,
guiding the clustering process [16, pp. 385-390]. Hierarchical clustering methods group
individual elements into larger and larger clusters, starting with individual points and
gradually combining them based on their similarity. This process creates a tree-like
structure that represents the relationships between the data points [17]. In density-
based clustering, a cluster is a group of data points that are situated in the data
space and are packed closely together in a region of high density. These density-based
clusters are separated from one another by contiguous areas of low object density [18].

Volume-based clustering, belonging to the class of density-based clustering, groups
data points according to the clusters’ volume. Cluster volumes can be defined in
different ways. One customary method, known as minimum volume ellipsoid clustering
(MVEC), is to define the smallest volume of the ellipsoid, which encloses all points
in the cluster. It is first introduced by Rosen [19] as a convex optimization method
for separating patterns in data. Barnes [20] provides a heuristic algorithm for finding
these patterns using eigenvalue decomposition. MVEC approach is scale-invariant, so
it is able to handle asymmetric and unequal clusters [21]. Therefore, this approach is
useful for grouping data points with different densities and identifying clusters with
overlapping boundaries. In addition, it also has the advantage of identifying outliers.

Henk [22] defines an ellipsoid E in a d-dimensional Euclidean space Rd as the
image of the ℓ2-norm unit ball B2, which is an ℓ2-norm ball of radius 1 centered at
the origin, under a regular affine transformation. This implies that there exists an
invertible matrix T−1 ∈ Rd×d and a center −T−1t ∈ Rd such that the ellipsoid can be
obtained by applying T−1 to B2 and transferring the center of the ball by −T−1t, i.e.

E = T−1B2 −T−1t = {−T−1t + T−1y : y ∈ B2}
= {x ∈ Rd :

∥∥(T−1)−1(x+ T−1t)
∥∥

2 ≤ 1}
= {x ∈ Rd : ∥Tx+ t∥2 ≤ 1},

where ∥·∥2 denotes the ℓ2-norm or Euclidean norm.
A Minimum-Volume Ellipsoid (MVE), also known as the Löwner ellipsoid [22], is

a geometric form that minimizes the volume required to contain a given set of points
[23]. The volume of an ellipsoid is correlated with the determinant of its transformation
matrix, det(T−1). The exact details of this correlation are given in Section 2.
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The computation of minimum-volume ellipsoids involves optimization techniques
that minimize a specific objective function involving det(T−1). To efficiently approx-
imate the parameters of the ellipsoids, namely the transformation matrix T and
translation vector t, various algorithms and heuristics have been proposed, including
simulated annealing, genetic algorithms, and tabu search [24], arithmetic opera-
tions [25], iterative methods [26], convex optimization approaches [27], re-sampling
algorithms [28], and randomized algorithms [29].

Shioda and Tunçel [30] formulate MVEC as a MINLO problem. The objective
function they use for their optimization problem does not fully capture the volume,
as we discuss in Appendix B. Kumar and Orlin [21] formulate an MVEC problem
considering outliers as a mixed integer non-convex problem. Mart́ınez-Rego et al. [27]
present a new non-convex formulation that avoids direct evaluation of determinants
and does not consider outliers in the estimation process of ellipsoids.

So, in the literature, there are different formulations for a minimum volume-based
clustering problem where the regions containing clusters are ellipsoids. Moreover, there
are algorithms to solve the MVEC problem; however, their performance is highly case-
dependent. To enhance compatibility with diverse data patterns, we extend the MVEC
by incorporating general norm-based regions, which we call the minimum volume
norm-based clustering (MVNBC). This flexibility empowers us to deploy multiple
regions tailored to varying spatial patterns of data points. Moreover, leveraging the
classical shapes of uncertainty sets as regions for each cluster enables us to develop a
computationally tractable optimization problem to find an optimal robust solution.

1.2 Our contribution
We make a five-fold contribution to the literature:

1. We introduce a norm-based clustering method that relies on cluster regions’ vol-
umes. Extending the concept of Minimum Volume Ellipsoid Clustering (MVEC),
we develop Minimum volume Norm-Based Clustering (MVNBC), a mathematical
optimization problem that is based on a combination of vector norms in Rd. This
method can capture data patterns effectively and detect outliers at a desired rate.

2. We develop a Mixed Integer Conic Optimization (MICO) formulation for norm-
based clustering, which contains an exponential cone and a logdet cone for each
cluster, and a quadratic cone for each data point and each cluster.

3. Recognizing the computational complexities inherent in solving our problem,
we introduce an efficient iterative approximation algorithm based on iteratively
reassigning points to clusters and reducing the volume.

4. We implement MVNBC to construct a new uncertainty set for Robust Optimization
(RO) and obtain its robust counterpart for convex optimization problems.

5. We conduct an extensive numerical experiment to highlight the practical signif-
icance of our proposed approach. Our numerical results demonstrate that our
algorithm is more effective in finding the patterns in data sets than K-means and
GMM. Moreover, results show that using our uncertainty set not only leads to
10% better objective value but also RO problems can be solved faster by orders of
magnitude compared to one of the best benchmarks in literature.
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1.3 Paper organization
Section 2 provides the notation and mathematical preliminaries used throughout the
paper. Section 3 introduces our norm-based clustering optimization problem and its
MICO formulation. In Section 4, we provide the solution algorithm for the MICO
problem. In Section 5, we provide the robust counterpart reformulation of an RO
problem using our uncertainty set. Section 6 contains the numerical experiments in
which we use our approach to cluster different data sets and construct uncertainty
sets. Finally, we conclude the paper in Section 7 and give potential future research
directions.

2 Preliminaries
In this section, we define the notation and mathematical concepts that are used
throughout the paper. Next, we recall the definition of the volume of a set and explain
how to calculate the volume of a region.

2.1 Notation
We use the following notation throughout the paper.
• Matrices are represented by uppercase bold letters, such as A or B.
• Vectors are denoted using lowercase bold letters, such as x or y.
• The transpose of a matrix A ∈ Rn×m is indicated by AT ∈ Rm×n.
• The set of real numbers is denoted by R, the set of strictly positive integer numbers

is denoted by N, and other sets are in calligraphic font, e.g., U .
• For any positive integer n, we define the set [n] := {1, 2, . . . , n}.
• p-norms (or ℓp-norms) of a vector x ∈ Rd are defined and represented by

∥x∥p =

∑
i∈[d]

|xi|p
1/p

.

The following are of particular interest:

– The ℓ1-norm: ∥x∥1 =
∑
i∈[d] |xi|

– The ℓ2-norm or Euclidean norm: ∥x∥2 =
√∑

i∈[d] |xi|2 =
√

xTx
– The ℓ∞-norm: ∥x∥∞ = maxi∈[d] |xi|

where | · | is the absolute value function.
• For a d× d matrix A, the ℓp induced matrix norm is defined by

∥A∥p = sup {∥Ax∥p | ∥x∥p = 1} .

• The determinant of a symmetric matrix A, denoted by det(A), is the multiplica-
tion of its eigenvalues.
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• Let Sd be the set of d × d symmetric matrices. We use A ⪰ 0 to denote that A is
positive semidefinite, Sd+ to denote the set of symmetric positive semidefinite d× d
matrices, A ≻ 0 to denote that A is positive definite, and Sd++ to denote the set of
symmetric positive definite d× d matrices.

• For T ∈ Rd×d, the matrix transformation associated to T is the transformation
T : Rd → Rd defined by T(x) = Tx. This is the transformation that takes a vector
x ∈ Rd to the vector Tx ∈ Rd.

• For t ∈ Rd, the vector translation associated to t is the translation T : Rd → Rd
defined by T(x) = x + t. This is the translation that takes a vector x ∈ Rd to the
vector x + t ∈ Rd.

• S = {x ∈ Rd | ∥Tx + t∥p ≤ 1} is a norm-based region, which is a compact set,
where T ∈ Rd×d is an invertible transformation matrix and t ∈ Rd is a translation
vector.

• Bp is the unit ℓp-norm ball which is defined as Bp = {x | ∥x∥p ≤ 1}
• The floor function, denoted as ⌊·⌋, takes as input a real number, x, and gives the

greatest integer less than or equal to x. In other words, ⌊x⌋ is the largest integer n
such that n ≤ x.

• The modulo function, denoted as a mod b, calculates the non-negative integer
remainder, r ∈ N when dividing a ∈ N by b ∈ N ̸= 0, where 0 ≤ r < |b|.

2.2 Volume of regions
Let us recall some definitions and theorems from the literature that are essential for
this paper. These results clarify the relationship between transformation matrices and
volume changes for a given region.

Definition 1 ([31]) Let S ⊂ Rd be a region. Then, the volume of S is vol(S) =
∫

S dx
(which is the Lebesgue measure of S).

Theorem 1 (Lemma 1 in [21]) Let T be a d × d matrix, and let T(x) : Rd → Rd represent
the associated matrix transformation: T(x) = Tx. If S is a region in Rd, then vol(T(S)) =
| det(T)| · vol(S)

Proof See Lemma 1 from [21] for a special case where S is an ellipsoid, or Appendix (A.1)
for a general one. □

Corollary 1 Let T ∈ Rd×d be an invertible transformation matrix and t ∈ Rd be a transla-
tion vector. Consider the region S = {x ∈ Rd | ∥Tx+t∥p ≤ 1}, where T ∈ Rd×d and t ∈ Rd.
Then, the volume of S is given by

vol(S) = 1
| det(T)| ·

(2Γ(1 + 1
p ))d

Γ(1 + d
p )

, (3)

where

Γ(x) =
∫ ∞

0
sx−1e−sds
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is the gamma function.

Proof See Appendix (A.2). □

For more details regarding volumes of unit balls and calculation of gamma function,
we refer to [32].

3 Minimum volume norm-based uncertainty set
The objective of our paper is to develop an uncertainty set based on volume-based
clustering by utilizing available data. To achieve this, we propose a new mathematical
formulation to find the best volume-based clustering of data, which considers various
norm-based regions.

3.1 Minimum volume norm-based clustering
The volume-based clustering optimization problem is similar to an assignment prob-
lem with a non-linear objective function. It aims to find the optimal assignment of
N different points, ai, i = [N ], to multiple clusters and allows some of them to
be outliers. The objective function is to minimize the summation of the volumes of
the norm-based regions. Similar to the formulation by [21, 27] for the ℓ2-norm, we
formulate the problem as

inf
Skp ,w

i,li
kp

∑
p∈P

∑
kp∈[Kp]

vol(Skp) (4a)

subject to ai ∈ Skp if likp
= 1, ∀i ∈ [N ], kp ∈ [Kp], p ∈ P, (4b)

wi ≤
∑
p∈P

∑
kp∈[Kp]

likp
≤ wi

∑
p∈P

Kp, ∀i ∈ [N ], (4c)

∑
i∈[N ]

wi ≥ (1− e)N, (4d)

wi ∈ {0, 1}, ∀i ∈ [N ], (4e)
likp
∈ {0, 1}, ∀i ∈ [N ], kp ∈ [Kp], p ∈ P, (4f)

where:
• P is the desired set of norms;
• Kp is the number of ℓp-norm-based regions for all p ∈ P;
• Skp := {x ∈ Rd |

∥∥Tkpx + tkp

∥∥
p
≤ 1} for all desired norm p ∈ P and all kp ∈ [Kp],

where Tkp ∈ Rd×d is a positive definite transformation matrix, tkp ∈ Rd is the
translation vector, and p ∈ P indicates the ℓp-norm used for regions kp ∈ [Kp];

• likp
, membership indicator, is a binary variable that equals 1 if the data point ai is

assigned to region Skp , and 0 otherwise;
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• wi, assignment indicator, is a binary variable that equals 1 if the data point ai is
assigned to any cluster, and 0 if it is considered to be an outlier;

• and e ∈ [0, 1) is the portion of the points that are considered outliers.

Problem (4) aims to minimize the volume of regions, where (4a) represents the
objective function to achieve this. Constraint (4b) assigns the points to clusters, (4c)
ensures that non-outlier data points are assigned to at least one cluster. Additionally,
(4d) ensures that at most e portion of the data points are treated as outliers. To define
the assignment indicators, wi, and the membership indicators, likp

, we use binary
values, which are enforced by (4e) and (4f).

3.2 Minimum volume norm-based clustering conic formulation
In this section, we provide a MICO problem to find the clusters with minimum volume.
(4) is equivalent to the following optimization problem since (4b) can be reformulated
as (5b) and (5c) to the following MINLO problem

inf
Skp ,l

i
kp
,Tkp ,tkp ,w

i

∑
p∈P

∑
kp∈[Kp]

vol(Skp) (5a)

subject to likp

∥∥Tkpai + tkp

∥∥
p
≤ 1, ∀i ∈ [N ], kp ∈ [Kp], p ∈ P, (5b)

Tkp ≻ 0, ∀kp ∈ [Kp], p ∈ P, (5c)
(4c), . . . , (4f).

Problem (5) is a mixed-integer non-convex optimization problem, which poses
significant challenges in terms of finding an optimal solution. In the next theorem, we
introduce a conic reformulation for this particular problem.

Theorem 2 Let ai ∈ Rd be our data points, and P be the set of desired norms to consider.
For any p ∈ P, we set Kp to be the number of ℓp-norm-based regions. Then, the optimization
problem (5) is equivalent to

inf
θkp ,τkp ,l

i
kp
,Tkp ,tkp ,w

i

∑
p∈P

(2Γ(1 + 1
p ))d

Γ(1 + d
p )

·
∑

kp∈[Kp]

θkp
(6a)

subject to τkp
≤ log θkp

, ∀kp ∈ [Kp], p ∈ P,

(6b)
− τkp

≤ log det(Tkp
), ∀kp ∈ [Kp], p ∈ P,

(6c)

likp

∥∥∥Tkp
ai + tkp

∥∥∥
p

≤ 1, ∀i ∈ [N ], kp ∈ [Kp], p ∈ P,

(6d)

wi ≤
∑
p∈P

∑
kp∈[Kp]

likp
≤ wi

∑
p∈P

Kp, ∀i ∈ [N ],

(6e)
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∑
i∈[N ]

wi ≥ (1 − e)N, (6f)

wi ∈ {0, 1}, ∀i ∈ [N ],
(6g)

likp
∈ {0, 1}, ∀i ∈ [N ], kp ∈ [Kp], p ∈ P.

(6h)

Proof Since Skp
:= {x ∈ Rd |

∥∥Tkp
x + tkp

∥∥
p

≤ 1} for all desired norm p ∈ P and all
kp ∈ [Kp], using Corollay 1, we rewrite (5a) as∑

p∈P

∑
kp∈[Kp]

vol(Skp
) =

∑
p∈P

∑
kp∈[Kp]

1
det(Tkp

) · vol(Bp)

=
∑
p∈P

vol(Bp)
∑

kp∈[Kp]

1
det(Tkp

) .

Let θkp
be a new variable for each region kp ∈ [Kp]. Using epigraph reformulation, (5) reads

as

inf
θkp ,l

i
kp
,Tkp ,tkp ,w

i

∑
p∈P

vol(Bp)
∑

kp∈[Kp]

θkp
(7a)

subject to 1
det(Tkp

) ≤ θkp
, ∀kp ∈ [Kp], p ∈ P, (7b)

likp

∥∥∥Tkp
ai + tkp

∥∥∥
p

≤ 1, ∀i ∈ [N ], kp ∈ [Kp], p ∈ P, (7c)

wi ≤
∑
p∈P

∑
kp∈[Kp]

likp
≤ wi

∑
p∈P

Kp, ∀i ∈ [N ], (7d)

∑
i∈[N ]

wi ≥ (1 − e)N, (7e)

wi ∈ {0, 1}, ∀i ∈ [N ], (7f)

likp
∈ {0, 1}, ∀i ∈ [N ], ∀kp ∈ [Kp], p ∈ P. (7g)

Since log(·) is a strictly increasing function, we replace (7b) with

− log det(Tkp
) ≤ log θkp

, ∀kp ∈ [Kp], p ∈ P. (8)

Introducing new variable τkp
, (8) can be further reformulated as

log det(Tkp
) ≤ τkp

, ∀kp ∈ [Kp], p ∈ P,

τkp
≤ log θkp

, ∀kp ∈ [Kp], p ∈ P.

□

Theorem 2 shows how an optimal clustering is obtained by reformulating the det(·)
function into a conic form. More explicitly, given P ⊆ {1, 2,+∞}, (6b) is equivalent to
(θkp , 1, τkp) belonging to the exponential cone, and (6c) is equivalent to Tkp belonging
to the logdet cone.
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Despite having the cones in (6), the problem is not yet a MICO problem due to
the products of likp

and
∥∥Tkpai + tkp

∥∥
p

in (6d). We know that if
∥∥Tkpai + tkp

∥∥
p

is
bounded from above, then the product has a mixed integer convex quadratic refor-
mulation, due to likp

being binary. However,
∥∥Tkpai + tkp

∥∥
p

may not necessarily be
bounded. To see this, let likp

be 1 for only one i and kp. Let Tkp be a diagonal matrix
where all the diagonal elements are χ, and tkp = −χai. Therefore, (6d) holds for
this solution. Furthermore, increasing χ decreases the objective function, implying the
norm is unbounded. Even though

∥∥Tkpai + tkp

∥∥
p

cannot be bounded from above, in
the next theorem, we provide a necessary condition on an optimal clustering, helping
us to bound

∥∥Tkpai + tkp

∥∥
p
.

Theorem 3 Let 0 < ω < 1
2 be given. Also, let

(
θ∗
kp

, τ∗
kp

, li∗kp
, T∗

kp
, t∗
kp

, wi∗
)

be an optimal

solution of (6). For any p ∈ P and kp ∈ [Kp], if θ∗
kp

> 0, then
∥∥∥T∗

kp

−1
∥∥∥
p

> γ, where

γ := ω · min
p∈P

min
i,j∈[N ]
i ̸=j

∥∥∥ai − aj
∥∥∥
p

.

Proof By contradiction, let us assume there exist p ∈ P and kp ∈ [Kp], where θ∗
kp

> 0, and∥∥∥T∗
kp

−1
∥∥∥
p

≤ γ.

Let us denote by Bpκ(a) the ball {x ∈ Rd | ∥x − a∥p ≤ κ}. Given this notation, for
any a ∈ Rd, the ball Bpγ(a) contains at most one data point. To see this, let us assume the
contrary and that there are two points i and j in the ball. So, we have

∥ai − a∥p ≤ γ, ∥aj − a∥p ≤ γ.

Therefore,
∥ai − aj∥p ≤ ∥ai − a∥p + ∥a − aj∥p ≤ 2γ < ∥ai − aj∥p,

which is a contradiction, where (from left) the first inequality is the triangle inequality, the
second one is because both i-th and j-th data points are in the ball, and the last one is
because of the definition of γ.

Furthermore, we have

sup
x∈Rd

∥T∗
kp

x+tkp ∥p≤1

∥∥∥x + T∗
kp

−1tkp

∥∥∥
p

= sup
∥y∥≤1

∥∥∥T∗
kp

−1
y

∥∥∥
p

≤
∥∥∥T∗

kp

−1
∥∥∥
p

≤ γ,

which shows that the cluster is contained in the ball Bpγ(−T∗
kp

−1tkp
). Therefore, the cluster

contains at most one data point since the ball has this feature. If the cluster does not contain
any data point, then clearly its volume, and hence θ∗

kp
, is 0, which contradicts the assumption.

So, let ai be the point in the cluster. Then, setting Tkp
to be a diagonal matrix where all

the diagonal elements are χ, and tkp
= −χai, we have the same cluster of data, which is a

singleton, with θp = 1
χd . Since increasing χ does not change the cluster while reducing the

objective function, we have θ∗
kp

= 0. This contradicts the assumption, which concludes the
proof. □
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Theorem 3 asserts that for clusters with positive volume, we have a lower bound
on the norm of the inverse of the transformation matrix. Since for any induced matrix
norm ∥ · ∥p, we have 1

∥A∥p
≤ ∥A−1∥p, we conclude that we are looking for transforma-

tion matrices Tkp , whose norm does not exceed 1
γ . Moreover, we can assume, without

loss of generality, that ∥ai∥p < 1, implying ∥tkp∥p ≤ 1. Therefore, we limit ourselves
to the feasible points where

∥∥Tkpai + tkp

∥∥
p

is bounded from above by 1
γ + 1. There-

fore, (6) has an outer approximation (enlarging the feasible region) that is a MICO
problem.

We emphasize that this new approximation and (6) significantly contribute to the
existing literature. More specifically, the authors of [30] put forth a mixed integer non-
convex optimization problem that focuses solely on p = 2, while our MICO problem
can deal with all computationally tractable norms. Furthermore, [27] offers a mixed
integer semidefinite optimization problem that applies to p = 2, which is a looser
approximation of (6) compared to our formulation.

Even though there are solvers capable of solving MICO problems, our formula-
tions are computationally challenging as the number of cones depends on the number
of clusters, and the number of constraints depends on the number of data points.
Therefore, in the next section, we develop an algorithm to approximate and optimal
solution timely.

4 Solution algorithm
In this section, we introduce a solution algorithm designed to approximate (6) effi-
ciently. The closest algorithm in the literature compared to ours is the one proposed
in [27], which is developed for p = 2 and is extremely sensitive to the initial solution.
However, our algorithm is able to deal with a general vector norm and is not sensitive
to the initial solution.

The problem’s computational complexity arises from the combination of conic con-
straints and binary variables, making traditional solution techniques computationally
inefficient. To overcome these difficulties and find efficient solutions for this optimiza-
tion problem, we propose an iterative algorithm based on assignment approaches and
duality theory. Firstly, we introduce an overview of the solution algorithm. Next, we
introduce our reassignment algorithm, which removes and reassigns points to clus-
ters in each iteration. Finally, we present the exploration algorithm, which adjusts
a parameter that is used in the reassignment algorithm to refine the solutions and
prevent the reassignment algorithm from getting stuck in local optimums.

4.1 An overview of our solution algorithm
We employ a bilevel algorithm, where the master problem is the assignment of points
to clusters, and the sub-problems are identifying the regions that contain clustered
points and have the minimum volume. We start with an initial solution. Then, we
use an iterative local search procedure to refine the solution. This process yields
new membership indicators, likp

, which are used to find new regions, enhancing the
algorithm’s efficiency and ability to find high-quality solutions.

12



Given fixed membership indicator values, ¯likp
, (6) decomposes into K :=

∑
p∈P Kp

independent minimum volume norm-based optimizations, each to obtain Tkp and tkp ,
kp ∈ [Kp] and p ∈ P:

inf
Tkp ,tkp

− log det Tkp (9a)

subject to ¯likp

∥∥Tkpai + tkp

∥∥
p
≤ 1, ∀i ∈ [N ]. (9b)

Let us consider the Lagrangian dual problem for (9),

max
λkp ≥0

inf
Tkp ,tkp

(
− log det Tkp +

∑
i∈[N ]

λikp
(1− ¯likp

∥∥Tkpai + tkp

∥∥
p
)
)
, (10)

where λkp ∈ RN is the vector of Lagrange multipliers associated with each constraint.
Problem (9) contains a Slater’s point. More explicitly, the Slater’s point can be any
region that strictly contains all the points with ¯likp

= 1. A simple way to construct
such a region is to take the arithmetic mean of all the points as the center of the
region and scale the identity matrix by a large enough constant to ensure all points
are contained within the region. Thus, by Theorem 1 in [33], we know strong duality
holds and (10) provides us with the same value as (9).

We denote the optimal solutions achieved from these subproblems by T∗
kp

and t∗
kp

,
kp ∈ [Kp] and p ∈ P. Given these values, we define the master problem as

inf
rkp ,l

i
kp
,wi

∑
p∈P

Kp∑
k=1

rkp (11a)

subject to
∥∥∥T∗

kp
ai + t∗

kp

∥∥∥
p
· likp
≤ 1 + rkp , ∀i ∈ [N ], kp ∈ [Kp], p ∈ P, (11b)

wi ≤
∑
p∈P

∑
kp∈[Kp]

likp
≤ wi

∑
p∈P

Kp, ∀i ∈ [N ], (11c)

∑
i∈[N ]

wi ≥ (1− e)N, (11d)

wi ∈ {0, 1}, ∀i ∈ [N ], (11e)
likp
∈ {0, 1}, ∀i ∈ [N ], kp ∈ [Kp], p ∈ P, (11f)

where the variable rkp is the penalty variable used to relax the constraint (11b).
Problem (11) is an assignment problem with binary decision variables, likp

and wi and
continuous variable rkp . For a given region kp, we use rkp to shrink or enlarge the
region. Therefore, (11) tries to find the best combinations of shrinking some regions,
while enlarging others with the hope of finding better clusters.
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4.2 Reassignment algorithm
To improve the clusters, we need to identify points to be reassigned to different clus-
ters. In what follows, we explain the points that are interesting to consider. Next, we
present the reassigning procedure of data points considering the interesting points.

Points in the boundary zone
We are interested in points in each cluster located on or near the boundary of the
regions, which we call their boundary zones. We define the dist(ai, kp) function for
each data point ai and each region kp, kp ∈ [Kp], p ∈ P, as

dist(ai, kp) =
∥∥Tkpai + tkp

∥∥
p
.

Let k∗i = argminkp∈[Kp],p∈P dist(ai, kp). We identify η data points that have the least
values of |dist

(
ai, k∗i

)
− 1| and label them as points in the boundary zone. η is the

desired number of points in the boundary zone, which is given by the exploration
algorithm.

Points in the overlap
Given the solution to the master problem (11), there might be data points that belong
to multiple regions in a given iteration. To enhance the solution of an iteration, we can
exploit these overlapping points by incurring a small computation cost. The points
that have dist(ai, kp) ≤ 1 from both regions, denoted as k1

p and k2
p, represent the

points in the overlap of those two regions.

Reassigning procedure
To update the regions, we remove the points in the boundary zone and the points in
the overlap of regions from clusters and reassign them to find a better solution. In
this procedure, we assume that η is given. Let T∗

kp
, t∗
kp

and li∗kp
be the transformation

matrix, translation vectors, and membership indicators of the current optimal regions,
respectively. We identify points in the boundary zones and the overlap. To solve the
master problem (11), we do as follows:

1. We introduce l′ikp
with the same values as li∗kp

for i ∈ [N ], kp ∈ [Kp], p ∈ P.
2. (Shrinking regions) We remove the points ai within the boundary zones and the

overlap zones by setting l′ikp
to zero. We call l′ikp

as shrunk membership indicators.
3. We solve sub-problems (9) for any kp, given l′ikp

, i ∈ [N ], and call them shrunk
regions with T′

kp
and t′

kp
as their shrunk transformation matrices and shrunk

translation vectors, respectively.
4. We update the value of l′ikp

for all data points and regions:

l′ikp
=
{

1, if dist(ai, kp) ≤ 1,
0, if dist(ai, kp) > 1.
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5. We identify points outside the shrunk regions as probable outliers, i.e. points with∑
p∈P

∑
kp∈[Kp] l

′i
kp

= 0. We denote the portion of these probable outliers in the
total data points as e′.

6. If e′ ≤ e, then T′
kp

, t′
kp

and l′ikp
are the refined values for regions. Otherwise, we

will carry out the next step.
7. (Enlarging regions) To select the best region k′

p to enlarge, we calculate the increase
in the total volume of regions in case of each region’s enlargement. So, for given
k′
p ∈ [Kp] and p ∈ P:

(a) We introduce l′′ikp
which is equal with l′ikp

for i ∈ [N ], kp ∈ [Kp], p ∈ P.
(b) We calculate dist(ai, k′

p) for all the points and regions
(c) We identify ⌊(e′ − e)N/2⌋ number of datapoints that have minimum positive

dist(ai, k′
p)− 1 value.

(d) We set the l′′ikp
to 1 for the points identified from the last step and solve the

associated subproblem for l′′ikp
to find the increment in volume of region in case

k′
p is selected.

8. We select the cluster k′
p that causes the least increment in the total volume and

enlarge it (T′
kp

, t′
kp

and l′ikp
are updated).

9. We go back to Step 6.

Using the reassignment algorithm, we remove and reassign points to the regions
gradually to find an approximated solution. In this algorithm, η plays a crucial role.
A small constant value for η can cause the algorithm to get stuck in local optimums,
and a large value can lead to meaningless approximations. Therefore, we develop an
exploration algorithm to adjust the value of η for the reassignment algorithm.

4.3 Exploration algorithm
As mentioned, η is a given parameter in the reassignment algorithm and plays a pivotal
role in the final solution. In this section, we propose an algorithm to find a suitable
η. The idea behind this algorithm is we start with a large number, and decrease the
value after a fixed number of iterations.

Number of points in the boundary zone for each iteration
We require at least d + 1 points in Rd to be able to find minimum volume regions
[34]. Since we need to solve subproblems for shrunk regions in each iteration of the
reassignment algorithm, η has a maximum limit, which is denoted by ηmax. Values
exceeding this threshold could make it impossible to construct one of the shrunk
regions as they might have less than d+ 1 data points.

Assume that the allowed total number of iterations for the algorithm is given by
T , and iter is the counter of them. We divide this total into phases, each with Ψ
iterations. So, we have T /Ψ phases. Let ψ be the counter of the phases. We set the
maximum number of points as

ηψ := ηmax

2ψ−1 , (12)
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which decreases as the phase number ψ grows.

Exploration procedure
Having defined the parameters needed, we take the following steps as an exploration
algorithm:

1. Let T∗
kp

, t∗
kp

, and Obj∗ be the transformation matrix, translation vectors, and the
total volume of the regions, respectively, which are given from an initial solution.

2. If iter = T , and ψ is the current phase, then we terminate the algorithm and return
(T∗

kp
, t∗

kp
) as the solution. Otherwise, iter ← iter + 1, and we calculate ηψ using

(12).
3. We use the reassignment algorithm given T∗

kp
, t∗

kp
, and

η = ⌊(1− (iter − 1) mod Ψ
Ψ )× ηψ⌋,

to attain new Tkp , tkp , and Obj.
4. If Obj < Obj∗, then we found a better solutions and we update T∗

kp
, t∗
kp

, and Obj∗.
5. Go to Step 2.

In this algorithm, we adjust the number of boundary points in each iteration
to prevent the algorithm get stuck in local optimums. In each phase, we gradually
decrease η to fine-tune the solutions, but when a new phase starts, we again use a high
value for η to explore more possible clustering. We find better solutions in each phase
after doing the reassignment algorithm in each iteration, and at the last iteration of
each phase, we find the best solution for that phase. Each phase takes the best solution
so far as the initial solution and improves it.

5 RO reformulation
So far, we have explained how to construct the uncertainty set using our approach.
In this section, we show how the RO problem (2) can be reformulated using our
uncertainty set.

5.1 Our uncertainty set in RO
The uncertainty set derived from (6) is

U =
⋃
p∈P

⋃
kp∈Kp

Ukp , (13)

where Ukp = {u | ∥T∗
kp

u + t∗
kp
∥p ≤ 1}. Implementing (13) as the uncertainty set for

(2), the robust counterpart reads as

inf
x∈Rn

{
g(x) | fj(x, u) ≤ 0, ∀u ∈ Ukp , kp ∈ [Kp], p ∈ P, j ∈ [m]

}
. (14)
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Substituting z = T∗
kp

u + t∗
kp

, for each j ∈ [m], we can reformulate each constraint
of (14) as

fj(x,−T∗
kp

−1t∗
kp

+ T∗
kp

−1z) ≤ 0, ∀z ∈ Zkp , kp ∈ [Kp], p ∈ P, (15)

where Zkp = {z | ∥z∥p ≤ 1}. Using Theorem 2 in [35], each constraint in (15) reads as

(
−T∗

kp

−1t∗
kp

)T
ζkp

+ δ∗
(

(T∗
kp

−1)T ζkp
| Zkp

)
− fj∗(x, ζkp

) ≤ 0, ∀kp ∈ [Kp], p ∈ P,

where ζkp
∈ Rd for any kp ∈ [Kp] and p ∈ P, the support function δ∗(·) and the

partial concave conjugate function fj∗(·) are as defined in [35]. Then, using Theorem
2 in [36], the constraint reads as(
−T∗

kp

−1t∗
kp

)T
ζkp

+
∥∥∥(T∗

kp

−1)T ζkp

∥∥∥
qp

− fj∗(x, ζkp
) ≤ 0, ∀kp ∈ [Kp], p ∈ P, (16)

where for each p ∈ P, ∥.∥qp is the dual norm.

Example 1 (Linear constraint in the optimization variable) Consider a linear constraint as
uTx − β ≤ 0, ∀u ∈ U (17)

where u ∈ Rd is the coefficient vector of the variables, β ∈ R is the right-hand side parameter,
and U is the uncertainty set defined in (13) with P = {2}. Note that for f(x, u) = uTx − β,
we have

f∗(x, u) =
{

β, if x = u,

−∞, if x ̸= u.

So, using (16), the constraint (17) reads as

(−T∗
k

−1t∗
k)Tx + ∥T∗

k
−T

x∥2 ≤ β, ∀k ∈ [K].
□

6 Numerical experiments
In this section, we evaluate the effectiveness and efficiency of our proposed approach.
To make the research accessible and transparent for the broader scientific community,
the code is available in a public repository 1.

In our experiments, we made use of Julia 1.10 and JuMP 1.20.0 to pass (9) to
Mosek 10.0. To perform K-means clustering, we utilize the Clustering.jl package2 from
the JuliaStats library. For GMM clustering, we use the package GaussianMixtures.jl3.
The experiment was performed on a MacBook Pro equipped with an Apple M1 Pro
chip that has a total of 10 cores (8 performance and 2 efficiency) and 32 GB of memory.

1The code repository is available at https://github.com/alirezaSfid/MVNBC. It can be used for further
experimentation and insights.

2https://github.com/JuliaStats/Clustering.jl
3https://github.com/davidavdav/GaussianMixtures.jl
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We first tested if a regular solver could solve (6). The Pajarito.jl [37] package is a
logical option, so we tested that. However, it turned out that even for small problem
instances, the solver was not able to give a reasonable solution. For larger problem
instances, it would not be able to give any solution. This is why we only report on
the results from our own algorithm.

6.1 MVNBC as a clustering method
The purpose of this section is to visualize the performance of our algorithm to approx-
imate optimal solutions regardless of the initial conditions. We compare our proposed
clustering method with two traditional clustering methods, K-means and the Gaus-
sian Mixture Model (GMM). Various datasets have been generated to illustrate the
clustering results in a two-dimensional representation. Alongside this, measurements
of time and total region volume have been recorded for comparison.

Data generation
We utilize the Gaussian mixture method [38] to generate the data, which effectively
represents complex distributions. We generate three random positive definite covari-
ance matrices for three Gaussian distributions. Then, for the center of each Gaussian
distribution, we uniformly sample a point from [−20, 20]2. Next, we generate 475 data
points uniformly from these three distributions. Afterwards, we generate 25 random
points sampled uniformly in the interval of minimum and maximum of the points
generated in the previous step to represent some outliers. So, we have 5% outliers in
total. Out of all the datasets that can be generated by applying the described method,
we select the one that displays complex data patterns to emphasize the difference
between the effectiveness of various methods in capturing data patterns.

Visual clustering results
Given generated data sets, we use K = 3, the same number of clusters as the number
of distributions, for K-means, GMM, and MVNBC approach. This is to evaluate the
methods fairly when the optimal number of clusters is known. We conduct experiments
with p = 2 and p = ∞. As K-means and GMM are not able to detect outliers, we
consider outliers as the points which have maximum values of dist(ai, k∗

p) (introduced
in Section 4.2) and solve subproblems for each clustering membership indices (lik).
Three different initial solutions are used for MVNBC: regions based on clustering
membership indices from K-means, regions based on clustering membership indices
from GMM, and regions based on randomly generated membership indices. In the
random case, we randomly set membership indices for three points from the data
set to each cluster and then apply MVNBC for those initial solutions. To solve the
subproblems with p = 2, we use MinimumVolumeEllipsoids.jl4 package, and for the
subproblems with p =∞, we solve it using Mosek.

Figure 1 presents the results with p = 2. The regions resulting from the K-means
algorithm, as shown in Figure 1a, are not effective in capturing data patterns. In

4https://github.com/FriesischScott/MinimumVolumeEllipsoids.jl
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Figure 1b, we present the results for the MVNBC approach where the initial solution
is the K-means, and we set the iteration number to 50 (T = 50). For GMM, we do
the same as K-means. The clustering using GMM is shown in Figure 1c. Although
GMM can capture data patterns better than K-means, there is a huge cluster, which
does not capture the data pattern well. Given this cluster as the initial solution, one
can see the effectiveness of the MVNBC method for T = 50 in Figure 1d.

Figure 1e demonstrates the resulting clustering from MVNBC when random initial
solutions are provided and T = 50. Figure 1f demonstrates the same for T = 100.
Even though in Figure 1eE there is still room for enhancing the clusters to capture
data patterns efficiently, the resulting clusters are an effective representation of data.
Then, applying more iterations would slightly improve the total volume of the clusters,
as shown in Figure 1f.

(a) K-means (b) MVNBC (K-means)

(c) GMM (d) MVNBC (GMM)

(e) MVNBC with 50 iters. (Random) (f) MVNBC with 100 iters. (Random)

Fig. 1: Clustering performance comparison (p = 2)

Similarly, Figure 2 shows the result of the same experiments for p = ∞. This
experiment also provides consistent results, as for p = 2. In both cases with p = 2
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and p =∞, clearly, MVNBC outperforms other clustering methods in capturing data
patterns effectively.

(a) K-means (b) MVNBC (K-means)

(c) GMM

]
(d) MVNBC (GMM)

(e) MVNBC with 50 iters. (Random) (f) MVNBC with 100 iters. (Random)

Fig. 2: Clustering performance comparison (p =∞)

Algorithm effectiveness and computational efficiency
The trend of the objective value, representing the optimization progress, is illustrated
in Figure 3 after a specified number of algorithm iterations for each experiment.
When GMM clustering is employed as the initial solution, the optimization pro-
cess demonstrates faster progress compared to other MVNBC cases. GMM, which
fits multi-variate normal distributions on data, shares statistical equivalence with
MVNBC when p = 2. In contrast, K-means clusters data solely based on their
Euclidean distance to the centers without directly considering data patterns. As we
expected, random initial solutions exhibit slower optimization progress compared to
others. Nevertheless, the algorithm’s effectiveness is observable regardless of the initial
solution provided to MVNBC.
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Fig. 3: Total volume of the best clusters for each iteration for p = 2

Table 1 provides an overview of the performance metrics of the solution for all
methods, including the total volume of resulted regions and clustering times. It is
worth noting that the calculation time for cases with p =∞ is relatively high because
optimization problems are solved exactly using the solver in each iteration. However,
for cases with p = 2, the use of MinimumVolumeEllipsoids.jl package helps us find
optimal solutions for subproblems more quickly. Although MVNBC takes longer to
cluster data, it outperforms K-means and GMM by approximately 90% in terms of
total cluster volumes.

Table 1: Performance Metrics for Clustering Methods
Ellipsoid (p = 2) Diamond (p = ∞)

Time (s) Total
Volume

Time (s) Total
Volume

K-means 0.2 331.1 0.2 295.9
GMM 2.8 291.8 0.4 313.5
MVNBC (K-means) 15.2 36.6 124.7 43.4
MVNBC (GMM) 53.5 36.4 197.1 39.5
MVNBC (Random) - 50iters. 12.2 41.7 134.8 40.1
MVNBC (Random) - 100iters. 20.3 36.8 259.0 39.1

6.2 RO with a linear constraint
In this section, we utilize the identical RO problem and datasets as those employed
in [11]. By adopting the same problem formulation and dataset, we aim to directly
compare our approach to the methods proposed in [11], which uses Neural Networks
(NN), and is one of the best benchmarks in the field.
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Problem description
Let us consider the following RO problem:

max
x

∑
i∈[d]

xi (18a)

subject to cTx ≤ 1000, ∀c ∈ U , (18b)
x ∈ [−1, 1]d, (18c)

where x ∈ Rd is the vector of decision variables, c ∈ Rd is the vector of uncertain
parameters, and U is the uncertainty set.

Data generation
For this experiment, we use identical data sets as the one used in [11]. They consider
three types of data sets. The first type of dataset is generated from a multivariate
normal distribution, which we denote as Gaussian. The second type consists of two
independent Gaussian distributions. For each sampled data point, they randomly
choose with equal probability whether to use the first or the second distribution. We
denote this data set as Mixed Gaussian. Finally, they sample the third set uniformly
from a polyhedron constructed in the manner of budgeted uncertainty [39]:

Ξ =
{

ξ ∈ Rd : ξi = ξi + ξiϱi,
d∑
i=1

ϱi ≤ ρ,ϱ ∈ [0, 1]d
}
,

where the lower and upper bounds ξi and ξi, i ∈ [d], are chosen randomly and ρ = d
2 .

We call the instances in this category as Polyhedral. To generate the data sets, they
create 10 configurations for each data type (Gaussian, Mixed Gaussian, Polyhedral),
resulting in a total of 30 data sets. For each of these 30 data sets, there is a training
data set with 500 data points consisting of 5 percent noise sampled uniformly in
[0, 300]d, where d = 20 and a test dataset with 10,000 samples.

Results
For each data set, we construct an uncertainty set U , using MVNBC with 1, 2, and
3 clusters when p = 2, respectively. We conducted the experiment only for p = 2, as
we can use the MinimumVolumeEllipsoids.jl package for solving subproblems in this
case. Solving subproblems for p = 1 or p = +∞ is not computationally affordable
for this experiment when we use Mosek to solve subproblems. For NN solutions, we
use uncertainty sets constructed using NN, which is accessible in [11]’s repository. We
construct these uncertainty sets using different rates of outliers, e. We consider cases
where 1−e ∈ {0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90}. We solved (18) for these different
uncertainty sets.

We present the quality of the solutions in Table 2 for different e and different
methods. In this table, higher values show a better performance. In most experiments,
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MVNBC outperforms NN by about 10 percent, which is a notable difference. It is
also worth mentioning that MVNBC with e = 0.05 shows a better performance than
NN with e = 0.40, meaning the most conservative uncertainty set constructed using
MVNBC outperforms the least conservative one constructed using NN.

Regarding feasibility, almost for all of the test out-of-sample scenarios, (18b) is
not violated. It is also noteworthy that the results do not show any preference for the
number of clusters we used. We expected, at least for Mixed Gaussian case, to see
improvement between 1 and 2 clusters. This result is because of the structure of the
problem and objective function. As the objective function in (18a) is linear on x, the
worst-case scenario happens at the boundary of the uncertainty set in 1 cluster case,
coinciding with the boundary of one of the clusters in 2 clusters case. Consequently,
despite the differing representations of data patterns, the objective values obtained
under both uncertainty sets are identical. This equivalence underscores the robustness
of uncertainty sets constructed using 2 clusters compared with 1 cluster, indicating
that both provide the same conservative solutions.

Table 2: Obejctive values of (18) for different outlier detection rate (e)

Objective value (
∑d

i=1 xi)

Type 1 − e MVNBC-1 MVNBC-2 MVNBC-3 NN

G
au

ss
ia

n

0.90 9.58 9.56 9.57 8.95
0.85 9.60 9.60 9.58 8.97
0.80 9.63 9.63 9.63 9.01
0.75 9.64 9.64 9.64 9.05
0.70 9.66 9.62 9.65 9.08
0.65 9.69 9.65 9.64 9.11
0.60 9.70 9.66 9.64 9.14

M
ix

ed
G

au
ss

ia
n 0.90 8.81 8.83 8.83 7.82

0.85 8.84 8.85 8.86 7.88
0.80 8.87 8.89 8.88 7.92
0.75 8.91 8.90 8.89 7.98
0.70 8.91 8.92 8.92 8.04
0.65 8.92 8.96 8.93 8.09
0.60 8.92 8.97 8.95 8.14

P
ol

yh
ed

ra
l

0.90 8.56 8.56 8.57 8.13
0.85 8.59 8.61 8.56 8.14
0.80 8.65 8.63 8.62 8.14
0.75 8.65 8.63 8.60 8.16
0.70 8.68 8.63 8.64 8.17
0.65 8.68 8.64 8.62 8.19
0.60 8.71 8.69 8.64 8.20

For computational efficiency comparison, we provide the average training and solu-
tion times in seconds for different methods in Table 3. We utilized the pre-trained
network in the repository of [11]. As we are using a different machine to conduct
experiments, we do not have the exact training time information for the NN case.
However, we can estimate the training time by considering the correlation between
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training times and solution times reported in [11] and the solution time we achieved
using our system. This allows us to extrapolate the training times for NN.

Training times for MVNBC-1 and NN require comparably little effort, with aver-
ages ranging from 12 to 21 seconds and 2 to 16 seconds, respectively. MVNBC-3 has
the longest training times among all, as the size of the optimization problem is larger.
There is a significant difference in solution times between NN and MVNBC. The
MVNBC approach involves solving a second-order conic optimization problem (see
Example 1), which can be solved quickly. On the other hand, the NN approach gen-
erates scenarios iteratively. It is clear that MVNBC is much faster than NN by two
orders of magnitude. Furthermore, solving time is more important than training time
since we only need to train and construct uncertainty sets once based on historical
data.

Table 3: Average training time and solution time of problem (18)
MVNBC-1 MVNBC-2 MVNBC-3 NN

Data type Training
time
(s)

Solution
time
(s)

Training
time
(s)

Solution
time
(s)

Training
time
(s)

Solution
time
(s)

Training
time
(s)

Solution
time
(s)

Gaussian 12.1 <0.1 88.0 <0.1 183.8 <0.1 2.8 102.3
Mix. Gaussian 10.4 <0.1 48.7 <0.1 122.5 <0.1 6.6 133.9
Polyhedral 20.3 <0.1 117.0 <0.1 180.2 <0.1 15.7 124.7

As shown in [11], NN shows a better performance compared to the Kernel method
proposed in [8]. They also show that NN outperforms the Box uncertainty set.
Therefore, our approach outperforms NN, Kernel, and Box methods.

7 Conclusion
In this paper, we have proposed a norm-based clustering method, called Minimum
Volume Norm-Based Clustering (MVNBC). This method aims to minimize the vol-
umes of regions for a desired set of vector norms. Each of these regions contains a
cluster of data points. MVNBC can locate these regions in order to capture data pat-
terns effectively and identify outliers at a specified rate. We have developed a Mixed
Integer Conic Optimization (MICO) problem for an MVNBC problem. The MICO
problem includes a quadratic cone for each data point and region, as well as an expo-
nential cone and a logdet cone for each region. Additionally, we have developed an
efficient iterative approximation algorithm, which iteratively reassigns points to new
regions to reduce the regions’ total volume.

Moreover, we utilized the regions generated from MVNBC as a new data-driven
uncertainty set in Robust Optimization (RO). We formulated the robust counterpart
for a general convex optimization problem with the presented uncertainty set, which
is as tractable as the original problem in many cases. Finally, we have conducted
two numerical experiments to showcase the practical significance of our proposed
approach. In the first experiment, we evaluated MVNBC as a clustering method to
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identify patterns in data sets. Our algorithm demonstrated superior performance when
compared to K-means and GMM in finding regions with a minimum total volume
containing clusters. In the second experiment, we used our uncertainty set for a typ-
ical RO problem and compared its performance with one of the best benchmarks in
the field. MVNBC not only improved the objective value by 10%, but also allowed
RO problems to be solved significantly faster compared to the benchmark from the
literature.
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Appendix A Mathematical Supplements
A.1 Proof of Theorem 1
A brief proof of this theorem is provided in [40] Section 4.3.3. Here is a more elaborate
proof for the theorem. Firstly, we need some definitions in order to prove the theorem.

Definition A.1 (See Definition 3.1.22 in [40]) A transformation from Rn to Rm is a rule,
T, that maps each vector, x in Rn, to a vector, T(x) in Rm. The notation T(x) : Rn → Rm
means ”T is a transformation from Rn to Rm.”

Definition A.2 (See Definition 3.3.1 in [40]) A linear transformation is a transformation
T(x) : Rn → Rm satisfying

T(u + v) = T(u) + T(v), (A1)
T(cu) = cT(u) (A2)

for all vectors, u and v in Rn, and all scalars c.

Definition A.3 (See Definition 3.3.13 in [40]) The standard coordinate vectors in Rn
are the n vectors

e1 =


1
0
...
0
0

, e2 =


0
1
...
0
0

, . . . , en =


0
0
...
0
1

. (A3)

The i-th entry of ei equals 1, and the other entries are zero.

Theorem A.1 (See Section 3.3.3 and page 148 in [40]) Let T: Rn → Rm be a linear
transformation. Let T be the m × n matrix

T =

( | | |
T(e1) T(e2) . . . T(en)

| | |

)
(A4)

Then T is the matrix transformation associated with T : that is, T(x) = Tx.

Proof See Section 3.3.3 and page 149 in [40] □

Definition A.4 (See Definition 4.3.1 in [40]) The paralellepiped determined by n vectors
v1, v2, t, vn in Rn is the subset

P = {a1v1 + a2v2 + · · · + anvn|0 ≤ a1, a2, . . . , an ≤ 1} (A5)

Theorem A.2 (See Theorem 4.3.6 in [40]) Let v1, v2, . . . , vn be vectors in Rn, let P be
the parallelepiped determined by these vectors, and let T be the matrix with rows v1, v2, . . . ,
vn. Then the absolute value of determinant of T is the volume of P :

| det(T)| = vol(P ) (A6)
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Proof (See Section 4.3.2 from [40]) □

proof of Theorem 1 Let C be the unit cube in d dimesnion, v1, v2, . . . , vd be the columns of
T, and P be the paralellepiped determined by these vectors, i.e. T(C) = P and vol(T(C)) =
| det(T)| (from Theorem A.2). Let ε > 0 and εC be the cube with side lengths ε, i.e., the
parallelepiped determined by the vectors εe1, εe2, . . . , εed and εP defines similarly. We have

vol(εP ) = εdvol(P ) = εd| det(T)| (A7)

where vol(P ) = vol(T(C)). The volume of εC is εd, because we scaled each of the d standard
vectors by a factor ε. We obtain that the volume of εP equals to εd| det(T)|.
Moreover, by Definition A.2, for any x ∈ Rd:

T(x + εC) = T(x) + T(εC) = T(x) + εP (A8)

Since a translation does not change the volumes, T scales the volume of a translate of εC by
| det(T)| (from Theorem A.2), i.e.

vol(T(x + εC)) = vol(T(εC)) = εd| det(T)| (A9)

Furthermore, we know

vol(S) =
∮

S
ds =

∫
· · ·
∫
x∈S

dx (A10)

where S is a region in Rd and

ds = de1 · de2 · · · · · ded = lim
ε→0

εe1 · εe2 · · · · · εed = e1 · e2 · · · · · ed lim
ε→0

εd. (A11)

The translation of this subset (S) by T is another subset (V), which consists of translated
ds. The volume of this subset (V) is calculated by:

vol(V) =
∮

V
dv =

∫
· · ·
∫
x∈V

dx (A12)

where

dv = T(ds) (A13)

= T(e1 · e2 · · · · · ed lim
ε→0

εd) (A14)

= lim
ε→0

εd × T(e1 · e2 · · · · · ed) (A15)

= lim
ε→0

εd × | det(T)| × e1 · e2 · · · · · ed (A16)

= | det(T)| × ds. (A17)

So,

vol(V) =
∮

V
dv =

∮
S

T(ds) =
∮

S
| det(T)| · ds = | det(T)| ·

∮
S

ds (A18)

= | det(T)| · vol(S) (A19)

□
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A.2 Proof of Corollary 1
Proof Given x ∈ Rd, let us define y = Tx + t. Since T is invertible, we have

x = T−1(y − t) (A20)
therefore, S can be represented as

S = {T−1(y − t) | ∥y∥p ≤ 1} (A21)
= T(Bp), (A22)

where
T(x) = T−1x − T−1t (A23)

As translation (T−1t) does not change the volume, using Theorem 1, we have

vol(S) = | det(T−1)| · vol(Bp) = 1
| det(T)| · vol(Bp), (A24)

where Bp is the unit ball of ℓp-norm in Rd, i.e., Bp = {x ∈ Rd | ∥x∥p ≤ 1}. So, the volume
of the region S is inversely proportional to the determinant of T. The fact that the volume
of the unit ball Bp in Rd is equal to (See e.g., [32])

vol(Bp) =
(2Γ(1 + 1

p ))d

Γ(1 + d
p )

, (A25)

concludes the proof. □

Appendix B Limitations and Critique of [30]
[30] introduces a Minimum Volume Ellipsoid Clustering (MVEC) and formulates it as
a MICO problem. The challenge lies in distributing N points in Rd among K clusters,
each defined by the total volume of its covering ellipsoid. Essentially, the objective
is to arrange the data points to minimize the sum of the volumes of the Minimum
Volume Ellipsoid (MVE) associated with each cluster. The MVE serves as a metric
to characterize the region of a cluster. The primary aim is to reduce the volume of
MVE for each cluster while also guaranteeing that all points are contained within the
same cluster:

min
Ck

−
K∑
k=1

ln det(Mk) (B26a)

subject to (Mkai − zk)T (Mkai − zk) ≤ 1, ∀i ∈ Ck, k = [K], (B26b)⋃
k

Ck = [N ], (B26c)

Mk ⪰ 0. (B26d)

where Ck is the allocation of points to the k-th cluster, [K],
Mk ∈ Rd×d and zk ∈ Rd are the parameters of the k-th ellipsoid.

In this section, we discuss the inadequacies of the formulation (B26) with respect to
its objective function and two limitations. Specifically, we identified that the objective
function is erroneous and further noted two shortcomings that need to be addressed.
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B.1 Main inadequacy: inaccurate objective function
The primary adequacy pertains to the utilization of a summation of logarithmic terms
in the objective function (B26a) instead of a summation of the volume of ellipsoids.
The problem with this approach is that the objective function in (B26) is not the
summation of volumes, which is actually

∑
k

1
det Mk

, but rather the summation of the
logarithmic terms −

∑
k ln det Mk. Although the logarithmic function preserves the

ordering of numbers, the use of logarithmic terms in the MVE formulation cannot be
justified. This is due to the fact that the logarithmic function is not linear, and the
summation of logarithms does not preserve the ordering of numbers. To illustrate the
issue with their objective function, we present a simple numerical example.

Consider four ellipsoids in 2D, where each ellipsoid is represented by the equation:

Ek = {x ∈ R2 | ∥Tkx + tk∥2 ≤ 1}, ∀k ∈ {1, 2, 3, 4},

where det(Tk) represents the determinant of matrix Tk, for k ∈ {1, 2, 3, 4}, such that:

det(T1) = 1
2 ,

det(T2) = 1
2 ,

det(T3) = 1
3 ,

det(T4) = 2
3 .

Using equation (3), we have the following volumes for the four ellipsoids:

vol(E1) = π

2 ,

vol(E2) = π

2 ,

vol(E3) = π

3 ,

vol(E4) = 2π
3 .

The objective function for E1 and E2 as clusters is equal to:

− ln det(T1)− ln det(T2) = − ln 1
2 − ln 1

2 = −1.386

The objective function for E3 and E4 as clusters is equal to:

− ln det(T3)− ln det(T4) = − ln 1
3 − ln 2

3 = −1.504
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However, it should be noted that even though the objective functions for E1 and
E2 as well as E3 and E4 are equal, their volumes are different. Despite this difference,
the sum of volumes for E1 and E2 is equal to the sum of volumes for E3 and E4.

In their formulation, the authors utilize a summation of logarithmic terms within
the objective function. Each of these terms has an inverse correlation with the volume
of each ellipsoid. However, a critical issue arises when comparing the logarithms of
individual variables. Although, it is correct that if det(A) > det(B), then ln det(A) >
ln det(B) and this has been used for MVE formulation in literature [23, 41], controd-
ictory, the paper implicitly assumes that if det(A) + det(C) > det(B) + det(D), then
it follows that ln A + ln C > ln B + ln D. This assumption is not valid, as the loga-
rithm function is not linear. Logarithms do not preserve the ordering of numbers, and
as a result, the inequality ln A + ln C > ln B + ln D cannot be directly inferred from
det(A) + det(C) > det(B) + det(D).

B.2 Limitation 1: Only ellipsoidal clusters
The primary limitation in [30]’s formulation of the clustering method lies in its
exclusive applicability to clusters characterized by ellipsoidal regions. While ellipsoids
have conventionally facilitated MVE computations in the literature, it is essential to
acknowledge scenarios where alternative geometric configurations may better capture
the intrinsic pattern of the data. The reliance solely on ellipsoidal regions may lead
to suboptimal models when confronted with diverse datasets. The literature associ-
ated with [30] has historically favored ellipsoids, resulting in a technical infrapattern
for MVE computations. However, broadening the scope to encompass a more diverse
range of geometric regions can enhance the optimization process, thereby ensuring
accuracy and efficiency.

In result, we propose a novel approach termed Minimum Volume Norm-based
Clustering (MVNBC), wherein each cluster can exhibit different norm-based regions.
By adjusting the containment constraint and objective function values for the volume
of each region, MVNBC offers a versatile solution that goes beyond the limitations
of exclusively relying on ellipsoidal configurations. This innovative method allows for
a more comprehensive representation of the underlying data pattern, addressing the
shortcomings associated with a singular focus on ellipsoidal regionss.

B.3 Limitation 2: Absence of outlier detection
The other limitation of the model, as described in [30], is its lack of outlier detection.
This hinders its practical usefulness, as outliers - data points that deviate signifi-
cantly from expected values - can greatly affect the accuracy and reliability of the
model. Decision-makers must be aware of the prevalence of outliers in their data
or potential scenarios, in order to assess the model’s performance and adjust their
strategies accordingly. To enhance the model’s applicability and ensure accurate pre-
dictions across diverse scenarios, outlier detection mechanisms are necessary within
the clustering methodology.

Furthermore, the absence of outlier detection in the model poses a practical chal-
lenge, as decision-makers may struggle to distinguish between data noise and other

33



important data points. While some scenarios, such as gambling decisions, may not
require a thorough analysis of outliers, in contexts like healthcare, even seemingly
insignificant data points can hold crucial importance. The inclusion of outlier detection
mechanisms is therefore crucial for distinguishing and handling outliers, ultimately
improving the model’s practical usefulness. By designating certain data points or
scenarios as outliers, the model can reduce conservativeness in optimal decision values.

Given the variability in safeguard guarantees based on specific problem circum-
stances, our proposed model acknowledges the feasibility constraints in detecting
anomalies, providing a nuanced and adaptable approach to outlier detection.
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