
Edge expansion of a graph: SDP-based
computational strategies ∗

Akshay Gupte 1, Melanie Siebenhofer 2, and Angelika
Wiegele 3

1University of Edinburgh & Maxwell Institute for Mathematical
Sciences, UK, akshay.gupte@ed.ac.uk

2Alpen-Adria-Universität Klagenfurt, Austria,
melanie.siebenhofer@aau.at

3Alpen-Adria-Universität Klagenfurt, Austria & Universität zu
Köln, Germany, angelika.wiegele@aau.at

October 31, 2024

Computing the edge expansion of a graph is a famously hard combinatorial
problem for which there have been many approximation studies. We present
two variants of exact algorithms using semidefinite programming (SDP) to
compute this constant for any graph. The first variant uses the SDP re-
laxation first to reduce the search space considerably. The problem is then
transformed into instances of max-cut problems which are solved with an
SDP-based state-of-the-art solver. Our second variant to compute the edge
expansion uses Dinkelbach’s algorithm for fractional programming. This is,
we have to solve a parametrized optimization problem and again we use
semidefinite programming to obtain solutions of the parametrized problems.
Numerical results demonstrate that with our algorithms one can compute
the edge expansion on graphs up to 400 vertices in a routine way, includ-
ing instances where standard branch-and-cut solvers fail. To the best of

∗A proceedings article containing part of this work appeared in [14]. This article now contains full and
complete proofs, an additional algorithm based on a Discrete Netwon-Dinkelbach method, and more
computational results.
This research was funded in part by the Austrian Science Fund (FWF) [10.55776/DOC78]. For open
access purposes, the authors have applied a CC BY public copyright license to any author-accepted
manuscript version arising from this submission.

1

https://orcid.org/0000-0002-7839-165X
https://orcid.org/0000-0002-9101-834X
https://orcid.org/0000-0003-1670-7951
mailto: akshay.gupte@ed.ac.uk
mailto:melanie.siebenhofer@aau.at
mailto:angelika.wiegele@aau.at

our knowledge, these are the first SDP-based solvers for computing the edge
expansion of a graph.

Keywords: Edge expansion, Cheeger constant, bisection problems, semidef-
inite programming, parametric submodular minimization

1. Introduction

Let G = (V,E) be a simple connected graph on n ≥ 3 vertices and with m edges. A
cut (S, S′), for any ∅ 6= S ⊂ V and S′ = V \ S, in G is a partition of its vertices, and
the cut-set ∂S is the edges between S and S′. The (unweighted) edge expansion, also
called the Cheeger constant or isoperimetric number or sparsest cut, of G is a ratio that
measures the relative number of edges across any vertex partition. It is defined as

h(G) = min
S

{
|∂S|

min{|S|, |S′|}
: ∅ 6= S ⊂ V

}
= min

S

{
|∂S|
|S|

: S ⊂ V, 1 ≤ |S| ≤ n

2

}
,

where ∂S = {(i, j) ∈ E : i ∈ S, j ∈ S′} is the cut-set associated with any vertex
subset S ⊂ V , and S′ = V \ S. This constant is positive if and only if the graph is
connected, and the exact value tells us that the number of edges across any cut in G is
at least h(G) times the number of vertices in the smaller partition. A weighted definition
of edge expansion called the conductance of a graph, is

hvol(G) = min
S

{
|∂S|

min{vol(S), vol(S′)}
: ∅ 6= S ⊂ V

}
= min

S

{
|∂S|

vol(S)
: S ⊂ V, 1 ≤ vol(S) ≤ m

}
,

where vol(S) =
∑

v∈S deg(v), and the second equality is due to vol(S) + vol(S′) = 2m.
Edge expansions arise in the study of expander graphs, for which there is a rich

body of literature with applications in network science, coding theory, cryptography,
complexity theory, cf. [36, 19, 12]. A graph with h(G) ≥ c, for some constant c > 0,
is called a c-expander. A graph with h(G) < 1 is said to have a bottleneck since
there are not too many edges across it. A threshold for good expansion properties is
having h(G) ≥ 1, which is desirable in many of the above applications. The famous
Mihail-Vazirani conjecture [29, 10] in polyhedral combinatorics claims that the graph
(1-skeleton) of any 0/1-polytope has edge expansion at least 1. This has been proven
to be true for several combinatorial polytopes [29, 20] and bases-exchange graphs of
matroids [1], and a weaker form was established recently for random 0/1-polytopes [25].
Lattice polytopes were constructed in [13] with the property that in every dimension
their graphs lie on the threshold of being good expanders (i.e., h(G) = 1).

Computing the edge expansion is related to the uniform sparsest cut problem which
asks for computing a cut in the graph with the smallest sparsity, where sparsity is defined

2

as the ratio of the size of the cut to the product of the sizes of the two partitions,

φ(G) = min
S

{
|∂S|
|S||S′|

: ∅ 6= S ⊂ V
}

= min
S

{
|∂S|
|S||S′|

: S ⊂ V, 1 ≤ |S| ≤ n

2

}
.

Since n/2 ≤ |S′| ≤ n, it holds that |S||S′| ≤ n · |S| ≤ 2|S||S′|, and hence h(G) ≤
n · φ(G) ≤ 2h(G), which implies that the edge expansion problem is related to the
sparsest cut problem up to a constant factor of 2. In particular, any cut (S, S′) that is
α-approx for φ(G) (resp. h(G)) is a 2α-approx for h(G) (resp. φ(G)), because |∂S|/|S| ≤
n|∂S|/(|S||S′|) ≤ α · n · φ(G) ≤ 2α · h(G).

There are polynomial reductions between h(G), hvol(G) and φ(G) and they are all NP-
hard to compute [24], in contrast to the minimum-cut of a graph which can be computed
in polynomial time. Hence, almost all of the literature on edge expansion is devoted to
finding good theoretical bounds. These are generally associated with the eigenvalues
of the Laplacian matrix of the graph and form the basis for the field of spectral graph
theory (see the monograph [8]). There have also been many approximation studies
on this topic [24, 2, 31, 34], and semidefinite optimization (SDP) has been a popular
tool in this regard. The best-known approximation for φ(G) is the famous O(

√
log n)

factor by Arora et al. [2] which improved upon the earlier O(log n)-approximation [24].
The analysis is based on an SDP relaxation with triangle inequalities and uses metric
embeddings and concentration of measure results. Meira and Miyazawa [28] developed
a branch-and-bound algorithm for computing φ(G) using SDP relaxations and SDP-
based heuristics. Recall that φ(G) is related to h(G) in the approximate sense (up to
a factor 2) but not in the exact sense. To the best of our knowledge, there is no exact
solution algorithm for h(G).

Contribution and outline We adopt mathematical programming approaches for nu-
merical computation of h(G). All our approaches make use of tight bounds obtained via
semidefinite programming. The first algorithm works in two phases. In the first phase,
we split the problem into subproblems and by computing lower and upper bounds for
these subproblems, we can exclude a significant part of the search space. In the second
phase, we either solve the remaining subproblems to optimality or until a subproblem
can be pruned due to the bounds. For the second phase, we transform each subprob-
lem into an instance of a max-cut problem and compute the maximum cut using an
SDP-based solver.

The second algorithm we implement uses the idea of Dinkelbach’s algorithm to solve
fractional optimization problems. The main concept of this algorithm is to iteratively
solve linearly constrained binary quadratic programs. We solve these problems again by
transforming them into instances of max-cut and using an SDP-based solver to compute
the maximum cut.

We perform numerical experiments on different types of instances which demonstrate
the effectiveness of our approaches. To the best of our knowledge, no other algorithms
are capable of computing the edge expansion for graphs with a few hundred vertices.

3

The rest of the paper is structured as follows. In § 2 we formulate the problem as
a mixed-binary quadratic program and present an SDP relaxation. § 3 investigates a
related problem, namely the k-bisection problem. We introduce lower and upper bounds
and describe how the k-bisection problem can be solved by transforming it to a max-cut
problem. The first algorithm (relying on the k-bisection problem) for computing h(G)
is introduced in § 4, and another algorithm (following Dinkelbach’s idea) in § 5. The
performance of all algorithms is demonstrated in § 6, followed by conclusions in § 7.

Notation The set of n × n real symmetric matrices is denoted by Sn. The positive
semidefiniteness condition for X ∈ Sn is written as X � 0. The trace of X is written
as tr(X) and defined as the sum of its diagonal elements. The trace inner product
for X,Y ∈ Sn is defined as 〈X,Y 〉 = tr(XY) and the operator diag(X) returns the
main diagonal of matrix X as a vector. The vector of all ones is e and the matrix of all
ones is J = ee>.

For a n-vertex graph G = (V,E), the minimum and maximum vertex degrees are δ(G)
and ∆(G), the adjacency matrix is a binary matrix A ∈ Sn having Aij = 1 if and only
if (i, j) ∈ E, and the degree matrix is a n × n positive diagonal matrix D having Dii

equal to the degree of vertex i ∈ V . The Laplacian matrix is L = D−A, and thus has its
nonzero entries as Lii = deg(i) and Lij = −1 for (i, j) ∈ E. We denote by ζ(S) = |∂S|
the size of the cut-set defined by the partition (S, S′) of the vertices. The minimum cut
in G is defined as ζmin(G) = min∅6=S⊂V ζ(S).

2. Formulations and SDP relaxations

To write an algebraic optimization formulation for cut problems in graphs, we represent
a cut (S, S′) in G by its incidence vector χS ∈ {0, 1}n which has χSi = 1 if and only
if i ∈ S. The cut function is the size of a cut-set, also called the value of the cut, and is
equal to

ζ(S) = |∂S| =
∑

(i,j)∈E

(
χSi − χSj

)2
=
(
χS
)>
LχS .

Any binary vector x ∈ {0, 1}n represents a cut in this graph. Denote the set of all cuts
with S containing at least one vertex and at most half of the vertices by

F =

{
x ∈ {0, 1}n : 1 ≤ e>x ≤ n

2

}
.

Using the common expression x>Lx for the cut function, the edge expansion problem is

h(G) = min
x

{x>Lx
e>x

: x ∈ F
}

= min
x,y

{
y :

x>Lx

e>x
≤ y, x ∈ F

}
= min

x,y

{
y : x>Lx− y e>x ≤ 0, x ∈ F

}
.

(1)

4

The last formulation is a mixed-binary quadratically constrained problem (MIQCP).
Standard branch-and-cut solvers may require a large computation time with these for-
mulations even for instances of small to medium size, as we will report in § 6.

Although the focus of this paper is on computing h(G), let us also mention for the sake
of completeness that analogous formulations can be derived for the graph conductance
(weighted edge expansion) hvol(G) that was defined in § 1, by optimizing over the set

Fvol =
{
x ∈ {0, 1}n : 1 ≤ d>x ≤ m

}
,

where d = diag(D) is the vector formed by the vertex degrees. For example, the same
steps as in (1) yields the MIQCP

hvol(G) = min
x,y

{
y : x>Lx− y d>x ≤ 0, x ∈ Fvol

}
.

2.1. Semidefinite relaxations

A well-known lower bound for the edge expansion is the spectral bound. It is based on the
second smallest eigenvalue of the Laplacian matrix of the graph, namely h(G) ≥ λ2(L)/2.
One way to derive this bound is by considering the following SDP relaxation

h(G) ≥ min
X̃,k

1
k 〈L, X̃〉 = minX 〈L,X〉

s.t. tr(X̃) = k s.t. tr(X) = 1

〈J, X̃〉 = k2 1 ≤ 〈J,X〉 ≤ n
2

1 ≤ k ≤ n
2 X � 0,

X̃ � 0

(2)

where X̃ models xx> and k = e>x. We add the redundant constraint 〈J, X̃〉 = k2 and
relax x ∈ {0, 1}n, X̃ = xx> to X̃ � 0 to obtain the above SDP relaxation. To eliminate
the variable k in the second, equivalent SDP formulation, we scale X = 1

k X̃.

Proposition 2.1. The optimal solution of the second SDP in (2) is λ2(L)/2.

Proof. First observe that 1
nI is a strictly feasible point of the primal SDP and the

optimum value is finite, hence strong duality holds. The dual of the second SDP in (2)
is

max
v

{
v1 −

n

2
v2 + v3 : W = L− v1I + (v2 − v3)J � 0, v2, v3 ≥ 0

}
.

The eigenvalue of W with respect to the eigenvector e is −v1 + n(v2 − v3). The other
eigenvalues of W are then λi(L)− v1 for 2 ≤ i ≤ n. Therefore, we can write the dual as

max
v

{
v1 −

n

2
v2 + v3 : n(v2 − v3) ≥ v1, λ2(L) ≥ v1, v2, v3 ≥ 0

}
,

which is a linear program with optimal solution v1 = λ2(L), v2 = λ2(L)/n and v3 = 0 and
optimal value λ2(L)/2.

5

To strengthen the SDP relaxation (2) we round down the upper bound to bn2 c and

add the following facet-inducing inequalities of the boolean quadric polytope [32] for X̃

0 ≤ X̃ij ≤ X̃ii (3a)

X̃i` + X̃j` − X̃ij ≤ X̃`` (3b)

X̃ii + X̃jj − X̃ij ≤ 1 (3c)

X̃ii + X̃jj + X̃`` − X̃ij − X̃i` − X̃j` ≤ 1, (3d)

resulting in the following valid inequalities for X

0 ≤ Xij ≤ Xii (4a)

Xi` +Xj` −Xij ≤ X`` (4b)

Xii +Xjj −Xij ≤ 1 (4c)

Xii +Xjj +X`` −Xij −Xi` −Xj` ≤ 1 (4d)

for all 1 ≤ i, j, ` ≤ n. Note, that in (4c) and (4d) we have to replace 1
k in the rhs by its

upper bound 1 in order to obtain a formulation without k. Therefore, we cannot expect
these inequalities to strengthen the SDP relaxation significantly.

2.2. Illustrative examples for motivation

We motivate our algorithm by considering the example of the graph of the grlex poly-
tope, which is described in [13]. Table 1 compares different lower bounds on h(G) for
these graphs. The first column indicates the dimension of the polytope and the second
column lists the number of vertices in the associated graph. The third column gives
the edge expansion that is known to be one for these graphs in all dimensions [13]. The
spectral bound is displayed in the fourth column. Column 5 lists the optimal value of the
SDP relaxation (2) strengthened by inequalities (4) derived from the boolean quadric
polytope. Column 6 displays a lower bound that is very easy to compute: the minimum
cut of the graph divided by the largest possible size of the smaller set of the bipartition
of the vertices, that is bn2 c. In the last column, the minimum of the lower bounds `k
for 1 ≤ k ≤ bn2 c is listed with `k being a bound related to the solution of (2) for k fixed.
The definition of `k follows in § 3.1.

The numbers in the table show that some of these bounds are very weak, in particular,
if the number of vertices increases. Interestingly, if we divide the edge expansion problem
into bn2 c many subproblems with fixed denominator (as we did to obtain the numbers in
column 6) the lower bound we obtain by taking the minimum over all SDP relaxations for
the subproblems seems to be stronger than the other lower bounds presented in Table 1.
We will, therefore, take this direction of computing the edge expansion, namely, we will
compute upper and lower bounds on the problem with fixed k. Using these bounds will
allow to exclude a (hopefully) large number of potential sizes k of the smaller partition.
This will leave us with computing the maximum cut of a graph with fixed sizes of the
partition k and n− k for a few values of k only.

6

d n h(G) λ2/2 (2) & (4) ζmin(G)/bn2 c mink `k

2 4 1 1.0000 1.0000 1.0000 1.0000
3 7 1 0.7929 0.8750 1.0000 1.0000
4 11 1 0.6662 0.7857 0.8000 1.0000
5 16 1 0.5811 0.7273 0.6250 1.0000
6 22 1 0.5231 0.6875 0.5455 1.0000
7 29 1 0.4820 0.6591 0.5000 1.0000
8 37 1 0.4516 0.6379 0.4444 1.0000

Table 1: Comparison of lower bounds for graphs from the grlex polytope in dimension d.

3. Fixing the size k: Bisection problem

If the size k of the smaller set of the partition of an optimum cut is known, the edge
expansion problem would result in a scaled bisection problem. That is, we ask for a
partition of the vertices into two parts, one of size k and one of size n− k, such that the
number of edges joining these two sets is minimized. This problem is NP-hard [11] and
has the following formulations for any k ∈ {1, 2, . . . , bn2 c},

hk = 1
k minx x>Lx

s.t. e>x = k
x ∈ {0, 1}n,

(5)

but standard branch-and-cut solvers can solve these in reasonable time only for small-
sized graphs.

Since SDP-based bounds have been shown to be very strong for partitioning problems,
cf. [27, 38, 21, 39], we exploit these bounds with our first algorithm to compute the edge
expansion. In the subsequent sections, we describe how to obtain lower and upper bounds
on hk (§ 3.1 and 3.2). We then present in § 3.3, how to transform the bisection problem
into an instance of a max-cut problem which is then solved using the state-of-the-art
solver BiqBin [16]. For completeness, a description of BiqBin is given in Appendix A.

3.1. SDP lower bounds for the bisection problem

After squaring the linear equality constraint in problem (5) and employing standard
lifting and relaxation techniques, we obtain the following SDP relaxation that is generally
computationally cheap to solve,

`bisect(k) = minX,x 〈L,X〉
s.t. tr(X) = k

〈J,X〉 = k2

diag(X) = x(
1 x>

x X

)
� 0.

(6)

7

Since the bisection for a given simple unweighted graph has to be an integer, we get the
following lower bound on the scaled bisection hk,

hk ≥ `k =
d`bisect(k)e

k
. (7)

There are several ways to strengthen the above relaxation of the bisection problem.
In [39] a vector lifting SDP relaxation, tightened by non-negativity constraints, has been
introduced. In our setting, this results in the following doubly non-negative programming
(DNN) problem,

min
X

〈L,X11 +X22〉

s.t. tr(X11) = k, 〈J,X11〉 = k2

tr(X22) = n− k, 〈J,X22〉 = (n− k)2

diag(X12) = 0, diag(X21) = 0, 〈J,X12 +X21〉 = 2k(n− k)

X =

 1 (x1)> (x2)>

x1 X11 X12

x2 X21 X22

 � 0, xi = diag(Xii), i = 1, 2

X ≥ 0,

(8)

where X is a matrix of size (2n+1)×(2n+1). This relaxation can be further strengthened
by cutting planes from the Boolean Quadric Polytope. In particular, we want to add
the inequalities

Xi` +Xj` ≤ X`` +Xij (9)

as Meijer et al. [27] demonstrated that these inequalities are the most promising ones to
improve the bound.

The DNN relaxation (8) cannot be solved by standard methods due to the large
number of constraints. The additional cutting-planes (9) make the SDP relaxation
extremely difficult to solve already for medium-sized instances. Meijer et al. [27] apply
facial reduction to the SDP relaxation which leads to a natural way of splitting the
set of variables into two blocks. Using an alternating direction method of multipliers
(ADMM) provides (approximate) solutions to this relaxation even for graphs with up
to 1000 vertices. The steps to be performed in this ADMM algorithm result in projections
onto the respective feasible sets. For projections onto polyhedra, Dykstra’s projection
algorithm is used. A careful selection of non-overlapping cuts, warm starts, and an
intelligent separation routine are further ingredients of this algorithm in order to obtain
an efficient solver for the SDP (8) enhanced with inequalities (9). A post-processing
algorithm is also introduced to guarantee a valid lower bound. Using this algorithm, we
can compute strong lower bounds for each k with reasonable computational effort.

3.2. A heuristic for the bisection problem

The graph bisection problem can also be written as a quadratic assignment problem
(QAP) [22]. To do so, we set the weight matrix W to be the Laplacian matrix L of the

8

graph and the distance matrix D̃ to be a matrix with a top left block of size k with all
ones and the rest zero. The resulting QAP for this weight and distance matrix is

min
π∈Πn

n∑
i=1

n∑
j=1

Wi,jD̃π(i),π(j) = min
π∈Πn

k∑
i=1

k∑
j=1

Lπ−1(i),π−1(j) = khk.

In this formulation, the vertices mapped to values between 1 and k by the permutation π
are chosen to be in the set of size k in the partition. To compute an upper bound uk
on hk, we can use any heuristic for the QAP and divide the solution by k.

Simulated annealing is a well-known heuristic to compute an upper bound for the QAP,
we implement the algorithm introduced in [7]. We use a slightly different parameter
setting that we determined via numerical experiments. That is, the initial temperature
is set to k2/(n2) · tr(L), the number of transformation trials at constant temperature is
initially set to n and increased by a factor of 1.15 after each cycle, and the cooling factor
is set to 0.7. After every trial, we additionally perform a local search strategy to find
the local minimum.

Other well-performing heuristics for the QAP are tabu search, genetic algorithms, or
algorithms based on the solution of the SDP relaxation like the hyperplane rounding
algorithm. Some of these heuristics have the potential to be superior to simulated
annealing. However, as we will see later in the study of our experiments, the bounds we
obtain with the simulated annealing heuristic are almost always optimal for the size of
instances we are interested in.

3.3. Transformation to a max-cut problem

One variant to solve the k-bisection problem is to implement a branch-and-bound al-
gorithm with the aforementioned lower and upper bounds as presented in [14]. We are
going to use a different approach to solving the graph bisection problem. Namely, we
transform it to a max-cut problem and then take advantage of using a well-established
and performant max-cut solver, e.g. the open source parallel solver BiqBin [16], see also
Appendix A. To do so, we first need to transform the bisection problem into a quadratic
unconstrained binary problem (QUBO).

Lemma 3.1. Let x̃ ∈ {0, 1}n such that e>x̃ = k, and choose µk such that µk > x̃>Lx̃.
Then

hk =
1

k
min
x

{
x>(L+ µkJ)x− 2µkk e

>x+ µkk
2 : x ∈ {0, 1}n

}
.

Proof. First note that

x>(L+ µkee
>)x− 2µkk e

>x+ µkk
2 = x>Lx+ µk‖e>x− k‖2.

Let x ∈ {0, 1}n. Then we have

x>Lx+ µk‖e>x− k‖2 = x>Lx if e>x = k,

x>Lx+ µk‖e>x− k‖2 ≥ µk if e>x 6= k.

9

Note that e>x − k is integer for x ∈ {0, 1}n. Hence, for any infeasible x ∈ {0, 1}n, the
objective is greater than the given upper bound x̃>Lx̃, and therefore the minimum can
only be attained for x ∈ {0, 1}n with e>x = k.

Barahona et al. [5] showed that any QUBO problem can be reduced to a max-cut
problem by adding one additional binary variable. In our context, this means the fol-
lowing.

Corollary 3.2. Let G = (V,E) and let G′ be the complete graph with vertex set V ∪{v0}.
Let the weights cuw on the edges of G′ be as follows.

cuw =


4µk(n− 2k) if u ∈ V (G) and w = v0

4µk − 1 if uw ∈ E(G)

4µk if uw 6∈ E(G)

Then the minimum bisection of G where one side of the cut has size k is equal to
offset−max-cut(G′), where offset = 4µk(n− k)2.

Since max-cut solvers can benefit from edge weights of the input graph being integer,
a possible choice for µk is an upper bound on the bisection problem plus 1/4. Note that
we choose µk to be as small as possible by doing so.

The formulation of the max-cut problem in ±1 variables additionally requires xv = 1
to hold. Because of the symmetry of the cut, we can omit this constraint. Due to our
choice of the penalty parameter, it holds that on one side of the maximum cut, there
are exactly k+ 1 vertices, including vertex v. These k vertices on the same side as v are
the vertices in the set of size k in the optimum of the bisection problem.

To summarize, we can solve the bisection problem by solving a dense max-cut problem.
With this, we now have all the tools needed for our new split & bound approach.

4. Split & bound

We now assemble the tools developed in § 3 to compute the edge expansion of a graph
by splitting the problem into bn2 c many bisection problems. Since the bisection problem
is NP-hard as well, we want to reduce the number of bisection problems we have to
solve exactly as much as possible. To do so, we start with a pre-elimination of the
bisection problems. This procedure aims to exclude subproblems unnecessary for the
computation of the edge expansion of the graph. Computing the edge expansion by
considering the remaining values of k is summarized in Algorithm 2 below. We now
explain the pre-elimination step and further ingredients of our algorithm.

4.1. Pre-elimination

The size k of the smaller set of the partition can theoretically be any value from 1 to bn2 c.
However, it can be expected that for some candidates, one can quickly check that the
optimal solution cannot be attained for that k. As a first quick check, we use the cheap

10

lower bound `k obtained by solving the SDP (6) in combination with the upper bound
introduced in the § 3.2. We do not need to further consider values of k where the lower
bound `k of the scaled bisection problem is already above an upper bound on the edge
expansion. A pseudo-code of this pre-elimination step is given in Algorithm 1.

Algorithm 1: Pre-eliminate certain values of k

1 for k ∈ {1, . . . , bn2 c} do
2 Compute an upper bound uk using the heuristic from § 3.2;
3 Compute the lower bound `k from (7) by solving the cheap SDP (6);

4 Global upper bound u∗ := min
{
uk : 1 ≤ k ≤ bn2 c

}
;

5 if mink `k = u∗ then
6 I = ∅, h(G) = u∗;
7 else
8 I :=

{
k ∈ {1, . . . , bn2 c} : `k < u∗

}
;

9 return I, uk for k ∈ I, u∗

The hope is that many values of k can be excluded from computing the edge expansion.
Clearly, this heavily depends on the instance itself, as in the worst case, it might happen
that for many different values of k, the value of hk is close to the optimum.

We can further reduce the number of candidates for k by computing a tighter lower
bound ˜̀

k by solving the DNN relaxation (8) with additional cutting planes. In our
implementation we do not compute ˜̀

k as part of the pre-elimination but use the lower
bound obtained from the solution in the root node of the max-cut solver.

Impact of pre-elimination on sample instances Figures 1 and 2 display the bounds as-
sociated with four different graphs. For the graph of the grevlex polytope in dimension 7,
considering the bounds uk and ˜̀

k the only candidates for k where the optimal solution
can be found are 12 and 14. For the grevlex polytope in dimension 8, the sizes 17 and 18
remain as the only candidates. Also for a graph associated to a randomly generated
0/1-polytope and to a network graph, about 2/3 of the potential values of k can be
excluded already by considering the cheap lower bound `k.

4.2. Stopping exact computations early and updating u∗

All values of k that are not excluded in the pre-elimination step have to be further
examined. For those values we continue to run the max-cut solver to compute the scaled
bisection hk. We can stop the branch-and-bound algorithm as soon as the lower bound
(on the scaled k-bisection problem) of all open nodes in the branch-and-bound tree is
larger or equal to u∗. (Remember that u∗ is an upper bound on the edge expansion of
the graph but not necessarily an upper bound on hk.) A simple way to implement this
stopping criterion is to initialize the algorithm for the k-bisection problem with du∗ke
as an “artificial” upper bound. For the max-cut solver, this translates to an “artificial”
lower bound of offset− du∗ke.

11

Figure 1: Lower and upper bounds for each k.

12

Figure 2: Lower and upper bounds for each k.

13

In case hk < u∗, we can update u∗ which might lead to eliminating further values
from I. This fact is also part of the motivation for the order of choosing k for comput-
ing hk, as described in the next section.

4.3. Order of selecting values k from I

We consider the order of computing hk in ascending order based on their upper bounds uk.
The motivation for this choice is as follows.

Remember that u∗ = mink uk is a global upper bound on the edge expansion. The
most promising values for k to even further improve this bound are those with small uk.
Therefore, before starting the max-cut solver for the values k left after pre-elimination,
we do another 30 trials of simulated annealing for each of these to hopefully further
improve the upper bound.

Moreover, we run the exact computation of hk in this order since also during the
branch-and-bound algorithm, the upper bound uk might drop further and this will im-
prove the global upper bound u∗ most likely for those candidates with small uk.

An improvement of the upper bound u∗ means that there is a possibility to further
eliminate values k from I. But even for values k that can not be eliminated, we obtain
smaller artificial upper bounds and hence the computation of these bisection problems
may be stopped earlier.

We summarize all the steps in Algorithm 2.

Algorithm 2: Split & bound

1 I, uk for k ∈ I, u∗ ← pre-elimination Algorithm 1;
2 for k ∈ I do
3 Run heuristic from § 3.2 and update uk;
4 if uk < u∗ then
5 u∗ ← uk;
6 update I;

7 for k ∈ I, consider k in ascending order of uk do
8 transform the instance to a max-cut instance;
9 initialize the lower bound for max-cut as offset− du∗ke;

10 compute hk using the max-cut solver;
11 if hk < u∗ then
12 u∗ ← hk;
13 update I

14 h(G) = u∗;

4.4. Algorithmic verification of lower bound

We close this section by addressing the important consideration that we are not interested
in the exact value of the edge expansion in some applications, but want to check whether

14

certain values are valid lower bounds on h(G). A lower bound c ≤ h(G), for some
constant c > 0, means that the graph is a c-expander. The value of this lower bound
means that the graph expands by at least that much. This also arises in the context of the
Mihail-Vazirani conjecture on 0/1-polytopes where one wants to check whether h(G) ≥ 1
where G is the graph of a 0/1-polytope.

Our split & bound algorithm can also be used to verify a lower bound.

Proposition 4.1. Let υ be a given scalar and suppose we initialise Algorithm 2 with
u∗ = υ. Then υ is a valid lower bound on h(G) if and only if the algorithm terminates
without updating u∗.

Proof. Assume we initialize u∗ = υ. If we find a better upper bound (or some computed
value hk is smaller than υ), this is a certificate that the given value υ is not a valid
lower bound since we found a better solution. Otherwise, if the upper bound never
gets updated, this means the provided bound is indeed a valid lower bound on the edge
expansion of the graph.

5. Parametric optimization

Another approach to compute h(G) is following a discrete Newton-Dinkelbach algo-
rithm. Dinkelbach [9] gave a general classical framework to solve (non)-linear fractional
programs. The program one aims to solve is minx∈F f(x), where the objective f is a
fraction of (non)-linear functions. In our case this is

f(x) =
x>Lx

e>x
, and F =

{
x ∈ {0, 1}n : 1 ≤ e>x ≤ n

2

}
.

The main component of the algorithm is to form the following parametrized objective
function

gγ(x) = x>Lx− γe>x,
and the corresponding parametrized optimization problem

P (γ) = min
x
{gγ(x) : x ∈ F}, γ ≥ 0.

This problem then has the following useful properties.

Proposition 5.1. P (0) = ζmin(G) and P is a strictly decreasing concave piecewise linear
function over R+ whose unique root is equal to h(G). Consequently,

h(G) = max
γ

{
γ : gγ(x) ≥ 0

}
= min

γ

{
γ : gγ(x) ≤ 0

}
.

Proof. We have

P (0) = min
x

{
x>Lx : x ∈ F

}
= min

S

{
|∂S| : ∅ 6= S ⊂ V, |S| ≤ n/2

}
= min

S

{
|∂S| : ∅ 6= S ⊂ V

}
= ζmin(G)

15

where the penultimate equality is from symmetry of the cut function ζ(S) = |∂S| =
∣∣∂S′∣∣.

Finiteness of F and linearity of gγ in γ tells us that P is the pointwise minimum of finitely
many affine (in γ) functions, and so P is a concave piecewise linear function. The
strictly decreasing property was shown in [9, Lemma 3] for general nonlinear fractional
problems.

This implies that the edge expansion of a graph can be computed using a root-finding
algorithm for the function P . One evaluation of P for a given γ still means solving a
binary quadratic problem with two linear inequalities. Hence, reducing this number of
evaluations is crucial to compute h(G) in reasonable time. There are several strategies to
do so, such as binary search. Our approach is to evaluate P starting with γ1 equal to some
good upper bound on h(G) (in our experiments, we used our heuristic from § 3.2). We are
already done if we have found the optimum with our heuristic, that is when P (γ1) = 0.
Otherwise, there is some x1 ∈ F such that gγ(x1) < 0 and therefore f(x1) < γ. This
means that f(x1) is a better upper bound than γ1. Hence, we now set γ2 = f(x1) and
repeat until we find the optimum as described in Algorithm 3. Since P (γ) < 0 if and
only if γ > h(G), the stopping criterion is checking whether P (γ) < 0 at the current
iterate.

Algorithm 3: Discrete Newton-Dinkelbach algorithm for edge expansion

Input: graph G, upper bound γ1 ≥ h(G) from heuristic
Output: edge expansion h(G)

1 i = 1;
2 while P (γi) < 0 do
3 xi ∈ arg minx∈F gγi(x);
4 γi+1 = f(xi);
5 i = i+ 1;

6 h(G) = γi;

The superlinear convergence rate of Dinkelbach’s algorithm was established in [37].
We derive a similar convergence result for Algorithm 3.

Theorem 5.2. Algorithm 3 terminates with the optimal value after finitely many steps,
the rate of convergence is superlinear.

To prove the convergence rate of Theorem 5.2, we first need the following two lemmas.

Lemma 5.3. Let γ′, γ′′ ∈ R and x′, x′′ ∈ F be the optimal solutions of P (γ′) and P (γ′′),
then

f(x′)− f(x′′) ≤
(
P (γ′′)− (γ′ − γ′′)e>x′′

)(1

e>x′
− 1

e>x′′

)
.

Proof. By the optimality of x′ for P (γ′) it holds that

x′>Lx′ − γ′e>x′ ≤ x′′>Lx′′ − γ′e>x′′.

16

Dividing both sides by e>x′′ and rearranging yields

f(x′) ≤ x′′>Lx′′

e>x′
+ γ′

(
1− e>x′′

e>x′

)
.

Hence, we get that

f(x′)− f(x′′) ≤ x′′>Lx′′

e>x′
+ γ′

(
1− e>x′′

e>x′

)
− x′′>Lx′′

e>x′′

= (x′′>Lx′′ − γ′e>x′′)
(1

e>x′
− 1

e>x′′

)
= (x′′>Lx′′ − γ′′e>x′′ + γ′′e>x′′ − γ′e>x′′)

(1

e>x′
− 1

e>x′′

)
=
(
P (γ′′)− (γ′ − γ′′)e>x′′

)(1

e>x′
− 1

e>x′′

)
.

Lemma 5.4. Let x′ and x′′ be optimal solutions of P (γ′) and P (γ′′), then for γ′′ < γ′

it holds that e>x′′ ≤ e>x′.

Proof. From the optimality of x′ and x′′ it follows that

x′>Lx′ − γ′e>x′ ≤ x′′>Lx′′ − γ′e>x′′ and

x′′>Lx′′ − γ′′e>x′′ ≤ x′>Lx′ − γ′′e>x′.

Adding the above two inequalities yields

(γ′′ − γ′)e>x′ ≤ (γ′′ − γ′)e>x′′

and hence the above claim holds.

Proof of Theorem 5.2. Let x∗ ∈ F be the optimum of the edge expansion problem, i.e.,
f(x∗) = h(G) and let γ∗ = f(x∗). From Proposition 5.1 we know that P is a strictly
decreasing piecewise linear function and therefore the algorithm terminates after finitely
many iterations with value γ∗.

Let further γi be the upper bound on h(G) to check in the i-th iteration of Algorithm 3.
From Lemma 5.3, we get that

γi+1 − γ∗ ≤ (γi − γ∗)
(

1− e>x∗

e>xi

)
holds, since P (γ∗) = 0. The sequence(

1− e>x∗

e>xi

)
is strictly decreasing (and converging to 0) as proved in Lemma 5.4. Therefore, the
convergence rate of Algorithm 3 is superlinear.

17

5.1. Solving the parametrized optimization problem

Evaluating P (γ) requires solving a binary quadratic problem with two linear inequality
constraints which is in general NP-hard.

Most solvers for binary quadratic programs benefit from input data given as integer
as this aids the performance of the underlying branch-and-bound algorithm. Since we
only consider rational values for γ, we introduce the following parametric optimization
problem

Q(γ) = min
x
{γdx>Lx− γne>x : x ∈ F}

for γ = γn/γd with integers γn ≥ 0 and γd > 0. Observe that Q(γ) = γdP (γ) and all
considerations from above apply to this new formulation as well.

Two performant parallel state-of-the-art solvers for binary quadratic programs with
linear equality constraints are BiqBin [16] and BiqCrunch [23]. BiqBin first transforms
the problem into a QUBO in a pre-processing phase and then solves the equivalent
max-cut problem with its max-cut solver. To solve Q(γ), we make use of the problem
specific properties and directly transform it into a max-cut problem ourselves. The first
step towards achieving this is to obtain an exact formulation as a QUBO using binary
encoding of the slack variables and the penalty parameter suggested in [17, Thm. 15].
To aid our derivation, let us denote the integer ns and vector vns ∈ Rns+1 by

ns =
⌈

log2

⌊n
2

⌋⌉
− 1, vns

i = 2i−1 for all i.

Proposition 5.5. Let F = {x ∈ {0, 1}n : 1 ≤ e>x ≤ n
2 } and vns ∈ Rns+1 with

vns
i = 2i−1 and ns = dlog2(bn2 c)e − 1. Then

F =
{
x ∈ {0, 1}n : e>x− α>vns = 1, e>x+ β>vns =

⌊n
2

⌋
, α, β ∈ {0, 1}ns+1

}
.

Proof. For any x ∈ F it holds that e>x = 1 + s = bn2 c − t for some slack variables s
and t with 0 ≤ s, t ≤ bn2 c − 1. In fact, any upper bound on s and t greater or equal
than bn2 c − 1 is fine, since from e>x = 1 + s and s ≥ 0 it follows that e>x ≥ 1 and
from e>x = bn2 c − t and t ≥ 0 it follows that e>x ≤ bn2 c. The smallest possible value
for ns is dlog2(bn2 c)e − 1, since this gives an upper bound of 2ns+1 − 1 on s and t.

Proposition 5.6. Let x′ ∈ F with x′>Lx′

e>x′
= γn

γd
= γ and γd > 0. The problem Q(γ) can

then be equivalently formulated as the following QUBO,

min
x,α,β

{
γdx
>Lx− γne>x+ σ

∥∥∥∥(e>x− α>vns − 1
e>x+ β>vns − bn2 c

)∥∥∥∥2

:

x ∈ {0, 1}n, α, β ∈ {0, 1}ns+1

} (11)

with σ > γnn.

18

Proof. Let g(x, α, β) denote the objective function of (11). For any feasible vector x ∈ F
there exist uniquely defined αx, βx such that g(x, αx, βx) = γdx

>Lx− γne>x. Thus, the
objective function of Q(γ) and (11) coincide for x ∈ F . Moreover, for x′ it holds
that g(x′, αx′ , βx′) = 0.

For x ∈ {0, 1}n \ F there do not exist α, β ∈ {0, 1}ns+1 such that both equalities
e>x − α>vns = 1 and e>x + β>vns =

⌊
n
2

⌋
are satisfied, as one of the slack variables

has to be negative in order to fulfill the constraints. Additionally, since L is positive
semidefinite we can conclude that

g(x, α, β) ≥ −γnn+ σ > 0 = g(x′, αx′ , βx′).

Therefore, Q(γ) is an equivalent formulation of (11).

The unconstrained binary quadratic program (11) can again be transformed to a
max-cut problem, as explained in [5] for example. Applied to our problem we obtain the
following result.

Corollary 5.7. Let G = (V,E) and let G′′ be the graph with vertices from V plus the
vertices v0, vα0 , . . . , vαns

, vβ0 , . . . , vβns
for the variable vectors α and β.

Let the weights cuw on the edges of G′′ be as follows.

cuv0 =


2σ(n− 1− bn2 c)− γn if u ∈ V (G)

2σ(2ns − n−1
2)2i if u = vαi

2σ(2ns − bn2 c+ n−1
2)2i if u = vβi

cuw =


−2iσ if u = vαi and w ∈ V (G)

2iσ if u = vβi and w ∈ V (G)

2i+jσ if u = vαi and w = vαj

2i+jσ if u = vβi and w = vβj

For u ∈ V (G) and w ∈ V (G), we have

cuw =

{
2σ − γd if uw ∈ E(G)

2σ if uw 6∈ E(G)

Edges not specified above have weight zero. Let the penalty parameter be σ = γn + 1.
Then all weights are integers and it holds that Q(γ) = offset−max-cut(G′′) where

offset = −γnn+ σ ·
[
2ns+2

(
2 · 2ns −

⌊n
2

⌋
− 1
)

+ 2n2 − 2n+ 1

+
⌊n

2

⌋
·
(⌊n

2

⌋
− 2n+ 2

)]
.

19

6. Numerical results

All of our algorithms were written1 in Julia [6] version 1.9.2. That is, the split-and-bound
Algorithm 2 including pre-elimination and the transformation from k-bisection to max-
cut problems. Also, Algorithm 3 we implemented in Julia. The SDPs to compute our
cheap lower bounds `k from the bisection problem in (7) are solved with MOSEK 10.0 [30]
using JuMP [26]. We also use JuMP to solve MIQCPs with Gurobi [15] version 11.0. The
solver BiqBin [16] for binary quadratic problems was used to solve the parametrized prob-
lems in Dinkelbach’s method, and we extended the C code of this solver by adding the
option to provide an initial lower bound on the maximization problem. The correspond-
ing changes are tracked in the git repository https://gitlab.aau.at/BiqBin/biqbin.
All computations were carried out on an AMD EPYC 7532 with 32 cores with 3.30GHz
and 1024GB RAM, operated under Debian GNU/Linux 11.

6.1. Benchmark instances

Randomly generated 0/1-polytopes The first class of graphs are the graphs of random
0/1-polytopes. The polytopes are generated by randomly selecting nd vertices of the
polytope in dimension d, i.e., nd different 0/1-vectors in dimension d. To obtain the
graph, we then solve a linear programming feasibility problem to check whether there
is an edge for a given pair of vertices. For any pair (d, nd) with d ∈ {8, 9, 10} and
n8 ∈ {164, 189}, n9 ∈ {153, 178, 203, 228, 253, 278}, and n10 ∈ {256, 281}, we generated 3
random 0/1-polytopes. The choice of these values is motivated by the aim to generate
graphs with 150 to 300 vertices, and to randomly sample between 25% and 75% of the
possible 0/1-vectors, with percentages chosen in incremental steps within this range.

Grlex and grevlex graphs Another class of graphs we consider are the graphs of grlex
and grevlex polytopes introduced and characterised by Gupte and Poznanović [13]. The
grevlex-d and grlex-d instances of our benchmark set are the corresponding graphs of
the polytopes in dimension d. It was shown in [13] that those graphs have a very specific
structure and that the edge expansion of all grlex-d instances is 1.

DIMACS and Network graphs The last category of graphs originates from the graph
partitioning and clustering application. While the previous benchmark instances are
graphs of polytopes, these instances model relations and networks. The set of DIMACS
instances are the graphs of the 10th DIMACS challenge on graph partitioning and graph
clustering [4] with at most 500 vertices. Additionally, we consider some more network
graphs obtained from the online network repository [33]. We in particular chose con-
nected graphs with structural properties such as multiple clusters or having some vertices
of high degree and several vertices with small degree.

1The code is available on the arXiv page of this paper and on https://github.com/melaniesi/

EdgeExpansion.jl

20

https://gitlab.aau.at/BiqBin/biqbin
https://github.com/melaniesi/EdgeExpansion.jl
https://github.com/melaniesi/EdgeExpansion.jl

6.2. Discussion of the experiments

We compare different algorithms for computing the edge expansion of a graph, namely

1. Split & bound Algorithm 2,

2. Fractional programming using Discrete Newton-Dinkelbach’s method in Algorithm 3,

3. Gurobi for solving the MIQCP.

Algorithm 2 vs. Algorithm 3 vs. Gurobi The detailed results of our experiments are
given in Tables 2 to 6. In each of the tables, the first column gives the name of the
instance followed by the number of vertices and edges. Column 4 reports the optimal
solution, i.e., the edge expansion of the graph.

In the split & bound section of the table, the first two columns give the global lower
and upper bound after the pre-elimination Algorithm 1. The number of candidates for k
after the pre-elimination is given in column 3. In column 4 we report the number of
indices k ∈ I we were able to eliminate after solving the root node of the branch-and-
bound tree. Column 5 lists the total number of branch-and-bound nodes in the max-cut
algorithm for all values of k considered. The last two columns display the time spent in
the pre-elimination and the total time (including pre-elimination) of the algorithm.

In the section for Dinkelbach’s algorithm, the first column gives the first guess for the
edge expansion, i.e., the first trial for γ. As described before, we take the upper bound
from the heuristic for this initialization. Note, that this first guess may differ from u∗,
since in the pre-elimination step of split & bound we perform 30 additional rounds of
simulated annealing for all indices k ∈ I. Column 2 indicates how many parametrized
problems Pγi have been solved, and column 3 gives the total number of branch-and-
bound nodes for solving all parametrized problems. The fourth column of the results of
Dinkelbach’s algorithm displays the total time, including running the heuristic to obtain
the first guess.

The final column of the tables holds information about computing the edge expansion
using Gurobi. For the graphs from the randomly generated polytopes, Gurobi did not
succeed to solve any of these instances within a time limit of 3 hours, we therefore report
the gap after this time limit in Table 2. In Tables 3 to 6 we report the time for computing
the edge expansion.

We highlight in the tables, which of our two algorithms performs better.

Algorithm 2 (Split & bound) As can be seen in all tables, the pre-elimination phase of
split & bound only leaves a comparably small number of candidates for k to be further
investigated. Remember that the number of potential candidates is bn2 c, whereas |I| is
the number of candidates that remain after the pre-elimination. For 12 instances we
were able to compute the edge expansion even within the pre-elimination phase, i.e. the
set of candidates I was empty. For the randomly generated 0/1-polytopes on average
only 12% of the candidates have to be further examined, for the other instance classes
we can approximately eliminate 80% of the candidate values for k on average. Only for 6

21

instances we were not able to half the number of candidates within the pre-elimination
phase. All of those 6 instances are from the DIMACS or network graphs test set. This
indicates that in general already the cheap SDP bound is of good quality.

We also observe that the SDP bound in the root-node of the branch-and-bound tree
is of high quality: in 48 out of the 67 instances the gap is closed within the root node
for all candidates to be considered. For the other instances the average percentage of
candidates left after the root is 8%, where only for one instance the number of remaining
candidates is still above 20%.

The heuristic for computing upper bounds also performs extremely well: for almost
all instances the upper bound found is the edge expansion of the graph, see columns
titled h(G) and u∗. In fact, only for 3 instances the heuristic fails to find the optimal
solution.

Overall, we solve almost all of the considered instances within a few minutes, for very
few instances the branch-and-bound tree grows rather large and therefore computation
times exceed several hours.

Algorithm 3 (Discrete Newton-Dinkelbach) Whenever the heuristic already returns
the value of the optimal solution, we only have to solve one parametrized problem to
certify the optimality of this value. For most of the instances tested, this certificate is
already obtained in the root node of the branch-and-bound tree. However, there are
many instances where BiqBin terminates because of numerical problems even for the
first parametrized problem, see Table 2. This in particular arises when γd and γn (see
Section § 5.1) are large.

Solving the MIQCP with Gurobi To compute the edge expansion using Gurobi, we
input the last formulation of (1) adding the redundant constraint y ≥ 0. Without this
constraint, Gurobi terminated only after 1.65 hours/3 548 work units (resp. more than
24 hours/59 000 work units) on a graph with 29 vertices and 119 edges (resp. 37 vertices
and 176 edges) corresponding to the grevlex polytope in dimension 7 (resp. 8).

Adding the redundant constraint, Gurobi is very efficient for graphs with an expansion
less than one, see Tables 5 and 6, but as soon as the expansion (and also the number of
vertices of the graph) gets larger, Gurobi cannot solve the instance within a few hours,
see Tables 2 and 4.

Impact of the edge expansion The performance of an algorithm is not in particular
depending on their size or density. As noted above, Gurobi is very efficient on graphs
with an edge expansion less than one. As the expansion gets larger, our algorithms are
the clear winners over Gurobi.

As for the performance of Algorithm 3, we observe that for large expansion the al-
gorithm performs very well in general. But we observe, that in particular if the edge
expansion is a fraction of large (coprime) nominator and denominator, this is a disad-
vantage of the algorithm.

22

For split & bound, there seems to be no impact of the edge expansion on the perfor-
mance.

Conclusion To summarize the results, we give a performance profile in Figure 3. Gurobi
solves the MIQCP very efficiently for several instances, but fails to yield results for others
within a time limit of 3 hours. It is the clear winner for instances with very small edge
expansion. Comparing split & bound with the algorithm following the Discrete Newton-
Dinkelbach method, we observe the following behavior. For the grlex instances, Dinkel-
bach performs extremely well compared to the split & bound approach, see Table 3.
Whereas for the grevlex instances in Table 4, we observe that, except for dimension 13,
the split & bound algorithm by far outperforms Algorithm 3. In addition to the already
mentioned, there are some other instances where the difference in the runtimes between
the two algorithms is significant. For example, on the instances rand01-9-153-0 and
malaria genes HVR1 split & bound clearly dominates Algorithm 3, whereas the latter
is significantly better on the instances rand01-9-2781 and sp-office.

The conclusion is that in general for graphs with larger edge expansion, the split &
bound algorithm is best, and for graphs with small edge expansion Algorithm 3 has a
better performance than split & bound, but there are a few exceptions, and the difference
in the total time of solving an instance can be quite large.

Overall, we conclude that with our algorithms we can compute the edge expansion
of various graphs of size up to around 400 vertices and no other algorithm can achieve
this. The time for solving an instance varies, it can be a few seconds for very structured
instances and it can exceed one hour, in particular for the instances coming from 0/1-
polytopes with rather large expansion. For standard branch-and-cut solvers like Gurobi
these instances are out of reach.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

time (sec)

%
o
f
in
st
a
n
ce
s
so
lv
ed

Gurobi

Dinkelbach

Split & Bound

0.2 0.4 0.6 0.8 1

·104

0

0.2

0.4

0.6

0.8

1

time (sec)

Figure 3: Performance comparison of the exact algorithms. Note the different scale on
the x-axis: the plot on the left displays the time range from 0 to 500 seconds,
the plot on the right from 500 seconds to 3 hours.

23

A
lg

o
ri

th
m

2
(s

p
li
t

&
b

o
u
n
d
)

A
lg

o
ri

th
m

3
(D

in
k
e
lb

a
c
h
)

G
u
ro

b
i

In
st

a
n
c
e

n
m

h
(G

)
m

in
`
k

u
∗

|I
|

so
lv

e
d

in
ro

o
t

B
&

B
n
o
d
e
s

A
lg

.
1

ti
m

e
(s

)
to

ta
l

ti
m

e
(s

)
fi

rs
t

g
u
e
ss

#
o
f

st
e
p
s

B
&

B
n
o
d
e
s

to
ta

l
ti

m
e

(s
)

re
la

ti
v
e

g
a
p

ra
n
d
0
1
-9

-1
5
3
-0

1
5
3

4
0
8
1

1
8
.7

5
0
0

1
7
.7

7
6
3

1
8
.7

5
0
0

5
5

5
4
3
.2

1
2
9
.4

1
8
.7

5
0
0

1
1
4
7

3
3
9
7
.6

0
.9

0
0

ra
n
d
0
1
-9

-1
5
3
-1

1
5
3

4
0
4
4

1
8
.4

8
6
8

1
7
.5

7
8
9

1
8
.4

8
6
8

5
5

5
3
9
.9

1
1
1
.9

1
8
.4

8
6
8

-
-

-
0
.8

9
8

ra
n
d
0
1
-9

-1
5
3
-2

1
5
3

4
1
0
7

1
9
.0

0
0
0

1
7
.8

4
2
1

1
9
.0

0
0
0

6
6

6
4
5
.2

2
2
0
.4

1
9
.0

0
0
0

1
8
3

1
3
7
1
.1

0
.8

9
9

ra
n
d
0
1
-8

-1
6
4
-0

1
6
4

1
8
6
8

5
.7

6
8
3

4
.8

6
5
9

5
.7

6
8
3

1
7

1
1

1
2
3

6
2
.0

2
0
3
7
.7

5
.7

6
8
3

1
2
7

1
6
1
0
.4

0
.8

0
9

ra
n
d
0
1
-8

-1
6
4
-1

1
6
4

1
8
3
7

5
.3

5
3
7

4
.7

0
7
3

5
.3

5
3
7

1
5

1
2

2
7

5
6
.9

7
7
4
.7

5
.3

5
3
7

1
6
1

1
7
8
6
.1

0
.7

8
5

ra
n
d
0
1
-8

-1
6
4
-2

1
6
4

1
8
0
8

5
.7

4
3
9

4
.7

5
6
1

5
.7

4
3
9

2
9

5
2
5
1

8
5
.3

5
3
4
7

5
.7

5
6
1

2
7
8

2
7
4
3
.5

0
.8

3
3

ra
n
d
0
1
-9

-1
7
8
-0

1
7
8

4
5
9
0

1
7
.0

7
8
7

1
6
.0

8
9
9

1
7
.0

7
8
7

6
4

1
8

9
2
.6

3
2
0
.4

1
7
.0

7
8
7

-
-

-
0
.9

1
9

ra
n
d
0
1
-9

-1
7
8
-1

1
7
8

4
4
6
7

1
6
.7

0
7
9

1
5
.3

9
3
3

1
6
.7

0
7
9

9
8

1
1

8
7
.9

5
0
6
.8

1
6
.7

0
7
9

-
-

-
0
.8

9
9

ra
n
d
0
1
-9

-1
7
8
-2

1
7
8

4
5
3
7

1
6
.7

5
2
8

1
5
.6

5
1
7

1
6
.7

5
2
8

7
7

7
7
0
.0

2
1
9
.1

1
6
.7

5
2
8

-
-

-
0
.9

2
0

ra
n
d
0
1
-8

-1
8
9
-0

1
8
9

1
7
6
8

4
.2

2
3
4

3
.4

6
8
1

4
.2

2
3
4

2
3

1
1

6
3
3

9
9
.2

5
5
8
1
.6

4
.2

3
4
0

2
1
4

1
0
3
6
.0

0
.8

1
7

ra
n
d
0
1
-8

-1
8
9
-1

1
8
9

1
7
4
5

4
.0

4
2
6

3
.3

7
2
3

4
.0

4
2
6

2
6

2
0

1
2
8

1
0
3
.8

2
6
3
4
.7

4
.0

4
2
6

1
3
3

1
6
0
3
.1

0
.7

9
5

ra
n
d
0
1
-8

-1
8
9
-2

1
8
9

1
7
1
9

4
.0

6
3
8

3
.3

5
1
1

4
.0

7
4
5

2
8

1
9

1
0
0

9
7
.9

2
6
6
9
.6

4
.0

8
5
1

2
3
8

2
0
1
4
.7

0
.7

8
8

ra
n
d
0
1
-9

-2
0
3
-0

2
0
3

4
9
0
0

1
5
.1

3
8
6

1
4
.0

1
9
8

1
5
.1

3
8
6

9
4

4
1

1
0
9
.7

8
9
2
.1

1
5
.1

3
8
6

-
-

-
0
.9

3
0

ra
n
d
0
1
-9

-2
0
3
-1

2
0
3

4
7
8
1

1
4
.8

4
1
6

1
3
.5

5
4
5

1
4
.8

4
1
6

1
2

2
3
8
8

1
1
7
.2

3
5
9
1
.5

1
4
.8

5
1
5

-
-

-
0
.9

2
5

ra
n
d
0
1
-9

-2
0
3
-2

2
0
3

4
7
2
0

1
4
.3

7
6
2

1
3
.3

8
6
1

1
4
.3

7
6
2

9
9

9
1
0
5
.8

4
1
2
.1

1
4
.3

7
6
2

-
-

-
0
.9

4
5

ra
n
d
0
1
-9

-2
2
8
-0

2
2
8

5
0
6
5

1
3
.2

3
6
8

1
2
.0

4
3
9

1
3
.2

3
6
8

1
3

7
1
2
9

1
6
6
.0

2
0
8
3
.8

1
3
.2

3
6
8

-
-

-
0
.9

4
3

ra
n
d
0
1
-9

-2
2
8
-1

2
2
8

4
9
2
7

9
.0

0
0
0

9
.0

0
0
0

9
.0

0
0
0

0
0

0
1
3
5
.6

1
3
5
.6

9
.0

0
0
0

1
2
3

5
8
6
.7

0
.8

5
7

ra
n
d
0
1
-9

-2
2
8
-2

2
2
8

4
9
8
4

1
2
.8

2
4
6

1
1
.8

0
7
0

1
2
.8

2
4
6

1
1

1
1

1
1

1
7
4
.3

6
1
9
.9

1
2
.8

2
4
6

-
-

-
0
.9

3
7

ra
n
d
0
1
-9

-2
5
3
-0

2
5
3

5
2
5
8

1
1
.8

7
3
0

1
0
.6

8
2
5

1
1
.8

7
3
0

1
6

8
6
8
4

2
3
4
.5

1
0
5
4
7
.7

1
1
.9

7
6
0

-
-

-
0
.9

5
5

ra
n
d
0
1
-9

-2
5
3
-1

2
5
3

5
0
5
3

9
.0

0
0
0

9
.0

0
0
0

9
.0

0
0
0

0
0

0
1
8
6
.9

1
8
6
.9

9
.0

0
0
0

1
1

1
2
1
.3

0
.9

1
0

ra
n
d
0
1
-9

-2
5
3
-2

2
5
3

5
0
7
2

1
1
.2

2
2
2

1
0
.1

1
9
0

1
1
.2

2
2
2

1
6

3
4
0
2

2
3
2
.7

8
7
0
9
.2

1
1
.2

3
0
2

-
-

-
0
.9

7
0

ra
n
d
0
1
-1

0
-2

5
6
-0

2
5
6

1
1
0
5
6

3
0
.4

7
6
6

2
9
.4

2
1
9

3
0
.4

7
6
6

5
5

5
2
2
8
.8

5
4
7
.7

3
0
.4

7
6
6

-
-

-
0
.9

6
7

ra
n
d
0
1
-1

0
-2

5
6
-1

2
5
6

1
0
6
1
1

2
8
.8

4
3
8

2
7
.7

0
3
1

2
8
.8

4
3
8

6
3

1
8

2
3
3
.5

9
2
6
.9

2
8
.8

4
3
8

1
1

3
0
8
.6

0
.9

6
9

ra
n
d
0
1
-1

0
-2

5
6
-2

2
5
6

1
0
7
4
6

2
9
.3

7
5
0

2
8
.1

5
6
3

2
9
.3

7
5
0

6
3

2
0

2
4
0
.6

7
6
9
.7

2
9
.3

7
5
0

1
7

6
0
7
.2

0
.9

6
6

ra
n
d
0
1
-9

-2
7
8
-0

2
7
8

5
2
2
4

1
0
.0

7
1
9

8
.9

0
6
5

1
0
.0

7
1
9

2
0

3
1
2
9
2

3
2
6
.8

1
7
5
4
2
.8

1
0
.0

7
1
9

-
-

-
0
.9

5
3
*

ra
n
d
0
1
-9

-2
7
8
-1

2
7
8

5
0
0
7

9
.0

0
0
0

8
.3

2
3
7

9
.0

0
0
0

1
5

3
3
8
7

3
3
6
.6

8
1
5
3
.3

9
.0

0
0
0

1
1

1
0
3
.7

0
.9

5
4

ra
n
d
0
1
-9

-2
7
8
-2

2
7
8

5
1
3
2

9
.9

2
0
9

8
.6

9
0
6

9
.9

2
0
9

2
2

6
2
2
3
8

3
3
8
.1

3
1
1
2
5
.4

9
.9

2
0
9

-
-

-
0
.9

5
7
*

ra
n
d
0
1
-1

0
-2

8
1
-0

2
8
1

1
1
8
2
8

2
8
.9

0
0
0

2
7
.7

3
5
7

2
8
.9

0
0
0

7
3

7
5

3
1
1
.7

1
8
0
7
.9

2
8
.9

0
0
0

-
-

-
0
.9

7
5

ra
n
d
0
1
-1

0
-2

8
1
-1

2
8
1

1
1
4
9
0

2
7
.7

9
2
9

2
6
.5

2
1
4

2
7
.7

9
2
9

8
5

3
0

3
2
1
.2

1
7
7
6
.4

2
7
.8

0
7
1

-
-

-
0
.9

7
3

ra
n
d
0
1
-1

0
-2

8
1
-2

2
8
1

1
1
4
5
4

2
7
.7

5
0
0

2
6
.4

5
7
1

2
7
.7

5
0
0

8
4

6
6

3
1
6
.9

2
4
3
5
.7

2
7
.7

5
0
0

1
1
1

1
1
0
3
.5

0
.9

7
2

T
ab

le
2:

C
o
m

p
a
ri

so
n

of
A

lg
o
ri

th
m

2
(s

p
li

t
&

b
ou

n
d

),
A

lg
or

it
h

m
3

(D
in

ke
lb

ac
h

)
an

d
G

u
ro

b
i

fo
r

gr
ap

h
s

of
ra

n
d
om

0/
1-

p
ol

y
to

p
es

.
T

h
e

la
st

co
lu

m
n

d
is

p
la

y
s

th
e

ga
p

re
p

or
te

d
b
y

G
u

ro
b
i

af
te

r
a

ti
m

e
li

m
it

of
3

h
ou

rs
.

*
In

cr
ea

se
d

ti
m

el
im

it
o
f

G
u

ro
b

i
to

m
a
tc

h
th

e
ti

m
e

o
n

e
o
f

th
e

o
th

er
a
lg

o
ri

th
m

s
n

ee
d

ed
fo

r
ex

a
ct

co
m

p
u

ta
ti

o
n

.

24

A
lg

o
ri

th
m

2
(s

p
li
t

&
b

o
u

n
d

)
A

lg
o
ri

th
m

3
(D

in
k
el

b
a
ch

)
G

u
ro

b
i

In
st

a
n

ce
n

m
h

(G
)

m
in
` k

u
∗
|I
|

so
lv

ed
in

ro
o
t

B
&

B
n

o
d

es
A

lg
.

1
ti

m
e

(s
)

to
ta

l
ti

m
e

(s
)

fi
rs

t
g
u

es
s

#
o
f

st
ep

s
B

&
B

n
o
d

es
to

ta
l

ti
m

e
(s

)
to

ta
l

ti
m

e
(s

)

g
rl

ex
-7

2
9

1
1
9

1
1
.0

0
0
0

1
0

0
0

0
.3

0
.3

1
1

1
0
.3

0
.3

g
rl

ex
-8

3
7

1
7
6

1
1
.0

0
0
0

1
0

0
0

0
.6

0
.6

1
1

1
0
.9

0
.6

g
rl

ex
-9

4
6

2
4
9

1
1
.0

0
0
0

1
0

0
0

1
.5

1
.5

1
1

1
0
.8

0
.8

g
rl

ex
-1

0
5
6

3
4
0

1
0
.8

5
7
1

1
7

7
7

2
.7

2
2
.7

1
1

1
2
.4

1
.2

g
rl

ex
-1

1
6
7

4
5
1

1
0
.8

3
3
3

1
1
2

1
2

1
2

3
.6

1
4
8

1
1

1
4
.4

2
.0

g
rl

ex
-1

2
7
9

5
8
4

1
0
.8

0
0
0

1
1
5

1
5

1
5

5
.8

2
8
0
.4

1
1

1
4
.6

2
.0

g
rl

ex
-1

3
9
2

7
4
1

1
0
.8

0
0
0

1
1
8

1
0

1
7
8
8

8
.5

1
4
0
3
7
.2

1
1

1
4
.1

2
.3

T
ab

le
3:

C
o
m

p
a
ri

so
n

of
A

lg
o
ri

th
m

2
(s

p
li

t
&

b
ou

n
d

)
an

d
A

lg
or

it
h

m
3

(D
in

ke
lb

ac
h

)
fo

r
gr

le
x

in
st

an
ce

s.

A
lg

o
ri

th
m

2
(s

p
li
t

&
b

o
u

n
d

)
A

lg
o
ri

th
m

3
(D

in
k
el

b
a
ch

)
G

u
ro

b
i

In
st

a
n

ce
n

m
h

(G
)

m
in
` k

u
∗

|I
|

so
lv

ed
in

ro
o
t

B
&

B
n

o
d

es
A

lg
.

1
ti

m
e

(s
)

to
ta

l
ti

m
e

(s
)

fi
rs

t
g
u

es
s

#
o
f

st
ep

s
B

&
B

n
o
d

es
to

ta
l

ti
m

e
(s

)
to

ta
l

ti
m

e
(s

)

g
re

v
le

x
-7

2
9

1
1
9

2
.4

6
1
5

2
.1

4
2
9

2
.4

6
1
5

3
3

3
0
.4

1
.0

2
.4

6
1
5

1
4
1

3
3
.3

1
.1

g
re

v
le

x
-8

3
7

1
7
6

2
.8

3
3
3

2
.3

8
8
9

2
.8

3
3
3

5
5

5
1
.0

5
.8

2
.8

3
3
3

1
1
0
5

1
8
8
.6

3
.7

g
re

v
le

x
-9

4
6

2
4
9

2
.9

5
6
5

2
.5

6
5
2

2
.9

5
6
5

5
5

5
1
.5

2
0
.7

2
.9

5
6
5

1
8
9

1
9
4
.1

3
9
.9

g
re

v
le

x
-1

0
5
6

3
4
0

3
.2

2
2
2

2
.7

8
5
7

3
.2

2
2
2

6
6

6
2
.9

3
3
.8

3
.2

2
2
2

1
1
6
1

3
1
6
.5

7
0
.3

g
re

v
le

x
-1

1
6
7

4
5
1

3
.6

6
6
7

3
.0

9
0
9

3
.6

6
6
7

8
7

2
0

3
.5

1
9
3
.9

3
.7

1
8
8

2
1
4
7
8

1
0
4
1
2
.3

1
4
6
0
.7

g
re

v
le

x
-1

2
7
9

5
8
4

3
.9

2
3
1

3
.3

3
3
3

3
.9

2
3
1

9
2

2
4
1

6
.9

1
3
1
5
.5

3
.9

2
3
1

1
1
2
9
3

1
1
8
6
1
.7

8
6
2
4
.9

g
re

v
le

x
-1

3
9
2

7
4
1

4
.0

0
0
0

3
.5

4
3
5

4
.0

0
0
0

7
1

4
7
5

9
.4

2
2
4
6
.3

4
.0

0
0
0

1
1

2
9
.4

-

T
a
b

le
4
:

C
om

p
ar

is
o
n

o
f

A
lg

or
it

h
m

2
(s

p
li

t
&

b
ou

n
d

),
A

lg
or

it
h

m
3

(D
in

k
el

b
ac

h
)

an
d

G
u

ro
b

i
fo

r
gr

ev
le

x
in

st
an

ce
s.

25

A
lg

o
ri

th
m

2
(s

p
li
t

&
b

o
u
n
d
)

A
lg

o
ri

th
m

3
(D

in
k
e
lb

a
c
h
)

G
u
ro

b
i

In
st

a
n
c
e

n
m

h
(G

)
m

in
`
k

u
∗

|I
|

so
lv

e
d

in
ro

o
t

B
&

B
n
o
d
e
s

A
lg

.
1

ti
m

e
(s

)
to

ta
l

ti
m

e
(s

)
fi

rs
t

g
u
e
ss

#
o
f

st
e
p
s

B
&

B
n
o
d
e
s

to
ta

l
ti

m
e

(s
)

to
ta

l
ti

m
e

(s
)

k
a
ra

te
3
4

7
8

0
.5

8
8
2

0
.5

0
0
0

0
.5

8
8
2

4
4

4
0
.7

2
.3

0
.5

8
8
2

1
1

1
.0

0
.2

c
h
e
sa

p
e
a
k
e

3
9

1
7
0

2
.1

6
6
7

2
.0

0
0
0

2
.1

6
6
7

8
8

8
1
.0

2
.0

2
.1

6
6
7

1
1

2
.4

0
.7

d
o
lp

h
in

s
6
2

1
5
9

0
.2

8
5
7

0
.2

0
0
0

0
.2

8
5
7

1
6

1
6

1
6

4
.0

1
3
.2

0
.2

8
5
7

1
1

2
.3

0
.7

le
sm

is
7
7

2
5
4

0
.3

0
0
0

0
.2

5
0
0

0
.3

0
0
0

2
2

2
4
.7

1
4
.7

0
.3

0
0
0

1
1

8
.0

0
.7

p
o
lb

o
o
k
s

1
0
5

4
4
1

0
.3

6
5
4

0
.3

2
6
9

0
.3

6
5
4

3
7

3
7

3
7

1
8
.0

5
4
0

0
.3

6
5
4

1
1
1

1
2
8
.7

3
.3

a
d
jn

o
u
n

1
1
2

4
2
5

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

0
0

0
1
6
.9

1
6
.9

1
.0

0
0
0

1
1

8
.6

4
.2

fo
o
tb

a
ll

1
1
5

6
1
3

1
.0

7
0
2

0
.9

8
2
5

1
.0

7
0
2

5
4

5
5

1
5
.2

3
9
9
.9

1
.0

7
0
2

1
1

2
5
.8

3
1
.2

ja
z
z

1
9
8

2
7
4
2

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

0
0

0
1
1
8
.4

1
1
8
.4

1
.0

0
0
0

1
1

5
6
.9

1
2
.9

c
e
le

g
a
n
sn

e
u
ra

l
2
9
7

2
1
4
8

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

0
0

0
3
8
9
.3

3
8
9
.3

1
.0

0
0
0

1
1

8
0
.6

2
2
.0

c
e
le

g
a
n
s

m
e
ta

b
o
li

c
4
5
3

2
0
2
5

0
.4

0
0
0

0
.3

3
3
3

0
.5

0
0
0

2
0

1
9

2
4

1
4
7
5
.6

2
3
8
3
.3

0
.5

0
0
0

3
3

8
2
8
.2

5
.1

T
ab

le
5:

C
o
m

p
a
ri

so
n

of
A

lg
o
ri

th
m

2
(s

p
li

t
&

b
ou

n
d

),
A

lg
or

it
h

m
3

(D
in

k
el

b
ac

h
)

an
d

G
u

ro
b

i
fo

r
D

IM
A

C
S

in
st

an
ce

s.

A
lg

o
ri

th
m

2
(s

p
li
t

&
b

o
u
n
d
)

A
lg

o
ri

th
m

3
(D

in
k
e
lb

a
c
h
)

G
u
ro

b
i

In
st

a
n
c
e

n
m

h
(G

)
m

in
`
k

u
∗

|I
|

so
lv

e
d

in
ro

o
t

B
&

B
n
o
d
e
s

A
lg

.
1

ti
m

e
(s

)
to

ta
l

ti
m

e
(s

)
fi

rs
t

g
u
e
ss

#
o
f

st
e
p
s

B
&

B
n
o
d
e
s

to
ta

l
ti

m
e

(s
)

to
ta

l
ti

m
e

(s
)

m
o
v
ie

g
a
la

x
ie

s-
5
6
7

5
2

1
4
6

0
.3

8
1
0

0
.3

6
3
6

0
.3

8
1
0

3
3

3
2
.3

3
.5

0
.3

8
1
0

1
1

2
.7

0
.4

m
o
v
ie

g
a
la

x
ie

s-
5
2

5
9

1
1
9

0
.5

3
8
5

0
.4

0
0
0

0
.5

3
8
5

2
7

2
7

2
7

3
.9

1
6
.3

0
.5

3
8
5

1
1

9
.1

0
.6

te
rr

o
ri

st
s-

9
1
1

6
2

1
5
2

0
.2

1
7
4

0
.2

0
0
0

0
.2

1
7
4

6
6

6
3
.2

1
0
.7

0
.2

1
7
4

1
1

7
.5

0
.5

tr
a
in

te
rr

o
ri

st
s

6
4

2
4
3

0
.6

0
0
0

0
.4

0
0
0

0
.6

0
0
0

2
0

2
0

2
0

5
.2

4
4
.9

0
.6

0
0
0

1
1

2
.5

1
.1

h
ig

h
sc

h
o
o
l

7
0

2
7
4

0
.9

1
4
3

0
.7

0
5
9

0
.9

1
4
3

2
6

2
6

2
6

5
.5

1
3
1
.2

0
.9

1
4
3

1
9

9
2
.1

1
.7

b
lu

m
e
n
a
u

d
ru

g
7
5

1
8
1

0
.5

0
0
0

0
.5

0
0
0

0
.5

0
0
0

0
0

0
5
.1

5
.1

0
.5

0
0
0

1
1

4
.6

1
.7

sp
o
ffi

c
e

9
2

7
5
5

3
.3

6
9
6

3
.1

7
3
9

3
.3

6
9
6

5
5

5
9
.9

1
9
.3

3
.3

6
9
6

1
7
7

8
5
8
.7

5
2
2
.2

sw
in

g
e
rs

9
6

2
3
2

0
.3

3
3
3

0
.3

3
3
3

0
.3

3
3
3

0
0

0
1
0
.2

1
0
.2

0
.5

0
0
0

3
3

2
6
.2

1
.4

g
a
m

e
th

ro
n
e
s

1
0
7

3
5
2

0
.4

0
0
0

0
.2

8
5
7

0
.4

2
1
1

2
2

2
2

2
2

1
3
.0

2
9
0
.6

0
.4

3
7
5

2
2

2
8
.6

2
.7

re
v
o
lu

ti
o
n

1
4
1

1
6
0

0
.0

9
6
2

0
.0

7
7
0

0
.0

9
6
2

3
3

2
8

1
1
1

3
9
.4

1
5
9
5
.6

0
.1

0
0
0

2
9
8

6
3
9
.0

1
.3

fo
o
d
w

e
b

li
tt

le
ro

c
k

1
8
3

2
4
3
4

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

0
0

0
9
9
.2

9
9
.2

1
.0

0
0
0

1
1

2
1
.4

8
.9

c
in

te
st

in
a
li
s

2
0
5

2
5
7
5

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

0
0

0
1
1
7
.9

1
1
7
.9

1
.0

0
0
0

1
1

2
5
.2

2
0
.1

m
a
la

ri
a

g
e
n
e
s

H
V

R
1

3
0
7

2
8
1
2

0
.2

3
7
7

0
.2

1
0
5

0
.2

3
7
7

1
2
0

9
1

1
8
9
0

5
0
3
.1

6
2
9
4
3
.4

0
.2

3
7
7

1
5

4
2
5
.8

7
.8

T
ab

le
6:

C
o
m

p
a
ri

so
n

of
A

lg
o
ri

th
m

2
(s

p
li

t
&

b
ou

n
d

),
A

lg
or

it
h

m
3

(D
in

k
el

b
ac

h
)

an
d

G
u

ro
b

i
fo

r
n

et
w

or
k

in
st

an
ce

s.

26

7. Summary and future research

We developed a split & bound algorithm as well as an algorithm applying Dinkelbach’s
idea for fractional programming to compute the edge expansion of a graph. The splitting
refers to the fact, that we consider the different values of k (k being the size of the
smaller partition) separately. We used semidefinite programming in both phases of our
algorithm: on the one hand, SDP-based bounds are used to eliminate several values for k
and we use an SDP-based max-cut solver to solve the problem for k fixed. Also, the
algorithm following the Dinkelbach framework uses semidefinite programming in order
to solve the underlying parametrized problems. Through numerical results on various
graph classes, we demonstrate that our split-and-bound algorithm is a robust method
for computing the edge expansion while Dinkelbach’s algorithm and Gurobi are very
sensitive with respect to the edge expansion of the graph.

In some applications, one is not interested in the exact value of the edge expansion
but wants to check whether a certain value is a lower bound on the edge expansion, e.g.,
to check the Mihail-Vazirani conjecture on 0/1-polytopes. We implemented an option
in our algorithm that enables this feature of verifying a given lower bound.

As a heuristic, we use a simulated annealing approach that works very well for the
problem sizes we are interested in. However, if one wants to obtain high-quality solutions
for larger instances, a more sophisticated heuristic will be needed. Tabu-search, genetic
algorithms, or a heuristic in the spirit of the Goemans-Williamson rounding could be po-
tential candidates. In future research, we will also investigate convexification techniques
by using recent results on fractional programming [18] and on exploiting submodularity
of the cut function as has been done for mixed-binary conic optimization [3].

References

[1] Anari, N., Liu, K., Gharan, S.O., Vinzant, C.: Log-concave polynomials ii: High-
dimensional walks and an fpras for counting bases of a matroid. In: Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, pp. 1–12. Association for Computing Machinery, New York, NY, USA (2019).
DOI 10.1145/3313276.3316385

[2] Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph
partitioning. Journal of the ACM (JACM) 56(2), 5 (2009)

[3] Atamtürk, A., Gómez, A.: Submodularity in conic quadratic mixed 0–1 optimiza-
tion. Operations Research 68(2), 609–630 (2020). DOI 10.1287/opre.2019.1888

[4] Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D. (eds.): Graph Partitioning
and Graph Clustering, 10th DIMACS Implementation Challenge Workshop, Geor-
gia Institute of Technology, Atlanta, GA, USA, February 13-14, 2012. Proceedings,
Contemporary Mathematics, vol. 588. American Mathematical Society (2013). DOI
10.1090/CONM/588

27

[5] Barahona, F., Jünger, M., Reinelt, G.: Experiments in quadratic 0–1 programming.
Mathematical Programming 44(1-3), 127–137 (1989). DOI 10.1007/bf01587084

[6] Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh approach to
numerical computing. SIAM review 59(1), 65–98 (2017). DOI 10.1137/141000671

[7] Burkard, R.E., Rendl, F.: A thermodynamically motivated simulation procedure for
combinatorial optimization problems. European Journal of Operational Research
17, 169–174 (1984). DOI 10.1016/0377-2217(84)90231-5

[8] Chung, F.R.: Spectral graph theory, CBMS Regional Conference Series in Mathe-
matics, vol. 92. American Mathematical Society (1997). DOI 10.1090/cbms/092

[9] Dinkelbach, W.: On nonlinear fractional programming. Management Science 13(7),
492–498 (1967)

[10] Feder, T., Mihail, M.: Balanced matroids. In: S. Kosaraju, T. Fellows, A. Wigder-
son, J. Ellis (eds.) Proceedings of the Twenty-Fourth Annual ACM Symposium on
Theory of Computing, STOC ’92, pp. 26–38. Association for Computing Machinery,
New York, NY, USA (1992). DOI 10.1145/129712.129716

[11] Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph
problems. Theoret. Comput. Sci. 1(3), 237–267 (1976). DOI 10.1016/0304-3975(76)
90059-1

[12] Goldreich, O.: Basic facts about expander graphs. In: O.G. et al. (ed.) Studies in
Complexity and Cryptography, Lecture Notes in Computer Science, vol. 6650, pp.
451–464. Springer, Berlin, Heidelberg (2011)

[13] Gupte, A., Poznanović, S.: On dantzig figures from graded lexicographic orders.
Discrete Mathematics 341(6), 1534–1554 (2018). DOI 10.1016/j.disc.2018.02.016

[14] Gupte, A., Siebenhofer, M., Wiegele, A.: Computing the edge expansion of a graph
using SDP. In: Combinatorial optimization, Lecture Notes in Comput. Sci., p. 13
pages. Springer, [Cham] (2024)

[15] Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023). URL
https://www.gurobi.com

[16] Gusmeroli, N., Hrga, T., Lužar, B., Povh, J., Siebenhofer, M., Wiegele, A.: BiqBin:
A parallel branch-and-bound solver for binary quadratic problems with linear con-
straints. ACM Transactions on Mathematical Software 48(2), 15:1–15:31 (2022).
DOI 10.1145/3514039

[17] Gusmeroli, N., Wiegele, A.: EXPEDIS: An exact penalty method over discrete sets.
Discrete Optimization 44(2), 100622 (2022). DOI 10.1016/j.disopt.2021.100622

[18] He, T., Liu, S., Tawarmalani, M.: Convexification techniques for fractional pro-
grams (2023)

28

https://www.gurobi.com

[19] Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bul-
letin of the AMS 43(4), 439–561 (2006)

[20] Kaibel, V.: On the expansion of graphs of 0/1-polytopes. In: M. Grötschel (ed.)
The Sharpest Cut, MOS-SIAM Optimization Series, vol. 4, chap. 13, pp. 199–216.
SIAM (2004)

[21] Karisch, S.E., Rendl, F.: Semidefinite programming and graph equipartition. In:
Topics in semidefinite and interior-point methods (Toronto, ON, 1996), Fields Inst.
Commun., vol. 18, pp. 77–95. Amer. Math. Soc., Providence, RI (1998)

[22] de Klerk, E., Pasechnik, D., Sotirov, R., Dobre, C.: On semidefinite programming
relaxations of maximum k-section. Math. Program. 136(2, Ser. B), 253–278 (2012).
DOI 10.1007/s10107-012-0603-2

[23] Krislock, N., Malick, J., Roupin, F.: Biqcrunch: A semidefinite branch-and-
bound method for solving binary quadratic problems. ACM Trans. Math. Software
(TOMS) 43(4), 1–23 (2017)

[24] Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. J. ACM 46(6), 787–832 (1999). DOI
10.1145/331524.331526

[25] Leroux, B., Rademacher, L.: Expansion of random 0/1 polytopes. Random Struc-
tures & Algorithms 64, 609–619 (2024). DOI https://doi.org/10.1002/rsa.21184

[26] Lubin, M., Dowson, O., Dias Garcia, J., Huchette, J., Legat, B., Vielma, J.P.:
JuMP 1.0: Recent improvements to a modeling language for mathematical op-
timization. Mathematical Programming Computation (2023). DOI 10.1007/
s12532-023-00239-3

[27] de Meijer, F., Sotirov, R., Wiegele, A., Zhao, S.: Partitioning through projections:
strong SDP bounds for large graph partition problems. Computers & Operations
Research 151, 20 (2023). DOI 10.1016/j.cor.2022.106088. Id/No 106088

[28] Meira, L.A.A., Miyazawa, F.K.: Semidefinite programming based algorithms for
the sparsest cut problem. RAIRO - Operations Research 45(2), 75–100 (2011).
DOI 10.1051/ro/2011104

[29] Mihail, M.: On the expansion of combinatorial polytopes. In: I.M. Havel, V. Koubek
(eds.) Mathematical Foundations of Computer Science 1992, Lecture Notes in Com-
puter Science, vol. 629, pp. 37–49. Springer, Berlin, Heidelberg (1992)

[30] MOSEK ApS: MOSEK Optimizer API for C 10.0.47 (2023). URL https://docs.

mosek.com/10.0/capi/index.html

[31] Nachmias, A., Shapira, A.: Testing the expansion of a graph. Information and
Computation 208(4), 309–314 (2010). DOI 10.1016/j.ic.2009.09.002

29

https://docs.mosek.com/10.0/capi/index.html
https://docs.mosek.com/10.0/capi/index.html

[32] Padberg, M.: The boolean quadric polytope: some characteristics, facets and rela-
tives. Mathematical Programming 45, 139–172 (1989)

[33] Peixoto, T.P.: The Netzschleuder network catalogue and repository (2020). URL
https://networks.skewed.de/

[34] Raghavendra, P., Steurer, D.: Graph expansion and the Unique Games Conjecture.
In: Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC ’10,
pp. 755–764. Association for Computing Machinery (2010). DOI 10.1145/1806689.
1806792

[35] Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting
semidefinite and polyhedral relaxations. Math. Program. Ser. A 121(2), 307–335
(2010). DOI 10.1007/s10107-008-0235-8

[36] Sarnak, P.: WHAT IS... an Expander? Notices of the AMS 51(7), 762–763 (2004)

[37] Schaible, S.: Fractional programming. II, On Dinkelbach’s algorithm. Management
Science 22(8), 868–873 (1976)

[38] Wiegele, A., Zhao, S.: SDP-based bounds for graph partition via extended ADMM.
Comput. Optim. Appl. 82(1), 251–291 (2022). DOI 10.1007/s10589-022-00355-1

[39] Wolkowicz, H., Zhao, Q.: Semidefinite programming relaxations for the graph par-
titioning problem. Discrete Appl. Math. 96/97, 461–479 (1999)

A. Computing the maximum cut of a graph

Some of our algorithms for computing h(G) rely on finding the maximum cut in a graph.
For computing the value of the max-cut, we will use the SDP-based solver BiqBin [16].
Note that the software BiqBin can not only compute the max-cut in a graph and solve
quadratic unconstrained binary problems (QUBOs) but it is also applicable to linearly
constrained binary problems with a quadratic objective function. However, we only need
the max-cut solver in this work, and briefly describe the main ingredients in this section.

BiqBin is a branch-and-bound algorithm that uses a tight SDP relaxation as upper
bound and the celebrated Goemans-Williamson rounding procedure to generate a high-
quality lower bound on the value of the maximum cut in a graph. To be more precise,
the SDP

max
X

{1

4
〈L,X〉 : diag(X) = e, A(X) = b, X � 0

}
(12)

where A(X) ≤ b models a set of triangle-, pentagonal- and heptagonal-inequalities is
approximately solved using a bundle method. To do so, only the inequality constraints
are dualized yielding the nonsmooth convex partial dual function

f(γ) = max
X

{1

4
〈L,X〉 − γ>(A(X)− b) : diag(X) = e, X � 0

}
= b>γ + max

X

{〈1

4
L−A>(γ), X

〉
: diag(X) = e, X � 0

}

30

https://networks.skewed.de/

where γ are the nonnegative dual variables associated with the constraints A(X) ≤ b.
Evaluating the dual function f(γ) and computing the subgradient amounts to solving
an SDP that can be efficiently computed using an interior-point method tailored for this
problem. It provides us with the matching pair (Xγ , γ) such that f(γ) = b>γ + 〈1/4L−
A>(γ), Xγ〉. Moreover, the subgradient of f at γ is given by ∂f(γ) = b − A(Xγ). For
obtaining an approximate minimizer of problem

min
γ
{f(γ) : γ ≥ 0},

the bundle method is used. We refer to [35] for more details.
Note that interior-point methods are far from computing a solution of (12) already

for small graphs due to the number of constraints being too large and therefore already
forming the system matrix is an expensive task or even impossible due to memory
requirements.

BiqBin dominates all max-cut solvers based on linear programming and is comparable
to the SDP-based solver BiqCrunch [23]. Moreover, BiqBin is available as a parallelized
version.

31

	Introduction
	Formulations and SDP relaxations
	Semidefinite relaxations
	Illustrative examples for motivation

	Fixing the size k: Bisection problem
	SDP lower bounds for the bisection problem
	A heuristic for the bisection problem
	Transformation to a max-cut problem

	Split & bound
	Pre-elimination
	Stopping exact computations early and updating u*
	Order of selecting values k from I
	Algorithmic verification of lower bound

	Parametric optimization
	Solving the parametrized optimization problem

	Numerical results
	Benchmark instances
	Discussion of the experiments

	Summary and future research
	Computing the maximum cut of a graph

