
Extended Formulations for Control Languages Defined by
Finite-State Automata

Christoph Buchheim 1 and Maximilian Merkert 2

1 TU Dortmund, Fakultät für Mathematik, Vogelpothsweg 87, 44227 Dortmund, Germany
2 TU Braunschweig, Institute for Mathematical Optimization, Universitätsplatz 2, 38106 Braunschweig,

Germany

April 30, 2024

Abstract

Many discrete optimal control problems feature combinatorial constraints on the possible
switching patterns, a common example being minimum dwell-time constraints. After dis-
cretizing to a finite time grid, for these and many similar types of constraints, it is possible
to give a description of the convex hull of feasible (finite-dimensional) binary controls via ex-
tended formulations. In this work, we aim to transfer a large class of such descriptions to
function space, by determining extended formulations for the closed convex hull of feasible
control functions. Such an infinite-dimensional grid-independent convex-hull description can
serve as a recipe for the practitioner for obtaining tight formulations for any discretization.
Our result applies to a large class of constraints that follow a certain modular principle, de-
scribed by a generalization of finite-state automata to infinite-dimensional input data, which
we specifically define for this purpose.

Keywords: Extended Formulations, Optimal Control, Convex Hull, Finite Automaton, Mixed-
Integer Programming

Mathematics Subject Classification: 49M25, 68Q45, 90C11

1 Introduction

Optimal control problems with discrete controls have recently become an increasing focus of re-
search. Such problems arise when searching for an optimal switching pattern over time, e.g.,
when shifting gears in a vehicle [RZSB21], navigating traffic at traffic-light controlled intersec-
tions [LMS+21] or when operating a gas network [HLM+17]. In many applications, such problems
contain ordinary or partial differential equations. However, in the context of discrete controls, the
set of feasible controls alone is a very interesting object and therefore worth studying. In par-
ticular, this set is usually non-convex, so that a tight description of its convex hull is necessary to
obtain dual bounds and hence to compute globally optimal solutions, e.g., by a branch-and-bound

1

https://orcid.org/0000-0001-9974-404X
https://orcid.org/0000-0002-7838-445X

2

approach [BGM24b, BGM24a]. Moreover, also heuristic methods such as combinatorial integral
approximation [SJK11] benefit from strong continuous relaxations.

Combinatorial constraints often arise in hybrid dynamical systems, i.e., systems which are
governed by continuous dynamics as well as discrete events such as switches triggered by an op-
timizer; see for example [Bra05] for an introduction to hybrid systems, or the book [VDSS07] for
more details and many examples. A more recent survey on hybrid and switched systems can be
found in [ZA15]. The description of such systems naturally involves automata, and concepts such
as timed automata [AD94] and hybrid automata [Hen96] have been widely used for modeling
time-continuous dynamical systems with discrete state changes. While a huge variety of condi-
tions is conceivable that one could call “combinatorial”, certain specially-structured conditions are
considered frequently and across different application domains, such as dwell-time constraints on
the switchings in switched systems [OWD16, Hey17, GHPS21, ZRS21].

In practice, optimal control problems have to be discretized before being solved (unless a
discrete-time model was used in the first place), resulting in a mixed-integer optimization problem
in finite-dimensional space. This problem can then be tackled by a variety of methods, including
branch-and-cut approaches, for which one may want to strengthen the formulation by applying
polyhedral results. A complete linear description of the convex hull for the polytope of 0-1 vec-
tors satisfying dwell-time constraints, often called min-up/min-down constraints in this discrete
context, is known in the original space [LLM04]. However, its size is exponential.

In discrete optimization, a well-known tool for obtaining compact and tight convex-hull de-
scriptions are extended formulations. Such formulations consist of a feasible set in a higher-
dimensional space, as well as a linear projection to the original space yielding exactly the desired
convex hull; the size of an extended formulation is its number of inequalities. Many examples
and construction techniques for extended formulation can be found in [CCZ13]. Indeed, a com-
pact extended formulation, i.e., an extended formulation of a size that is polynomial in the original
dimension, exists for the min-up/min-down polytope [RT05]. Moreover, it has been shown that
the convex hull of all words in a regular binary language, i.e., a set of 0-1 strings that can be rec-
ognized by a finite-state automaton (FSA), can be described by a compact extended formulation,
the size of which is linear in the number of states and the number of discretization points [FP15].
This flow-based formulation is essentially an extension of the Carr-Konjevod construction for the
parity polytope [CK05], and the min-up/min-down polytope is in fact a special case.

Recently, it has been shown that the feasible sets of some typical classes of control problems
admit extended formulations even in function space [Buc24], i.e., formulations consisting of a
polynomial number of control variables and a polynomial number of constraints with linear op-
erators in these controls; for a formal definition of a compact extended formulation in this setting,
see [Buc24, Def. 3.1]. In particular, this applies to the case of dwell-time constraints. In this work,
our aim is to devise extended formulations for a much larger class of problems.

From a complexity point of view, regular languages are one of the most accessible and well-
studied type of languages. They can be modelled by finite-state automata: Given a discrete control
as input, consisting of a finite list of letters, the automaton starts in one specified state, out of
finitely many given states. The automaton reads one letter after the other and thereby moves from
state to state. The next state is always chosen from a given list that depends on the last letter read
and on the current state. This list may be empty, in which case the automaton is stuck. The input

3

is feasible if and only if it can be read completely without getting stuck and if the automaton is in
a so-called accepting state after the entire input is read.

By introducing an appropriate continuous version of an FSA, we will devise an extended for-
mulation for controls in function space that is analogous to the discrete flow-based formulation
mentioned above. In other words, instead of first discretizing and then building the extended
formulation, we propose to first build the extended formulation and then discretize it. This has
several advantages. First, the model in function space gives rise to discretized models for arbitrary
grids. In particular, it avoids artifacts that may appear only for specific discretizations. Second,
we will see by an example that the number of states that are needed to model a discretized lan-
guage may depend on the number of grid cells, which is clearly not desirable. On the contrary,
the automaton in function space has a fixed number of states and thus ensures that an extended
formulation for discretizations scales well with the grid size.

This paper is structured as follows. In Section 2 we introduce relevant notions and results
from functional analysis. In Section 3 we present an automaton model that accepts continuous
controls rather than discrete sequences of letters. For the controls characterized via this new class
of automata, we derive extended formulations in function space in Section 4. The limits of the
concepts will be investigated in Section 5, where we give a necessary condition in the style of a
pumping lemma for our class of automata. Finally, Section 6 summarizes the findings and gives
an outlook on possible directions for further research.

2 Functions of Bounded Variation

We first recall some basic facts concerning the function spaces considered in the following sections,
focussing in particular on functions of bounded variation. We will limit ourselves to essential
definitions and observations. For more details, we refer the reader to the monographs [AFP00]
and [ABM14] or to the recent paper [Buc24].

Given some open set Ω ⊆ R, we start with the well-known reflexive Banach space L2(Ω), which
contains all equivalence classes of measurable functions u : Ω → R such that |u|2 is Lebesgue
integrable. Here, two functions are considered equivalent if they agree outside a null set. The
space L2(Ω) is equipped with the norm

∥u∥L2(Ω) :=
(∫

Ω
|u(t)|2 dt

)1/2
.

We say that un converges strongly to u in L2(Ω) if ∥u − un∥L2(Ω) → 0 for n → ∞. In this case, we
write un → u.

Throughout this paper, we will deal with the subspace of L2(Ω) consisting of functions of
bounded variation. For a precise definition, consider the seminorm on L2(Ω) given by

|u|BV(Ω) := sup
φ∈C∞

c (Ω)
∥φ∥∞≤1

∫
Ω
u(t)φ′(t)dt ,

4

where C∞
c (Ω) denotes the set of all smooth functions φ : Ω → R with compact support. We then

define
BV(Ω) :=

{
u ∈ L2(Ω) | |u|BV(Ω) < ∞

}
.

The distributional derivative Du of a function u ∈ BV(Ω) can be defined as the unique finite signed
regular Borel measure µ satisfying

Du(φ) =

∫
Ω
φ(t)dµ ∀φ ∈ C∞

c (Ω) .

In our extended formulation, we will use constraints of the form Du ≥ 0, meaning that

Du(φ) ≥ 0 ∀φ ∈ C∞
c (Ω), φ ≥ 0 .

The latter condition implies that the function u is monotonously increasing (outside a null set).
In the following, the set Ω will always describe the time horizon, where usually Ω = (0, T) for

some T ∈ R+. For any subset Σ ⊆ Rn, we now introduce the notation

BV(T,Σ) := {u ∈ BV((0, T))n | u ∈ Σ a.e. in (0, T)} ,

where “a.e.” is short for “almost everywhere” and indicates that the given condition is satisfied
outside a null set. We will often refer to elements of BV(T,Σ) as controls in the following. Each
control u ∈ BV(T,Σ) thus consists of n components ui of bounded variation and we define

|u|BV :=

n∑
i=1

|ui|BV .

In case Σ is finite, it follows from the definition that all controls u ∈ BV(T,Σ) are piecewise con-
stant. For our extended models, we will in particular consider controls with Σ = {0, 1}. Such a
control corresponds to a binary switch that may change only a finite number of times over the
time horizon (0, T). Moreover, we will usually require that u is zero outside the time horizon. To
model this, we introduce the notation

BV0(T,Σ) := {u ∈ BV(R)n | u = 0 a.e. in (−∞, 0) ∪ (T,∞), u ∈ Σ a.e. in (0, T)} .

Note that a condition of the form “u(0) = 0” is not well-defined in L2 or BV , since {0} is a null
set. We thus cannot directly fix the control on the boundary of [0, T].

Given a control u ∈ BV0(T, {0, 1}), it follows from the above definitions that the measure Du
is discrete with Du(t) = 1 where u jumps from 0 to 1, Du(t) = −1 where u jumps from 1 to 0,
and Du(t) = 0 everywhere else. In particular, we have that Du(0) agrees with the right-sided
limit of u in 0 and that −Du(T) agrees with the left-sided limit of u in T .

3 An Automaton Model for Control Languages

In this section, we characterize the classes of controls for which we will devise extended formu-
lations in the subsequent section. To this end, we define a variant of a finite-state automaton that

5

accepts continuous controls as input, and that recognizes the class of controls considered. Before
we do so, we introduce some auxiliary definitions for continuous controls emphasizing the anal-
ogy to classical finite-state automata, by adapting standard definitions for letters and words from
the discrete context:

Definition 3.1 (length, concatenation, subcontrol). Let Σ ⊆ Rn be given.

• We define the length |u| of a control u ∈ BV(T,Σ) as the length of the interval it is defined
on, i.e., |u| = T .

• Similar to the concatenation operator for sequences of letters, for functions u1 ∈ BV(T1,Σ)
and u2 ∈ BV(T2,Σ), we define the concatenation u1 · u2 by

(u1 · u2) : (0, T1 + T2) → Σ, (u1 · u2)(t) =

{
u1(t), for t ∈ (0, T1)

u2(t− T1), for t ∈ (T1, T2)
.

It is easy to see that u1 ·u2 ∈ BV(T1+T2,Σ). We may also omit the “·” and simply write u1u2
where the meaning is clear from the context.

• Similar to the notion of a substring, we call u′ ∈ BV(Tu′ ,Σ) a subcontrol of u ∈ BV(Tu,Σ) if
there exist functions v ∈ BV(Tv,Σ), w ∈ BV(Tw,Σ) such that u = v · u′ · w, allowing Tv = 0
or Tw = 0. In case Tv = 0 or Tw = 0, we also call u′ prefix or suffix of u, respectively.

• In analogy to the Kleene star in the discrete setting, we will write u ∈ Σ∗ if u ∈ BV(T,Σ) for
some T ∈ R+. Moreover, u ∈ Σ+ will be short for u ∈ Σ∗ and |u| > 0.

Note that in the definition of the concatenation u1 ·u2, it is not necessary that the controls u1 and u2
fit together, since {T1} is a null set and the values of u1 in T1 and of u2 in 0 are not well-defined
anyway. However, the concatenation may lead to jumps in T1.

We are now ready to introduce our automaton model.

Definition 3.2 (finite-state control automaton). A (non-deterministic) finite-state control automaton
(FSCA) is a quintuple (Q, δ,Σ, q0, F), where

• Q is a nonempty finite set of states,

• Σ ⊆ Rn is the nonempty and bounded input alphabet,

• δ : Q× Σ∗ → 2Q is the transition function,

• q0 ∈ Q is the initial state, and

• F ⊆ Q is the set of accepting states.

For each state q ∈ Q, an input dictionary Dq = Pq ∪ Cq ⊆ Σ∗ is given such that δ(q, f) = ∅ for
all f ∈ Σ∗ \ Dq, i.e., when being in state q the automaton can only process controls in Dq. The
set δ(q, f) ⊆ Q contains the possible states of the automaton after processing f , starting from
state q. Here, Pq ⊆ Σ+ is a finite set of non-empty patterns f , while Cq consists of all constant

6

controls f ≡ σ for σ ∈ Γq, where Γq ⊆ Σ is assumed to have cardinality at most one. If Γq = ∅ for
all q ∈ Q, the automaton M is called simple. A finite-state control automaton is said to recognize
a set L ⊆ Σ∗ of controls (a control language) if for each u ∈ Σ∗, we have u ∈ L if and only if
there exists an accepting sequence for u, i.e., a representation u = f1 · . . . · fk for some k ∈ N and a
finite sequence of states q0 = r0, r1, . . . , rk in Q such that ri+1 ∈ δ(ri, fi+1) for i ∈ {0, . . . , k − 1}
and rk ∈ F .

Note that requiring accepting sequences to be finite is without loss of generality. A formal
argument can be found in the proof of Lemma 3.4.

Definition 3.3 (regular control language). A control language L is called regular if there exists a
finite-state control automaton recognizing L.

A finite-state control automaton thus starts in state q0 and at position zero of the input u. When
being in state q and at position t, it either reads a complete pattern f ∈ Pq at position [t, t + |f |]
in u, then changing to any state in δ(q, f) and moving to position t + |f |, or it reads an element
of Cq, i.e., a control of arbitrary length that is constantly σ with σ ∈ Γq.

We emphasize that |Γq| ≤ 1 is required by definition. Otherwise, the automaton would be
allowed to switch between the constants in Γq arbitrarily often, which would lead to controls of
arbitrarily large variation. More specifically, we can show:

Lemma 3.4. Let L be a regular control language. Then each u ∈ L has an accepting sequence of length
O(|u|). Moreover, for each u ∈ L and each subcontrol v of u, we have |v|BV ∈ O(|v|).

Proof. Define P :=
⋃

q∈Q Pq and let µP := min{|f | | f ∈ P} > 0 be the shortest length of any
pattern in the automaton. By definition, every control u ∈ L is of the form u = f1 · . . . · fk, where
each fi either belongs to P or is constant. Moreover, we may assume that at the beginning and
between two consecutive patterns from P there is at most one constant control, since |Γq| ≤ 1
and two consecutive constant patterns with the same letter can be merged to one constant control.
Thus, for all i = 1, . . . , k − 1, we obtain |fi| + |fi+1| ≥ µP . Hence |u| ≥ ⌊k2⌋µP ≥ k−1

2 µP , which
implies k ≤ 2

µP
|u|+ 1.

To show the second assertion, we use that the finitely many patterns in P all have bounded
variation by definition, thus κ := max {|f |BV | f ∈ P} is finite. Between fi and fi+1, each jump is
at most diam(Σ) := supσ1,σ2∈Σ∥σ1 − σ2∥1, which is finite since Σ is assumed to be bounded. An
upper bound on the total variation of any subcontrol v of u is thus

(|v|µp
+ 1)(κ+ diam(Σ)) = 1

µp
(κ+ diam(Σ))|v|+ κ+ diam(Σ) ∈ O(|v|) .

□

Example 3.5 (Min-up/Min-Down). Consider the language of binary controls satisfying some min-
up/min-down constraints, i.e.,

LMINUPDOWN(L,ℓ) := {u ∈ {0, 1}∗ | blocks of 1-controls have length at least L,

blocks of 0-controls have length at least ℓ}

for given L, ℓ ∈ Q+. We can realize LMINUPDOWN(L,ℓ) by the automaton

7

q0

start

q1 q2

B A

0
A

1

B

where the pattern A is constantly one of length L and B is constantly zero of length ℓ. Accepting
states are marked with double circles. Thus Q = {q0, q1, q2}, F = {q0, q1, q2}, and Pq0 = {A,B},
Γq0 = ∅, Pq1 = {A}, Γq1 = {0}, Pq2 = {B}, Γq2 = {1}.

Comparing FSCA with classical FSA, we note that FSCA process whole patterns at once. It
is also possible – and sometimes done – to define classical FSA that process whole words, i.e.,
multiple letters, per transition. Conversely, however, there is no version of FSCA that processes
atomic parts of input elements, as such a thing does not exist for our setting.

Moreover, FSCA as defined in Definition 3.2 are non-deterministic in the sense that the automa-
ton can end up in different states for the same input control u, depending on how u is decomposed
and which transitions are chosen. In order to define a notion of determinism for FSCA, first re-
call that in a classical deterministic FSA, a single input letter must uniquely determine the next
transition. However, in the case of control automata, the input does not consist of a finite string.
Even worse, for an input u ∈ Σ∗, point-wise evaluations of u are not well-defined. This problem
can be resolved by considering right-sided limits u(t+) := limτ↘t u(τ), which are well-defined for
functions of bounded variation [AFP00, Theorem 3.28]. We can thus define a deterministic FSCA
as follows:

Definition 3.6 (deterministic FSCA). An FSCA M = (Q, δ,Σ, q0, F) is called deterministic if the
following conditions hold:

• for all q ∈ Q and all f ∈ Σ∗, we have |δ(q, f)| ≤ 1

• for all q ∈ Q and all f, f ′ ∈ Pq with f ̸= f ′, we have f(0+) ̸= f ′(0+), and

• for all q ∈ Q and all f ∈ Pq, we have f(0+) /∈ Γq.

Definition 3.6 ensures that for a deterministic finite-state control automaton M and input u,
there is at most one state M can possibly be in after processing u. More precisely, if the remaining
input to be processed is u′ ∈ Σ∗, then either u′(0+) = f(0+) for exactly one f ∈ Pq, or u′(0+) ∈ Γq,
in which case the input must be processed until the next t is reached with u′(t+) ̸= u′(0+), or the
automaton cannot proceed at all.

8

4 Extended Formulations

For the following, it will be convenient to interpret a finite-state control automaton (Q, δ,Σ, q0, F)
as a directed multigraph G = (Q,A) with

A := {(q1, q2) | ∃f ∈ Pq1 : q2 ∈ δ(q1, f)} ∪A0, A0 := {(q, q) | Γq ̸= ∅} .

Where no confusion can arise, we will identify a loop (q, q) ∈ A0 with the unique letter σ ∈ Γq and
an arc a = (q1, q2) ∈ A\A0 with the corresponding pattern f ∈ Pq1 with q2 ∈ δ(q1, f). In particular,
for a = (q1, q2) ∈ A \A0, we will write |a| for the length of said pattern. Finally, we will denote the
outgoing and incoming arcs in q ∈ Q, including the loops, by δ+(q) and δ−(q), respectively.

To simplify the presentation, we will assume that F = {qF } with qF ̸= q0. This is without loss
of generality, since otherwise one can add a new unique accepting state qF to the automaton and
connect all former accepting states to qF by an arc a of length |a| = 1, at the same time increasing
the time horizon T by 1.

Example 4.1. The language LMINUPDOWN(L,ℓ) from Example 3.5 can be realized equivalently by the
following automaton with a unique accepting state:

q0

start

q1 q2

qF

B A

0
A

1
B

01 01

01

Here 01 denotes the pattern of length 1 being constantly zero. Obviously, the accepted inputs
for the automaton given in Example 3.5 are exactly the accepted inputs for this new automaton
shortened by one time unit.

Remark 4.2. By a symmetric construction, one could also allow multiple initial states. In this case,
the starting point could be chosen non-deterministically from the set of initial states. While this
extension would lead to more compact automata in some cases, we decided to stick to the more
common model with a unique initial state in Definition 3.2.

Definition 4.3. Let M = (Q, δ,Σ, q0, {qF }) be a finite-state control automaton with qF ̸= q0. Given
any m ∈ N with ma := m|a|/T ∈ N for all a ∈ A \ A0, the time-expanded network N(M,m) consists
of the nodes Qm = {q(j) | q ∈ Q, j ∈ {0, . . . ,m}} and the arcs

Am = {a(j) := (q
(j)
1 , q

(j+ma)
2) | a = (q1, q2) ∈ A, j ∈ {0, . . . ,m−ma}} ,

where we define ma := 1 for a ∈ A0. The node q
(0)
0 has supply 1 in N(M,m), the node q

(m)
F has

demand 1, and all other nodes have supply and demand zero.

9

The first step for obtaining an extended formulation in function space is to rewrite the finite-
dimensional network flow problem in N(M,m) by means of a variable transformation. Essen-
tially, we sum up the flow on each copy of the original arc at every point in time, instead of
starting a new arc at every point in time and keeping its value constant until the flow has crossed
it. This will make the model accessible to the desired transfer to infinite dimension, since we then
have to deal with an infinite number of time points and hence an infinite number of copies of a
given arc. The construction is described by the following two lemmas.

Lemma 4.4. Given a finite-state control automaton M = (Q, δ,Σ, q0, {qF }) with qF ̸= q0 and m ∈ N
such that ma = m|a|/T ∈ N for all a ∈ A. Then the set of feasible flows x in N(M,n) is completely
described by the linear system

xa(j) ≥ 0 ∀a ∈ A, j ∈ {0, . . . ,m−ma}∑
a∈δ+(q)
a∈A0

xa(j) +
∑

a∈δ+(q)
a̸∈A0

j∑
i=0

xa(i) −
∑

a∈δ−(q)
a̸∈A0

j∑
i=0

xa(i−ma) = b̄q,j ∀q ∈ Q, j ∈ {0, . . . ,m} ,

where

b̄q,j =


1 if q = q0

−1 if q = qF and j = m

0 otherwise

and all xa(i) with i ̸∈ {0, . . . ,m−ma} are assumed to be zero.

Proof. The classical network flow model for N(M,m) reads

xa(j) ≥ 0 ∀a ∈ A, j ∈ {0, . . . ,m−ma}∑
a∈δ+(q)

xa(j) −
∑

a∈δ−(q)

xa(j−ma) = bq,j ∀q ∈ Q, j ∈ {0, . . . ,m}

with

bq,j =


1 if q = q0 and j = 0

−1 if q = qF and j = m

0 otherwise.

Summing up the flow conservation constraints arc-wise for i = 0, . . . , j, for j = 0, . . . ,m, we
obtain the equivalent model

xa(j) ≥ 0 ∀a ∈ A, j ∈ {0, . . . ,m−ma}∑
a∈δ+(q)

j∑
i=0

xa(i) −
∑

a∈δ−(q)

j∑
i=0

xa(i−ma) = b̄q,j ∀q ∈ Q, j ∈ {0, . . . ,m} .

10

Considering arcs in A0 separately, the left-hand side of the second constraint reads

∑
a∈δ+(q)
a∈A0

j∑
i=0

(xa(i) − xa(i−1)) +
∑

a∈δ+(q)
a̸∈A0

j∑
i=0

xa(i) −
∑

a∈δ−(q)
a̸∈A0

j∑
i=0

xa(i−ma) .

Using
∑j

i=0(xa(i) − xa(i−1)) = xa(j) , we obtain the desired model. □

Lemma 4.5. Under the assumptions of Lemma 4.4, the feasible flows x in N(M,m) correspond bijectively
to vectors (y(j)a)a∈A,j=0,...,m−1 belonging to the polytope Pm described by

∞∑
k=0

y(j−kma)
a −

∞∑
k=0

y(j−1−kma)
a ≥ 0 ∀a ∈ A

∑
a∈δ+(q)
a∈A0

∞∑
k=0

(
y(j−kma)
a − y(j−1−kma)

a

)
+

∑
a∈δ+(q)
a̸∈A0

∞∑
k=0

y(j−kma)
a −

∑
a∈δ−(q)
a̸∈A0

∞∑
k=1

y(j−kma)
a = b̄q,j ∀q ∈ Q,

where all constraints are required for all j = 0, . . . ,m and we set y(j)a := 0 for j ̸∈ {0, . . . ,m− 1}, so that
all appearing sums are finite. The bijection is given by the linear maps

y(j)a :=

j∑
i=j−ma+1

xa(i)

and

xa(j) :=

∞∑
k=0

(
y(j−kma)
a − y(j−1−kma)

a

)
.

In particular, the polytope Pm is integer.

Proof. We first show that the two mappings are inverse to each other, by induction over j. Indeed,
we have

∞∑
k=0

(
y(j−kma)
a − y(j−1−kma)

a

)
= y(j)a − y(j−1)

a +
∞∑
k=0

(
y(j−ma−kma)
a − y(j−1−ma−kma)

a

)
= y(j)a − y(j−1)

a + xa(j−ma)

=

j∑
i=j−ma+1

xa(i) −
j−1∑

i=j−ma

xa(i) + xa(j−ma)

= xa(j) − xa(j−ma) + xa(j−ma)

= xa(j) ,

where the second equation follows from the induction hypothesis. Conversely,

j∑
i=j−ma+1

xa(i) =

j∑
i=j−ma+1

∞∑
k=0

(
y(i−kma)
a − y(i−1−kma)

a

)
= y(j)a .

11

Now the result follows from Lemma 4.4 by substituting xa(i) and xa(i−1) according to the given
bijection, using

j∑
i=0

xa(i) =

∞∑
k=0

j∑
i=0

(
y(i−kma)
a − y(i−1−kma)

a

)
=

∞∑
k=0

y(j−kma)
a

and

j∑
i=0

xa(i−ma) =
∞∑
k=0

j∑
i=0

(
y(i−ma−kma)
a − y(i−1−ma−kma)

a

)
=

∞∑
k=0

y(j−ma−kma)
a =

∞∑
k=1

y(j−kma)
a .

The integrality of Pm follows from the fact that the classical network flow model is integer [FF62]
and that the given bijections preserve integrality. □

Example 4.6. In order to illustrate the statements of Lemma 4.4 and Lemma 4.5, consider the fol-
lowing finite-state control automaton

q0start qF

a1

a2

a3

a4

with A0 = {a1, a3}. Let |a2| = 6, |a4| = 4, T = 16, and m = 8. Then ma1 = ma3 = 1, ma2 = 3,
and ma4 = 2. The time-expanded network G8 is as follows:

q
(0)
0 q

(1)
0 q

(2)
0 q

(3)
0 q

(4)
0 q

(5)
0 q

(6)
0 q

(7)
0 q

(8)
0

q
(0)
F q

(1)
F q

(2)
F q

(3)
F q

(4)
F q

(5)
F q

(6)
F q

(7)
F q

(8)
F

a
(0)
1 a

(1)
1 a

(2)
1 a

(3)
1 a

(4)
1 a

(5)
1 a

(6)
1 a

(7)
1

a
(0)
3 a

(1)
3 a

(2)
3 a

(3)
3 a

(4)
3 a

(5)
3 a

(6)
3 a

(7)
3

a
(0)
2 a

(1)
2 a

(2)
2 a

(3)
2 a

(4)
2 a

(5)
2

a
(0)
4 a

(1)
4 a

(2)
4 a

(3)
4 a

(4)
4 a

(5)
4 a

(6)
4

a
(2)
2 a

(3)
2 a

(4)
2

The dashed gray arcs are part of G8 by definition, but cannot be reached by any feasible flow.
Considering, e.g., the original arc a2 at time 4, the bijection described in Lemma 4.5 yields

y(4)a2 = xa2(2) + xa2(3) + xa2(4) ,

thus y(4)a2 is the sum of flows on those copies of arc a2 being “active” between time points 4 and 5;
this is marked by the dashed red line and the red arcs in the figure above.

We are now ready to prove our main result. It states that there exists a compact extended
formulation in function space for the set of controls (of fixed length T) that are accepted by a
given finite-state control automaton.

12

Theorem 4.7. Let L denote a language over Σ and let M = (Q, δ,Σ, q0, F) be any finite-state control
automaton recognizing the language L. Then for every T ∈ Q+ there exists an extended formulation
of conv(L ∩ BV(T,Σ)) with polynomially many controls and linear constraints.

Proof. First assume as above that F = {qF } with qF ̸= q0. The extended formulation contains one
control ya ∈ BV0(T, [0, 1]) for each a ∈ A, representing the total amount of flow on arc a at a given
time point. The first constraint is ∑

a∈A
ya = χ[0,T) , (M0)

stating that at each time point in [0, T) the sum of flow over all arcs is one. Next, we require

Dza ≥ 0 ∀a ∈ A \A0 (M1)

where we define

za =

∞∑
k=0

Vk|a|(ya) . (1)

Here, the linear map Vr : BV0(T,R)) → BV0(T,R) is defined by Vr(z)(t) := z(t − r) for r ∈ R+.
Note that the sum in (1) is actually finite, since Vk|a|(ya) = 0 on (−∞, T) for all k > ⌊T/|a|⌋. In
particular, we obtain za ∈ BV0(T,R) again.

Now assume that some given binary controls ya ∈ BV0(T, {0, 1}), a ∈ A, satisfy both (M0)
and (M1). By integrality and the bounded variation, there are finitely many time points t1, . . . , tr
with 0 =: t0 < t1 · · · < tr < tr+1 := T where any of the controls ya changes. By (M0), for
each i = 1, . . . , r + 1, there exists exactly one ai ∈ A such that yai = 1 on (ti−1, ti) and ya = 0
on (ti−1, ti) for a ∈ A \ {ai}. We claim that (M1) then implies that ti − ti−1 is an integer multiple
of |ai| whenever ai ∈ A\A0. Assume on contrary that i ∈ {1, . . . , r+1} is minimal with ai ∈ A\A0

and ti − ti−1 ̸∈ |ai| · N. Choose ℓ ∈ N0 such that ti − (ℓ+ 1)|ai| < ti−1 < ti − ℓ|ai|. We have

Dzai(ti) = Dyai(ti) +
ℓ∑

k=1

Dyai(ti − k|ai|) +
∞∑

k=ℓ+1

Dyai(ti − k|ai|) ,

where Dyai(ti) = −1 and the first sum on the right-hand side is zero as yai is constant on (ti−1, ti).
The second sum on the right-hand side is also zero by the minimality of i. In summary, the right-
hand side is −1, contradicting Dzai ≥ 0 and thus showing our claim.

We next claim that Dza(t) = 1 if and only if arc a is entered at time t, while Dza(t) = 0
otherwise. To show this, let t ∈ [ti−1, ti). If a ̸= ai, we clearly have Dza(t) = 0, so assume a = ai
and choose ℓ ∈ N0 minimally such that t − ti−1 ≤ ℓ|a|. If t − ti−1 = ℓ|a|, i.e., if arc a is entered at
time t, we obtain that Dza(t) = Dza(ti−1) = 1. Otherwise, we have t− (ℓ− 1)|a| ∈ (ti−1, ti−1 + |a|)
and hence Dza(t) = 0, since Dza(t) = 1 would imply ya ≥ 2 in (t, ti−1 + |a|).

Using the last claim, we can finally model flow conservation by the constraints

∑
a∈δ+(q)∩A0

Dya +
∑

a∈δ+(q)\A0

Dza −
∑

a∈δ−(q)\A0

DV|a|(za) =


δ0 if q = q0

−δT if q = qF

0 otherwise,

13

where δt denotes the Dirac measure for time point t. Since all functions appearing in the above
constraint are zero before 0, we can equivalently require

∑
a∈δ+(q)∩A0

ya +
∑

a∈δ+(q)\A0

za −
∑

a∈δ−(q)\A0

V|a|(za) =


χ[0,∞) if q = q0

−χ[T,∞) if q = qF

0 otherwise.

(M2)

Summing up the constraints (M2), for all q ∈ Q, we actually obtain (M0). We claim that the desired
complete model is given by (M1)–(M2), where we can either add (1) as constraints or substitute za
in (M1)–(M2). Indeed, the proof so far shows that any integer feasible solution to (M1)–(M2) gives
rise to a feasible flow over time through the automaton. Conversely, it is easy to see that a feasible
flow defines a feasible solution to (M1)–(M2).

We next show that the formulation is integer, i.e., that the feasible set of the model is the closed
convex hull of its integer feasible solutions. For this, we approximate the extended formulation by
its discretizations and use Lemma 4.5 above; this proof strategy is very similar to the one applied
in [Buc24]. So let ya ∈ BV0(T, [0, 1]), a ∈ A, satisfy the conditions (M1)–(M2). Choose m ∈ N such
that m|a|/T ∈ N for all a ∈ A \A0. Moreover, given a ∈ A and k ∈ N, let y(k)a ∈ [0, 1]km be defined
as the piecewise average of ya on the grid with km cells, i.e.,

(y(k)a)i :=
km
T

∫ i
T
km

(i−1)
T
km

ya(t)dt ,

and define ȳ
(k)
a as the corresponding piecewise constant function on [0, T). Then one can show

that ya = limk→∞ ȳ
(k)
a in L2

0(0, T) for all a ∈ A; see [Buc24, Lemma 2.4]. Now by construction,
the vector (y

(k)
a)a∈A belongs to the polytope Pkm defined in Lemma 4.5. Indeed, the inequalities

in Lemma 4.5 are implied by (M1) using [Buc24, Lemma 2.5], while the equations follows directly
from (M2). Since Pkm has binary vertices by Lemma 4.5, we derive that (y(k)a)a∈A is a convex com-
bination of binary vectors in Pkm. The latter, interpreted as piecewise constant functions, belong
to BV0(T, [0, 1]) and satisfy (M1)–(M2) when defining z by (1). In particular, defining z̄

(k)
a as the

corresponding convex combination of the za for all a ∈ A \A0, we have (y, z) = limk→∞(ȳ(k), z̄(k))
and hence (y, z) belongs to the closed convex hull of integer controls satisfying (M1)–(M2).

We claim that the projection to the original space is now given by the linear map

π : BV0(T, [0, 1])
A × BV0(T,R+)

A\A0 → BV(T,Σ)

defined by

π(y, z)(t) =
∑
a∈A0

aya(t) +
∑

a∈A\A0

∫ t

t−|a|
a(t− x) dDza , (2)

where we again identify arcs (q, q) ∈ A0 and (q1, q2) ∈ A \ A0 with the corresponding letters
in Γq and patterns in Pq1 , respectively. Indeed, consider the time points t1, . . . , tr defined above
and let t ∈ (ti−1, ti) for i ∈ {1, . . . , r + 1}. If the automaton is in a loop ai ∈ A0 on (ti−1, ti),

14

we have ya = 1 on (ti−1, ti) and the projection correctly yields the constant associated with ai
at time t. Otherwise, if ai ∈ A \ A0, the model guarantees Dzai(ti−1) = 1, as argued above.
Thus

∫ t
t−|ai| ai(t− x) dDzai = ai(t− ti−1) and all other terms are zero.

Finally, if the assumption of a unique accepting state qF different from q0 does not hold, we
can use the construction described above and obtain an extended formulation for the language L′

consisting of all elements of L extended by a zero string of length 1. Since restriction to the time
horizon [0, T] is a linear projection, the extended formulation for L′ is an extended formulation
for L as well. □

Note that for a loop a ∈ A \ A0, i.e., an arc a ∈ δ−(q) ∩ δ+(q) for some q ∈ Q, the two terms
corresponding to a in (M2) simplify to za − V|a|(za) = ya, so that (M2) in fact does not distinguish
between loops in A0 and loops in A \A0. However, the latter must satisfy Dza ≥ 0.

If the given alphabet Σ is finite and hence all patterns f ∈ A \ A0 are piecewise constant, the
projection (2) can be rewritten as follows: Let 0 = τ

(0)
f < τ

(1)
f < · · · < τ

(nf)
f = |a| be the switching

points of f and let f ≡ v
(i)
f on (τ

(i−1)
f , τ

(i)
f). Then∫ t

t−|a|
f(t− x) dDza =

nf∑
i=1

∫ t−|a|+τ
(i)
f

t−|a|+τ
(i−1)
f

f(t− x) dDza

=

nf∑
i=1

v
(nf−i+1)
f

(
za(t− |a|+ τ

(i)
f)− za(t− |a|+ τ

(i−1)
f)

)
and hence the projection simplifies to

π(y, z) =
∑
a∈A0

aya +
∑

f∈A\A0

nf∑
i=1

v
(nf−i+1)
f

(
V|a|−τ

(i)
f

(za)− V|a|−τ
(i−1)
f

(za)
)
.

Example 4.8. As an illustration, consider the FSCA described in Example 4.6, again with T = 16.
Then the controls in the extended formulation are

y00, y0F , yF0, yFF ∈ BV0(16, [0, 1]), z0F , zF0 ∈ BV0(16,R+)

where the subscript xy refers to the arc leading from qx to qy. The two sets of controls are connected
by the constraints (1),

z0F = y0F + V6(y0F) + V12(y0F)

zF0 = yF0 + V4(yF0) + V8(yF0) + V12(yF0) + V16(yF0) .

As in (M1), we need to require Dz0F , DzF0 ≥ 0. Finally, the flow conservation constraints (M2)
read

y00 + z0F − V4(zF0) = χ[0,∞)

yFF + zF0 − V6(z0F) = −χ[16,∞) ,

which concludes the construction of the extended formulation.

15

Example 4.9 (Min-up/Min-Down, cont’d). Consider the closed convex hull of the set of binary
controls satisfying some min-up/min-down constraints, i.e.,

MT
MINUPDOWN(L,ℓ) := conv{u ∈ BV(T, {0, 1}) | blocks of 1-controls have length at least L,

blocks of 0-controls have length at least ℓ} .

Recall from Example 3.5 (and the modification in Example 4.1) that the language LMINUPDOWN(L,ℓ)

associated with MT
MINUPDOWN(L,ℓ) can be described by the finite-state control automaton

q0

start

q1 q2

qF

B A

0
A

1
B

01 01

01

where the pattern A is constantly one of length L, the pattern B is constantly zero of length ℓ, and
the pattern 01 is constantly zero of length 1. Then the extended formulation constructed in the
proof of Theorem 4.7 contains the controls

y01, y02, y0F , y11, y12, y1F , y21, y22, y2F ∈ BV0(T + 1, [0, 1])

z01, z02, z0F , z12, z1F , z21, z2F ∈ BV0(T + 1,R+) ,

where

z01 =
∑⌊T+1/ℓ⌋

k=0 Vkℓ(y01) z02 =
∑⌊T+1/L⌋

k=0 VkL(y02) z0F =
∑⌊T+1⌋

k=0 Vk(y0F)

z12 =
∑⌊T+1/L⌋

k=0 VkL(y12) z1F =
∑⌊T+1⌋

k=0 Vk(y1F)

z21 =
∑⌊T+1/ℓ⌋

k=0 Vkℓ(y21) z2F =
∑⌊T+1⌋

k=0 Vk(y2F) .

 (3)

The extension of the time horizon by one is due to the modification described in Example 4.1. The
constraints are

Dz01, Dz02, Dz0F , Dz12, Dz1F , Dz21, Dz2F ≥ 0

and

z01 + z02 + z0F = χ[0,∞)

y11 + z12 + z1F − Vℓ(z01)− Vℓ(z21) = 0

y22 + z21 + z2F − VL(z02)− VL(z12) = 0

−V1(z0F)− V1(z1F)− V1(z2F) = −χ[T+1,∞) ,

16

while the projection is given by

u(t) = y22(t) +

∫ t

t−L
dDz02 +

∫ t

t−L
dDz12

= y22(t) + z02(t)− VL(z02)(t) + z12(t)− VL(z12)(t)

restricted to t in (0, T). Clearly, the z-variables can be eliminated using the linear equations (3), so
that the resulting extended model only contains the y-variables.

Remark 4.10. Theorem 4.7 thus yields an extended formulation for the closed convex hull of all
controls in L with a fixed length T . In general, the latter controls do not agree with the prefixes
of length T of controls in L, since patterns must be fully processed before a new state is reached,
and not all states will be accepting states in general. However, by adding arcs of type A0 to all
accepting states, we can also use Theorem 4.7 to model the closed convex hull of all controls in L
with length at most T . We can therefore also model the set of controls of length T that are prefixes
of controls in L of length at most T ′ > T , by just cutting at T for the projection. Finally, one can
give an estimate for T ′ such that this set of prefixes actually coincides with the set of prefixes of
any control in L, see Lemma 5.4 in the following section.

5 Limitations

The purpose of this section is to demonstrate the limitations of finite-state control automata and
to give tools for showing that a particular control language cannot be regular, i.e., characterized
via an FSCA. First of all, we already know from Lemma 3.4 that a language cannot be regular
if it allows to switch arbitrarily often on a bounded time horizon. For this reason, we will only
consider examples containing a minimum dwell-time in the following.

Classically, non-representability of a language by an FSA can be proven by a pumping lemma.
There are different versions; the following one even provides an equivalent characterization for
the class of languages that can be recognized by FSA, i.e., the class of regular languages.

Lemma 5.1 (Jaffe’s pumping lemma, [Jaf78]). A (classical) language L can be recognized by an FSA if
and only if there exists a pumping number n ∈ N such that for all y ∈ L with |y| = n there exists a
representation of y as

y = vwx with |vw| ≤ n, |w| > 0

such that for all suffixes z ∈ Σ∗ and for all i ∈ N0 it holds

yz ∈ L ⇐⇒ vwixz ∈ L .

A short proof can be found in [Jaf78]. It follows from the proof that we can choose n as the
number of states of any deterministic FSA accepting L. The assumption of determinism is without
loss of generality, as deterministic and non-deterministic FSA are capable of recognizing the same
class of languages, and there is a standard construction for obtaining a deterministic FSA from a
non-deterministic one; see, e.g., [HMU01, Section 2.3.5]. However, the construction increases the
number of states exponentially.

17

In order to extend the main idea of the proof for the “only if” direction in Lemma 5.1 to
the infinite-dimensional case, we would need to show equivalence for deterministic and non-
deterministic versions of FSCA. It is, however, not clear that such an equivalence holds. Just for
the special case of a simple FSCA, we will see the classical construction mentioned above as part
of the proof of Lemma 5.5. Even without a determinism argument, we can show the following
pumping lemma for FSCA, which is akin to the arguably most classical version of the pumping
lemma for regular languages.

Lemma 5.2 (Pumping lemma for FSCA). Let L be a regular control language. Then there exist a pump-
ing number T ∈ Q+ and a finite set T ⊂ Q+ such that for all u ∈ L with |u| ≥ T there exists a
representation of u as

u = vwx with |vw| ≤ T, |w| > 0

with
w is constant or |w| ∈ T

such that
vwix ∈ L ∀i ∈ N0 .

Proof. Let L be recognized by an FSCA M = (Q, δ,Σ, q0, F) and define T :=
∑

q∈Qmaxf∈Pq |f |.
Moreover, let T consist of all lengths of elementary cycles in the (graph corresponding to the)
automaton M when ignoring loops on input from Cq for any q ∈ Q (i.e., ignoring arcs in A0 in the
graph construction from the beginning of Section 4).

Now consider any u ∈ L with |u| ≥ T and choose an accepting sequence u = f1 · . . . · fk for u
as in Definition 3.2. If fi ∈ Cri−1 for some i ∈ {1, . . . , k} with ℓ := |f1| + · · · + |fi−1| < T , we
choose v = f1 · . . . · fi−1 and w as the prefix of fi of length min{|fi|, T − ℓ}. Then w is constant
with length |w| > 0 and |vw| ≤ T . By extending the constant subcontrol fi we immediately
obtain vwix ∈ L for all i ∈ N0.

We may thus assume that |f1|+· · ·+|fj | ≥ T for some j ∈ {1, . . . , k} such that fm ∈ Prm−1 for all
m ∈ {1, . . . , j}. Then there exist i1, i2 ∈ {0, . . . , j}, i1 ̸= i2, such that ri1 = ri2 , i.e., such that M is in
the same state q before processing fi1+1 and after processing fi2 , and such that |f1|+ · · ·+ |fi2 | ≤ T .
We then define v = f1, . . . , fi1 and w = fi1+1, . . . , fi2 , which obviously satisfies |vw| ≤ T as well
as |w| > 0. Moreover, we have |w| ∈ T by construction and it follows from the choice of w that it
can be omitted or repeated an arbitrary number of times, since the automaton may always return
to state q after reading w again. □

We illustrate the use of Lemma 5.2 for showing non-representability by an FSCA by the fol-
lowing example.

Example 5.3. Consider the following language of binary controls:

L := {u ∈ {0, 1}∗ | blocks of 0-controls have length 1,

blocks of 1-controls have length at least 1,
and the lengths of blocks of 1-controls are monotonically increasing}

18

We show that representing L is not possible within our framework, by using Lemma 5.2. Let us
assume there is an FSCA that recognizes L and let T and T according to Lemma 5.2 be given.

Let λ > max(T ∪ {1}). We consider a control u ∈ {0, 1}∗ of length |u| > T + λ + 1 that
alternates between 0-blocks of length 1 and 1-blocks of length λ, starting with a 1-block. Clearly,
we have u ∈ L, so let u = vwx be a representation of u according to Lemma 5.2. In particular, w is
constant or |w| ∈ T .

If w is constantly 0, we obviously have vwix /∈ L for all i ≥ 2. In case w is constantly 1, vwix
can have an arbitrarily long 1-block as i increases. Since this 1-block cannot be the last one in u
due to |u| > T +λ+1 and |vw| ≤ T , we obtain a contradiction to the monotonicity condition in L.

If |w| ∈ T , it follows that |w| < λ. We have already covered the case in which w is constant
above. The remaining possibilities are that w either starts with a 0-block, ends with a 0-block,
or has a 0-block in the middle. In any case, the total length of 1-blocks in w is less than λ, and
therefore ww contains a 1-block of length < λ somewhere in the middle. Since this 1-block is
not the first 1-block in vwix for i ≥ 2, as u starts with a 1-block, we have a contradiction to the
monotonicity condition in L, which completes the proof.

Note that in Lemma 5.2 we can replace |vw| ≤ T by |wx| ≤ T since the proof is completely
symmetric in this regard. Using this, we can now give a minimum time horizon we have to look
at in order to decide whether any given u is a prefix of a control in a regular control language. The
following lemma specifies and proves the respective claim made in Remark 4.10.

Lemma 5.4. Let L be a regular control language over Σ and u be a prefix of a control in L. Then there
exists v ∈ Σ∗ with |v| ≤ T such that uv ∈ L, where T is a pumping number for L according to Lemma 5.2.

Proof. Let L be a regular control language with pumping number T satisfying Lemma 5.2. More-
over, let u be a prefix of a control in L, i.e., there exists z ∈ Σ∗ with uz ∈ L. Choose an accepting
sequence uz = f1 · . . . · fk for uz as in Definition 3.2. Then there is an index j ∈ {1, . . . , k} and a
decomposition fj = fj1fj2 of fj into subcontrols fj1 , fj2 ∈ Σ∗ such that

u = f1 · . . . · fj−1fj1 and z = fj2fj+1 · . . . · fk .

If any of fj2 , fj+1, . . . , fk is in Cq for the respective state q, we may as well omit that subcontrol
from z and proceed with the resulting z′. Hence, we can assume without loss of generality that fi
is a pattern in Pri−1 for all i ∈ {j, . . . , k}. Additionally, let z be the minimum-length control in Σ∗

for which uz ∈ L. Such a minimum exists due to the above and since the overall number of
patterns is finite.

For the sake of contradiction, assume |z| > T . We invoke Lemma 5.2 (and the modification
explained above) for obtaining a representation uz = vwx with |w| > 0 and |wx| ≤ T , such
that vwix ∈ L for all i ∈ N0. In particular, we have vx ∈ L. Due to |z| > T and |wx| ≤ T , we know
that u is still a prefix of the shortened control vx, contradicting the minimality of z. □

Recall that an easy-to-compute estimate for T can be obtained based on an FSCA for L, fol-
lowing the proof of Lemma 5.2. Together with Theorem 4.7, we thus obtain a constructive proof
for the existence of an extended formulation for the set of all prefixes of controls in L. E.g., for the
min-up/min-down constraints discussed in Example 4.1, we can use T = L+ ℓ.

19

For the special case of simple FSCA, we can strengthen the final condition in Lemma 5.2 to a
statement similar to that in Lemma 5.1:

Lemma 5.5 (A pumping lemma for simple FSCA). Let L be a control language that can be recognized
by a simple finite-state control automaton. Then there exist a pumping number T ∈ Q+ and a finite
set T ⊂ Q+ such that for all u ∈ L with |u| ≥ T there exists a representation of u as

u = vwx with |vw| ≤ T, |w| > 0, and |w| ∈ T

such that for all suffixes z ∈ Σ∗ and for all i ∈ N0 it holds

vwz ∈ L ⇐⇒ vwiz ∈ L .

Proof. Let L be a control language recognized by a simple finite-state control automaton M . Again,
we will use the argument that if |u| is sufficiently large, any accepting sequence of M must repeat
states before time T . However, for the strengthened version of the last condition we need to show
that the set of situations M can possibly be in (including states as well as positions in a pattern
that is currently processed) has to repeat. This would follow right away if M was deterministic.
And indeed, the idea of the proof is to show that there is a deterministic classical FSA that accepts
the same language as M . We split the proof into the following steps:

1. Construct a non-deterministic classical FSA M ′ = (Q′, δ′,Σ′, q′0, F
′) that accepts the same

language as M .

2. Construct a deterministic FSA M ′′ = (Q′′, δ′′,Σ′′, q′′0 , F
′′) that accepts the same language

as M ′ and M .

3. Prove the statement by applying the argumentation from the proof of Lemma 5.2 to M ′′.

For the first step, construct a classical FSA M ′ = (Q′, δ′,Σ′, q′0, F
′) from M as follows: Since Pq

is a finite set for all q ∈ Q, and all pattern lengths are rational, there exists a number γ ∈ Q such
that |f |/γ ∈ N for all patterns f ∈ Pq and q ∈ Q. We split up all patterns f ∈ Pq into fragments
of length γ and define Σ′ to be the set of such fragments. Let Q′ be composed of Q together
with additional intermediate states qf1 , . . . , q

f
k(f)−1 at the splitting points of each pattern f ∈ Pq for

some q, where k(f) := |f |/γ denotes the number of segments f is split into. Transitions for these
intermediate states are defined to allow processing f as in M . More precisely, if f = a1 · . . . · ak(f)
for a1, . . . , ak(f) ∈ Σ′, we add qf1 to δ′(q, a1) and define

δ′(qfi , ai+1) = {qfi+1} for all i ∈ {1, . . . , k(f)− 2} , δ′(qfk(f)−1, ak(f)) = δ(q, f) .

Finally, q′0 = q0 and F ′ = F remain unchanged. By construction, Q′ and Σ′ are finite and M ′ is
in fact a classical FSA that accepts a sequence of patterns if and only if M would do so (when we
identify the sequence of symbols in Σ′ with their corresponding controls).

In the second step, our goal is a deterministic FSA M ′′ = (Q′′, δ′′,Σ′′, q′′0 , F
′′) that accepts the

same language as M ′ and M . One could obtain such an FSA by invoking the classical equivalence

20

result for deterministic and non-deterministic FSA. We give the construction here explicitly for
the sake of completeness. The idea is to use subsets of Q′ as states and have the deterministic
automaton be in state {q1, . . . , qm} on input u whenever q1, . . . , qm are exactly the states the non-
deterministic automaton can be in after processing the same input. We thus define

Q′′ := 2Q
′
, Σ′′ = Σ′, q′′0 =

{
q′0
}
, F ′′ =

{
q′′ ∈ 2Q

′ | F ′ ∩ q′′ ̸= ∅
}
.

Moreover, we define δ′′ by
δ′′(q′′, a) =

⋃
q′∈q′′

δ′(q′, a)

for (q′′, a) ∈ Q′′ × Σ′′.

For the third step, based on M ′′ we can now give a value for T that is sufficiently large, namely,
we define T := γ · |Q′′|. Indeed, let u ∈ L be given. As in the proof of Lemma 5.2, we can choose v,
w and x with u = vwx and |vw| ≤ T such that M ′′ is in state q′′ after processing v as well as
after processing vw in the (unique) accepting sequence for u by M ′′ (where M ′′ considers u as a
sequence of subcontrols of length γ, and rejects u if any such subcontrols are not in Σ′′).

Pick v and w such that transitions in M ′′ follow an elementary cycle in the graph defined
by (Q′′, δ′′). Since the accepting sequence for u only uses patterns in Pq, |w| is a multiple of γ.
Moreover, there are only finitely many possible values for |w| to be included in T in order to
guarantee that the condition |w| ∈ T is satisfied.

For the final condition, we make use of the fact that M ′′ is deterministic, deducing that M ′′

must be in state q′′ after processing vwi for any i ∈ N0. Hence, the set of suffixes z that lead to
acceptance by M ′′ must be the same for all i ∈ N0. Since M ′′ and M recognize the same language,
this concludes the proof. □

We can use Lemma 5.5 for showing non-representability of languages in which no continuous
part of any control can be “pumped”. As an example, we consider the set of binary controls
satisfying max-up/max-down constraints, i.e.,

LMAXUPDOWN(L,ℓ)
:= {u ∈ {0, 1}∗ | blocks of 1-controls have length at least ε and at most L,

blocks of 0-controls have length at least ε and at most ℓ},

where L, ℓ ∈ Q+ and ε ∈ Q ∩ (0,min{L, ℓ}). We will show that representing L
MAXUPDOWN(L,ℓ)

is
not possible with an FSCA.

Proposition 5.6. There is no FSCA that recognizes L
MAXUPDOWN(L,ℓ)

.

Proof. Suppose the language L := L
MAXUPDOWN(L,ℓ)

can be recognized by an FSCA. First, note that

for any u ∈ {0, 1}∗, we clearly cannot “pump” any constant control w with |w| > 0 due to the
max-up constraints. We may thus assume that the FSCA accepting L is simple.

We will complete the proof by showing that L does not satisfy the properties from Lemma 5.5.
To this end, assume the contrary and let T and T as in Lemma 5.5 be given. We consider a con-
trol u ∈ L with |u| ≥ T that alternates between 0-blocks of length ℓ and 1-blocks of length L − β,

21

starting with 0. We choose β ∈ (0, L− ε) in such a way that k · (ℓ+L− β) /∈ T for all k ∈ N, which
is possible since T is finite and in a sufficiently small interval there are only finitely many values
for β that do not work. In order for the equivalence

vwz ∈ L ⇐⇒ vwiz ∈ L

to hold, v and vw have to end with a block of the same length and alphabet symbol (since we
can choose i = 0). Otherwise, we can find a constant control z that violates the max-up/down
constraints for vwz but not vz or vice versa. As a consequence, |w| must be a multiple of ℓ+L−β,
which leads to a contradiction to k · (ℓ+ L− β) /∈ T for all k ∈ N. □

Proposition 5.6 might come as a surprise since the language L
MAXUPDOWN(L,ℓ)

is regular for any
discretization. Indeed, when discretizing the time horizon into cells of uniform length h ∈ Q+,
where we assume that L/h, ℓ/h, ε/h ∈ N, we obtain languages of the form

Lh
MAXUPDOWN(L,ℓ)

:=
⋃

n∈N0
{z ∈ {0, 1}n | blocks of 1-controls have length at least ε/h and at most L/h,

blocks of 0-controls have length at least ε/h and at most ℓ/h} .

More precisely, the elements of the language Lh
MAXUPDOWN(L,ℓ)

are in one-to-one correspondence
with those controls of L

MAXUPDOWN(L,ℓ)
that are constant on each cell (ih, (i+ 1)h), i ∈ N0. Now it

is easy to verify that the discretized language Lh
MAXUPDOWN(L,ℓ)

can be recognized by the following

deterministic FSA with L/h + ℓ/h + 1 states:

start

ε/h − 1 ℓ/h − ε/h + 1

ε/h − 1 L/h − ε/h + 1

0

0 0 0 0 0 0

1 1 1

1

1 1 1 1 1 1

0 0 0

... ...

... ...

This automaton uses one state for each integer in
{
1, . . . , ℓ/h

}
and

{
1, . . . , L/h

}
to count the number

of zeros and ones, respectively, of the current sequence. Since in the control setting the amount
of past up- or downtime can not be quantified in discrete amounts, this construction cannot be
directly generalized. When we increase the accuracy of the discretization by reducing the step
length h, representing the discretization by the above construction will require more and more
states – in the order of 1/h and thus approaching infinity in the limit.

22

This example shows that there is a difference between the continuous and discrete versions of
a language with respect to whether they can be recognized by our continuous and the classical
discrete versions of finite automata, respectively. Note the role of T in Lemma 5.2 and Lemma 5.5
in capturing this difference. When closely comparing the proofs of these lemmata and the dis-
crete construction above in the limit, the condition on T essentially prevents that the need for
an infinite number of states is shifted to an infinite number of transition patterns for evading a
non-representability proof.

Finally, we emphasize that Proposition 5.6 does not exclude the existence of an extended for-
mulation for the controls in L

MAXUPDOWN(L,ℓ)
of a given length T . It just shows that the construction

suggested in Section 4 via finite-state control automata is not applicable to L
MAXUPDOWN(L,ℓ)

.

6 Conclusion

While research on the closed convex hull of infinite-dimensional feasible sets of optimal control
problems with combinatorial constraints has just started recently, this paper gives a construction
mechanism for compact extended formulations for a large class of such constraints. For many
applications, this opens up the possibility of working with manageable convex-hull formulations
of complicating substructures in the space of controls rather than thinking about strong mixed-
integer programming formulations only after discretization. While we used a sequence of equidis-
tant discretizations for showing our main result, the infinite-dimensional convex-hull descriptions
in principle yield convex-hull descriptions for any discretization grid. For characterizing combi-
natorial constraints that are accessible for our approach, we used a type of finite-state automaton
that accepts continuous controls. The resulting finite-state control automata are new to the best
of our knowledge. They are designed to capture the modular structure that is needed for our
construction to work, but might still be of independent interest – either in their current form or
with modifications to suit other applications. For helping to distinguish representable from non-
representable languages, we contribute results in the style of a pumping lemma. As an example
application, we considered a language that cannot be recognized by an FSCA although its discrete
version can be recognized by a classical FSA for any discretization. So, as in many other cases,
there is more to the infinite-dimensional setting than what can be seen from discretizations.

Future research may go further in this direction, possibly discovering a more restrictive pump-
ing lemma that yields an equivalent characterization for regular control languages. Moreover,
from a theoretical standpoint, it is an interesting open question whether assuming determinism
reduces the representable class of languages. Going in a different direction, one may aim to fur-
ther generalize the construction from Theorem 4.7. For instance, allowing instantaneous switches
(i.e., state switches without processing any input) under certain restrictions would make the con-
cept even more versatile for modeling. However, we do not see a direct way to incorporate such
transitions in our proof. Finally, we hope that computational studies will confirm the usefulness
of our results in applications.

23

Acknowledgments

This research was initiated through discussions at the workshop “Mixed-integer Nonlinear Opti-
mization: a hatchery for modern mathematics” held at Mathematisches Forschungsinstitut Ober-
wolfach (MFO). The first author was partially supported by Deutsche Forschungsgemeinschaft
under grant no. BU 2313/7-1.

References

[ABM14] Hedy Attouch, Giuseppe Buttazzo, and Gérard Michaille. Variational Analysis in
Sobolev and BV Spaces. Society for Industrial and Applied Mathematics, 2014.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[AFP00] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of Bounded Variation and
Free Discontinuity Problems. Oxford Mathematical Monographs, 2000.

[BGM24a] Christoph Buchheim, Alexandra Grütering, and Christian Meyer. Parabolic optimal
control problems with combinatorial switching constraints – Part III: Branch-and-
bound algorithm. Technical Report arXiv:2401.10018 [math.OC], 2024.

[BGM24b] Christoph Buchheim, Alexandra Grütering, and Christian Meyer. Parabolic optimal
control problems with combinatorial switching constraints – Part I: Convex relax-
ations. SIAM Journal on Optimization, 34(2):1187–1205, 2024.

[Bra05] Michael S. Branicky. Introduction to hybrid systems. In Handbook of networked and
embedded control systems, pages 91–116. Springer, 2005.

[Buc24] Christoph Buchheim. Compact extended formulations for binary optimal control
problems. Technical Report arXiv:2401.03942 [math.OC], 2024.

[CCZ13] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Extended formulations
in combinatorial optimization. Annals of Operations Research, 204:97–143, 2013.

[CK05] Robert D. Carr and Goran Konjevod. Polyhedral Combinatorics, pages 2–1–2–46.
Springer New York, New York, NY, 2005.

[FF62] Lester R. Ford and Delbert R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, 1962.

[FP15] Samuel Fiorini and Kanstantsin Pashkovich. Uncapacitated flow-based extended for-
mulations. Mathematical Programming, 153(1):117–131, 2015.

[GHPS21] Simone Göttlich, Falk M. Hante, Andreas Potschka, and Lars Schewe. Penalty alter-
nating direction methods for mixed-integer optimal control with combinatorial con-
straints. Mathematical Programming, 188(2):599–619, 2021.

24

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings 11th Annual
IEEE Symposium on Logic in Computer Science, pages 278–292, 1996.

[Hey17] Ali Heydari. Optimal switching with minimum dwell time constraint. Journal of the
Franklin Institute, 354(11):4498–4518, 2017.

[HLM+17] Falk M. Hante, Günter Leugering, Alexander Martin, Lars Schewe, and Martin
Schmidt. Challenges in Optimal Control Problems for Gas and Fluid Flow in Networks of
Pipes and Canals: From Modeling to Industrial Applications, pages 77–122. Springer Sin-
gapore, Singapore, 2017.

[HMU01] John E. Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata
theory, languages, and computation. ACM SIGACT News, 32(1):60–65, 2001.

[Jaf78] Jeffrey Jaffe. A necessary and sufficient pumping lemma for regular languages. ACM
SIGACT News, 10(2):48–49, 1978.

[LLM04] Jon Lee, Janny Leung, and Francois Margot. Min-up/min-down polytopes. Discrete
Optimization, 117(1):77–85, 2004.

[LMS+21] Do Duc Le, Maximilian Merkert, Stephan Sorgatz, Mirko Hahn, and Sebastian Sager.
Autonomous traffic at intersections: An optimization-based analysis of possible time,
energy, and CO2 savings. Networks, Special Issue: The Future of City Logistics and Urban
Mobility, 79(3):338–363, 2021.

[OWD16] Chong-Jin Ong, Zheming Wang, and Masood Dehghan. Model predictive control for
switching systems with dwell-time restriction. IEEE Transactions on Automatic Control,
61(12):4189–4195, 2016.

[RT05] Deepak Rajan and Samer Takriti. Minimum up/down polytopes of the unit commit-
ment problem with start-up costs. Technical report, IBM Research, 2005.

[RZSB21] Nicolò Robuschi, Clemens Zeile, Sebastian Sager, and Francesco Braghin. Multi-
phase mixed-integer nonlinear optimal control of hybrid electric vehicles. Automatica,
123:109325, 2021.

[SJK11] Sebastian Sager, Michael Jung, and Christian Kirches. Combinatorial integral approx-
imation. Mathematical Methods of Operations Research, 73(3):363–380, 2011.

[VDSS07] Arjan J. Van Der Schaft and Hans Schumacher. An introduction to hybrid dynamical
systems, volume 251. springer, 2007.

[ZA15] Feng Zhu and Panos J. Antsaklis. Optimal control of hybrid switched systems: A brief
survey. Discrete Event Dynamic Systems, 25(3):345–364, 2015.

[ZRS21] Clemens Zeile, Nicolò Robuschi, and Sebastian Sager. Mixed-integer optimal control
under minimum dwell time constraints. Mathematical Programming, 188(2):653–694,
2021.

	1 Introduction
	2 Functions of Bounded Variation
	3 An Automaton Model for Control Languages
	4 Extended Formulations
	5 Limitations
	6 Conclusion

