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Abstract

We study two-stage distributionally robust optimization (DRO) problems with decision-
dependent information discovery (DDID) wherein (a portion of) the uncertain param-
eters are revealed only if an (often costly) investment is made in the first stage. This
class of problems finds many important applications in selection problems (e.g., in hir-
ing, project portfolio optimization, or optimal sensor location). Despite the problem’s
wide applicability, it has not been previously studied. We propose a framework for mod-
eling and approximately solving DRO problems with DDID. We formulate the problem
as a min-max-min-max problem and adopt the popular K-adaptability approximation
scheme, which chooses K candidate recourse actions here-and-now and implements the
best of those actions after the uncertain parameters that were chosen to be observed
are revealed. We then present a decomposition algorithm that solves the K-adaptable
formulation exactly. In particular, we devise a cutting plane algorithm which iteratively
solves a relaxed version of the problem, evaluates the true objective value of the cor-
responding solution, generates valid cuts, and imposes them in the relaxed problem.
For the evaluation problem, we develop a branch-and-cut algorithm that provably con-
verges to an optimal solution. We showcase the effectiveness of our framework on the
R&D project portfolio optimization problem and the best box problem.

Keywords:distributionally robust optimization, endogenous uncertainty, decision-dependent
information discovery, binary recourse decisions, two-stage problems, decomposition algorithm.
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1 Introduction

1.1 Background & Motivation

Distributionally robust optimization, which optimizes for a safe action that performs

best under the most adverse distribution in an ambiguity set of distributions consistent

with the known information, is a popular modeling and solution paradigm for decision-

making under uncertainty. It can be used to tackle both single-stage (see, e.g., Delage

and Ye (2010), Ben-Tal et al (2013), Wiesemann et al (2014), Jiang and Guan (2016),

Gao and Kleywegt (2023), Mohajerin Esfahani and Kuhn (2018)) and multi-stage (see

e.g., Goh and Sim (2010), Hanasusanto and Kuhn (2018), Bertsimas et al (2019),

Chen et al (2020), Yu and Shen (2022)) problems. In multi-stage problems, uncertain

parameters are revealed sequentially over time, and decisions are allowed to adapt to

the history of observations. Mathematically, decisions must be modeled as functions

of the uncertain parameters that have been revealed by the time the decision is made.

To the best of our knowledge, all models and solutions approaches assume that the

sequence in which uncertain parameters are revealed is exogenous, i.e., independent

of the decision-maker’s actions. However, this assumption fails to hold in many real-

world applications where uncertain parameters (information) only become observable

following an often costly investment and measurement decisions control the time of

information discovery. We now describe some important examples of such problems

involving decision-dependent information discovery.

R&D Project Portfolio Optimization. Companies often maintain long pipelines of

projects that are candidates to be undertaken (Solak et al, 2010). The return of each

project is uncertain and will only be revealed if the project is completed, which often

necessitates substantial resources to be expanded. Thus, the costly decisions to under-

take and complete a project are measurement decisions which control the time of

information discovery in this problem.
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Optimal Sensor Placement for Emergency Warning. Emergency warning systems

(that issue warnings about, e.g., landslides (Chu et al, 2021)) rely on information

collected from sensors (about, e.g., soil moisture) to make predictions. Sensors are

often costly or difficult to install (due to e.g., difficulty in accessing remote locations).

The information available to help inform the warning system depends on the location

of the sensors. Thus, the costly sensor placement decisions are measurement decisions

that control the time of information discovery in this problem.

Selection Problems. Selection problems such as those arising in company hiring,

loan approval, or bail decisions involve selecting, over time, a subset of available can-

didates to move to the next stage until a final selection decision is made in the last

stage. The personal characteristics (e.g., qualifications, gender, race) of individuals are

uncertain and only become observed progressively over time as they get selected into

subsequent stages. Accordingly, the outcomes (e.g., job performance, loan repayment,

recidivism) are also uncertain and only become observed for individuals who make it

into the final stage. Thus, the candidate selection decisions are measurement decisions

that control the time of information discovery in this problem.

In most real-world situations, the precise distribution of the uncertain parameters

in such problems is unknown (e.g., the joint distribution of project returns in R&D,

joint distribution of soil characteristics at different remote locations, joint distribu-

tion of job candidates’ characteristics, and corresponding job performance). Yet, basic

characteristics of this joint distribution, such as first order moments may be available

(e.g., through past project performance, current weather conditions, and past worker

performance data). In our work, we propose to leverage such information in distribu-

tionally robust optimization problems with decision-dependent information discovery

where such moment information is added explicitly as constraints in the ambiguity set.
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1.2 Literature Review

Our work most closely relates to the literature on optimization under decision-

dependent information discovery, to distributionally robust optimization with decision-

dependent uncertainty sets, and to the works on the K-adaptability approximation to

(distributionally) robust optimization. We review all of these in turn.

Decision-making problems under decision-dependent information discovery have

mostly been studied in the stochastic programming literature. The majority of works

assume the distribution of the uncertain parameters is discrete or require the distri-

bution to be discretized before they can be applied, see Colvin and Maravelias (2010);

Goel and Grossmann (2004, 2006); Gupta and Grossmann (2011, 2014); Apap and

Grossmann (2017). Vayanos et al (2011) investigate a problem with continuous uncer-

tain parameters and propose a conservative solution approach based on piecewise

constant and piecewise linear decision rule approximations. In the robust optimization

literature, Zhang and Feng (2020) derive a decision-rule approximation for multistage

robust optimization with endogenous uncertainty. Paradiso et al (2022) develop an

exact solution scheme based on a nested decomposition algorithm for two-stage robust

optimization problems with DDID and objective uncertainty. Michel et al (2022) pro-

vide complexity analysis for robust selection problems with DDID under budgeted

uncertainty.

Distributionally robust optimization with a decision-dependent ambiguity set has

been studied in both static and adaptive settings. Such a framework can model the

case where the distribution of the underlying random variables depends on decisions.

One class of decision-dependent ambiguity set allows the moments of the distributions

to depend on the decisions, see Zhang et al (2016); Luo and Mehrotra (2020); Ryu

and Jiang (2019); Basciftci et al (2021), and Yu and Shen (2022). Another class allows

decisions to influence the nominal or marginal distributions; see Luo and Mehrotra
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(2020); Noyan et al (2022), and Doan (2021). None of the models considers the case

where decisions affect the time of information discovery.

TheK-adaptability approximation scheme, originally introduced by Bertsimas and

Caramanis (2010) for two-stage robust optimization, involves selecting K candidate

policies here-and-now and implementing the best of these policies after the uncer-

tain parameters are revealed. This method naturally accommodates discrete adaptive

variables. Bertsimas and Caramanis (2010) study the complexity of the problem and

provide an exact finite dimensional bilinear formulation for the case where K = 2.

Subramanyam et al (2020) propose a branch-and-bound algorithm to speed-up compu-

tation. For the class of problems involving only binary adaptive variables, Hanasusanto

et al (2015) characterize the problem’s complexity in terms of the number of second-

stage policies K needed to obtain an optimal solution to the original, fully adaptive

problem and derive practical explicit mixed-integer linear optimization (MILO) refor-

mulations. Buchheim and Kurtz (2017, 2018) study the complexity of two-stage robust

combinatorial optimization problems under objective uncertainty and propose effi-

cient algorithms for the cases of polyhedral and discrete uncertainty sets, respectively.

Chassein et al (2019) propose a faster algorithm for problems with budgeted uncer-

tainty set. Hanasusanto et al (2016) adapt the K-adaptability approximation for

binary decision variables to the case of two-stage distributionally robust optimiza-

tion problems, derive explicit mixed-integer linear programming reformulations, and

provide efficient methods for bounding the selection probabilities of each of the K

second-stage policies. Han et al (2023) provide a single-stage robust optimization refor-

mulation for computing optimal K-adaptable policies with optimal partitions for a

two-stage distributionally robust optimization problem with constraint uncertainty,

show the reformulated problem is NP-complete, and propose a partitioning frame-

work that results in a mixed-integer optimization problem of moderate size. Our work

most closely relates to the paper of Vayanos et al (2020), wherein the authors study
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a robust optimization problem with DDID and propose a conservative approximation

based on K-adaptability. We study the more general class of distributionally robust

problems with DDID.

1.3 Proposed Approach & Contributions

We now summarize our proposed approach and main contributions in this paper.

1. We study two-stage distributionally robust optimization problems with decision-

dependent information discovery. We formulate this class of problems as adaptive

distributionally robust optimization problems that optimize over decision-rules

on which we impose decision-dependent non-anticipativity constraints. We estab-

lish that this model admits an equivalent two-and-a-half stage (min-max-min-

max) robust optimization reformulation and adapt the popular K-adaptability

approach to obtain a conservative approximation. The parameter K, which

denotes the number of candidate policies, enables us to conveniently trade-off

computational complexity with solution quality.

2. We show that applying the K-adaptability approximation to the reformulated

robust optimization problems leads to a bilinear optimization problem involving

products of real-valued decision variables (see Theorem 3). For moderately sized

problems, this can be solved with off-the-shelf solvers. For larger instances, we

propose a decomposition algorithm that solves the problem exactly. The scheme

iteratively solves a main problem with only the measurement variables and adds

optimality, feasibility, and Benders-like cuts generated by an evaluation prob-

lem. We develop a provably convergent branch-and-cut algorithm to evaluate the

objective with fixed measurement variables.

3. We conduct numerical experiments on stylized instances of the R&D project

portfolio optimization and best box problems that showcase the effectiveness of

our approach. We show that the solutions to the K-adaptability approximation
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can be obtained by either solving the bilinear optimization problem directly or

by employing our decomposition algorithm. In the R&D project portfolio opti-

mization problem, the decomposition algorithm outperforms the state-of-the-art

solver, finding better solutions in up to 100% more cases. We assess the value

of incorporating distributional information by comparing our method to that

returned by a purely robust solution. Our results show that the distribution-

ally robust optimization solution improves the robust solution by up to 70% on

average.

1.4 Organization of the Paper and Notations

The remainder of the paper is organized as follows. Section 2 introduces the two-stage

distributionally robust optimization problem with the decision-dependent information

discovery and derives an equivalent min-max-min-max robust optimization counter-

part. Section 3 presents the K-adaptability approximation scheme, and Section 4

describes the decomposition algorithm. Section 5 conducts numerical experiments to

test the performance of our approach. All proofs are relegated to the appendix.

Notation. Throughout the paper, vectors (matrices) are denoted by boldface

lowercase (uppercase) letters. Uncertainty is modeled by the probability space(
Rk,B

(
Rk

)
,P

)
, which consists of the sample space Rk, the Borel σ-algebra B

(
Rk

)
and the probability measure P, whose support we denote by Ξ. We let LNy

Nξ
be the

space of all measurable functions from RNξ to RNy that are bounded on compact sets.

Given two vectors x and y of the same dimension, x◦y denotes their Hadamard prod-

uct. Given two sets X and Y, X L−→ Y denotes a linear mapping from X to Y. We

use Ai and [A]i to denote the ith column and the ith row of matrix A, respectively.

With a slight abuse of notations, we use the maximum and minimum operators even

when the optimum may not be achieved. In such instances, these operators should be

interpreted as suprema and infima, respectively.
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2 DRO with Decision-Dependent Information

Discovery

In this section, we describe the two-stage distributionally robust optimization prob-

lems with decision-dependent information discovery. We propose a decision rule-based

formulation for this problem and demonstrate that it is equivalent to a two-and-a-half

stage min-max-min-max robust problem.

2.1 Decision Rule Formulation

The DRO-DDID problem minimizes the worst-case expected objective value over all

distributions P of the uncertain parameters ξ ∈ RNξ , supported on Ξ, and belong-

ing to the ambiguity set P. The ambiguity set contains plausible distributions that

share certain properties that are known about the true distribution. The first-stage

decisions x ∈ X ⊆ RNx and w ∈ W ⊆ {0, 1}Nξ are selected here-and-now, before

any of the uncertain parameters ξ ∈ Ξ ⊆ RNξ are realized. The wait-and-see deci-

sions y(ξ) ∈ Y ⊆ RNy is a function of ξ, which may depend on the observed portion

of ξ. The binary vector w collects the measurement decisions determining which com-

ponents of the uncertain vector ξ to observe. Specifically, ξi is revealed between the

first and second stages if and only if wi = 1.

In a decision rule formulation, we choose here-and-now the value of the adaptive

variable y in each realization of ξ. The decision y is modeled as a function of ξ that

is optimized over in the first stage. The two-stage distributionally robust problem

with decision-dependent information discovery can be written mathematically using
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decision rules as

min sup
P∈P

EP

(
ξ⊤C x+ ξ⊤D w + ξ⊤Q y(ξ)

)
s. t. x ∈ X , w ∈ W, y ∈ LNy

Nξ

y(ξ) ∈ Y

T (ξ)x+ V (ξ)w +W (ξ)y(ξ) ≤Hξ

 ∀ξ ∈ Ξ

y(ξ) = y(ξ′) ∀ξ, ξ′ ∈ Ξ : w ◦ ξ = w ◦ ξ′,

(1a)

where C ∈ RNξ×Nx , D ∈ RNξ×Nξ , Q ∈ RNξ×Ny , and H ∈ RL×Nξ . We assume

that the left hand-side of the constraints is linear in ξ, specifically, T (ξ) : Ξ
L−→

RL×Nx , V (ξ) : Ξ
L−→ RL×Nξ , W (ξ) : Ξ

L−→ RL×Ny . We can account for affine depen-

dencies on ξ by introducing an auxiliary uncertain parameter ξNξ+1 restricted to equal

one.

The last set of constraints, which is a decision-dependent non-anticipativity con-

straint, enforces that y(·) can only depend on the observed uncertain parameters.

Given two realizations ξ and ξ′, the equality w ◦ ξ = w ◦ ξ′ holds if and only if

the observed portions of the two realizations are the same. In this case, the corre-

sponding wait-and-see decisions y(ξ) and y(ξ′) should also be consistent with one

another. The uncertainty set Ξ in (1) is a nonempty bounded polyhedron expressible

as Ξ =
{
ξ ∈ RNξ : Aξ ≤ b

}
for some matrix A ∈ RR×Nξ and vector b ∈ RR.

The ambiguity set P takes the form

P =
{
P ∈M+(RNξ) : P(ξ ∈ Ξ) = 1, EP(g(ξ)) ≤ c

}
, (1b)

whereM+

(
RNξ

)
denotes the cone of nonnegative Borel measures supported on RNξ .

The uncertainty set Ξ is also the support set, being defined as the smallest set that is

known to satisfy ξ ∈ Ξ with probability 1 for some distribution P ∈ P. We assume that
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c ∈ RNg and that g : RNξ → RNg is a convex piecewise linear multifunction defined as

gs(ξ) = max
t∈T

g⊤stξ ∀s ∈ S = {1, . . . , Ng}.

The vector gst ∈ RNξ collects the coefficients of the t-th piece of the function gs(ξ).

Without loss of generality, the index t of the linear pieces ranges over the same index

set T = {1, . . . , T} for each gs(ξ), where s ∈ S. Finally, we assume that the ambiguity

set P contains a Slater point in the sense that there is a distribution P ∈ P such that

EP [gs(ξ)] < cs for all s ∈ S for which gs(ξ) is nonlinear.

In the DDID problem, since the information is discovered after implementing the

measurement decision, we do not have empirical data to build the data-driven ambi-

guity set. For example, in the landslides prediction and warning problem, we may

have information from other sites that could be used to obtain statistics on moments,

but if we never installed sensors on the slope, no data was collected. As such, we con-

sider using the moment-based ambiguity set (1b), which can be built judiciously using

domain knowledge and expert assessments. The ambiguity set (1b) has the flexibility

to characterize many features of the unknown true distribution P0, e.g., mean, mean

absolute deviation. It can also approximate the nonlinear features, e.g., variance and

standard deviation. Another benefit of (1b) is tractability, as it usually leads to mixed

integer linear programming or mixed integer nonlinear programming formulations.

Remark 1. When w = 0, no uncertain parameters are revealed between the first

and second decision-stages. In this case, problem (1) reduces to a single-stage DRO

problem, where the decision-maker chooses x, w, y here-and-now to optimize in view

of the worst-case distribution. When w = e, the problem (1) reduces to a two-stage

adaptive DRO problem. Finally, when the ambiguity set only contains the support

information, we recover the robust optimization problem studied in Vayanos et al

(2020).
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Solving the decision-rule based formulation (1) is computationally challenging since

it optimizes over a function space LNy

Nξ
. To the best of our knowledge, no approximation

schemes for the adaptive binary variables can be directly applied. The prepartion-

ing approach proposed in Vayanos et al (2011) is tailored to stochastic and pure

robust optimization problems and does not generalize to cases where the distribu-

tion is unknown. The approaches proposed in Han et al (2023) and Hanasusanto et al

(2016) can only solve the special instance of (1) where w = e. The lack of approxima-

tion schemes applicable to formulation (1) motivates us to derive an equivalent nested

reformulation that gives us access to a broader set of approximation and solutions

schemes.

2.2 An Equivalent min-max-min-max Reformulation

In this section, we derive an equivalent min-max-min-max reformulation of problem (1)

that yields the same set of optimal first stage decisions (x,w) and corresponding

optimal objective values. We formalize the equivalence in the following theorem.

Theorem 1. The objective value and set of optimal solutions (x,w) to problem (1)

are equal to those of the min-max-min-max problem

min max
ξ∈Ξ


min
y∈Y

max
ξ∈Ξ(w,ξ)

c⊤ψ + ξ⊤C x+ ξ⊤D w + ξ⊤Q y −ψ⊤g(ξ)

s. t. T (ξ)x+ V (ξ)w +W (ξ)y ≤Hξ ∀ξ ∈ Ξ(w, ξ)


s. t. ψ ∈ RNg

+ , x ∈ X , w ∈ W,

(3)

where Ξ(w, ξ) := {ξ ∈ Ξ : w ◦ ξ = w ◦ ξ}.

Problem (3) can be interpreted as a sequential game against “nature”. In the

first stage, the decision-maker first decides on ψ, x, and w. Then, nature chooses a

realization ξ of the uncertain parameters, of which the decision-maker can only observe

those elements ξi such that wi = 1. In the second stage, the decision-maker selects y

in a way that is robust to the remaining elements of ξi (that have not been observed).
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Finally, nature selects a realization of ξ that coincides with ξ for those elements that

have been observed between the first and second decision stages, i.e., such that ξi = ξi

for i ∈ I such that wi = 1.

The sketch of the proof Theorem 1 is as follows. For fixed w, x, y(·) we identify

the inner maximization of problem (1a) as a moment problem and dualize it. Strong

duality guarantees that the optimal solution (x, w, y(·)) in the dualized problem

is also optimal in the original problem (1) and that both problems have the same

objective value. The dual problem then reduces to a robust optimization problem with

decision-dependent information discovery. Applying Vayanos et al (2020, Theorem 1)

yields the equivalent nested formulation (3). The full proof is deferred to Appendix A.

3 K-Adaptability Counterpart

The min-max-min-max reformulation (3) enables us to propose a new approximate

and potentially exact solution approach to solve the DRO problem with DDID. The

new solution approach is based on the K-adaptability approximation, which allows us

to control the trade-off between complexity and solution quality. In the K-adaptability

approximation, K different policies are chosen here-and-now, before any uncertain

parameters are revealed. After a portion of uncertain parameters {ξi : wi = 1} are

observed, the best candidate policy is implemented, among those that are robustly

feasible considering the uncertain parameters that remain unknown. If there exists

some ξ ∈ Ξ such that no policies are feasible, the K-adaptability problem evaluates

to +∞.

The K-adaptability counterpart of problem (3) can be written as

min max
ξ∈Ξ


min
k∈K

max
ξ∈Ξ(w,ξ)

c⊤ψ + ξ⊤C x+ ξ⊤D w + ξ⊤Q yk −ψ⊤g(ξ)

s. t. T (ξ)x+ V (ξ)w +W (ξ)yk ≤Hξ ∀ξ ∈ Ξ(w, ξ)


s. t. ψ ∈ RNg

+ , x ∈ X , w ∈ W, yk ∈ Y, ∀k ∈ K,

(4)
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where K = {1, . . . ,K}.

We provide reformulations of the K-adaptability problem (4) that can be fed into

off-the-shelf solvers, beginning with the case involving only objective uncertainty. In

the absence of uncertainty in the constraints, the problem is expressible as

min max
ξ∈Ξ

min
k∈K

{
max

ξ∈Ξ(w,ξ)
c⊤ψ + ξ⊤C x+ ξ⊤D w + ξ⊤Q yk −ψ⊤g(ξ)

}
s. t. ψ ∈ RNg

+ , x ∈ X , w ∈ W, yk ∈ Y, ∀k ∈ K

Tx+ V w +Wyk ≤ h, ∀k ∈ K,

(5)

where h ∈ RL. We show the equivalent mixed binary bilinear reformulation of

problem (5) in the following theorem.

Theorem 2. The K-adaptability problem with objective uncertainty (5) is equivalent

to the following mixed binary bilinear problem

min c⊤ψ + b⊤β +
∑

k∈K b
⊤βk

s. t. x ∈ X , w ∈ W, yk ∈ Y, ∀k ∈ K

α ∈ RK
+ , β ∈ RR

+, β
k ∈ RR

+, ∀k ∈ K, γk ∈ RNξ , ∀k ∈ K

ψ ∈ RNg

+ , δks,t ∈ R+, ∀s ∈ S, ∀t ∈ T , ∀k ∈ K

A⊤βk +w ◦ γk +
∑
s∈S

∑
t∈T

δks,tgs,t = αk
(
Cx+Dw +Qyk

)
∀k ∈ K∑

t∈T

δkt = αkψ ∀k ∈ K

e⊤α = 1

A⊤β =
∑
k∈K

w ◦ γk

Tx+ V w +Wyk ≤ h ∀k ∈ K.

(6)
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For the case of constraint uncertainty, to keep the paper concise, we only present

the main theorem and defer the full mixed integer nonlinear optimization (MINLO)

reformulation to Appendix A.

Theorem 3. The K-adaptability problem (4) with constraint uncertainty has an

equivalent mixed binary bilinear reformulation.

In the case with only objective uncertainty, formulation (6) presents two sets of

bilinear terms. The first set of constraints contain αkx, αkw, and αkyk, which can

be linearized if x and yk are discrete variables. The second set of constraints involves

the term αkψ which is a product between continuous variables (recall that ψ is the

dual variable of the constraint EP(g(ξ)) ≤ c in the ambiguity set (1b)). The number

of nonlinear terms scale as O(K ·Ng). In cases where problem (4) involves constraint

uncertainty, its MINLO reformulation (A.18) also includes bilinear terms between

continuous variables, scaling as O((1 + L)K · K · Ng). These terms do not appear if

the ambiguity set (1b) only has support information.

Solving a mixed-integer bilinear problem to global optimality is difficult in general.

Since version 9.0, Gurobi added support for solving nonconvex MINLO problems using

a spatial branching algorithm. The generic algorithm in Gurobi converges slowly when

the number of bilinear terms is large (see Table 3). Instead of solving the monolithic

MINLO problems (6) and (A.18) in the case of objective uncertainty and con-

straint uncertainty, respectively, in the following section, we propose a decomposition

algorithm that solves problem (4) using a nested decomposition algorithm.

4 Decomposition Algorithm

In this section, we leverage the nested structure of problem (4) to design a two-

layer decomposition algorithm that solves it to global optimality. A decomposition

algorithm has been used to solve a two-stage robust optimization problem with DDID

and objective uncertainty in Paradiso et al (2022). We extend it to the DRO setting
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with both objective and constraint uncertainty. Figure 1 provides an overview of our

overall proposed solution procedure. We present an L-shaped algorithm designed to

optimize the measurement variables w, as introduced in Section 4.1. A key subroutine

within the L-shaped algorithm involves the evaluation of the true objective value of

(4) for a given w. We propose to address this evaluation problem through a branch-

and-cut algorithm, the details of which are discussed in Section 4.2. In addition, we

develop three cut families to strengthen the main problem in the L-shaped algorithm.

We discuss them in Section 4.3.

Start

Solve relaxation

problem (11) from Section 4.1

Evaluate Φ(w′) using

Algorithm 3 from Section 4.2

optimal w′

Convergence?
Report optimal solution

w⋆,
(
ψ⋆, x⋆,

{
yk

⋆

k∈K

})Yes

Add cuts (9), (10), (18), (20), and (23)

from Sections 4.1 and 4.3 if applicable

No

Fig. 1 Overview of our proposed decomposition algorithm

4.1 L-shaped Algorithm to Optimize w

The objective function of (4) can be written as a function of w. We present in this

section an algorithm to solve the decomposed problem

min Φ(w)

s. t. w ∈ W,
(7)
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where

Φ(w) = min c⊤ψ +max
ξ∈Ξ


min
k∈K

max
ξ∈Ξ(w,ξ)

ξ⊤Cx+ ξ⊤Dw + ξ⊤Qyk −ψ⊤g(ξ)

s. t. T (ξ)x+ V (ξ)w +W (ξ)yk ≤Hξ ∀ξ ∈ Ξ(w, ξ)


s. t. ψ ∈ RNg

+ , x ∈ X , yk ∈ Y, ∀k ∈ K.
(8)

The function Φ(·) is, in general, nonconvex on [0, 1]Nξ . However, since w is

binary, Laporte and Louveaux (1993, Proposition 1) shows that Φ(·) can be replaced

by its convex lower envelope, a convex piecewise linear function on [0, 1]Nξ , that coin-

cides with Φ(·) at all binary points in {0, 1}Nξ . We construct the convex lower envelope

using two sets of constraints.

The first set of constraints contains the integer optimality inequalities first pro-

posed by Laporte and Louveaux (1993) for a stochastic problem with integer first-stage

variables, defined as

Φ(w) ≥ (Φ(wr)− L)

∑
i∈Ir

wi −
∑
i/∈Ir

wi

− (Φ(wr)− L) (|Ir| − 1) + L ∀wr ∈ W,

(9)

where L is any lower bound on Φ(w). Ir collects the indices of the components of

vector wr that take value 1. We can verify that the integer optimality cuts are both

valid and tight at each binary point x. When w = wr, the term
∑

i∈Ir
wi−

∑
i/∈Ir

wi

is equal to |Ir|, and the right-hand side of the inequality (9) is equal to Φ(wr). In

the case where w ̸= wr, the value of the term
∑

i∈Ir
wi −

∑
i/∈Ir

wi is less than |Ir|,

thereby ensuring that the right-hand side of the inequality (9) does not exceed L.

For points wr such that Φ(wr) = +∞, we can either set Φ(wr) as a sufficiently

large number in inequalities (9), or exclude them from the feasible regionW by enforc-

ing the following set of feasibility cuts (see Balas and Jeroslow (1972) and Nannicini
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and Belotti (2012))

∑
i∈Ir

(1− wi) +
∑
i/∈Ir

wi ≥ 1, ∀wr ∈ Winf, (10)

where Winf = {w : w ∈ W, Φ(w) = +∞}. The cuts state that any feasible points w

should be different on at least one component from all infeasible points wr ∈ Winf.

Expressing the feasibility cut separately in (10), we can then exclude them from (9)

and define the set of optimality inequalities on the set Wfeas =W \Winf.

For any Ŵfeas ⊆ Wfeas and Ŵinf ⊆ Winf, the following problem is a relaxation of

problem (7) since its constraints enforce a subset of the feasibility cuts (10), and the

objective takes an epigraph form on a subset of the optimality cuts (9).

min θ

s. t. θ ∈ R, w ∈ W

θ ≥ (Φ(wr)− L)

∑
i∈Ir

wi −
∑
i/∈Ir

wi

 − (Φ(wr)− L) (|Ir| − 1) + L

∀wr ∈ Ŵfeas∑
i∈Ir

(1− wi) +
∑
i/∈Ir

wi ≥ 1 ∀wr ∈ Ŵinf.

(11)

We use the relaxed problem (11) as the main problem of the L-shaped algorithm.

Algorithm 1 describes the L-shaped procedure. It iteratively solves problem (11),

evaluates the value Φ(w′) at the current optimal solution w′, adds new cuts, and

updates the bounds. The proof of finite convergence in Laporte and Louveaux (1993,

Proposition 1) for a two-stage integer stochastic problem can be easily adapted. To

keep the paper concise, we omit it here.
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Algorithm 1: L-shaped algorithm for solving problem (7)

Inputs: Any lower bound L of θ.

Output: Optimal solution w⋆, and optimal objective value θ⋆.

Initialization: Set θ⋆ ← +∞, w∗ ← ∅, Ŵfeas ← ∅, Ŵinf ← ∅.
1. Solve problem (11), let (w′, θ′) be an optimal solution. If θ′ ≥ θ⋆, stop.

2. Evaluate Φ(w′) by solving problem (8).

3. If Φ(w′) = +∞, set Ŵinf ← Ŵinf

⋃
{w′}, go to step 1; else, go to step 4.

4. If Φ(w′) < θ⋆, set w⋆ ← w′ and θ⋆ ← Φ(w′). Set Ŵfeas ← Ŵfeas

⋃
{w′}, go

to step 1.

Result: Return w⋆ and θ⋆.

4.2 Branch-and-Cut Algorithm to Evaluate Φ(w)

We present in this section a branch-and-cut algorithm for evaluating the objective

function Φ(w′) at the current solution w′, which is a crucial component of Algo-

rithm 1. We begin the section by discussing a basic branch-and-bound algorithm

adapted from Subramanyam et al (2020) to find an optimal solution for a min-max-min

problem with K-adaptability. Then, we design a cutting plane algorithm to solve the

inner min-max problem and merge it into the branch-and-bound tree to form the final

branch-and-cut algorithm. Finally, we prove the convergence of the branch-and-cut

algorithm.

Before proceeding with the algorithm, we introduce an equivalent formulation of

problem (8) as given in the following proposition.
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Proposition 4. The following problem is equivalent to problem (8).

P(Ξ) = min θ

s. t. θ ∈ R, ψ ∈ RNg

+ , x ∈ X , yk ∈ Y ∀k ∈ K, Ξk ⊆ RNξ ∀k ∈ K⋃
k∈K Ξk = Ξ

θ ≥ c⊤ψ + max
ξ∈Ξ(w′,ξ)

ξ⊤Cx+ ξ⊤Dw′ + ξ⊤Qyk

−ψ⊤g(ξ)

T (ξ)x+ V (ξ)w′ +W (ξ)yk ≤Hξ ∀ξ ∈ Ξ(w′, ξ)


∀ξ ∈ Ξk,

∀k ∈ K,

(12)

where, for each k ∈ K, Ξk denotes the set of scenarios for which the corresponding

optimal policy is yk.

In problem (8), the best candidate policy yk is selected for each realization ξ.

Problem (12) achieves the same goal by optimizing the decision variables Ξk, k ∈ K.

This is equivalent to finding an optimal partition of the uncertainty set Ξ. Problem

(12) is a robust optimization problem with decision dependent uncertainty set, since

the uncertainty sets {Ξk}k∈K in the constraints are decision variables themselves.

4.2.1 Constraint Generation Algorithm.

To solve problem (12) we use a constraint generation algorithm. The main prob-

lem P(Ξ̂) is a relaxation of (12) where the set Ξ in the partition constraint is

substituted with a finite set Ξ̂ ⊆ Ξ. In each iteration, a scenario is generated and

added to Ξ̂.

We now describe our proposed procedure for solving the main problem. To this

end, we present the following fixed partition problem, where {Ξ̂k}k∈K are parameter
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inputs rather than decision variables.

P ′({Ξ̂k}k∈K) = min θ

s. t. θ ∈ R, ψ ∈ RNg

+ , x ∈ X , yk ∈ Y ∀k ∈ K

θ ≥ c⊤ψ + max
ξ∈Ξ(w′,ξ)

ξ⊤C x+ ξ⊤D w′ + ξ⊤Q yk

−ψ⊤g(ξ)

T (ξ)x+ V (ξ)w′ +W (ξ)yk ≤Hξ ∀ξ ∈ Ξ(w′, ξ)


ξ ∈ Ξ̂k,

∀k ∈ K.

(13)

Any problem P ′({Ξ̂k}k∈K) defined on partition {Ξ̂k}k∈K, where
⋃

k∈K Ξ̂k = Ξ̂

serves as a conservative approximation to P(Ξ̂). Among these fixed partition problems,

the one that achieves an optimal partition of Ξ̂ will have the lowest objective value,

which coincides with the value of P (Ξ̂).

Once we have obtained an optimal solution (θ, ψ, x, {yk}k∈K) to P(Ξ̂), we solve

the following separation problem to check whether the current solution is feasible and

optimal across the entire uncertainty set Ξ

z = max
ξ∈Ξ

min
k∈K

max
ξ∈Ξ(w′,ξ)

max
{
c⊤ψ + ξ⊤C x+ ξ⊤D w′ + ξ⊤Q yk −ψ⊤

g(ξ)− θ ,

max
l∈{1,...,L}

{
[V (ξ)]lx+ [T (ξ)]lw

′ + [W (ξ)]ly
k − [H]lξ

}}
,

(14)

where l ∈ {1, . . . , L} indices the uncertain constraints. If z > 0, this indicates that

either the solution is infeasible due to the maximum constraint violation taking a

positive value, or that there is an optimal ξ causing an objective value larger than θ′.

Theorem A.1 shows that problem (14) is amenable to an MIO reformulation.

To obtain an optimal solution of (12), we extend the branch-and-bound algorithm

proposed in Subramanyam et al (2020, Section 3.1) to a two-and-a-half stage robust

optimization problem. The algorithm starts by solving problem (13) with Ξ̂ =
{
ξ0
}
,

where ξ0 is an arbitrary scenario from Ξ. After getting an optimal solution, it solves
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the separation problem (14) to check for any violations. Note that instead of opti-

mizing over {Ξ̂k}k∈K, problem (13) fixes the partition of Ξ̂. So to achieve an optimal

solution to (12), it separately adds the violated scenario into Ξ̂1, . . . , Ξ̂k to create K

new scenario-based problems. The procedure stops when there is no violation. We

summarize the algorithm in algorithm 2.

Algorithm 2: branch-and-bound algorithm for solving problem (8)

Inputs: Initial scenario ξ0 and number of policies K.

Output: Optimal solution (ψ⋆, x⋆, {yk⋆}k∈K), and optimal objective

value θ∗ of problem (8).

Initialize: Let {Ξ̂1, . . . , Ξ̂K} ← {{ξ0}, {}, . . . , {}}, set problem
list Q ← {P ′({Ξ̂k}k∈K)}, and θ⋆ ← +∞.

while Q ≠ ∅ do
1. Select, solve and remove a problem P ′({Ξ̂k}k∈K) from Q.

Let (θ, ψ, x, {yk}k∈K) be an optimal solution; if θ′ > θ⋆, continue.

2. Solve the separation problem (14) let z be the optimal objective value

and ξ be an optimal solution. If z > 0, create K problems P ′({Ξ̂1, . . . , Ξ̂k ∪
{ξ}, . . . , Ξ̂K}), for each k ∈ K, and add it to the problem list Q; else,

set (θ⋆, ψ⋆, x⋆, {yk⋆}k∈K)← (θ, ψ, x, {yk}k∈K).

end

Result: Report (θ⋆, ψ⋆,x⋆, {yk⋆}k∈K) as an optimal solution if θ⋆ < +∞,

and problem is infeasible otherwise.

4.2.2 A Branch-and-Cut Algorithm.

In step 1 of Algorithm 2, problem P ′({Ξ̂k}k∈K) can be reformulated as a single stage

MILO by dualization. However, theorem A.2 shows that the size of the problem grows

with |Ξ̂| with the number of dual variables being O(|Ξ̂|) and the number of constraints

being O(|Ξ̂|), which is computationally challenging. Therefore, we propose to solve

the robust optimization problem using a constraint generation algorithm which will

be embedded within the branch-and-cut algorithm that we now present.
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We start with the cut generation algorithm for solving problem P ′({Ξ̂k}k∈K). Given

collections of scenarios {Ξ̂k}k∈K, the following relaxation of P ′({Ξ̂k}k∈K) is solved

P ′′({Ξ̂k
in}k∈K) = min θ

s. t. θ ∈ R, ψ ∈ RNg

+ , x ∈ X , yk ∈ Y ∀k ∈ K.

θ ≥ c⊤ψ + max
ξ∈Ξ̂k

in

ξ⊤C x+ ξ⊤D w′ + ξ⊤Q yk

−ψ⊤g(ξ)

T (ξ)x+ V (ξ)w′ +W (ξ)yk ≤Hξ ∀ξ ∈ Ξ̂k
in

 ∀k ∈ K,
(15)

where Ξ̂k
in is a finite subset of

⋃
ξ∈Ξ̂k Ξ(w

′, ξ). After getting a solu-

tion (θ, ψ, x, {yk}k∈K) of P ′′({Ξ̂k
in}k∈K), the following subproblems are solved to

evaluate the violation of the constraints in P ′({Ξ̂k}k∈K)

vk = max
ξ∈Ξ̂k

max
ξ∈Ξ(w′,ξ)

max
{
c⊤ψ + ξ⊤C x+ ξ⊤D w′ + ξ⊤Q yk −ψ⊤

g(ξ)− θ,

max
l∈{1,...,L}

{
ξ⊤Tlx+ ξ⊤Vlw

′ + ξ⊤Wly
k − [H]lξ

}}
∀k ∈ K.

(16)

We have vk ≤ 0 for all k ∈ K, if and only if a robust optimal solution of P ′({Ξ̂k}k∈K)

has been found.

The branch-and-cut algorithm for evaluating Φ(w′) starts by solving problem (15).

At incumbent nodes, it checks the inner robust feasibility by solving problem (16)

and adds a cut until a feasible solution to (13) is found. The feasible solution is then

used to create branches or update the bounds as stated in Algorithm 2. Algorithm 3

summarizes the procedure, which we also illustrate in Figure 2.

4.2.3 Convergence Analysis.

We discuss the correctness as well as the asymptotic convergence of Algorithm 3 in

the following theorem.
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Algorithm 3: branch-and-cut algorithm for solving problem (8).

Inputs: Initial scenario ξ0, vector w
′, and number of policies K.

Output: Optimal solution (ψ⋆, x⋆, {yk⋆}k∈K) and optimal objective

value θ⋆ of problem (8).

Initialize: Set {Ξ̂1, . . . , Ξ̂K} ← {{ξ0}, {}, . . . , {}}, Ξ̂k
in ← Ξ̂k, ∀k ∈ K,

θ⋆ ← +∞. Start the branch-and-bound tree from problem P ′′({Ξ̂k
in}k∈K).

1. When an incumbent node is reached, get solution (θ, ψ, x, {yk}k∈K), and

solve problem (16). If maxk∈K vk > 0, go to step 2; else, go to step 3.

2. For all k ∈ K, let ξk be an optimal solution to the kth problem; if vk > 0,

set Ξ̂k
in ← Ξ̂k

in

⋃
{ξk}. Go to step 5.

3. Solve problem (14). If z > 0, let ξ be an optimal solution, go to step 4; else,

if θ ≤ θ⋆, set θ⋆ ← θ. Go to step 1.

4. Create K branches, each for problem P ′({Ξ̂1, . . . , Ξ̂k∪{ξ}, . . . , Ξ̂K}), k ∈ K.

For each branch, start with solving the corresponding relaxation

problem P ′′({Ξ̂1
in, . . . , Ξ̂

k
in ∪ {ξ}, . . . , Ξ̂K

in}). Go to step 5.

5. If the global lower bound lbglobal ≥ θ⋆ or no feasible node exist, terminate

with status Opt or Infeas, and report the current solution; else if the node

lower bound lbnode > θ⋆, fathom the node. Go to step 1.

Result: The branch-and-bound tree will end with either giving an optimal

solution (θ⋆, ψ⋆, x⋆, {yk⋆}k∈K) or identifying that the problem as infeasible.

Theorem 5. If the branch-and-cut Algorithm 3 terminates, then it either returns

an optimal solution to problem (8) or correctly identifies it as infeasible. If there is

no finite convergence, then in an infinite branch, every accumulation point of the

sequence of the solutions obtained in step 1 of Algorithm 3 corresponds an optimal

solution (ψ⋆, x⋆, {yk⋆}k∈K) of problem (8) with objective value θ⋆.

4.3 Improved L-shaped Algorithm

In this section, we introduce three types of cuts to be added to Algorithm 1, which

have the potential to improve its performance (see Table 3).
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Initialize and
start to solve (15)

Whenever at incumbent node,
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by solving (16) for each k ∈ K
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∀k ∈ K, if vk > 0

add ξk to Ξ̂k
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Yes
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feasibility by solving (14)

No

Terminate
by Step 5?

z > 0? Create K branches
Yes End with status

and solution
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Check and fathom

using Step 5

No

Update solution

if θ < θ⋆

No

Fig. 2 Diagram of Algorithm 3 for solving problem (8)

4.3.1 Benders’ Cut.

A popular family of cuts in the integer programming literature is Benders’ cuts,

see Benders (1962). In each iteration of Algorithm (1), for a fixed wr, we solve an LP

relaxation of problem (8) and get the optimal dual solution to calculate the Benders’

cut. Specifically, we consider the following LP problem

min θ

s. t. θ ∈ R, ψ ∈ RNg

+ , x ∈ XLP, y(ξ) ∈ YLP

w = wr

θ ≥ c⊤ψ + ξ⊤C x+ ξ⊤D w + ξ⊤Q y(ξ)−ψ⊤g(ξ)

T (ξ)x+ V (ξ)w +W (ξ)y(ξ) ≤Hξ

 ∀ξ ∈ Ξ̂,

(17)
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where XLP and YLP are linear relaxations of X and Y by allowing all variables to be

continuous, and Ξ̂ can be any finite subset of Ξ.

Problem (17) is a relaxation of (8) in the sense that (i) it solves a fully adaptable

problem on a finite set Ξ̂, (ii) it ignores the fact that y(ξ) needs to be robust to the

unobserved portion of ξ, and (iii) the mixed-integer sets X and Y are replaced by their

linear relaxation. The Benders’ cut (18) added in step 3 of Algorithm 1 is generated

by obtaining the optimal objective value θ of problem (17), and the values π of the

dual multipliers associated with the constraints w = wr

θ ≥ θ + π⊤(w −wr). (18)

In the implementation, we can either randomly generate or collect the scenario

generated in step 3 of Algorithm 3 to construct set Ξ̂.

4.3.2 Strengthened Feasibility Cut.

If problem (1) contains a subset of constraints in the form

V (ξ)w ≤Hξ, ∀ξ ∈ Ξ, (19)

and the matrix V (ξ) is component-wise non-negative for all ξ ∈ Ξ, then for any

infeasible solution wr, a solution w with w ≥ wr is also infeasible for problem (7).

For the reason that it leads to a violation of constraint (19) no smaller than the one

given by x for all ξ ∈ Ξ. In this scenario, we incorporate the following strengthened

feasibility cut in step 2 of Algorithm 1

∑
i∈Ir

1− wi ≥ 1. (20)
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4.3.3 Strengthened Optimality Cut.

When the variable w only appears in the objective function, and the cost vector of it

is deterministic, problem (8) can be written as

min d⊤w +Φ(w)

s. t. w ∈ W,
(21)

where

Φ(w) = min c⊤ψ +max
ξ∈Ξ


min
k∈K

max
ξ∈Ξ(w,ξ)

ξ⊤C x+ ξ⊤Q yk −ψ⊤g(ξ)

s. t. T (ξ)x+W (ξ)yk ≤Hξ ∀ξ ∈ Ξ(w, ξ)


s. t. ψ ∈ RNg

+ , x ∈ X , yk ∈ Y, ∀k ∈ K.

(22)

For the function Φ(w) defined in (22), consider two vectors w and wr. If w is

component-wise smaller than wr, i.e., w ≤ wr, then Φ(w) ≥ Φ(wr). The intuition

behind this is that if more entries of w take the value 1, the decision-maker has more

information when making the recourse decision. This leads to the function Φ(w) having

a non-decreasing value, as discussed in Paradiso et al (2022, Proposition 2). When

applicable, we use the following strengthened optimality cut in step 3 of Algorithm 1

θ ≥ Φ(w′)− (Φ(w′)− L)
∑
i/∈Ir

wi. (23)

4.3.4 Upper Cutoff.

To avoid spending time evaluating the function value Φ(w′) with suboptimal w′, in

the initialization step of Algorithm 3, we set the cutoff value as the current upper

bound θ⋆ found by Algorithm 1. The termination condition for Algorithm 3 is met

when the current lower bound exceeds the cutoff value. In such cases, w′ is proven to
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be suboptimal. In the case of early termination, the integer cut (9) is generated using

the cutoff value.

The alternative to step 2 of Algorithm 1 is as follows:

2′: Evaluate the value Φ(w′) with cutoff value θ⋆.

The additional initialization and add-on to step 5 of Algorithm 3 are given as

follows:

Initialize: Set cutoff value θub ← θ⋆.

5+: If the global lower bound lbglobal > θub, terminate and return the current

incumbent solution.

5 Numerical Results

In this section, we investigate the performance of our approach on the best box

and R&D project portfolio optimization problems. We show the trade-off between

optimality and computational effort as the number of policies K is varied and the

suboptimality of the robust optimization approach proposed in Vayanos et al (2020)

under worst-case distribution, thereby demonstrating the value of our method rel-

ative to existing literature. In both problems, we report the results of solving the

MINLO problem by Gurobi 9.0.0. In the R&D project portfolio optimization prob-

lem, we showcase the attractive scalability properties of our proposed decomposition

algorithm. To solve the robust optimization counterpart, where the ambiguity set (1b)

only includes the support, we employ the ROC++ package Vayanos et al (2022) for

coding and solving the problem.

All of our experiments are performed on the High-Performance Computing Cluster

of our university. Each job is allocated 2GB RAM, 4 cores, and a 2.1GHz Xeon pro-

cessor. For each instance, an optimality gap of 0.1% and a time limit of 7,200 seconds

are allowed to solve the problem.
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5.1 Distributionally Robust Best Box problem

5.1.1 Problem Description.

We perform experiments on several instances of the two-stage best box problem that

subsumes selection problems as special cases. It is a distributionally robust variant of

the robust problem in Vayanos et al (2020, 2022). In this problem, we have N boxes

indexed in the set N = {1, . . . , N} to choose from. Each box n contains an unknown

prize with value ξrn, and opening it incurs an unknown cost ξcn. The return and cost

are uncertain and will only be revealed if the box is opened. In the first stage, the

decision-maker decides whether to open each box n ∈ N , which we indicate with the

decision variable wr
n ∈ {0, 1}. Thus, ξrn and ξcn are revealed between the first and

second time stage if only wr
n = 1. The total budget available to open boxes is B. In the

second stage, the decision-maker keeps one of the opened boxes and earns its value,

indicated with the decision variable yn ∈ {0, 1}. The goal of the decision-maker is to

select the boxes to open and keep to maximize the worst-case expected value of the box

kept. We assume that the values and costs are expressible as ξrn = (1+Φ⊤
n ζ/2)rn and

ξcn = (1 +Ψ⊤
n ζ/2)cn, where rn and cn correspond to the nominal value and cost for

box n, respectively, ζ ∈ [−1, 1]M are M risk factors, and the vectors Φn, Ψn ∈ RM

collect the loading factors for box n. The support of the distribution of the uncertain

parameters is described as follows

Ξ =
{
(ξr, ξc) ∈ R2N : ∃ζ ∈ [−1, 1]M : ξrn =

(
1 +Φ⊤

n ζ/2
)
rn, ξ

c
n =

(
1 +Ψ⊤

n ζ/2
)
cn,

n ∈ N} .
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We define ξ = (ξr, ξc), µ = (r, c), and use the following ambiguity set for the uncertain

values and costs

PBB =
{
P ∈M+(RNξ) : P(ξ ∈ Ξ) = 1, EP

[{
|e⊤ (ξ − µ)

∣∣] ≤ 0.25N−1/2e⊤µ)
}
.

(24)

The last constraint in the ambiguity set follows the intuition of the central limit

theorem, and it imposes an upper bound on the cumulative deviation of the boxes’

returns and costs from their expected values.

The distributionally robust best box problem can be written as

min sup
P∈P

EP

[
−ξr⊤y(ξ)

]
s. t. w = (wr, wr), wr ∈ {0, 1}N

y(ξ) ∈ {0, 1}N

ξc⊤wr ≤ B

y(ξ) ≤ wr

e⊤y(ξ) = 1


∀ξ ∈ Ξ,

y(ξ) = y(ξ′) ∀ξ, ξ′ ∈ Ξ : w ◦ ξ = w ◦ ξ′.

(25)

Besides the support, the ambiguity set (24) has only one constraint, leading to a

scalar dual variable in the MINLO reformulation of (25). Therefore, the reformulation

has only one bilinear term with continuous variables and the reformulated MINLO

problem be handled by Gurobi efficiently.

5.1.2 Computational Results.

We evaluate the performance of our approach on 80 randomly generated instances

of problem (25): 20 instances for each N ∈ {10, 20, 30, 40} with risk factors M ∈

{5, 10, 15, 20}. In each instance, c is drawn uniformly at random from the hyper-

cube [0, 10]N , and r = c/5, B = e⊤c/2. The risk loading factors Φn and Ψn
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are sampled uniformly at random from the hypercube [−1, 1]M . We solve the K-

adaptability counterpart of (25) for K ∈ {1, 2, 3, 4}. We summarize our results in the

following.

In the best box problem, as the number of bilinear terms between continuous

variables is small, solving the monolithic MINLO is more efficient than using the

decomposition algorithm in all cases. Table 1 summarizes the computational results

across the generated instances. The improvement over the static solution increases

rapidly with the number of policies. The average improvements over the static solution

for all sizes are 87.1%, 111.3%, 121.3% for K = 2, 3, 4, respectively. The improvement

in solution quality comes at a computational cost.

K N = 10 N = 20 N = 30 N = 40

1 0.0%/0.1s/0.0% 0.0%/0.2s/0.0% 0.0%/0.4s/0.0% 0.0%/0.5s/0.0%

2 42.6%/0.2s/0.0% 86.5%/6.0s/0.0% 118.2%/1090.5s/0.0% 101.1%/2530.6s/0.0%

3 43.9%/0.4s/0.0% 117.2%/8.8s/0.0% 148.9%/1168.9s/0.0% 135.2%/2297.8s/0.0%

4 43.9%/0.8s/0.0% 125.4%/16.8s/0.0% 162.2%/3031.6s/0.0% 153.5%/4819.0s/0.0%

Table 1 Summary of computational results for the best box problem. Each entry corresponds
to: the average objective value improvement of the best K-adaptability solution found in the time
limit over the best static solution found in the time limit; the improvement is calculated as the
ratio of the difference between the objective values of the K-adaptability solution and the static
solution to the objective value of the static solution / the average solution time of the solved
instances/ the average optimality gap across unsolved cases.

We now solve the robust optimization (RO) counterpart of problem (25), where

the ambiguity set (24) includes only support information on ξ, and assess the

suboptimality of an optimal solution to the RO problem under the worst-case dis-

tribution described in the DRO problem. To compute such suboptimality, we let

(xRO, wRO, {yk
RO}k∈K) denote an optimal solution to the RO problem, fix these val-

ues in (25) and solve the inner maximization problem to obtain the objective value

of the RO solution under the worst case distribution, denoted as z⋆RO. Accordingly,

we let z⋆DRO denote the optimal objective value obtained by optimizing problem (25).
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Table 2 summarizes the relative difference between z⋆RO and z⋆DRO. From the table, we

see that the average suboptimality of the RO solution is as high as 70.16%.

K N = 10 N = 20 N = 30 N = 40

1 70.16% 13.19% 3.94% 6.54%

2 51.08% 1.60% 1.18% 1.43%

3 45.03% 2.10% 1.52% 0.77%

4 45.27% 1.98% 1.05% 1.75%

Table 2 Suboptimality of the RO solutions to
the best box problem. Each cell represents the
average over 20 instances. In each instance, the
relative differences are calculated by
(z⋆DRO − z⋆RO)

(z⋆DRO + z⋆RO)/2
.

5.2 Distributionally Robust R&D Project Portfolio

Optimization

5.2.1 Problem Description.

We next perform experiments on several instances of the distributionally robust R&D

project portfolio optimization problem – this is a DRO variant of the robust version

proposed in Vayanos et al (2020, 2022). In this problem, there are N projects indexed

in the set N = {1, . . . , N}, and the decision-maker decides whether and when to invest

in a project. Each project n has an uncertain return ξrn, and undertaking it incurs

an uncertain cost ξcn. The return and cost of project n can only be observed if we

undertake this project. The decision to invest in project n in the first (resp. second)

stage is denoted by wr
n (resp. yn), n ∈ N . Thus, ξrn and ξcn are revealed between the

first and second time stage if only wr
n = 1. The total budget available across two years

is B. A project can be invested in at most once, and only a fraction θ ∈ [0, 1) of the

return is obtained for investments made in the second stage. The goal of the decision-

maker is to maximize the worst-case expected return. We assume the returns and
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costs are expressible as ξrn = (1 +Φ⊤
n ζ/2)rn and ξcn = (1 +Ψ⊤

n ζ/2)cn, where rn, cn

correspond to the nominal return and cost of project n, respectively, ζ ∈ [−1, 1]M

are M risk factors, and the vectors Φn and Ψn ∈ RM collect the loading factors for

project n. The support of the distribution of the uncertain parameters is described as

follows

Ξ =
{
(ξr, ξc) ∈ R2N : ∃ζ ∈ [−1, 1]M : ξrn =

(
1 +Φ⊤

n ζ/2
)
rn, ξ

c
n =

(
1 +Ψ⊤

n ζ/2
)
cn,

n ∈ N} .

We define ξ = (ξr, ξc), µ = (r, c), and use the following ambiguity set for the uncertain

returns and costs

PRD =
{
P ∈M+(RNξ) : P(ξ ∈ Ξ) = 1, EP [|ξ − µ|] ≤ 0.15µ,

EP
[∣∣e⊤ (ξ − µ)

∣∣] ≤ 0.15N−1/2e⊤µ)
}
.

(26)

The second set of constraints in the ambiguity set enforces the mean absolute deviation

of the individual returns and costs to be bounded. The last constraint imposes an

upper bound on the cumulative deviation of the projects’ returns and costs from their

expected value.

The distributionally robust R&D project portfolio optimization problem can be

written as

min sup
P∈P

EP

[
−ξr⊤ (w + θy(ξ))

]
s. t. w = (wr, wr), wr ∈ {0, 1}N

y(ξ) ∈ {0, 1}N

ξc⊤ (wr + y(ξ)) ≤ B

wr + y(ξ) ≤ e

 ∀ξ ∈ Ξ

y(ξ) = y(ξ′) ∀ξ, ξ′ ∈ Ξ : w ◦ ξ = w ◦ ξ′.

(27)
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5.2.2 Computational Results.

We run experiments on 80 randomly generated instances of the K-adaptability coun-

terpart of problem (27): 20 instances for each N ∈ {5, 10, 15, 20} with risk factors M ∈

{4, 5, 8, 10}, respectively. We draw c uniformly at random from the box [0, 10]N and

let r = c/5, B = e⊤c/2. The risk load factor Φn and Ψn are sampled uniformly at

random from the standard simplex.

We report the results of solving problem (27) by utilizing the monolithic MINLO

reformulation and applying the decomposition Algorithm 1 with and without the

cuts introduced in Section 4.3. In the decomposition Algorithm 1, we set the time

limit of evaluating Φ(w) to [300s, 600s, 1200s, 2400s] for problems with size N ∈

{5, 10, 15, 20}. In Algorithm 1, if the subproblem evaluating Φ(w) is not solved to

optimality within the time limit, we use the current lower bound of the subproblem

to generate a valid integer cut of the form (9) and use the upper bound to update the

objective value θ⋆ in step 4. If the main problem is not solved to optimality within

the time limit, we report θ⋆ as the objective value and the current optimal objective

value of main problem (11) as the lower bound.

33



MINLO Decomposition Decomposition with Added Cuts

N K Opt(#) Time(s) Gap Better(#) Improvement Opt(#) Time(s) Gap Better(#) Improvement Opt(#) Time(s) Gap Better(#) Improvement

5

2 20 1.6 0.0% 0 17.5% 20 54.3 0.0% 0 17.5% 20 16.0 0.0% 0 17.5%

3 15 912.3 0.03% 0 21.3% 20 435.4 0.0% 0 21.3% 20 239.0 0.0% 0 21.3%

4 0 7200 0.2% 1 22.3% 20 854.8 0.0% 0 22.3% 20 475.0 0.0% 1 22.3%

10

2 19 730.5 - 0 16.9% 0 7200 27.2% 0 20.3% 20 1826.8 0.0% 0 23.1%

3 0 7200 - 2 11.8% 0 7200 30.2% 1 20.7% 0 7200 16.7% 16 26.7%

4 0 7200 - 1 23.8% 0 7200 29.4% 2 21.6% 0 7200 16.5% 16 27.4%

15

2 0 7200 - 18 16.1% 0 7200 32.9% 0 8.4% 0 7200 23.9% 2 20.1%

3 0 7200 - 7 21.5% 0 7200 30.5% 0 12.4% 0 7200 22.2% 13 23.0%

4 0 7200 - 7 20.9% 0 7200 28.8% 0 15.1% 0 7200 21.9% 13 23.2%

20

2 0 7200 - 20 21.9% 0 7200 36.9% 0 0.9% 0 7200 24.5% 0 18.7%

3 0 7200 - 7 20.7% 0 7200 34.8% 0 4.3% 0 7200 22.5% 13 21.6%

4 0 7200 - 1 18.9% 0 7200 33.9% 0 5.7% 0 7200 21.5% 19 23.6%

Table 3 Summary of computational results of the R&D problem. Decomposition and Decomposition with Added Cuts refer to Algorithm 1
without and with the cuts introduced in Section 4.3, respectively. Opt(#) corresponds to the number of instances solved to optimality, Time(s) to the
average computational time (in seconds) for instances solved to optimality, and Gap to the average optimality gap for the instances not solved within
the time limit. We write ’-’ when no valid lower bound was found. Better(#) denotes the number of instances in each method that achieved a better
objective value than the other method. Improvement denotes the average improvement in the objective value of the K-adaptability solution found in
the time limit over the static solution found in the time limit. The improvement is calculated as the ratio of the difference between the objective values
of the K-adaptability solution and the static solution to the objective value of the static solution.
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Table 3 summarizes the computational results across those instances. From the

table, we observe that the improved decomposition algorithm achieves optimality or

finds better solutions for more instances than the basic decomposition algorithm and

solves the monolithic MINLO problem when K is large. Across all instances, the pro-

posed algorithm has a significantly smaller optimality gap which decreases with K.

We notice that solving the MINLO problem often results in the inability to obtain

a satisfactory or valid lower bound, especially when N ≥ 10. As the number of

policies K increases, the number of instances for which the improved decomposition

algorithm achieves a better objective value increases. For example, when N = 20, the

number of better solutions found by our approach is {0, 13, 19} with K ∈ {2, 3, 4},

respectively. The improvements in the objective value over the static solutions of the

improved decomposition algorithm are {18.7%, 21.6%, 23.6%}, whereas the improve-

ments obtained by solving the MINLO problem and using the basic decomposition

algorithm are {21.9%, 20.7%, 18.9%} and {0.9%, 4.3%, 5.7%}, respectively. Note that

in some settings, MINLO solutions achieve a better objective value in more instances,

but the average improvement in the objective value is worse. This discrepancy arises

when the MINLO solutions are sometimes significantly suboptimal, thereby reducing

the overall average improvement. Finally, in all cases, the improvement in the objec-

tive value over the static solutions of the decomposition algorithm increases with the

number of policies K. This aligns with the rationale of the K-adaptability approach,

where a larger K offers more flexibility for the recourse decisions, leading to a better

objective value. However, the trend is not clear in MINLO solutions when N ≥ 10 due

to computational difficulties.

Next, we examine the suboptimality of the RO solution. We define z⋆RO and z⋆DRO

as in Section 5.1.2. The relative differences between z⋆RO and z⋆DRO are summarized in

Table 4. From the table, we see that the average suboptimality of the RO solution
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K N = 5 N = 10 N = 15 N = 20

1 0.37% 1.60% 3.24% 2.08%

2 17.33% 23.03% 20.37% 19.61%

3 14.62% 19.15% 17.65% 18.33%

4 15.05% 11.25% 7.81% 8.73%

Table 4 Suboptimality of RO solution to the
R&D problem. Each cell represents the average
over 20 instances. In each instance, the relative

differences are calculated by
(z∗DRO − z∗RO)

(z∗DRO + z∗RO)/2
.

among all instances is up to 23.03%, which shows the importance of incorporating

distributional information in the uncertainty set.

Acknowledgements

Phebe Vayanos and Qing Jin are funded in part by the National Science Foundation

under grant 1763108. Grani A. Hanasusanto is funded in part by the National Science

Foundation under grants 2342505 and 2343869. They are grateful for the support.

36



References

Apap RM, Grossmann IE (2017) Models and computational strategies for multistage

stochastic programming under endogenous and exogenous uncertainties. Comput-

ers & Chemical Engineering 103:233–274. https://doi.org/10.1016/j.compchemeng.

2016.11.011

Balas E, Jeroslow R (1972) Canonical cuts on the unit hypercube. SIAM Journal on

Applied Mathematics 23(1):61–69. https://doi.org/10.1137/0123007

Basciftci B, Ahmed S, Shen S (2021) Distributionally robust facility location prob-

lem under decision-dependent stochastic demand. European Journal of Operational

Research 292(2):548–561. https://doi.org/10.1016/j.ejor.2020.11.002

Ben-Tal A, Den Hertog D, De Waegenaere A, Melenberg B, Rennen G (2013) Robust

solutions of optimization problems affected by uncertain probabilities. Management

Science 59(2):341–357. https://doi.org/10.1287/mnsc.1120.1641

Benders JF (1962) Partitioning procedures for solving mixed-variables program-

ming problems. Numerische Mathematik 4(1):238–252. https://doi.org/10.1007/

BF01386316

Bertsimas D, Caramanis C (2010) Finite adaptability in multistage linear optimiza-

tion. IEEE Transactions on Automatic Control 55(12):2751–2766. https://doi.org/

10.1109/TAC.2010.2049764

Bertsimas D, Sim M, Zhang M (2019) Adaptive distributionally robust optimization.

Management Science 65(2):604–618. https://doi.org/10.1287/mnsc.2017.2952

Blankenship JW, Falk JE (1976) Infinitely constrained optimization problems. Journal

of Optimization Theory and Applications 19(2):261–281. https://doi.org/10.1007/

BF00934096

37

https://doi.org/10.1016/j.compchemeng.2016.11.011
https://doi.org/10.1016/j.compchemeng.2016.11.011
https://doi.org/10.1137/0123007
https://doi.org/10.1016/j.ejor.2020.11.002
https://doi.org/10.1287/mnsc.1120.1641
https://doi.org/10.1007/BF01386316
https://doi.org/10.1007/BF01386316
https://doi.org/10.1109/TAC.2010.2049764
https://doi.org/10.1109/TAC.2010.2049764
https://doi.org/10.1287/mnsc.2017.2952
https://doi.org/10.1007/BF00934096
https://doi.org/10.1007/BF00934096


Buchheim C, Kurtz J (2017) Min–max–min robust combinatorial optimization.

Mathematical Programming 163:1–23. https://doi.org/10.1007/s10107-016-1053-z

Buchheim C, Kurtz J (2018) Complexity of min–max–min robustness for combinatorial

optimization under discrete uncertainty. Discrete Optimization 28:1–15. https://

doi.org/10.1016/j.disopt.2017.08.006

Chassein A, Goerigk M, Kurtz J, Poss M (2019) Faster algorithms for min-max-min

robustness for combinatorial problems with budgeted uncertainty. European Journal

of Operational Research 279:308–319. https://doi.org/10.1016/j.ejor.2019.05.045

Chen Z, Sim M, Xiong P (2020) Robust stochastic optimization made easy with

RSOME. Management Science 66(8):3329–3339. https://doi.org/10.1287/mnsc.

2020.3603

Chu M, Patton A, Roering J, Siebert C, Selker J, Walter C, Udell C (2021) SitkaNet: A

low-cost, distributed sensor network for landslide monitoring and study. HardwareX

9:e00191. https://doi.org/10.1016/j.ohx.2021.e00191

Colvin M, Maravelias CT (2010) Modeling methods and a branch and cut algorithm

for pharmaceutical clinical trial planning using stochastic programming. Euro-

pean Journal of Operational Research 203(1):205–215. https://doi.org/10.1016/j.

ejor.2009.07.022

Delage E, Ye Y (2010) Distributionally robust optimization under moment uncertainty

with application to data-driven problems. Operations Research 58(3):595–612.

https://doi.org/10.1287/opre.1090.0741

Doan XV (2021) Distributionally robust optimization under endogenous uncertainty

with an application in retrofitting planning. European Journal of Operational

Research 300(1):73–84. https://doi.org/10.1016/j.ejor.2021.07.013

38

https://doi.org/10.1007/s10107-016-1053-z
https://doi.org/10.1016/j.disopt.2017.08.006
https://doi.org/10.1016/j.disopt.2017.08.006
https://doi.org/10.1016/j.ejor.2019.05.045
https://doi.org/10.1287/mnsc.2020.3603
https://doi.org/10.1287/mnsc.2020.3603
https://doi.org/10.1016/j.ohx.2021.e00191
https://doi.org/10.1016/j.ejor.2009.07.022
https://doi.org/10.1016/j.ejor.2009.07.022
https://doi.org/10.1287/opre.1090.0741
https://doi.org/10.1016/j.ejor.2021.07.013


Gao R, Kleywegt A (2023) Distributionally robust stochastic optimization with

wasserstein distance. Mathematics of Operations Research 48(2):603–655. https:

//doi.org/10.1287/moor.2022.1275

Goel V, Grossmann IE (2004) A stochastic programming approach to planning

of offshore gas field developments under uncertainty in reserves. Computers &

Chemical Engineering 28(8):1409–1429. https://doi.org/https://doi.org/10.1016/j.

compchemeng.2003.10.005

Goel V, Grossmann IE (2006) A class of stochastic programs with decision dependent

uncertainty. Mathematical programming 108(2):355–394. https://doi.org/10.1007/

s10107-006-0715-7

Goh J, SimM (2010) Distributionally robust optimization and its tractable approxima-

tions. Operations Research 58(4 PART 1):902–917. https://doi.org/10.1287/opre.

1090.0795

Gupta V, Grossmann IE (2011) Solution strategies for multistage stochastic pro-

gramming with endogenous uncertainties. Computers & Chemical Engineering

35(11):2235–2247. https://doi.org/10.1016/j.compchemeng.2010.11.013

Gupta V, Grossmann IE (2014) A new decomposition algorithm for multistage stochas-

tic programs with endogenous uncertainties. Computers & Chemical Engineering

62:62–79. https://doi.org/10.1016/j.compchemeng.2013.11.011

Han E, Bandi C, Nohadani O (2023) On finite adaptability in two-stage distribution-

ally robust optimization. Operations Research 71(6):2307–2327. https://doi.org/10.

1287/opre.2022.2273

Hanasusanto GA, Kuhn D (2018) Conic programming reformulations of two-stage

distributionally robust linear programs over Wasserstein balls. Operations Research

39

https://doi.org/10.1287/moor.2022.1275
https://doi.org/10.1287/moor.2022.1275
https://doi.org/https://doi.org/10.1016/j.compchemeng.2003.10.005
https://doi.org/https://doi.org/10.1016/j.compchemeng.2003.10.005
https://doi.org/10.1007/s10107-006-0715-7
https://doi.org/10.1007/s10107-006-0715-7
https://doi.org/10.1287/opre.1090.0795
https://doi.org/10.1287/opre.1090.0795
https://doi.org/10.1016/j.compchemeng.2010.11.013
https://doi.org/10.1016/j.compchemeng.2013.11.011
https://doi.org/10.1287/opre.2022.2273
https://doi.org/10.1287/opre.2022.2273


66(3):849–869. https://doi.org/10.1287/opre.2017.1698

Hanasusanto GA, Kuhn D, Wiesemann W (2015) K-adaptability in two-stage robust

binary programming. Operations Research 63(4):877–891. https://doi.org/10.1287/

opre.2015.1392

Hanasusanto GA, Kuhn D, Wiesemann W (2016) K-adaptability in two-stage dis-

tributionally robust binary programming. Operations Research Letters 44(1):6–11.

https://doi.org/10.1016/j.orl.2015.10.006

Jiang R, Guan Y (2016) Data-driven chance constrained stochastic pro-

gram. Mathematical Programming 158(1-2):291–327. https://doi.org/10.1007/

s10107-015-0929-7

Laporte G, Louveaux FV (1993) The integer L-shaped method for stochastic integer

programs with complete recourse. Operations Research Letters 13(3):133–142. https:

//doi.org/10.1016/0167-6377(93)90002-X

Luo F, Mehrotra S (2020) Distributionally robust optimization with decision depen-

dent ambiguity sets. Optimization Letters 14(8):2565–2594. https://doi.org/10.

1007/s11590-020-01574-3

Michel G, Omer J, Poss M (2022) Robust selection problem with decision-dependent

information discovery under budgeted uncertainty. In: 23ème congrès annuel de la
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Mohajerin Esfahani P, Kuhn D (2018) Data-driven distributionally robust opti-

mization using the Wasserstein metric: performance guarantees and tractable

reformulations. Mathematical Programming 171(1-2):115–166. https://doi.org/10.

1007/s10107-017-1172-1

40

https://doi.org/10.1287/opre.2017.1698
https://doi.org/10.1287/opre.2015.1392
https://doi.org/10.1287/opre.2015.1392
https://doi.org/10.1016/j.orl.2015.10.006
https://doi.org/10.1007/s10107-015-0929-7
https://doi.org/10.1007/s10107-015-0929-7
https://doi.org/10.1016/0167-6377(93)90002-X
https://doi.org/10.1016/0167-6377(93)90002-X
https://doi.org/10.1007/s11590-020-01574-3
https://doi.org/10.1007/s11590-020-01574-3
https://doi.org/10.1007/s10107-017-1172-1
https://doi.org/10.1007/s10107-017-1172-1


Nannicini G, Belotti P (2012) Rounding-based heuristics for nonconvex MINLPs.

Mathematical Programming Computation 4(1):1–31. https://doi.org/10.1007/

s12532-011-0032-x

Noyan N, Rudolf G, Lejeune M (2022) Distributionally robust optimization under

a decision-dependent ambiguity set with applications to machine scheduling and

humanitarian logistics. INFORMS Journal on Computing 34(2):729–751. https://

doi.org/10.1287/ijoc.2021.1096

Paradiso R, Georghiou A, Dabia S, Tönissen D (2022) Exact and approximate schemes

for robust optimization problems with decision dependent information discovery.

arXiv preprint arXiv:220804115

Ryu M, Jiang R (2019) Nurse staffing under absenteeism: A distributionally robust

optimization approach. arXiv preprint arXiv:190909875

Shapiro A (2001) On duality theory of conic linear problems. Nonconvex Optimization

and its Applications 57:135–155. https://doi.org/10.1007/978-1-4757-3403-4 7

Solak S, Clarke JPB, Johnson EL, Barnes ER (2010) Optimization of R&D project

portfolios under endogenous uncertainty. European Journal of Operational Research

207(1):420–433. https://doi.org/10.1016/j.ejor.2010.04.032

Subramanyam A, Gounaris CE, Wiesemann W (2020) K-adaptability in two-

stage mixed-integer robust optimization. Mathematical Programming Computation

12(2):193–224. https://doi.org/10.1007/s12532-019-00174-2

Vayanos P, Kuhn D, Rustem B (2011) Decision rules for information discovery in

multi-stage stochastic programming. In: 2011 50th IEEE Conference on Decision

and Control and European Control Conference, IEEE, pp 7368–7373, https://doi.

org/10.1109/CDC.2011.6161382

41

https://doi.org/10.1007/s12532-011-0032-x
https://doi.org/10.1007/s12532-011-0032-x
https://doi.org/10.1287/ijoc.2021.1096
https://doi.org/10.1287/ijoc.2021.1096
https://doi.org/10.1007/978-1-4757-3403-4_7
https://doi.org/10.1016/j.ejor.2010.04.032
https://doi.org/10.1007/s12532-019-00174-2
https://doi.org/10.1109/CDC.2011.6161382
https://doi.org/10.1109/CDC.2011.6161382


Vayanos P, Georghiou A, Yu H (2020) Robust optimization with decision-dependent

information discovery. arXiv preprint arXiv:200408490

Vayanos P, Jin Q, Elissaios G (2022) Roc++: Robust optimization in c++. INFORMS

Journal on Computing 34(6):2873–2888. https://doi.org/10.1287/ijoc.2022.1209

Wiesemann W, Kuhn D, Sim M (2014) Distributionally robust convex optimization.

Operations Research 62(6):1358–1376. https://doi.org/10.1287/opre.2014.1314

Yu X, Shen S (2022) Multistage distributionally robust mixed-integer programming

with decision-dependent moment-based ambiguity sets. Mathematical Programming

196(1):1025–1064. https://doi.org/10.1007/s10107-020-01580-4

Zhang J, Xu H, Zhang L (2016) Quantitative stability analysis for distribution-

ally robust optimization with moment constraints. SIAM Journal on Optimization

26(3):1855–1882. https://doi.org/10.1137/15M1038529

Zhang Q, Feng W (2020) A unified framework for adjustable robust optimization with

endogenous uncertainty. AIChE Journal 66(12):e17047. https://doi.org/10.1002/

aic.17047

42

https://doi.org/10.1287/ijoc.2022.1209
https://doi.org/10.1287/opre.2014.1314
https://doi.org/10.1007/s10107-020-01580-4
https://doi.org/10.1137/15M1038529
https://doi.org/10.1002/aic.17047
https://doi.org/10.1002/aic.17047


A Omitted proofs

The following lemma is used to prove the strong duality result in Theorem 1.

Lemma A.1. The point (1, c) resides in the interior of the convex cone

V =

(a, b) ∈ R× RNg : ∃µ ∈M+(Ξ) such that

∫
µ(dξ) = a,∫
g(ξ)µ(dξ) ≤ b

 . (A.1)

Proof. Let Br(o) be the closed Euclidean ball of radius r ≥ 0 centered at o. Choose

any point (s, s) ∈ Bκ(1)× Bκ(c), where κ is a sufficiently small constant. Consider a

point ξ̃ ∈ int Ξ such that g(ξ̃) < c. The existence of such a point is guaranteed by the

Slater condition. Because the function g is continuous, we can always find an interior

point ξ̃ of Ξ. Next, consider a scaled Dirac measure s·δξ̃/sthat places mass s at ξ̃/s. By

construction, this measure satisfies
∫
s ·δξ̃/s(dξ) = s. Moreover, for sufficiently small κ

the measure is supported on Ξ (since ξ̃ ∈ int Ξ) and satisfies
∫
g(ξ)s · δξ̃/s(dξ) ≤ s

(since g(ξ̃) < c and the function g is continuous).

Proof of Theorem 1. For fixed x,w,y(·), we can express the objective function of (1)

as the optimal value of the moment problem

max

∫
Ξ

ξ⊤C x+ ξ⊤D w + ξ⊤Q y(ξ) µ(dξ)

s. t. µ ∈M+(RNξ)∫
Ξ

µ(dξ) = 1∫
Ξ

g(ξ)µ(dξ) ≤ c.

(A.2)
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The dual problem is given by

min ϕ+ c⊤ψ

s. t. ϕ ∈ R, ψ ∈ RNg

+

ϕ+ψ⊤g(ξ) ≥ ξ⊤C x+ ξ⊤D w + ξ⊤Q y(ξ) ∀ξ ∈ Ξ.

(A.3)

Strong duality holds by Lemma A.1 and Shapiro (2001, Proposition 3.4). Eliminating

the variable ϕ and combining with the outer minimization for (x, w, y(·)), we get

min max
ξ∈Ξ

c⊤ψ + ξ⊤C x+ ξ⊤D w + ξ⊤Q y(ξ)−ψ⊤g(ξ)

s. t. ψ ∈ RNg

+ , x ∈ X , w ∈ W

y(ξ) ∈ Y

T (ξ)x+ V (ξ)w +W (ξ)y(ξ) ≤Hξ

 ∀ξ ∈ Ξ

y(ξ) = y(ξ′) ∀ξ, ξ′ ∈ Ξ : w ◦ ξ = w ◦ ξ′.

(A.4)

The problem can be interpreted as a two-stage robust optimization with DDID, where

the dual multipliers ψ constitute first-stage decisions.

We now show the equivalence between problem (3) and (A.4). We first show that

problem (3) lower bounds (A.4). Let (x, w, ψ, y(·)) be an optimal solution of

problem (A.4). By construction, (x, w, ψ) is also feasible in (3). For any fixed ξ, we

set

y′(ξ) ∈ argmin
y∈Y


max

ξ∈Ξ(w,ξ)
c⊤ψ + ξ⊤C x+ ξ⊤D w + ξ⊤Q y −ψ⊤g(ξ)

s. t. T (ξ)x+ V (ξ)w +W (ξ)y ≤Hξ ∀ξ ∈ Ξ(w, ξ)

 .

44



It holds that

max
ξ∈Ξ

max
ξ∈Ξ(w,ξ)

c⊤ψ + ξ⊤Cx+ ξ⊤Dw + ξ⊤Qy′(ξ)−ψ⊤g(ξ)

= max
ξ∈Ξ

c⊤ψ + ξ⊤Cx+ ξ⊤Dw + ξ⊤Qy′(ξ)−ψ⊤g(ξ)

≤ max
ξ∈Ξ

c⊤ψ + ξ⊤Cx+ ξ⊤Dw + ξ⊤Qy(ξ)−ψ⊤g(ξ)

(A.5)

Thus, we have shown that the optimal solution of (A.4) is feasible in (3) with an

objective value no greater than the one attained in (A.4).

Next, we show conversely that problem (A.4) lower bounds (3). To this end,

let (x,w,ψ) be an optimal solution in (3) and define y(ξ) = y′(w◦ξ). By construction,

the quadruple (x, w, ψ, y(ξ)) is feasible in (A.4) and attains the objective value

max
ξ∈Ξ

c⊤ψ + ξ⊤Cx+ ξ⊤Dw + ξ⊤Qy(ξ)−ψ⊤g(ξ)

= max
ξ∈Ξ

max
ξ∈Ξ(w,ξ)

c⊤ψ + ξ⊤Cx+ ξ⊤Dw + ξ⊤Qy′(ξ)−ψ⊤g(ξ)
(A.6)

which is the same value attained in (3).

Thus, we have shown that the optimal objective values attained by the two prob-

lems coincide. And we can construct an optimal solution in problem (A.4) from an

optimal solution in (3). This completes the proof.

Proof of Theorem 2. We linearize the vector g(ξk), ∀k ∈ K of piecewise linear func-

tions by introducing an epigraph uncertain parameter ζks for gs(ξ
k), ∀s ∈ S,∀k ∈ K
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and write the inner maximization problem in the following epigraph form

max τ

s. t. τ ∈ R, ξ ∈ RNξ , ξk ∈ RNξ , k ∈ K

τ ≤ (ξk)⊤C x+ (ξk)⊤D w + (ξk)⊤Q yk −ψ⊤ζk ∀k ∈ K

Aξ ≤ b

Aξk ≤ b ∀k ∈ K

w ◦ ξk = w ◦ ξ ∀k ∈ K

ζks ≤ −g⊤s,tξk ∀s ∈ S, ∀t ∈ T , ∀k ∈ K.

(A.7)

Problem (A.7) is a feasible LP problem so strong duality implies that it has the same

optimal value as its dual problem. Dualizing and grouping with the outer minimization

yields problem (6) in Theorem 2.

Proof of Theorem 3. Applying the uncertainty set lifting procedure in Vayanos et al

(2020, Lemma 1) to problem (4), we can lift the space of the uncertainty set in the inner

maximization, exchange it with the inner minimization, and finally get the equivalent

min-max-min problem

min c⊤ψ + max
{ξk}k∈K∈ΞK(w)


min
k∈K

(ξk)⊤Cx+ (ξk)⊤Dw + (ξk)⊤Qyk −ψ⊤g(ξk)

s. t. T (ξ)x+ V (ξ)w +W (ξ)yk ≤Hξ


s. t. ψ ∈ RNg

+ , x ∈ X , w ∈ W, yk ∈ Y ∀k ∈ K,
(A.8)

where

ΞK(w) :=
{
{ξk}k∈K ∈ Ξ : ∃ ξ ∈ Ξ such that ξk ∈ Ξ(w, ξ) ∀k ∈ K

}
. (A.9)
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We then shift the second stage constraints into the uncertainty set and formulate

the K-adaptability problem with constraint uncertainty (4) equivalently as

min c⊤ψ +max
ℓ∈L

max
{ξk}k∈K∈ΞK(w,ℓ)

min
k∈K:
ℓk=0

{
(ξk)⊤C x+ (ξk)⊤D w + (ξk)⊤Q y

− ψ⊤g(ξk)
}

s. t. ψ ∈ RNg

+ , x ∈ X , w ∈ W, yk ∈ Y ∀k ∈ K,
(A.10)

where L := {1, . . . , L}K , L is the number of second-stage constraints with uncertainty

in problem (4). The uncertainty sets ΞK(w, ℓ), ℓ ∈ L, are defined as

ΞK(w, ℓ) :=



w ◦ ξk = w ◦ ξ, ∀k ∈ K for some ξ ∈ Ξ{
ξk

}
k∈K
∈ ΞK :

T (ξk)x+ V (ξk)w +W (ξk)yk ≤Hξk

∀k ∈ K : ℓk = 0[
T (ξk)x+ V (ξk)w +W (ξk)yk

]
ℓk

>
[
Hξk

]
ℓk

∀k ∈ K : ℓk ̸= 0


.

(A.11)

The components of vector ℓ ∈ L encode which policies are robust feasible for the

parameter realizations
{
ξk

}
k∈K

. Policy yk is robust feasible in problem (4) if ℓk = 0.

If ℓk ̸= 0, then the ℓk-th constraint in problem (4) is violated for some ξ ∈ Ξ(w, ξ).

Problem (A.10) involves many open uncertainty sets. Thus, we employ inner

approximations ΞK
ϵ (w, ℓ) of the uncertainty sets (A.11) that are parameterized by

scalar ϵ. The approximate problem can be written as

min c⊤ψ +max
ℓ∈L

max
{ξk}k∈K∈ΞK

ϵ (w,ℓ)
min
k∈K:
ℓk=0

{
(ξk)⊤C x+ (ξk)⊤D w + (ξk)⊤Q y

−ψ⊤g(ξk)
}

s. t. ψ ∈ RNg

+ , x ∈ X , w ∈ W, yk ∈ Y ∀k ∈ K,
(A.12)
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where

ΞK
ϵ (w, ℓ) :=



w ◦ ξk = w ◦ ξ, ∀k ∈ K : ∃ ξ ∈ Ξ{
ξk

}
k∈K
∈ ΞK :

T (ξk)x+ V (ξk)w +W (ξk)yk ≤Hξk

∀k ∈ K : ℓk = 0[
T (ξk)x+ V (ξk)w +W (ξk)yk

]
ℓk

≥
[
Hξk

]
ℓk

+ ϵ

∀k ∈ K : ℓk ̸= 0


We next reformulate the approximate problem (A.12) as a mixed binary bilinear

program. The outer maximization of the approximation problem (A.12) is identical to

max
ℓ∈L

max
{ξk}k∈K∈ΞK

ϵ (w,ℓ)
min

δ∈∆K(ℓ)

{∑
k∈K

δk

[(
ξk

)⊤
Cx+

(
ξk

)⊤
Dw +

(
ξk

)⊤
Qyk

−ψ⊤g(ξ)
]}

,

(A.13)

where ∆K(ℓ) :=
{
δ ∈ RK

+ : e⊤δ = 1, δk = 0 ∀k ∈ K : ℓk ̸= 0
}
. If ΞK

ϵ (w, ℓ) = ∅ for

all ℓ ∈ L+, apply the min-max theorem, the problem is equivalent to

min
δ(ℓ)∈∆K(ℓ),

max
ℓ∈∂L

max
{ξk}k∈K∈ΞK

ϵ (w,ℓ)

{∑
k∈K

δk

[(
ξk

)⊤
Cx+

(
ξk

)⊤
Dw +

(
ξk

)⊤
Qyk

−ψ⊤g(ξ)
]}

.

(A.14)
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Use an epigraph formulation, we conclude that (A.12) has an equivalent epigraph

formulation

max τ

s. t. x ∈ X , w ∈ W, yk ∈ Y, k ∈ K, ψ ∈ RNg

+

τ ∈ R, δ(ℓ) ∈∆K(ℓ), ℓ ∈ ∂L

τ ≥
∑

k∈K δk(ℓ)

[(
ξk

)⊤
Cx +

(
ξk

)⊤
Dw +

(
ξk

)⊤
Qyk −ψ⊤g(ξ)

]
∀ℓ ∈ ∂L,

{
ξk

}
k∈K
∈ ΞK

ϵ (w, ℓ)

ΞK
ϵ (w, ℓ) = ∅ ∀ℓ ∈ L+.

(A.15)

The semi-infinite constraint associated with ℓ ∈ ∂L is satisfied if and only if the

optimal value of

max
∑

k∈K δk(ℓ)

[(
ξk

)⊤
Cx+

(
ξk

)⊤
Dw +

(
ξk

)⊤
Qyk +ψ⊤ζk

]
s. t. ξ ∈ RNξ , ξk ∈ RNξ , k ∈ K

Aξ ≤ b

Aξk ≤ b ∀k ∈ K

T (ξk)x+ V (ξk)w +W (ξk)yk ≤Hξk ∀k ∈ K : ℓk = 0[
T (ξk)x+ V (ξk)w +W (ξk)yk

]
ℓk
≥

[
Hξk

]
ℓk

+ ϵ ∀k ∈ K : ℓk ̸= 0

w ◦ ξk = w ◦ ξ ∀k ∈ K

ζks ≤ −g⊤s,tξk ∀s ∈ S, ∀t ∈ T , ∀k ∈ K

(A.16)

does not exceed τ .
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The last constraint in (A.15) is satisfied for ℓ ∈ L whenever the linear program

problem

max 0

s. t. ξ ∈ RNξ , ξk ∈ RNξ , k ∈ K

Aξ ≤ b

Aξk ≤ b ∀k ∈ K

w ◦ ξk = w ◦ ξ ∀k ∈ K[
T (ξk)x+ V (ξk)w +W (ξk)yk

]
ℓk
≥

[
Hξk

]
ℓk

+ ϵ ∀k ∈ K

(A.17)

is infeasible. Strong duality holds for both (A.16) and (A.17). After taking dualiza-

tion of (A.16), (A.17) and combining the dual problem with the outer minimization
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problem, we can get the following problem.

min c⊤ψ + τ

s. t. x ∈ X , w ∈ W, yk ∈ Y, k ∈ K, τ ∈ R, ψ ∈ RNg

+

α(ℓ) ∈ RR
+, α

k(ℓ) ∈ RR
+, k ∈ K,ηk(ℓ) ∈ RNξ , k ∈ K

Λk(l) ∈ RNg×T
+ k ∈ K, βk(ℓ) ∈ RL

+, k ∈ K

δ(ℓ) ∈ ∆K(ℓ), γ(ℓ) ∈ RK
+

A⊤α(ℓ) =
∑
k∈K

w ◦ ηk(ℓ)

δk(ℓ)ψ = Λk(ℓ)e

δk(ℓ)
[
Cx+Dw+Qyk

]
−
∑L

l=1

(
Tlx+ Vlw +Wly

k
)
βk
l (ℓ)

= A⊤αk(ℓ)−H⊤βk(ℓ) +w ◦ ηk(ℓ) +
∑
s∈S

∑
t∈T

Λst(ℓ)gst

∀k ∈ K : ℓk = 0

δk(ℓ)
[
Cx+Dw+Qyk

]
+
(
Tℓkx+ Vℓkw +Wℓky

k
)
γk(ℓ)

= A⊤αk(ℓ) + [H]ℓkγk(ℓ) +w ◦ ηk(ℓ) +
∑
s∈S

∑
t∈T

Λst(ℓ)gst

∀k ∈ K : ℓk ̸= 0

τ ≥ b⊤
(
α(ℓ) +

∑
k∈Kα

k(ℓ)
)
− ϵ

∑
k∈K:
ℓk ̸=0

γk(ℓ)



∀ℓ ∈ ∂L

ϕ(ℓ) ∈ RR
+, ϕ

k(ℓ) ∈ RR
+, k ∈ K, ρ(ℓ) ∈ Rk

+, χ
k(ℓ) ∈ RNξ , k ∈ K

A⊤ϕ(ℓ) =
∑
k∈K

w ◦ χk(ℓ)

A⊤ϕk(ℓ) + [H]ℓkρk(ℓ) +w ◦ χk(ℓ)

=
(
Tℓkx+ Vℓkw +Wℓky

k
)
ρk(ℓ)

∀k ∈ K

b⊤
(
ϕ(ℓ) +

∑
k∈K

ϕk(ℓ)

)
− ϵ

∑
k∈K

ρk(ℓ) ≤ −1



∀ℓ ∈ L+,

(A.18)

where L := {1, . . . , L}K , ∆K(ℓ) :=
{
δ ∈ RK

+ : e⊤δ = 1, δk = 0 ∀k ∈ K : ℓk ̸= 0
}
,

∂L := {ℓ ∈ L : ℓ ̸> 0} and L+ := {ℓ ∈ L : ℓ > 0}. Matrices Tl, Vl, Wl are the
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coefficient matrices in the lth constraint, in other words, [T (ξ)]l = ξ⊤Tl, [V (ξ)]l =

ξ⊤Vl, [W (ξ)]l = ξ
⊤Wl.

Proof of Proposition 4. For any feasible solution (ϕ, x, {yk}k∈K) in (12), we show

that it is also feasible in (8) with the same or lower objective value. Let {Ξk}k∈K be the

corresponding optimal partition. Since {Ξk}k∈K exhausts all points in Ξ, we see that

(ϕ, x, {yk}k∈K) is indeed feasible in (8) because for any ξ ∈ Ξ, there must exist k ∈ K

such that ξ ∈ Ξk and, therefore, yk is feasible in the inner minimization problem.

Next, we show that the optimal objective value of (8) is at most θ by bounding it

from above, written as

max
ξ∈Ξ


min
k∈K

max
ξ∈Ξ(w,ξ)

c⊤ψ + ξ⊤C x+ ξ⊤D w + ξ⊤Q yk −ψ⊤g(ξ)

s. t. T (ξ)x+ V (ξ)w +W (ξ)yk ≤Hξ ∀ξ ∈ Ξ(w, ξ)


= max

j∈K
max
ξ∈Ξj


min
k∈K

max
ξ∈Ξ(w,ξ)

c⊤ψ + ξ⊤C x+ ξ⊤D w + ξ⊤Q yk −ψ⊤g(ξ)

s. t. T (ξ)x+ V (ξ)w +W (ξ)yk ≤Hξ ∀ξ ∈ Ξ(w, ξ)


≤ max

j∈K
max
ξ∈Ξj

max
ξ∈Ξ(w,ξ)

c⊤ψ + ξ⊤C x+ ξ⊤D w + ξ⊤Q yj −ψ⊤g(ξ)

≤ θ.

(A.19)

Here, the first inequality holds because we do not optimize for the best index k but

instead simply set it to the index j from the outer maximization.

Conversely, we show that any solution (ϕ, x, {yk}k∈K) feasible in (8) is also feasi-

ble in (12) with the same or lower objective value. To this end, we construct a partition

feasible for (12), written as

Ξj =

ξ ∈ Ξ :
j ∈ argmin

k∈K
max

ξ∈Ξ(w,ξ)
ξ⊤C x+ ξ⊤D w + ξ⊤Q yk −ψ⊤g(ξ)

s. t. T (ξ)x+ V (ξ)w +W (ξ)yk ≤Hξ ∀ξ ∈ Ξ(w, ξ)


∀j ∈ K.
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The set Ξj contains all points ξ ∈ Ξ for which the policy yj is optimal in the

second-stage subproblem. Under this partition, one can verify that the solution

(ϕ, x, {yk}k∈K) is feasible in (12) with the same objective value. Since the partition

can still be optimized, we conclude that the optimal value of problem (12) is at most

equal to that of problem (8), which completes the proof.

Theorem A.1. Problem (14) is equivalent to the following MIO problem

max z

s. t. z ∈ R, ξ ∈ RNξ , ξk ∈ RNξ ,∀k ∈ K, zkl ∈ {0, 1}, (k, l) ∈ K × {0, 1, . . . , L}

Aξ ≤ b

Aξk ≤ b

w′ ◦ ξk = w′ ◦ ξ

zk0 = 1 ⇒ z ≤ c⊤ψ′ + ξk
⊤
C x′ + ξk

⊤
D w′ + ξk

⊤
Q yk′

−ψ′⊤g(ξk)− θ

zkl = 1 ⇒ z ≤ ξk⊤Tlx
′ + ξk

⊤
Vlw

′ + ξk
⊤
Wly

k′ −Hlξ

∀l ∈ {1, . . . , L}∑L
l=0 zkl = 1



∀k ∈ K.

(A.20)

Proof. Following the same uncertainty lifting procedure that we used in the proof of

Theorem 3, we can write (14) equivalently as

max
{ξk}k∈K∈ΞK(w′)

min
k∈K

max
{
c⊤ψ′ + (ξk)⊤C x′ + (ξk)⊤D w′ + (ξk)⊤Q yk′

−ψ′⊤g(ξk)− θ′ ,

max
l∈{1,...,L}

{
ξ⊤Tlx

′ + ξ⊤Vlw
′ + ξ⊤Wly

k′ −Hlξ
}}

,

(A.21)

where ΞK(w′) is defined as in (A.9).
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Then, using an epigraph to represent the minimization problem over k and assign-

ing indicator variables for each objective of the inner maximization, we can write

problem (A.21) as (A.20).

Theorem A.2. Problem (13) admits an equivalent deterministic counterpart whose

size grows linearly with the cardinality of Ξ̂.

Proof. For each k ∈ K, consider any scenario ξ ∈ Ξ̂k. The maximization problem on

the right hand-side of the first constraint of problem (13) can be written as

max ξ⊤C x+ ξ⊤D w + ξ⊤Q yk +ψ⊤ζ

s. t. ξ ∈ RNξ

Aξ ≤ b

w ◦ ξk = w ◦ ξ

ζs ≤ −g⊤s,tξk ∀s ∈ S, ∀t ∈ T .

(A.22)

This linear program admits a strong dual given by the minimization problem

min b⊤β(ξ) +
(
w ◦ ξ

)⊤
γ(ξ)

s. t. β(ξ) ∈ RR
+, γ(ξ) ∈ RNξ , δ(ξ)s,t ∈ R+, ∀s ∈ S, ∀t ∈ T

A⊤β(ξ) +
∑
s∈S

∑
t∈T

δ(ξ)s,tgs,t +w ◦ γ(ξ) = Cx+Dw +Qyk

∑
t∈T

δ(ξ)t = ψ.

(A.23)

Similarly, in the second set of constraints, for any scenario ξ ∈ Ξk, the max-

imization problem on the left hand-side of the lth constraint can be written
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as

max ξ⊤Tlx+ ξ⊤Vlw + ξ⊤Wly
k −Hlξ

s. t. ξ ∈ RNξ

Aξ ≤ b

w ◦ ξ = w ◦ ξ.

(A.24)

By taking dual of problem (A.24), we obtain a minimization problem whose optimal

value coincides with that of the primal being expressible as

min b⊤α(ξ)l +
(
w ◦ ξ

)⊤
η(ξ)l

s. t. α(ξ)l ∈ RR
+, η(ξ)l ∈ RNξ

A⊤α(ξ)l +w ◦ η(ξ)l = Tlx+ Vlw +Wly
k −H⊤

l .

(A.25)

Therefore, replacing the constraints in (13) with the respective dual reformula-

tions (A.23) and (A.25), we can write (13) as the deterministic problem

min θ

s. t. θ ∈ R, ψ ∈ RNg

+ , x ∈ X , yk ∈ Y ∀k ∈ K

β(ξ) ∈ RR
+, γ(ξ) ∈ RNξ , δ(ξ)s,t ∈ R+, ∀s ∈ S, ∀t ∈ T

α(ξ)l ∈ RR
+, η(ξ)l ∈ RNξ , ∀l ∈ L

θ ≥ c⊤ψ + b⊤β(ξ) +
(
w ◦ ξ

)⊤
γ(ξ)

A⊤β(ξ) +
∑

s∈S
∑

t∈T δ(ξ)s,tgs,t +w ◦ γ(ξ)

= Cx+Dw +Qyk∑
t∈T

δ(ξ)t = ψ

b⊤α(ξ)l +
(
w ◦ ξ

)⊤
η(ξ)l ≤ 0

A⊤α(ξ)l +w ◦ η(ξ)l = Tlx+ Vlw +Wly
k −H⊤

l

 ∀l ∈ L



∀ξ ∈ Ξ̂k,

∀k ∈ K,

(A.26)
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where
⋃

k∈K Ξ̂k = Ξ̂. Note that whenever a new scenario ξ is added to the set Ξ̂,

we need to add a set of dual variables (β(ξ),γ(ξ), δ(ξ), {α(ξ)l,η(ξ)l}l∈L) into the

deterministic problem (A.26).

Lemma A.2. If problem (8) is feasible, then ψ admits a finite optimal solution.

Proof. Consider the equivalent reformulation (A.4) of problem (1) in the proof of

Theorem 1. By Lemma A.1 and Shapiro (2001, Proposition 3.4), for any feasi-

ble x,w,y(ξ), an optimal solution ψ is attained by the dual problem. This claim

also holds when we restrict y(ξ) in (A.4) to feasible K-adaptable policies. The claim

then follows since problem (8) constitutes an equivalent K-adaptable reformulation

of (A.4).

Lemma A.3. The cutting-plane algorithm for solving the scenario-based problem (13)

converges in finitely many iterations.

Proof. Fix a given quadruplet (θ,ψ,x, {yk}k∈K) in (16), for any ξ ∈ Ξ̂k, ∀k ∈ K,

the inner maximization problem of ξ is a maximization problem of a convex function

of ξ over a polyhedron Ξ(w, ξ). Thus, Blankenship and Falk (1976, Corollary 2.1)

guarantees the finite convergence of the cutting-plane algorithm.

Proof of Theorem 5. We first establish the correctness of the algorithm after termi-

nation. If problem (8) is infeasible, then in the branch-and-cut algorithm, there is no

solution that can give a negative objective value in problem (14) and be identified

as feasible. Assume now that problem (8) is feasible and let (θ⋆,ψ∗,x∗, {yk⋆}k∈K)

be an optimal solution with objective value θ⋆. The branch-and-cut tree must have

a leaf node since it terminates. Consider an arbitrary leaf node in the branch-and-

cut tree for which the optimal solution (θ⋆,ψ∗,x∗, {yk⋆}k∈K) is feasible. Such a leaf

node exists because an optimal solution is feasible in the root node, and our branch-

ing mechanism ensures that the feasibility is maintained in at least a child node every

time the algorithm branches. By definition, the leaf node was not branched. The
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node could have been fathomed in step 1, where the current incumbent solution must

also be optimal since it weakly dominates (θ⋆,ψ∗,x∗, {yk⋆}k∈K). Otherwise, the node

could have been fathomed in step 3, where the incumbent solution was updated to

(θ⋆,ψ∗,x∗, {yk⋆}k∈K).

For the asymptotic result, within any infinite branch, the finite convergence

result derived in Lemma A.3 ensures the existence of an infinite sequence of

solutions in step 1 of Algorithm 3. For each solution in this sequence, the

value vk⋆ obtained by solving problem (16) is less than or equal to 0. We

denote the sequence as {(θn,ψn,xn, {yk}nk∈K)}
+∞
1 and the associated solutions

of the separation problem as {ξn}+∞
1 , where n is the order of node appear

in the branch. Since X and Y are compact sets, and an optimal solution ψ

is attained by Lemma A.2, the Bolzano–Weierstrass theorem implies that the

sequence {(θn,ψn,xn, {yk}nk∈K), ξ
n}+∞

1 has at least one accumulation point, denoted

as {(θ⋆,ψ∗,x∗, {yk⋆}k∈K), ξ
⋆}.

We first prove the feasibility of the accumulation point. Denote

the value of problem (14) under the solution (θ,ψ,x, {yk}k∈K) and

scenario ξ as z((θ,ψ,x, {yk}k∈K), ξ). Suppose that, given the accumu-

lation solution (θ⋆,ψ∗,x∗, {yk⋆}k∈K), there exists a scenario ξ′ such

that z((θ⋆,ψ∗,x∗, {yk⋆}k∈K), ξ
′) > 0. Since problem (14) finds the worst

case scenario for the solution (θ⋆,ψ∗,x∗, {yk⋆}k∈K), the largest viola-

tion z((θ⋆,ψ∗,x∗, {yk⋆}k∈K), ξ
⋆) ≥ z((θ⋆,ψ∗,x∗, {yk⋆}k∈K), ξ

′) > 0. The violation

of the sequence {(θn+1,ψn+1,xn+1, {yk}n+1
k∈K), ξ

n)} is always less than zero,

and the sequence also converges to the same accumulation point. Thus, we

have z((θ⋆,ψ∗,x∗, {yk⋆}k∈K), ξ
⋆) ≤ 0 and raise the desired contradiction.

We now show the optimality of the accumulation point of the solution sequence

corresponding to an infinite branch. If there is a solution of the problem (8), denoted

as (θ,ψ,x, {yk}k∈K), where θ′ ≤ θ⋆. Then, using the same logic as the correctness
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proof, it is either a node solution of the branch-and-cut tree or an accumulation point of

a sequence. In each case, the current objective value will be updated to θ′+δ, where δ ≥

0 and is an arbitrarily small number. Consequently, the branch corresponding to the

sequence {(θn,ψn,xn, {yk}nk∈K)}
+∞
1 must be finite since it will be cut by a better

solution. Therefore, we reach a contradiction with the infinite branch and conclude

our proof.
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