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Abstract

Motivated by recent developments of using cubic regularization to escape saddle points of un-
constrained optimization, in this paper we explore its potential in pursuing second-order stationary
points of nonconvex constrained optimization whose exact objective function information may be hard
to obtain. We first propose an algorithmic framework, named as ICPD, of inexact cubic-regularized
primal-dual methods for equality constrained optimization. To update the primal variable at each
iteration, we construct a cubic regularized model relying on inexact first- and second-order derivatives
of the objective function together with information of constraint functions. By allowing an inexact
solution to each subproblem under certain conditions, we establish the iteration complexity of ICPD
to find an ϵ-approximate first- and second-order stationary point, respectively. We then consider a
stochastic variant of algorithm, SCPD for equality constrained optimization whose objective takes an
expectation form. Through a proper sampling strategy to calculate stochastic gradients and Hessians,
we address the oracle complexity of SCPD to reach approximate stationary points with high probabil-
ity. We also investigate the behavior of the standard gradient descent when solving each subproblem
with a random perturbation. We provide a detailed analysis on how to fulfill the required conditions
on an inexact subproblem solution with high probability at each iteration. Additionally, we present an
analysis of an adaptive variant of ICPD which updates penalty parameters dynamically and discuss
the applicability of adaptive cubic regularization parameters. Finally, preliminary numerical results
are reported to showcase the performances of our proposed algorithms.
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1 Introduction

In this paper, we consider the following equality constrained optimization problem:

min
x∈Rn

f(x)

s.t. c(x) := (c1(x), c2(x), . . . , cm(x))T = 0,
(1.1)

where f : Rn → R and ci : Rn → R, i = 1, . . . ,m are twice continuously differentiable and possibly
nonlinear and nonconvex. Nonlinear constrained optimization has been an important research field in
optimization community and has been studied comprehensively for decades. Very recently, along with
developments of deep learning (DL), it has revealed advantages of incorporating various constraints when
training deep neural networks [38]. Related models include physics-constrained DL model [56], manifold
regularized DL model [39] and constraint-aware DNN compression [15], and so on. In those models large
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data sets are possibly involved. Thus under many circumstances it will be expensive sometimes even
prohibitive to calculate exact information of functions.

Due to the development of complexity theories in the past ten years, it has witnessed great progress
of research on nonlinear constrained optimization. Various algorithms have been studied with complexity
analysis provided. Among those, penalty methods have attracted much attention. In [52] an inexact
augmented Lagrangian method (ALM) is proposed for convex programs with both equality and inequality
constraints. Each subproblem is solved inexactly up to a certain accuracy. Under different parameter
settings, the author studies the global convergence rate and gradient evaluation complexity to produce
a primal and/or primal-dual solution. With Nesterov’s optimal first-order method as the subproblem
solver, the number of gradient evaluations to reach a primal ϵ-solution is in order O(ϵ−1) if the objective
is convex and (ϵ−1/2| log ϵ|) if it is strongly convex. Complexity to produce a primal-dual ϵ-solution is
also established for convex and strongly convex case, respectively. It studies in [3] the complexity of an
inexact ALM corresponding to Algencan [1] for general nonconvex constrained optimization. It is shown
that the outer iteration complexity bound is O(| log(ϵ)|) to find an ϵ-approximate KKT point with KKT
measure less than ϵ in l2-norm, or an approximate stationary point of an infeasibility measure when the
penalty parameter is unbounded. Paper [20] studies the worst-case complexity of an inexact ALM for
inequality constrained optimization to find an ϵ-approximate KKT point. It shows the outer iteration
complexity bound O(ϵ−2/(ν−1)) when the penalty parameter is unbounded with ν > 1 used to control
the increase rate. Oracle complexity for linearly constrained optimization is estimated in [20]. Recent
paper [30] studies an inexact proximal-point penalty method for nonconvex constrained optimization.
Objective of each subproblem is formed by adding a quadratic penalty function and a proximal term
to the original objective function. Under the weak-convexity assumption, computational complexity in
terms of the number of proximal gradient steps to find an ϵ-stationary point are analyzed for cases with
convex constraints and with nonconvex constraints. In particular, when constraints are nonconvex, under
a non-singularity condition the complexity is Õ(ϵ−3). It is shown in [9] that finding an ϵ-approximate
first-order critical point of general smooth constrained optimizaiton needs O(ϵ−2) function and constraint
evaluations. But it requires each linearized trust-region subproblem be exactly solved.

To achieve second-order stationarity, [21] considers a class of linearly constrained optimization prob-
lems where the objective function may not be differentiable or twice differentiable. The paper focuses
on interior trust-region point algorithms, establishing computational complexity for finding approximate
second-order stationary points. In [31], two algorithms based on negative-curvature gradient projection
are proposed to pursue second-order stationarity for smooth linearly constrained nonconvex optimiza-
tion. The paper analyzes the per-iteration complexity and global sublinear rate of these algorithms.
In addition, [23] by Razaviyayn et al. studies two first-order primal-dual based algorithms for a class
of linearly constrained non-convex optimization problems and characterizes their global convergence to
second-order stationary solutions. Furthermore, [37] investigates a trust-region algorithm and provides
an analysis of the iteration complexity for finding an approximate second-order stationary point. In [8]
a trust-region algorithm is studied for unconstrained optimization and then extended to convexly con-
strained problems. Evaluations of objective function values and its derivatives are at most O(ϵ−(2p+1)) to
reach an ϵ-approximate p-th order critical point, where p ≥ 1. Nevertheless, it requires a global minimizer
of a convexly constrained pth-order Taylor model. The problem of escaping saddle points in convexly
constrained optimization is also studied in [32] and the iteration complexity to reach an approximate
second-order stationary point is established. However, the proposed algorithm framework in [32] requires
the convex feasible set be simple for a quadratic objective function such that an approximate solution
of a convexly constrained quadratic program can be efficiently computed. For problems with possibly
nonlinear and nonconvex constraints, authors of [49] study a proximal AL method for nonconvex equality
constrained optimization and apply the Newton-CG algorithm [40] to solve each subproblem. The outer
iteration complexity bound to find an approximate ϵ-first- and -second-order solution is O(ϵη−2) when the
penalty parameter is in order O(ϵ−η), where η ∈ [0, 2] is user-defined. The authors also analyze the total
iteration complexity regarding the number of inner-loop iterations as well as the operation complexity
on matrix-vector products to reach approximate solutions. In the subsequent work [22] a new Newton-
CG based ALM with improved complexities to achieve a second-order stationary point is proposed and
studied. A two-phase minimization algorithm for nonconvex constrained optimization is studied in [10]
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with the evaluation complexity analyzed to achieve first-, second- and third-order criticality. But a global
minimizer of a convexly constrained high-order Taylor model is also required. As is noted, for general
nonlinear constrained optimization, all aforementioned algorithms aiming for high-order stationary points
has stronger conditions on subproblem solutions, such as high-order stationary points of an associated
(possibly highly) nonlinear penalty function or a global minimizer of a relatively complicated subproblem.
However, they are normally expensive or even impossible to realize in practical computations. Motivated
by this, in this paper we hope to design algorithms based on simpler subproblems which can only be
solved inexactly, towards second-order stationarity for nonlinear constrained optimization.

For unconstrained optimization, cubic regularization (CR) has been well studied due to its advantages
in promoting second-order stationary. It originates from the pioneering work by Nesterov and Polyak
[35]. Consider the unconstrained smooth optimization problem minx∈Rn ϕ(x). At kth iteration the CR
approach minimizes a local upper bound on ϕ, obtained by using its second-order Taylor expansion at
current iterate xk plus a cubic regularizer:

ϕ(xk) + ⟨∇ϕ(xk), x− xk⟩+
1

2
⟨x− xk,∇2ϕ(xk)(x− xk)⟩+

σk
6
∥x− xk∥3, (1.2)

where σk > 0. Variants of algorithms have been proposed with complexity analysis to find an (ϵg, ϵH)-
point x satisfying

∥∇ϕ(x)∥ ≤ ϵg, λmin(∇2ϕ(x)) ≥ −ϵH ,

where ϵg, ϵH > 0. It is shown in [35] that the iteration complexity to find an (ϵg, ϵ
1/2
g )-point is O(ϵ

−3/2
g ),

if each subproblem is solved exactly. Cartis et al. [11] propose an adaptive regularization with cubics and

establish the O(max(ϵ
−3/2
g , ϵ−3

H )) iteration complexity to find an (ϵg, ϵH)-point, where each subproblem
can be solved inexactly. Subsequent works focus on operation complexity which characterizes the total
number of operations including function information evaluation and matrix-vector products. It has been

shown that the operation complexity achieved by CR or its variants is in order Õ(ϵ
−7/4
g ) with high prob-

ability to find an (ϵg, ϵ
1/2
g )-point of ϕ. Related works include, but not limited to, [7, 18, 24, 40, 41]. In

recent years, there has been growing interest in the pursuit of second-order stationarity for stochastic CR
methods in the context of unconstrained optimization [26,44,54,55]. In the work [26], the authors propose
a sub-sampled CR approach for unconstrained optimization in the finite-sum form. This technique incor-
porates sub-sampling to compute gradient and Hessian estimates, ensuring that the required conditions
are satisfied with high probability. This approach aims to promote desirable theoretical properties of the
algorithm. Another two relevant works are [54] and [55], where stochastic cubic regularized algorithms
based on variance reductions are studied for unconstrained finite-sum optimization. Additionally, [44]
focuses on the unconstrained minimization of a ρ-Hessian Lipschitz function f(x) = Eξ∼D[F (x; ξ)] and
proposes a stochastic optimization method that utilizes stochastic gradients and Hessian-vector products
to construct the cubic regularized approximation models. By using sampling minibatches for gradient
and Hessian evaluations, the method can find an ϵ-second-order stationary point satisfying

∥∇f(x)∥ ≤ ϵ, λmin(∇2f(x)) ≥ −√
ρϵ, (1.3)

with high probability and within Õ(ϵ−3.5) oracle evaluations.
In the context of constrained optimization, CR-type methods have also been studied by works such

as [12], [13], and [14]. The key of these methods is to employ an auxiliary function to construct a
least-square subproblem, which is solved using a CR approach. Specifically, in the case of the equality
constrained optimization problem (1.1), [12] introduces the function r(x, t) as r(x, t) := (c(x)T , f(x)−t)T ,
with t serving as a target value for the objective function f . Then a CR approach is called to solve the
least-square problem min 1

2∥r(x, tk)∥
2, where tk is adaptively varied. In [13], when solving the general

nonlinear optimization, i.e. (1.1) together with a convex set constraint x ∈ X, a two-phase Short-Step
ARC algorithm is proposed and in each phase a CR approach is called to solve a convex set constrained
least square problem. To find an approximate first-order stationary point satisfying(

χl(xk, yk) ≤ ϵ2/3∥(yk, 1)∥2 and ∥c(xk)∥2 ≤ δϵ
)

or
(
χ∥c∥2

(xk) ≤ ϵ2/3 and ∥c(xk)∥2 > δϵ
)

(1.4)
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for some δ > 0, where χω(x) = |minx+d∈X,∥d∥≤1⟨∇ω(x), d⟩| for a mapping ω : Rn → R and l(x) =
f(x) + ⟨y, c(x)⟩ is Lagrange function associated with (1.1), the proposed algorithm achieves an improved
bound, O(ϵ−3/2), on the evaluations of functions. Nevertheless it is worth noting that the works by [12–14]
focus on CR-type methods for approximating first-order criticality, without providing a discussion on
second-order criticality. Moreover, algorithms studied in these works are all designed for problems in
deterministic settings and rely on exact function information including exact function values, gradients
and/or Hessians. They cannot apply under circumstances when exact function information is costly some-
times even prohibitive to calculate. Currently, study on nonlinear constrained stochastic optimization is
still limited. Wang et al. [46] study penalty methods based on first/zeroth-order stochastic approximations
for stochastic optimization with deterministic equality constraints. Curtis et al. [17] consider the same
kind of problems and propose stochastic SQP methods with complexity analysis provided. Xu studies
in [50] a stochastic primal-dual algorithm for convex programs with nonlinear constraints. Recently, Jin
and Wang [25] extend this algorithm to nonconvex settings. Boob et al. [4] study algorithms for inequal-
ity constrained optimization in different scenarios, including deterministic setting, semi-stochastic setting
(constraints are deterministic) and fully-stochastic setting. But due to a strong feasibility assumption,
the algorithms proposed in [4] cannot be applied to equality constrained optimization. Shi et al. [43]
propose a linearized ALM based on momentum for general constrained stochastic optimization which
may contain both equality and inequality constraints. There are also some work on nonlinear stochastic
optimization with expectation constraints. Here we will not give more details while interested readers are
referred to [28,53]. Note that all previous works consentrate on the first-order stationarity of algorithms.
The study on the second-order stationary for nonlinear constrained stochastic optimization is still rare.
We note that in recent paper [32] a stochastic extension of the proposed algorithm framework escaping
saddle points is studied. But it focuses on convexly constrained optimization and requires the convex
feasible set be relatively easy to cope with. In literature there has not been any study on second-order
stationarity for general stochastic optimization with possibly nonconvex constraints. Motivated by this,
we will propose a stochastic approximation method for (nonconvexly) equality constrained stochastic
optimization and investigate its oracle complexity for finding second-order stationary points.

1.1 Contributions

Main contributions of this paper lie in the following aspects.

• We propose an algorithm framework ICPD of inexact cubic-reguarized primal-dual methods applied
for equality constrained optimization. To update the primal variable, at each iteration we construct
a cubic model that combines a cubic regularizer with a quadratic approximation to the augmented
Lagrangian (AL) function around the current iterate. One advantage of our approach is that
the subproblems involved in our algorithm framework are much simpler to solve in comparison to
existing methods.

• In the algorithm design we do not need to evaluate any objective function value, require exactness
of gradients/Hessians or solve each subproblem exactly. Instead, we allow to use approximate
first- and second-order derivatives of the objective function and solve each subproblem inexactly.
Under certain conditions we can derive the iteration complexity bounds of ICPD to reach an ϵ-FSP
and ϵ-SSP, respectively. Those complexity orders obtained for deterministic nonlinear constrained
optimization are compatitative with and in certain scenarios even lower than existing algorithms
that rely on exact function information.

• Due to the regime of ICPD that allows to use inexact derivatives of the objective function, we can
easily extend it to cope with problems in stochastic settings, when only stochastic oracles can be
available. We thus propose a stochastic variant of algorithm, SCPD for equality constrained opti-
mization with the objective function in an expectation form. We investigate numbers of stochastic
gradient and Hessian evaluations to achieve the required conditions on inexact oracles at each
iteration, then establish corresponding oracle complexity bounds of SCPD to reach approximate
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stationary points with high probability. To the best of our knowledge, the analysis on second-order
stationarity for general nonlinear constrained stochastic optimization is new in the literature.

• In order to satisfy conditions imposed on inexact solution of the subproblem at each iteration,
we investigate the behavior of the standard gradient descent with a random perturbation. Under
appropriate parameter settings, we can make sure that required conditions are achieved with high
probability, provided that the iteration number of the subsolver is sufficiently large.

• We present a theoretical analysis of an adaptive ICPD algorithm, which incorporates a scheme to
dynamically update penalty parameters. We investigate the theoretical behavior of the algorithm
under scenarios of bounded and unbounded penalty parameters respectively. In addition, we discuss
the potential applicability of an adaptive update for the cubic regularization parameter.

• We conduct some preliminary numerical implementations on proposed algorithms for solving a
quadratically constrained nonconvex program and a multi-class Neyman-Pearson classification prob-
lem. We report their performance profiles in different scenarios comparing with several existing
algorithms in the literature.

1.2 Notations and preliminaries

The following notations are used throughout the remainder of the paper. Without any specification we
use ∥·∥ to denote the Euclidean norm. Given two vectors x, y ∈ Rn, ⟨x, y⟩ = xT y refers to the inner
product of x and y. We use In to denote the n-dimensional identity matrix. Given a symmetric matrix
A ∈ Rn×n, A ⪰ 0 means that A is positive semidefinite. We define the Jacobian matrix ∇c(x) =
(∇c1(x), . . . ,∇cm(x)) and the null space Null(∇c(x)T ) = {d ∈ Rn : ∇c(x)T d = 0}. Notation Õ(·) is
used to hide the dependence on logarithmic factor. The notation ζ ∼ Unif(Sn−1) represents that ζ is
uniformly distributed on the unit sphere in Rn and N represents the set of non-negative integers.

For nonlinear constrained optimization, in general it is NP-hard to reach the global minimizer or
even a local minimizer. As is well-known, under certain constraint qualifications local minimizers satisfy
first- and second-order necessary conditions [36]. Points satisfying those necessary conditions are usually
called stationary points. Currently the main research interest has been put on seeking the more trackable
stationary points of (1.1).

Definition 1.1. We call x a first-order stationary point of (1.1), if there exists λ ∈ Rm such that

∇f(x) +∇c(x)λ = 0, c(x) = 0. (1.5)

Definition 1.2. We call x a second-order stationary point of (1.1), if there exists λ ∈ Rm such that
(1.5) holds and

dT (∇2f(x) +

m∑
i=1

λi∇2ci(x))d ≥ 0 for any d ∈ Null(∇c(x)T ). (1.6)

In this paper we study algorithms for finding approximate stationary points of (1.1) which are defined
as below.

Definition 1.3. We call x an ϵ-approximate first-order stationary point (ϵ-FSP) of (1.1), if there exists
λ ∈ Rm such that

∥∇f(x) +∇c(x)λ∥ ≤ ϵ and ∥c(x)∥ ≤ ϵ. (1.7)

Definition 1.4. We call x an ϵ-approximate second-order stationary point (ϵ-SSP) of (1.1), if there
exists λ ∈ Rm such that (1.7) holds and

dT (∇2f(x) +

m∑
i=1

λi∇2ci(x))d ≥ −
√
ϵ∥d∥2 for any d ∈ Null(∇c(x)T ). (1.8)
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1.3 Organization

The rest of the paper is organized as follows. In Section 2, we present the detailed description of the algo-
rithm framework, ICPD, for cubic-regularized primal-dual methods for solving problem (1.1). In Section
3, we establish the iteration complexity of ICPD to find an ϵ-FSP and an ϵ-SSP of (1.1), respectively. In
Section 4 we propose a stochastic variant of ICPD for equality constrained optimization with the objective
function in an expectation form. We analyze its oracle complexity to find approximate stationary points
with high probability. In Section 5 we study the subproblem solver based on standard gradient descent
approach for each subproblem with a random perturbation. We show that under certain conditions the
required conditions on inexact subproblem solutions can be satisfied with high probability. In Section 6
we provide discussions on adaptive ICPD with penalty parameters and regularization parameters updated
dynamically. We also report numerical experiment results on proposed algorithms in Section 7. Finally,
we draw conclusions in Section 8.

2 Algorithm framework

The augmented Lagrangian (AL) function associated with (1.1) is defined as

Lβ(x, λ) = f(x) + Ψβ(x, λ), where Ψβ(x, λ) := λT c(x) +
β

2
∥c(x)∥2, (2.1)

x is the primal variable, λ ∈ Rm refers to the dual variable, and β > 0 is a penalty parameter. In
classic augmented Lagrangian methods (ALMs) for (1.1), to update the primal variable the AL function
with fixed λ and β needs to be minimized approximately. However, the related computational burden
is normally high. Recently, linearized ALMs have attracted much attention. In those methods simpler
subproblems are solved. Each subproblem is built on a quadratic approximation to the AL function.
See, for example, [51] for reference. Specifically, at current iterate x and for fixed β and λ, consider to
approximate Lβ(x+ d, λ) by a quadratic model:

Lβ(x+ d, λ) ≈ Lβ(x, λ) + ⟨∇Lβ(x, λ), d⟩+
1

2η
∥d∥2

and use this model to generate next primal iterate. It is worthy to note that linearized ALMs in the
literature merely aim for first-order stationarity. A natural question is whether we can achieve higher
stationarity based on AL function while constructing relatively simpler subproblems. Fortunately, the an-
swer is affirmative. This is inspired by recent development on cubic regularization (CR) for unconstrained
optimization. As discussed in Introduction, CR has shown great potential in helping find approximate
second-order stationary points for unconstrained optimization. In CR approaches each subproblem is
built on a cubic model by incorporating second-order information of the original problem. We can apply
similar idea to nonlinear constrained optimization (1.1) in order to pursue second-order stationarity. But
due to the existence of constraints, the cubic model we try to build should be able to merge the informa-
tion of both objective function and constraints. This is easy to realize by means of the AL function. The
key idea here is that at each iteration we use a cubic regularized model to approximate the AL function
around current iterate:

Lβ(x+ d, λ) ≈ Lβ(x, λ) + ⟨∇Lβ(x, λ), d⟩+
1

2
⟨d,∇2

xxLβ(x, λ)d⟩+
σ

6
∥d∥3, (2.2)

where σ > 0 is a regularization parameter.
The cubic model in (2.2) involves calculation of exact gradient and Hessian of f at current iterate.

But under many circumstances it is expensive to compute exact derivatives of f , so we can only get access
to an approximate gradient g0k and Hessian H0

k of f at an inquiry point xk. Then we compute

gk = g0k +∇xΨβk
(xk, λk), Hk = H0

k +∇2
xxΨβk

(xk, λk), (2.3)
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which obviously are approximations to ∇xLβ(xk, λk) and ∇2
xxLβ(xk, λk). In order to update the primal

variable at kth iteration we now define the subproblem:

min
d∈Rn

qk(d) := ⟨gk, d⟩+
1

2
⟨d,Hkd⟩+

σk
6
∥d∥3. (2.4)

The lemma below characterizes properties of the optimal solution of (2.4).

Lemma 2.1. The optimal solution of (2.4), denoted by s∗k, satisfies following optimality conditions:

Hk +
σk
2
∥s∗k∥In ⪰ 0, (2.5)

gk +Hks
∗
k +

σk
2
∥s∗k∥s∗k = 0,

⟨gk, s∗k⟩+
1

2
⟨s∗k, Hks

∗
k⟩+

σk
6
∥s∗k∥3 ≤ −σk

12
∥s∗k∥3. (2.6)

In practical computations, however, the optimal solution of (2.4) is normally out of reach due to the
possible nonconvexity of qk. We may only obtain an approximate minimizer of qk, denoted by sk. In
order to derive desirable theoretical properties we impose the following conditions on the inexact solution
of (2.4). Here, the positive parameter ω is to control the tolerance.

Condition A The inexact solution sk of subproblem (2.4) satisfies the following conditions:

|∥s∗k∥ − ∥sk∥| ≤ ω1/3, (2.7a)

qk(sk) ≤ qk(s
∗
k) +

1

18
σkω, (2.7b)∥∥∥gk +Hksk +

σk
2
∥sk∥sk

∥∥∥ ≤ σkω
2/3, (2.7c)

where ω > 0.

Remark 2.1. Methods, including Krylov subspace approach and gradient descent approach, for solving
cubic regularized subproblems have been studied in the literature such as [6, 11, 26], which have different
requirements on inexact subproblem solutions from ours. In Section 5 we will specify the subproblem
solver used in our algorithm and analyze how Condition A can be guaranteed with high probability.

With the new primal iterate xk+1 := xk + sk, we come to update the dual variable. A popular way
in ALMs for (1.1) is to compute

λk+1 = λ̄k+1 := λk + βkc(xk+1).

However, to control the distance between λk and λk+1, we apply a convex combination of λk and λ̄k+1

by introducing parameter ρk ∈ (0, βk) to determine λk+1:

λk+1 = (1− ρk
βk

)λk +
ρk
βk
λ̄k+1,

which is exactly
λk+1 = λk + ρkc(xk+1). (2.8)

Same strategy has also been adopted in [25,43].
We are now ready to present the algorithm framework, ICPD, for inexact cubic-regularized primal-

dual methods for solving (1.1).
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Algorithm 2.1 ICPD

Input: x1 ∈ Rn, λ1 ∈ Rm, β1 > 0, σ1 > 0, ϵ̄ ∈ (0, 1), ω ∈ (0, 1), ρ1 ∈ (0, β1)
1: for k = 1 . . . do
2: Generate approximate gradient g0k and approximate Hessian H0

k of f at xk and compute gk and
Hk through (2.3).

3: Solve subproblem (2.4) obtaining an inexact solution sk satisfying Condition A and set xk+1 :=
xk + sk.

4: If max{∥xk+1 − xk∥, ∥xk − xk−1∥} < ϵ̄, terminate the algorithm and return xk+1.
5: Compute βk+1 satisfying βk+1 ≥ βk
6: Compute ρk+1 ∈ (0, βk+1) and σk+1

7: Compute λk+1 through (2.8).
8: k := k + 1.
9: end for

Note that the termination criterion in Step 4 of ICPD relies on parameter ϵ̄. Obviously ϵ̄ depends on
the type of approximate stationary point we are seeking. To reach ϵ-approximate stationary points, we
will specify the value of ϵ̄ in next section. In addition, for simplicity we let λ1 = 0 in the following analysis.
We will specify in next section the condition that g0k and H0

k should satisfy in theoretical analysis. In
practical computations, there are various ways to select the penalty parameters βk and regularization
parameters σk. For instance, one can update them adaptively depending on the algorithm’s progress or
assign them predetermined values.

3 Iteration complexity

In this section, we will establish the iteration complexity of ICPD to find ϵ-approximate stationary points
of (1.1). As each iteration of ICPD only involves a single inexact gradient and Hessian evaluation, its
oracle complexity, in terms of the total number of inexact gradient and Hessian evaluations, is in the
same order as the iteration complexity. To proceed, we first lay out several assumptions used throughout
the remainder of the paper.

Assumption 1. Function f is lower bounded by flow, Lf -Lipschitz continuous and twice continuously

differentiable with Lfg -Lipschitz continuous gradient and LfH-Lipschitz continuous Hessian, i.e., for any
x, y ∈ Rn,

∥∇f(x)∥ ≤ Lf , ∥∇f(x)−∇f(y)∥ ≤ Lfg∥x− y∥, ∥∇2f(x)−∇2f(y)∥ ≤ LfH∥x− y∥.

Assumption 2. Functions ci, i = 1, . . . ,m are Lc-Lipschitz continuous and twice continuously differen-
tiable with Lcg-Lipschitz continuous gradient and L

c
H-Lipschitz continuous Hessian, i.e., for any x, y ∈ Rn,

∥∇ci(x)∥ ≤ Lc, ∥∇ci(x)−∇ci(y)∥ ≤ Lcg∥x− y∥, ∥∇2ci(x)−∇2ci(y)∥ ≤ LcH∥x− y∥

for i = 1, . . . ,m.

Assumption 3. Let X be an open convex set that contains {xk} generated by the associated algorithm,
and f , ci, i = 1, . . . ,m are bounded over X , namely there exists C > 0 such that |f(x)| ≤ C and
∥c(x)∥ ≤ C for any x ∈ X .

Remark 3.1. In the study of stochastic constrained optimization, the boundedness condition plays a
crucial role in ensuring reliable properties of the iteration sequence. Due to the inherent randomness
of the algorithmic process, it becomes challenging to guarantee that all iterates remain within a specific
level set. Several related works, such as [2, 19, 33, 34], have also recognized the necessity of the bound-
edness assumption in achieving desirable properties. Assumption 5 in the work [48], which focuses on
second-order stationarity for deterministic constrained optimization, also imposes a boundedness condi-
tion. Specifically, all iterates generated within each subproblem are assumed to be contained in a bounded
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and convex set. Moreover, both the objective function f and constraint functions are assumed to be twice
uniformly Lipschitz continuously differentiable on this set. The assumptions in [13] are also relevant to
our work. These assumptions differ slightly, as they consider the weak Lipschitz continuity of ∇2ci and
∇2f along the segments between xk and a trial point x+k . It is important to note that our analysis in this
paper remains valid when we relax the uniform Lipschitz continuity of ∇2ci and ∇2f to weak Lipschitz
continuity along the segments [xk, xk+1] for k ≥ 1.

The following lemma provides upper bounds on λk, k ≥ 1.

Lemma 3.1. Under Assumption 3, it holds that

∥λk+1 − λk∥1 ≤ ρk
√
mC and ∥λk∥1 ≤

√
mC

k−1∑
t=1

ρt, ∀k ≥ 1,

where
∑0
t=1 ρt := 0.

Proof. By the update strategy of λk as in (2.8), we obtain

∥λk+1 − λk∥1 = ρk∥c(xk+1)∥1 ≤ ρk
√
m∥c(xk+1)∥ ≤ ρk

√
mC,

which yields the conclusion from ∥λk∥1 ≤
∑k−1
t=1 ∥λt+1 − λt∥1.

The lemma below characterizes the smoothness of Ψβk
with respect to x ∈ X for fixed λk.

Lemma 3.2. Under Assumptions 2-3, it holds that for any x, y ∈ X and k ≥ 1,

∥∇xΨβk
(x, λk)−∇xΨβk

(y, λk)∥ ≤ Lgk∥x− y∥, (3.1)

∥∇2
xxΨβk

(x, λk)−∇2
xxΨβk

(y, λk)∥ ≤ LHk ∥x− y∥, (3.2)

where Lgk = mβkL
2
c +

√
mβkCL

c
g +

√
mLcgC

∑k−1
t=1 ρt and LHk =

√
mCLcH

∑k−1
t=1 ρt +

√
mCβkL

c
H +

3mβkLcL
c
g.

Proof. It follows from the definition of Ψβk
in (2.1) that for any x, y ∈ X ,

∥∇xΨβk
(x, λ)−∇xΨβk

(y, λ)∥ = ∥
m∑
i=1

[(λi + βkci(x))∇ci(x)− (λi + βkci(y))∇ci(y)]∥

≤
m∑
i=1

∥(λi + βkci(x))∇ci(x)− (λi + βkci(y))∇ci(y)∥

=

m∑
i=1

∥βk(ci(x)− ci(y))∇ci(x) + (λi + βkci(y)) [∇ci(x)−∇ci(y)]∥

≤
m∑
i=1

[
βk|ci(x)− ci(y)|∥∇ci(x)∥+ |λi + βkci(y)|Lcg∥x− y∥

]
≤

m∑
i=1

[
βkL

2
c∥x− y∥+ (|λi|+ βk|ci(y)|)Lcg∥x− y∥

]
=(mβkL

2
c + Lcg∥λ∥1 +

√
mCβkL

c
g)∥x− y∥

which together with λ = λk derives (3.1) by Lemma 3.1.
We next prove (3.2). It follows from Assumption 2 that

∥∇2
xxΨβk

(x, λ)−∇2
xxΨβk

(y, λ)∥ (3.3)

= ∥
m∑
i=1

(λi + βkci(x))∇2ci(x) + βk

m∑
i=1

∇ci(x)∇ci(x)T
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−
m∑
i=1

(λi + βkci(y))∇2ci(y)− βk

m∑
i=1

∇ci(y)∇ci(y)T ∥

≤ ∥
m∑
i=1

λi(∇2ci(x)−∇2ci(y))∥+ βk∥
m∑
i=1

[ci(x)∇2ci(x)− ci(y)∇2ci(y)]∥

+ βk∥
m∑
i=1

[∇ci(x)∇ci(x)T −∇ci(y)∇ci(y)T ]∥

≤ LcH∥λ∥1∥x− y∥+ βk∥
m∑
i=1

ci(x)(∇2ci(x)−∇2ci(y))∥

+ βk∥
m∑
i=1

(ci(x)− ci(y))∇2ci(y)∥+ βk∥
m∑
i=1

∇ci(x)(∇ci(x)−∇ci(y))T ∥

+ βk∥
m∑
i=1

(∇ci(x)−∇ci(y))∇ci(y)T ∥

≤ (LcH∥λ∥1 +
√
mCβkL

c
H + 3mβkLcL

c
g)∥x− y∥, (3.4)

which indicates (3.2) by Lemma 3.1.

In our algorithm we do not require the exactness of derivatives of f , while only approximate first- and
second-order derivatives are used. But to obtain desirable theoretical properties we impose the following
condition on errors of those approximations.

Condition B For any k ≥ 1, the gradient and Hessian approximations: g0k and H0
k satisfy

∥g0k −∇f(xk)∥ ≤ θβkmax{∥xk − xk−1∥2, ϵ̂2}, (3.5a)

∥H0
k −∇2f(xk)∥ ≤ θβkmax{∥xk − xk−1∥, ϵ̂}, (3.5b)

where x0 := x1, θ ∈ (0, 1) and ϵ̂ ∈ [0, ϵ̄].

Remark 3.2. In above condition, the coefficients in right hand sides of (3.5a) and (3.5b) can be different.
Here we choose the same value θβk only for simplicity.

Without loss of generality we assume that

σk−1 ≥ 12(
1

18
+ µ)σk with µ ∈ (0, 1

36 ], ∀k ≥ 1. (3.6)

In the lemma below we provide an estimate on the upper bound of accumulated distances between
iterates.

Lemma 3.3. Under Assumptions 1-3, Conditions A and B, assume that ICPD does not terminate before
Kth iteration. If ω = ϵ̄3 and (3.6) holds, then

K−1∑
k=1

σ̂kmax{∥xk − xk−1∥3, ∥xk+1 − xk∥3} ≤ Lβ1(x1, λ1)− flow + 2
√
mC2

K−1∑
k=1

ρk +
1

2
C2

K−1∑
k=1

(βk+1 − βk),

(3.7)

where σ̂k = µσk − 1
12 (L

f
H +

√
mCLcH

∑k−1
t=1 ρt + βk(

√
mCLcH + 3mLcL

c
g + 54θ)).

Proof. When K = 1, (3.7) holds obviously. Thus without loss of generality, we assume that K > 1. For
any k = 1, . . . ,K − 1, it holds that

max{∥xk+1 − xk∥, ∥xk − xk−1∥} ≥ ϵ̄. (3.8)

By (3.2), we attain that for any x, y ∈ X ,

∥∇2
xxLβk

(x, λk)−∇2
xxLβk

(y, λk)∥ ≤∥∇2f(x)−∇2f(y)∥+ ∥∇2
xxΨβk

(x, λk)−∇2
xxΨβk

(y, λk)∥
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≤ (LfH + LHk )∥x− y∥,

where LHk is defined in Lemma 3.2. Then from (2.6) and (2.7b) it follows that

Lβk
(xk+1, λk)

≤ Lβk
(xk, λk) + ⟨∇xLβk

(xk, λk), xk+1 − xk⟩+
1

2
⟨xk+1 − xk,∇2

xxLβk
(xk, λk)(xk+1 − xk)⟩

+
LfH + LHk

6
∥xk+1 − xk∥3

≤ Lβk
(xk, λk) + ⟨gk, xk+1 − xk⟩ − ⟨gk −∇xLβk

(xk, λk), xk+1 − xk⟩+
1

2
⟨xk+1 − xk, Hk(xk+1 − xk)⟩

+
1

2
⟨xk+1 − xk, (∇2

xxLβk
(xk, λk)−Hk)(xk+1 − xk)⟩+

LfH + LHk
6

∥xk+1 − xk∥3

≤ Lβk
(xk, λk)−

1

6
(σk − (LfH + LHk ))∥xk+1 − xk∥3 − ⟨gk −∇xLβk

(xk, λk), xk+1 − xk⟩

+
1

2
⟨xk+1 − xk, (∇2

xxLβk
(xk, λk)−Hk)(xk+1 − xk)⟩+ qk(xk+1 − xk)

≤ Lβk
(xk, λk)−

1

6
(σk − (LfH + LHk ))∥xk+1 − xk∥3 − ⟨g0k −∇f(xk), xk+1 − xk⟩

+
1

2
⟨xk+1 − xk, (∇2f(xk)−H0

k)(xk+1 − xk)⟩+
1

18
σkω. (3.9)

Note that by Condition B and a2b ≤ a3 + b3 for a, b ≥ 0,

|⟨g0k −∇f(xk), xk+1 − xk⟩| ≤ ∥g0k −∇f(xk)∥∥xk+1 − xk∥
≤ θβk(max{∥xk − xk−1∥, ϵ̂})2∥xk+1 − xk∥
≤ θβk(max{∥xk − xk−1∥, ϵ̂})3 + θβk∥xk+1 − xk∥3

≤ θβk∥xk − xk−1∥3 + θβk∥xk+1 − xk∥3 + θβk ϵ̂
3

≤ 2θβkmax{∥xk − xk−1∥3, ∥xk+1 − xk∥3}+ θβk ϵ̂
3 (3.10)

and

1

2
|⟨xk+1 − xk, (∇2f(xk)−H0

k)(xk+1 − xk)⟩| ≤
1

2
∥xk+1 − xk∥2∥∇2f(xk)−H0

k∥

≤ 1

2
θβk∥xk+1 − xk∥2 max{∥xk − xk−1∥, ϵ̂}

≤ 1

2
θβk∥xk − xk−1∥3 +

1

2
θβk∥xk+1 − xk∥3 +

1

2
θβk ϵ̂

3

≤ θβkmax{∥xk − xk−1∥3, ∥xk+1 − xk∥3}+
1

2
θβk ϵ̂

3. (3.11)

With a slight abuse of notations, we define σ̄k := 1
6σk −

1
6 (L

f
H + LHk ) and σ̄0 := 0. Then plugging (3.10)

and (3.11) into (3.9) indicates that

Lβk
(xk+1, λk) ≤Lβk

(xk, λk)− σ̄k∥xk+1 − xk∥3 + 3θβkmax{∥xk − xk−1∥3, ∥xk+1 − xk∥3}

+
3

2
θβk ϵ̂

3 +
1

18
σkω. (3.12)

Note that

Lβk
(xk+1, λk) = f(xk+1) + ⟨λk, c(xk+1)⟩+

βk
2
∥c(xk+1)∥2

= f(xk+1) + ⟨λk+1, c(xk+1)⟩+
βk
2
∥c(xk+1)∥2 − ⟨λk+1 − λk, c(xk+1)⟩
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=Lβk+1
(xk+1, λk+1)− ⟨λk+1 − λk, c(xk+1)⟩ −

1

2
(βk+1 − βk)∥c(xk+1∥2

≥Lβk+1
(xk+1, λk+1)− C∥λk+1 − λk∥1 −

1

2
C2(βk+1 − βk), (3.13)

where the last inequality is due to Assumption 3. Therefore, combining (3.12) and (3.13) yields

Lβk+1
(xk+1, λk+1) ≤Lβk

(xk, λk)− σ̄k∥xk+1 − xk∥3 + 3θβkmax{∥xk − xk−1∥3, ∥xk+1 − xk∥3}+
3

2
θβk ϵ̂

3

+
1

18
σkω + C∥λk+1 − λk∥1 +

1

2
C2(βk+1 − βk).

Summing up the above inequality over k = 1, . . . ,K − 1 with terms rearranged and by

ω = ϵ̄3 and ϵ̂ ≤ ϵ̄ ≤ max{∥xk − xk−1∥, ∥xk+1 − xk∥},

we obtain

LβK
(xK , λK) ≤Lβ1

(x1, λ1)−
K−1∑
k=1

σ̄k∥xk+1 − xk∥3 +
K−1∑
k=1

(
9

2
θβk +

1

18
σk)max{∥xk − xk−1∥3, ∥xk+1 − xk∥3}

+ C

K−1∑
k=1

∥λk+1 − λk∥1 +
1

2
C2

K−1∑
k=1

(βk+1 − βk). (3.14)

Note that it implies from σ̄0 = 0 that

K−1∑
k=1

σ̄k∥xk+1 − xk∥3 =
1

2
(

K−1∑
k=1

σ̄k∥xk+1 − xk∥3 +
K−1∑
k=1

σ̄k∥xk+1 − xk∥3)

=
1

2
(

K−1∑
k=1

σ̄k∥xk+1 − xk∥3 +
K∑
k=2

σ̄k−1∥xk − xk−1∥3)

=
1

2
(

K−1∑
k=1

σ̄k∥xk+1 − xk∥3 +
K∑
k=1

σ̄k−1∥xk − xk−1∥3)

≥ 1

2

K−1∑
k=1

(σ̄k∥xk+1 − xk∥3 + σ̄k−1∥xk − xk−1∥3)

≥ 1

2

K−1∑
k=1

min{σ̄k, σ̄k−1}max{∥xk+1 − xk∥3, ∥xk − xk−1∥3}.

Then it together with (3.14) yields that

LβK
(xK , λK) ≤Lβ1

(x1, λ1)−
K−1∑
k=1

(
1

2
min{σ̄k, σ̄k−1} − (

9

2
θβk +

1

18
σk))max{∥xk − xk−1∥3, ∥xk+1 − xk∥3}

+
√
mC2

K−1∑
k=1

ρk +
1

2
C2

K−1∑
k=1

(βk+1 − βk). (3.15)

On the one hand, by σ̄k = 1
6σk −

1
6 (L

f
H + LHk ), it holds that

1

2
σ̄k − (

9

2
θβk +

1

18
σk) =

1

36
σk −

1

12
(LfH +

√
mCLcH

k−1∑
t=1

ρt + βk(
√
mCLcH + 3mLcL

c
g + 54θ)), (3.16)
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while on the other hand,

1

2
σ̄k−1 − (

9

2
θβk +

1

18
σk)

=
1

12
σk−1 −

1

12
(LfH +

√
mCLcH

k−2∑
t=1

ρt + βk−1(
√
mCLcH + 3mLcL

c
g))− (

9

2
θβk +

1

18
σk)

≥ 1

12
σk−1 −

1

12
(LfH +

√
mCLcH

k−1∑
t=1

ρt + βk(
√
mCLcH + 3mLcL

c
g))− (

9

2
θβk +

1

18
σk)

≥ µσk −
1

12
(LfH +

√
mCLcH

k−1∑
t=1

ρt + βk(
√
mCLcH + 3mLcL

c
g + 54θ)) (3.17)

due to (3.6). Thus it yields from the setting of σ̂k that

1

2
min{σ̄k, σ̄k−1} − (

9

2
θβk +

1

18
σk) ≥ σ̂k.

Moreover, Lemma 3.1 indicates

LβK
(xK , λK) = f(xK) + ⟨λK , c(xK)⟩+ βK

2
∥c(xK)∥2 ≥ f(xK) + ⟨λK , c(xK)⟩

≥ f(xK)− C∥λK∥1

≥ flow −
√
mC2

K−1∑
k=1

ρk (3.18)

which together with (3.15) gives (3.7).

Next we will establish the finite termination of ICPD under certain conditions, and then character-
ize properties of the algorithm output. Before proceeding, we need another assumption ensuring the
nonsingularity of constraints.

Assumption 4. There exists a positive constant ν such that for any x ∈ X ,

ν∥c(x)∥ ≤ ∥∇c(x)c(x)∥. (3.19)

Remark 3.3. Assumption 4 holds naturally at feasible points. Finding a feasible solution for nonconvex
constrained optimization can be challenging in general. To address this issue, it is common to impose
a constraint qualification condition or a nonsingularity condition on the constraint functions. In the
context of infeasible methods, specifically stochastic approximation methods for nonconvex constrained
optimization, a constraint qualification or nonsingularity condition is often imposed on infeasible iterates.
This condition helps analyze the complexity of algorithms, and its necessity is evident in various works,
including references such as [2,17,29,30,42]. In our work, Assumption 4 plays a crucial role in ensuring
finding an approximately feasible point, which, in turn, promotes approximate second-order stationarity.
This assumption is closely related to the strong linear independence constraint qualification (LICQ) as-
sumed in works such as [2] and [17]. Strong LICQ requires that singular values of the Jacobian matrix
of constraints over the region containing all iterates and trial points be lower bounded away from zero. It
is evident that this condition can imply Assumption 4.

We next assume that

lim
K→+∞

∑K−1
k=1 αk
αK

= +∞, where αk :=

k−1∑
t=1

ρt + βk. (3.20)

Note that as αk ≥ βk and βk ≥ βk−1 for any k ≥ 1, it implies limK→+∞
∑K−1
k=1 αk = +∞. Note that

(3.20) holds if, for instance, βk = kτ with τ ∈ (0,+∞) and ρk = k−ι with ι ∈ (1,+∞).
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Theorem 3.1. Under Assumptions 1-4, Conditions A and B, suppose that ω = ϵ̄3, (3.6) and (3.20) hold,
and

σk =
1

6µ
(LfH +

√
mCLcHαk + βk(3mLcL

c
g + 54θ)), k ≥ 1. (3.21)

Then ICPD terminates finitely. Moreover, the output, if denoted by xK+1, satisfies
∥∇f(xK+1) +∇c(xK+1)λ̂K+1∥ = O(αK ϵ̄

2 + ρK),

∥c(xK+1)∥ = O(ϵ̄2 + βK
−1(
∑K
k=1 ρk + 1)),

dT (∇2f(xK+1) +
∑m
i=1 λ̂i∇2ci(xK+1))d ≥ −υK∥d∥2 for all d ∈ Null(∇c(xK+1)

T ),

(3.22)

where λ̂K+1 := λK+1 + βKc(xK+1) and υK = O(αK ϵ̄+ ρK ϵ̄
2 + ρKβK

−1(
∑K−1
t=1 ρt + 1)).

Proof. Assume that ICPD does not terminate before Kth iteration with K > 1. Then it implies

max{∥xk − xk−1∥, ∥xk+1 − xk∥} ≥ ϵ̄ for k = 1, . . . ,K − 1,

thus yields from (3.7) that

K−1∑
k=1

σ̂k ϵ̄
3 ≤ Lβ1

(x1, λ1)− flow + 2
√
mC2

K−1∑
k=1

ρk +
1

2
C2(βK − β1). (3.23)

By the setting of σk and σ̂k in Lemma 3.3 as well as LHk in Lemma 3.2, it is easy to have

σ̂k =
1

12
(LfH +

√
mCLcHαk + βk(3mLcL

c
g + 54θ)), (3.24)

which together with (3.20) indicates that K must be finite, thus proves the finite termination of ICPD.
With a slight abuse of notation, we still use K as the iteration number when ICPD terminates with

the output xK+1. With λ̂ = λK+1 + βKc(xK+1), it follows from (2.7c) that

∥∇f(xK+1) +∇c(xK+1)λ̂K+1∥
= ∥∇f(xK+1) +∇xΨβK

(xK+1, λK+1)∥

≤ ∥∇f(xK+1) +∇xΨβK
(xK+1, λK+1)− gK −HK(xK+1 − xK)− σK

2
∥xK+1 − xK∥(xK+1 − xK)∥+ σKω

2/3

≤ ∥∇f(xK+1)−∇f(xK)−∇2f(xK)(xK+1 − xK)∥+ ∥∇f(xK)− g0K∥
+ ∥∇xΨβK

(xK+1, λK)−∇xΨβK
(xK , λK)−∇2

xxΨβK
(xK , λK)(xK+1 − xK)∥+ ∥(∇2f(xK)−H0

K)(xK+1 − xK)∥

+ ∥∇xΨβK
(xK+1, λK+1)−∇xΨβK

(xK+1, λK)∥+ σK
2

∥xK+1 − xK∥2 + σK ϵ̄
2

≤
LfH
2

∥xK+1 − xK∥2 + θβK max{∥xK − xK−1∥2, ϵ̄2}+
LHK
2

∥xK+1 − xK∥2

+ θβK max{∥xK − xK−1∥, ϵ̄}∥xK+1 − xK∥+ Lc∥λK+1 − λK∥1 +
σK
2

∥xK+1 − xK∥2 + σK ϵ̄
2

<
1

2
(LfH + LHK + 4θβK + 3σK)ϵ̄2 + LcρK∥c(xK+1)∥1 (3.25)

= O(αK ϵ̄
2 + ρK), (3.26)

where the second inequality is indicated by

∥∇xΨβk
(xK+1, λK+1)−∇xΨβk

(xK+1, λK)∥ = ∥
m∑
i=1

(λK+1 − λK)i∇ci(xK+1)∥

≤∥
m∑
i=1

|(λK+1 − λK)i|∥∇ci(xK+1)∥
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≤Lc∥λK+1 − λK∥1,

and the last inequality is due to Lemma 3.1 and the termination condition of ICPD that max{∥xK −
xK−1∥, ∥xK+1 − xK∥} < ϵ̄.

Regarding the feasibility of xK+1, we can derive from Assumption 4 and ϵ̄ ∈ (0, 1) that

∥c(xK+1)∥ ≤ 1

νβK
∥βK∇c(xK+1)c(xK+1)∥

≤ 1

νβK
∥∇f(xK+1) +∇c(xK+1)(βKc(xK+1) + λK+1)−∇f(xK+1)−∇c(xK+1)λK+1∥

≤ 1

νβK
∥∇f(xK+1) +∇xΨβK

(xK+1, λK+1)∥+
1

νβK
∥∇f(xK+1)∥+

1

νβK
∥∇c(xK+1)λK+1∥

≤ 1

νβK
∥∇f(xK+1) +∇xΨβK

(xK+1, λK+1)∥+
1

νβK
(Lf + Lc∥λK+1∥1)

≤ 1

νβK
∥∇f(xK+1) +∇xΨβK

(xK+1, λK+1)∥+
1

νβK
(Lf +mLcC

K∑
k=1

ρk)

=O(ϵ̄2 + βK
−1(

K∑
k=1

ρk + 1)). (3.27)

Note that it follows from (2.5) and (2.7a) that

HK +
σK
2

∥xK+1 − xK∥In ⪰HK +
σK
2

∥s∗K∥In − σK
2

(∥s∗K∥ − ∥sK∥)In ⪰ −σK
2
ω1/3In,

which indicates from ω1/3 = ϵ̄ ≥ max{∥xK+1 − xK∥, ∥xK − xK−1∥} that

∇2f(xK+1) +

m∑
i=1

λ̂i∇2ci(xK+1) =∇2f(xK+1) +

m∑
i=1

((λK+1)i + βKci(xK+1))∇2ci(xK+1)

⪰∇2f(xK+1) +∇2
xxΨβK

(xK+1, λK+1)− βK

m∑
i=1

∇ci(xK+1)∇ci(xK+1)
T

−H0
K −∇2

xxΨβK
(xK , λK)− σK

2
∥xK+1 − xK∥In − σK

2
ω1/3In

⪰ (∇2f(xK+1)−H0
K) + (∇2

xxΨβK
(xK+1, λK+1)−∇2

xxΨβK
(xK , λK))

− βK

m∑
i=1

∇ci(xK+1)∇ci(xK+1)
T − σK ϵ̄In.

To estimate above lower bound, on the one hand, Assumption 1 together with Condition B implies

∇2f(xK+1)−H0
K ⪰ − ∥∇2f(xK+1)−∇2f(xK)∥In − ∥∇2f(xK)−H0

K∥In
⪰ − LfH∥xK+1 − xK∥In − ∥∇2f(xK)−H0

K∥In
⪰ − (LfH + θβK)ϵ̄In.

On the other hand, (3.2) implies

∇2
xxΨβk

(xK+1, λK+1)−∇2
xxΨβk

(xK , λK)

= ∇2
xxΨβk

(xK+1, λK+1)−∇2
xxΨβk

(xK+1, λK) +∇2
xxΨβk

(xK+1, λK)−∇2
xxΨβk

(xK , λK)

=

m∑
i=1

((λK+1)i − (λK)i)∇2ci(xK+1) +∇2Ψβk
(xK+1, λK)−∇2Ψβk

(xK , λK)

⪰ −Lcg∥λK+1 − λK∥1In − LHK∥xK+1 − xK∥In.
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Then the following relation holds:

∇2f(xK+1) +

m∑
i=1

(λ̂K+1)i∇2ci(xK+1) ⪰ − (LfH + θβK + LHK + σK)ϵ̄In − Lcg∥λK+1 − λK∥1In

− βK∇ci(xK+1)∇ci(xK+1)
T . (3.28)

Thus for any d ∈ Null(∇c(xK+1)
T ), by ∥λK+1 − λK∥ = ρK∥c(xK+1)∥, settings on σK , ρK and ∥xK+1 −

xK∥ ≤ ϵ̄, we have

dT (∇2f(xK+1) +

m∑
i=1

λ̂i∇2ci(xK+1))d ≥ −υK∥d∥2,

where υK = (LfH + θβK + LHK + σK)ϵ̄+ Lcg∥λK+1 − λK∥1. It is easy to derive from (3.27) that

υK = O(αK ϵ̄+ ρK ϵ̄
2 + ρKβK

−1(

K∑
t=1

ρt + 1)).

The proof is completed.

Remark 3.4. As indicated in (3.27), Assumption 4 plays a crucial role in ensuring the near feasibility
of xK+1. Without this assumption, following the analysis to (3.27) and (3.28) and applying Assumption
3 we can obtain

∥∇c(x)c(x)∥ = O(ϵ̄2 + β−1
K (

K∑
k=1

ρk + 1))

and

dT (∇2f(xK+1) +

m∑
i=1

(λ̂K+1)i∇2ci(xK+1))d ≥ −ῡK∥d∥2, for all d ∈ Null(∇c(xK+1)
T ),

where ῡK = (LfH + θβK + LHK + σK)ϵ̄+ LcgCρK .

We next present the iteration complexity of ICPD to find an ϵ-FSP and an ϵ-SSP of (1.1), respectively,
under a non-adaptive presetting of penalty parameters βk.

Theorem 3.2. Under Assumptions 1-4, Conditions A and B, suppose that ω = ϵ̄3, ϵ̂ ≤ ϵ̄, (3.6), (3.20),
(3.21). The following statements hold true.

(i) The iteration complexity of ICPD to find an ϵ-FSP is in order O(ϵ−3), if

ϵ̄ = ϵ, βk = kτ , τ =
1

3
, and ρk = k−ι, ι ∈ (1,+∞). (3.29)

(ii) The iteration complexity of ICPD to find an ϵ-SSP is in order O(ϵ−4.5), if

ϵ̄ = ϵ1.5, βk = kτ , τ =
2

9
, and ρk = k−ι, ι ∈ (1,+∞). (3.30)

Proof. Let K be the index of iteration when ICPD terminates. By Theorem 3.1 we know that K is finite.
Under setting (3.29), it holds that

αk =

k−1∑
t=1

ρt + βk ≥ kτ

which derives from (3.23) that ∑K−1
k=1 kτ ϵ̄3

Kτ
= O(1), (3.31)

thus there exists a positive constant Ĉ = O(1) such that K ≤ Ĉϵ̄−3. Consequently, under parameter
setting (3.29), K is in order O(ϵ−3), then it is straightforward to obtain conclusions from Theorem 3.1.
For (ii), the conclusion can be derived through similar analysis.
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Remark 3.5.

(a) The paper [49] presents an analysis of Proximal AL method designed for equality constrained opti-
mization. This work characterizes the total iteration complexity of the proposed algorithm, in terms
of total number of iterations of Newton-CG. Since at each iteration of Newton-CG, it needs to
compute the gradient and Hessian once, the total iteration complexity in [49] aligns with the ora-
cle complexity in our case, counting the number of gradient and Hessian evaluations. It is shown
in [49, Theorem 4] that the total iteration complexity is in order O(ϵ−5.5) to find ϵ-FSP satisfying
(1.7). And the oracle complexity is in order O(ϵ−7) to find an approximate second-order stationary
point with high probability satisfying (1.7) and

dT (∇2f(x) +

m∑
i=1

λi∇2ci(x))d ≥ −ϵ∥d∥2 for any d ∈ Null(∇c(x)T ). (3.32)

By Theorem 3.2 the oracle complexity of ICPD to find an ϵ-FSP is O(ϵ−3). To reach an approximate
second-order stationary point satisfying (1.7) and (3.32), we set

ϵ̄ = ϵ2, βk = kτ , τ =
1

6
, and ρk = k−ι, ι ∈ (1,+∞).

Then the corresponding oracle complexity of ICPD is in order O(ϵ−6). Meanwhile, as ICPD relies
on inexact derivatives of the objective, we can easily extend it to solve problems in stochastic settings,
which however is not straightforward for Proximal AL.

(b) A deterministic SQP method is studied for (1.1) in [17]. It is assumed in [17, Assumption 1] that
∇f, c,∇cT are bounded, ∇f,∇cT are Lipschitz continuous, and a strong LICQ holds, i.e., singular
values of ∇cT are uniformly lower bounded away from zero for all k. For Hessian approximations

{Bk}, it only requires their boundedness in norm and {u
TBku
∥u∥2 : u ̸= 0, Jku = 0} are uniformly lower

bounded from zero. It is shown in [17] that the iteration complexity of deterministic SQP is in order
O(ϵ−2) to find a point satisfying

∥∇f(x) +∇c(x)λ∥ ≤ ϵ and
√
∥c(x)∥1 ≤ ϵ. (3.33)

Since many trivial approximations, including the identity matrix, satisfy the required assumption
on Hessian approximations. Thus we consider the oracle complexity of deterministic SQP only
regarding gradient approximation evaluations. Moreover, as at each iteration only a single gradient
is computed, the iteration complexity of deterministic SQP is same as the oracle complexity regarding
the gradient evaluations.

(c) Another work closely related to ours is [13], where the two-phase Short-Step ARC algorithm is
proposed for minx∈X f(x) subject to c(x) = 0. It is based on a CR method that applies for (convex set
constrained) least-square problems. Under the assumptions that the closed convex hull of all iterates
and trial iterates is bounded, the Hessian is weakly uniformly Lipschitz continuous and is well
approximated by a Hessian approximation (see AS2-AS3 in [13]), to find an approximate first-order
critical point of accuracy ϵ, satisfying (1.3), for general constrained optimization, Short-Step ARC
algorithm owns the oracle complexity in order O(ϵ−1.5) regarding problem-functions evaluations
to find an approximate first-order stationary point satisfying (1.4). But this algorithm requires a
convexly constrained high-order Taylor model be solved exactly at each iteration.

(d) In [10] a two-phase minimization algorithm, outer, is studied for the same problem as [13], with
an inner algorithm called to solve a convex set constrained least-square problem at each iteration.
The related evaluation complexity is analyzed to achieve higher-order critical points and dependent
on the choice of the inner algorithm that arrives at ϵ-approximate qth order critical point using
the regularized Taylor series of degree p. Under a constraint qualification (Assumption AS.0) that
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ensures the existence of a feasible path, it achieves O(ϵ−1
p , ϵ1−πp ϵ−πD ) evaluations of f , c and their

derivatives up to order p to find xϵ and tϵ ≤ f(xϵ) such that{
∥c(xϵ)∥ > δϵp, and ϕ∆k

ν,j (xϵ) ≤ ϵD∆
j
k∥c(xϵ)∥ for j ∈ [q], if tϵ = f(xϵ),

∥c(xϵ)∥ ≤ δϵp, and ϕ∆k
µ,j(xϵ, tϵ) ≤ ϵD∆

j
k∥r(xϵ, tϵ)∥ for j ∈ [q], if tϵ < f(xϵ).

(3.34)

Here, ν(x) := 1
2∥c(x)∥

2, µ(x, t) := 1
2∥r(x, t)∥

2 with r(x, t) := (c(x)T , f(x) − t)T , and ϕ∆ψ,j(x) :=
ψ(x) − min{Tψ,j(x, d)|x + d ∈ X, ∥d∥ ≤ ∆} with the jth order Taylor model Tψ,j(x, d). And the
parameter π ≥ 1 indicates the lower bound of function decrease at successful iterations of inner
algorithm is in O(ϵπ). Consequently, the evaluation complexity of outer to achieve approximate
first- and second-order stationary point as defined by (3.34) is in O(ϵ−2) and O(ϵ−3), respectively.

(e) We present a brief summary on aforementioned algorithms and ICPD in Table 1. Here, “ 1-o” refers
to the first-order stationarity, while “ 2-o” refers to the second-order stationarity. And “ StaMea”
represents the stationarity measure, while “OraCom” represents the related oracle complexity. As
all algorithms are deterministic, without specification the oracle complexity are in terms of the
number of gradient and Hessian evaluations, if applicable. And “Stochasticity” is to represent if the
original algorithm has been extended to a stochastic variant.

Algorithm ProbType
1-o 2-o

Stochasiticity
StaMea OraCom StaMea OraCom

Short-Step ARC

[13]

minx∈X f(x)

s.t. c(x) = 0
(1.4) O(ϵ−1.5) - - -

Deterministic SQP

[17]

minx∈Rn f(x)

s.t. c(x) = 0
(3.33) O(ϵ−2) - - ✓

outer

[10]

minx∈X f(x)

s.t. c(x) = 0

(3.34)
(p = q = 1)

O(ϵ−2)
(3.34)

(p = q = 2)
O(ϵ−3) -

Proximal AL

[49]

minx∈Rn f(x)

s.t. c(x) = 0
(1.7) O(ϵ−5.5) (1.7)& (3.32) O(ϵ−7) -

ICPD

(this paper)

minx∈Rn f(x)

s.t. c(x) = 0
(1.7) O(ϵ−3) (1.7)& (3.32) O(ϵ−6) ✓

Table 1: A brief summary on deterministic algorithms for (1.1).

4 Stochastic variant

In this section, we consider problem (1.1) with objective function f in an expectation form, i.e.

min
x∈Rn

f(x) := E[F (x; ξ)]

s.t. ci(x) = 0, i = 1, . . . ,m.
(4.1)

Here ξ : Ω → W is a random variable defined on a probability space (Ω,F ,P), W is a measurable space
and E represents the expectation with respect to ξ. Additionally, F : Rn ×W → R is twice continuously
differentiable with respect to x almost surely for ξ. We assume that exact derivatives of f cannot be
accessed, while only stochastic oracles of f at an inquiry point xk can be obtained. We now consider a
stochastic variant of ICPD, a stochastic cubic-regularized primal-dual algorithm (shortened as SCPD),
in which mini-batch stochastic approximations g0k and H0

k are calculated:

g0k =
1

Ik

∑
i∈Ik

∇xF (xk; ξ
i
k), H0

k =
1

Jk

∑
j∈Jk

∇2
xxF (xk; ξ

j
k), (4.2)
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where {ξik, i ∈ Ik} and {ξjk, j ∈ Jk} are two randomly and independently generated sample sets with
Ik = |Ik| and Jk = |Jk|. As can be seen in previous section, although inexact derivatives of the objective
function can be allowed, certain condition i.e., Condition B should always be satisfied at each iteration.
It plays a crucial rule in establishing desirable properties of the algorithm. We will see that in stochastic
settings this condition can be easily satisfied with high probability through a proper sampling strategy.
But first we need the following assumption.

Assumption 5. For any x,

• E[∇xF (x; ξ)] = ∇f(x) and ∥∇xF (x; ξ)−∇f(x)∥ ≤M1 almost surely;

• E[∇2
xxF (x; ξ)] = ∇2f(x) and ∥∇2

xxF (x; ξ)−∇2f(x)∥ ≤M2 almost surely.

Remark 4.1. Matrix concentration inequalities are commonly used in modern random matrix theory to
characterize the deviations of random matrices. In the context of bounded random matrices, Assumption
5 is often imposed to establish the matrix Bernstein inequality from [45]. By using the sub-sampling
scheme and leveraging the concentration inequality one can derive the oracle complexity regarding the
number of random matrices. In the study of stochastic cubic regularization for unconstrained expectation
minimization problems [44], a similar assumption to Assumption 5 is also assumed. This assumption
enables the application of matrix concentration inequalities for analyzing the behavior of stochastic cu-
bic regularization methods. If instead assuming that F (x; ξ) has LF -Lipschitz continuous gradients, the
boundedness on the error of Hessian estimates can be removed, as indicated in [44]. Matrix concentration
inequalities have also been used to analyze the gradient and Hessian oracle complexity in the work for
stochastic cubic regularzation methods including [27,48,54].

The lemma below characterizes the sample size per-iteration to ensure Condition B with high proba-
bility. Detailed proof can be referred to [44, Lemma 4].

Lemma 4.1. Let Ik and Jk be sampled independently and randomly, and Assumption 5 hold. Then for
any given δ′ ∈ (0, 1), Condition B with ϵ̂ = ϵ̄ is satisfied at kth iteration with probability no less than
1− δ′, provided that

Ik ≥O
(
max

{
M1

θβkmax {∥xk − xk−1∥2, ϵ̄2}
,

M2
1

θ2βk
2 max {∥xk − xk−1∥4, ϵ̄4}

}
log(

1

δ′
)

)
,

Jk ≥O
(
max

{
M2

θβkmax {∥xk − xk−1∥, ϵ̄}
,

M2
2

θ2βk
2 max {∥xk − xk−1∥2, ϵ̄2}

}
log(

1

δ′
)

)
.

Now we are ready to give the oracle complexity of SCPD in terms of stochastic gradients and Hessian
evaluations calculated through (4.2).

Theorem 4.1. Under Assumptions 1-5 and Condition A, ω = ϵ̄3, ϵ̂ = ϵ̄, (3.6), (3.20) and (3.21). For
any given δ ∈ (0, 1), the following statements hold true.

(i) If (3.29) holds, then to find an ϵ-FSP of (4.1) with probability no less than 1 − δ, the oracle
complexity regarding stochastic gradient and Hessian evaluations is in order Õ(ϵ−5) and Õ(ϵ−3),
respectively.

(ii) If ϵ̄ = ϵ, βk = k1/6 and ρk = k−ι with ι ∈ (1,+∞), then to find a point x satisfying (1.8) and

∥∇f(x) +∇c(x)λ∥ ≤ ϵ1.5 and ∥c(x)∥ ≤
√
ϵ (4.3)

with probability no less than 1− δ, the oracle complexity regarding stochastic gradient and Hessian
evaluations is in order Õ(ϵ−6) and Õ(ϵ−4), respectively.

Proof. Assume that the algorithm terminates in a finite number of iterations, with maximum iteration
number denoted by K. We assume that Condition B holds with probability no less than 1 − δ′ at each
iteration, where δ′ ∈ (0, 1). To guarantee that Condition B holds for all iterations with probability at
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least 1 − δ, it is sufficient to require 1 − Kδ′ ≥ 1 − δ. So we can simply set δ′ = δ/K. Accordingly,
by Lemma 4.1, to ensure Condition B hold at kth iteration, the sample size associated with stochastic
gradient and Hessian evaluations at kth iteration can be set as

Ik = O
(⌈

max

{
1

θβk ϵ̄2
,

1

θ2β2
k ϵ̄

4

}
log(

K

δ
)

⌉)
and Jk = O

(⌈
max

{
1

θβk ϵ̄
,

1

θ2β2
k ϵ̄

2

}
log(

K

δ
)

⌉)
,

respectively. Thus the total number of stochastic gradient and Hessian evaluations are

K∑
k=1

Ik = O

(
max

{∑
k

1

βk ϵ̄2
,
∑
k

1

β2
k ϵ̄

4

}
| log(ϵδ)|+ ϵ̄−3

)
, (4.4)

and
K∑
k=1

Jk = O

(
max

{∑
k

1

βk ϵ̄
,
∑
k

1

β2
k ϵ̄

2

}
| log(ϵδ)|+ ϵ̄−3

)
, (4.5)

respectively, where the term ϵ̄−3 in (4.4)-(4.5) is due to the fact that Ik ≥ 1 and Jk ≥ 1 for k = 1, . . . ,K.
(i) We obtain from Corollary 3.2 that with probability no less than 1 − δ, K = ϵ−3 and ICPD can find
an ϵ-FSP of (1.1) under parameter setting (3.29). Note that

K∑
k=1

1

β2
k

= O(K1/3), and

K∑
k=1

1

βk
= O(K2/3) for βk = k1/3.

Thus when ϵ̄ = ϵ, to reach an ϵ-FSP of (4.1) with probability at least 1−δ, the oracle complexity of SCPD
in terms of stochastic gradient and Hessian evaluations is in order O(ϵ−5| log(ϵδ)|) and O(ϵ−3| log(ϵδ)|),
respectively. (ii) When ϵ̄ = ϵ, βk = k1/6 and ρk = k−ι with ι ∈ (1,+∞), from (3.31) we obtain that with
probability no less than 1 − δ, K = O(ϵ−3) and ICPD reaches a point satisfying (4.3) and (1.8). Then
by (4.4), (4.5) and

K∑
k=1

1

β2
k

= O(K2/3),

K∑
k=1

1

βk
= O(K5/6), for βk = k1/6,

related oracle complexity is in order O(ϵ−6| log(ϵδ)|) and O(ϵ−4| log(ϵδ)|), respectively.

Remark 4.2. The complexity bounds presented in (4.4) and (4.5) are affected by the choice of the
parameter τ , which controls the rate of increase of the penalty parameter in the algorithm.

Remark 4.3. We now list several closely related works that either focus on nonconvex constrained
stochastic optimization or study stochastic approximation method based on cubic regularization.

(a) Penalty methods based on first- and zeroth-order stochastic approximations are studied in [46] for
solving problem (4.1). By assuming that the iterate sequence is bounded and under standard as-
sumptions that stochastic gradients are unbiased estimates and have bounded stochastic variances,
i.e. Eξ[∇Fx(x; ξ)] = ∇f(x) and Eξ[∥∇Fx(x; ξ)−∇f(x)∥2] ≤M2

1 for some M1, the penalty method
based on first-order stochastic approximation, shorted as PFSA, can achieve O(ϵ−3.5) oracle com-
plexity, to find an ϵ-approximate critical point of (4.1) satisfying E[∥∇f(x) + ∇c(x)λ∥2] ≤ ϵ and
E[θ(x)] ≤

√
ϵ, where θ(x) := ∥c(x)∥ −min∥d∥≤1 ∥c(x) +∇c(x)d∥. If the nonsingularity condition as

Assumption 4 is assumed, the oracle complexity of PFSA in terms of stochastic gradients evaluations
is in order O(ϵ−7) to reach

E[∥∇f(x) +∇c(x)λ∥] ≤ ϵ, E[∥c(x)∥] ≤ ϵ. (4.6)

(b) A stochastic primal-dual algorithm (SPD) was originally proposed in [25] for nonconvex optimization
with a large number of possibly nonconvex constraints. This method can be applied to solve (4.1),
with trivial modifications to the algorihtm framework. When starting from an arbitrary initial iterate
and assuming the nonsigularity condition as shown in Assumption 4, one can find an ϵ-stationary
point x of (4.1) satisfying (4.6) with oracle complexity in order O(ϵ−6), under standard assumptions
on stochastic gradients.
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(c) Recently, a momemtum-based primal-dual algorithm for nonconvex programming with general deter-
ministic equality and inequality constraints is studied in [43]. Besides the standard assumptions on
stochastic gradients and the nonsigularity condition, if further assuming the mean-squared smooth-
ness condition, i.e. there exists L > 0 such that Eξ[∥∇xF (x; ξ) − ∇xF (y; ξ)∥2] ≤ L2∥x − y∥2,
MLALM can find a point satisfying (4.6) within O(ϵ−4) stochastic gradient evaluations. Moreover,
when the initial iterate is (nearly) feasible, the corresponding complexity is O(ϵ−3). Comparatively,
starting from an arbitrary initial point and without assuming the mean-squared smoothness condi-
tion, SCPD can achieve a complexity order of Õ(ϵ−5) to obtain an ϵ-FSP with high probability.

(d) An adaptive stochastic SQP algorithm (SSQP) is studied in [17]. Under standard assumptions
on stochastic gradients and the strong LICQ condition, when the threshold value of the associated
penalty parameter is unknown, with probability 1−δ ∈ (0, 1), SSQP can find an approximate solution
x satisfying

E [∥∇f(x) +∇c(x)λ∥ |E] ≤ ϵ, E[
√

∥c(x)∥1|E] ≤ ϵ (4.7)

after Õ(ϵ−4 log 1
δ ) iterations, where E is the event satisfying certain conditions and λ is the asso-

ciated Lagrange multiplier. It is noteworthy that the theories presented in [17] remain valid when
simply using the identity matrix as the Hessian approximation at each iteration.

(e) In addition to aforementioned works on stochastic approximation algorithms for nonconvex con-
strained optimization, the work [44] is also closely related to ours. In [44], a stochastic cubic
regularized algorithm SCR is studied for unconstrained optimization, with complexity analysis being
provided. We present in Table 2 a brief summary on SCR and stochastic approximation algorithms
that can be applied to solve (4.1). We list the problem type the corresponding algorithm is originally
designed for, where f(x) = E[F (x; ξ)]. Here “standard assumptions” mean that the stochastic ora-
cles are unbiased and have bounded variances, “almost sure boundedness” assumption refers to the
one on the error of stochastic gradients and Hessians, if applicable, as presented in Assumption 5,
and “mean-squared smoothness” is same as given in (c). The stationarity measure “StaMea” that
defines the approximate solution sought by each algorithm is also presented. We report the oracle
complexity in terms of stochastic gradient and Hessian (or Hessian-vector) evaluations, shortened
as “GraOra” and “HesOra”, respectively. Notation “-” means that the related algorithm does not
involve any computation of Hessian or its approximation. For SCR, SSQP and SCPD the corre-
sponding complexity is in high probability.

Algorithm ProbType Assumption StaMea GraOra HesOra

SCR [44] minx∈Rn f(x) almost sure boundedness (1.3) Õ(ϵ−3.5) Õ(ϵ−3.5)

PFSA [46]
minx∈Rn f(x)

s.t. c(x) = 0

standard assumptions
nonsigularity condition

(4.6) O(ϵ−7) -

SPD [25]
minx∈X f(x) + h(x)

s.t. ci(x) ≤ 0, i ∈ I
standard assumptions
nonsigularity condition

(4.6) O(ϵ−6) -

MLALM [43]

minx∈X f(x) + h(x)

s.t. ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I

standard assumptions
nonsigularity condition

mean-squared smoothness
(4.6) O

(
ϵ−4

)
-

SSQP [17]
minx∈Rn f(x)
s.t. c(x) = 0

standard assumptions
strong LICQ

(4.7) Õ
(
ϵ−4

)
-

SCPD
minx∈Rn f(x)

s.t. c(x) = 0

almost sure boundedness
nonsigularity condition

(1.7)

(4.3) &(1.8)

Õ(ϵ−5)

Õ(ϵ−6)

Õ(ϵ−3)

Õ(ϵ−4)

Table 2: A brief summary on SCR [44] and stochastic approximation algorithms that can solve (4.1).
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5 Subproblem solver

As can be seen in previous sections, Condition A plays a crucial role in theoretical analysis for deriving the
iteration complexity of the proposed algorithm. But we did not specify how to realize this condition back
then. The goal of this section is to investigate how we can make sure it is satisfied at an inexact solution
of each subproblem. For brievity, in this section we will omit the subscripts in the kth subproblem by
simply considering

min
d∈Rn

q(d) := ⟨g, d⟩+ 1

2
⟨d,Hd⟩+ σ

6
∥d∥3. (5.1)

We denote its optimal solution as s∗. Algorithms for solving the cubic regularized problem (5.1) have
been studied in recent work [5] and [6]. But there is a so-called “hard case” when g(1) = 0. Here g(1)

refers to the first coordinate of g in the eigenbasis of H [5]. In this case it may appear that (s∗)(1) ̸= 0
but the gradient descent remains in a subspace orthogonal to the first eigenvector of H [16]. To cope
with this issue a randomization scheme is proposed by slightly perturbing the vector g to g̃ with g̃(1) ̸= 0.
Then solve the resulting problem

min
d∈Rn

q̃(d) := ⟨g̃, d⟩+ 1

2
⟨d,Hd⟩+ σ

6
∥d∥3 (5.2)

by means of the standard gradient descent approach. We present the approach as the cubic-subsolver
in the following algorithm. Recalling that we are seeking an inexact solution satisfying Condition A,
we will analyze in details how this condition can be accomplished at the output of the solver with high
probability.

Algorithm 5.1 Cubic-Subsolver via Gradient descent

Input: g, η, γ,H and σ
Output: st

1: s1 = 0
2: g̃ = g + γζ with ζ ∼ Unif(Sn−1)
3: for t = 1, 2, . . . do
4: st+1 = st − η(g̃ +Hst + σ

2 ∥s
t∥st)

5: end for

By the optimality of s∗, it holds that

g +Hs∗ +
σ

2
∥s∗∥s∗ = 0,

from which it implies

σ

2
∥s∗∥2 ≤ ∥g∥+ ∥Hs∗∥ ≤ ∥g∥+ ∥H∥∥s∗∥ ≤ ∥g∥+ ∥H∥2

σ
+
σ

4
∥s∗∥2,

thus leading to

∥s∗∥ ≤ S := 2

√
∥g∥
σ

+
2∥H∥
σ

.

We next define
ψ = ∥H∥, λ = −λmin(H), λ+ = max{λ, 0} (5.3)

and set

γ =
σσ̄ε

25(ψ + σS)
, R =

ψ

σ
+

√
(
ψ

σ
)2 +

2∥g∥
σ

, η =
1

2max{ψ + σS + 2.5
√
γσ, 4(ψ + σ

2R)}
, (5.4)
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where σ̄ ∈ (0, 1) and ε > 0. Note that q(0) ≤ q(s)+ ε for any ε ≥ ( 12ψ+ σ
2 ∥s

∗∥)∥s∗∥2 as q is (ψ+σ∥s∗∥)-
smooth on the set {d ∈ Rn : ∥d∥ ≤ ∥s∗∥}. In the following, without loss of generality, we assume

ε ≤ (
1

2
ψ +

σ

2
S)∥s∗∥2.

Then it yields from the setting of γ that

γ ≤ 1

48
σ̄σ∥s∗∥2. (5.5)

From the setting of η and s1 = 0, it is easy to check that Assumptions A and B in [6] are satisfied. Then
as g̃(1) ̸= 0, [6, Proposition 3.3] implies

st → s̃∗, where s̃∗ is the optimal solution of (5.2). (5.6)

And by [6, Lemma 3.1] we have ∥st∥ ≤ ∥s̃∗∥ for all t ≥ 1. The lemma below provides an upper bound on
the error between ∥st∥2 and ∥s∗∥2.

Lemma 5.1. Under parameter settings as (5.4), it holds that for sufficiently large t,∣∣∥st∥2 − ∥s∗∥2
∣∣ ≤ σ̄

6(ψ + σS)
ε. (5.7)

Proof. By the gradient perturbation g̃ = g + γζ, applying [5, Lemma 4.6 (iii)] we obtain

|∥s̃∗∥2 − ∥s∗∥2| ≤ 4γ

σ
(5.8)

which derives from (5.4) and (5.6) that (5.7) holds for sufficiently large t.

Motivated by Lemma 5.1 together with (5.6) and |∥st∥ − ∥s∗∥| ≤
√
|∥st∥2 − ∥s∗∥2|, by setting

ε ≤ 6(ψ + σS)

σ̄
ω2/3, (5.9)

we can obtain (2.7a) at kth iteration with sk := st and s∗k = s∗ when t is sufficiently large. We next
consider when (2.7b) can be reached at the output of the cubic solver. First, note that by (5.5) and (5.8),

|∥s∗∥2 − ∥s̃∗∥2| ≤ 4γ

σ
≤ 1

12
σ̄∥s∗∥2,

which indicates
∥s̃∗∥ ∈ (

√
1− σ̄/12,

√
1 + σ̄/12)∥s∗∥. (5.10)

Then it is easy to obtain

|∥s∗∥ − ∥s̃∗∥| ≤ 4γ

σ(∥s∗∥+ ∥s̃∗∥)
≤ 4γ

σ(1 +
√
11/12)∥s∗∥

≤ σ̄ε

6(1 +
√
11/12)∥s∗∥(ψ + σS)

≤ σ̄ε

10σ∥s∗∥2
.

(5.11)

Under parameter settings (5.3)-(5.4), the following lemma can be derived.

Lemma 5.2. Under parameter settings (5.3)-(5.4), it holds that q̃(st) ≤ q̃(s̃∗) + ε for all

t ≥ 6

η

(
log

(
1 +

λ2+
2σ|g̃(1)|

)
+ log

(∥H∥+ σ∥s̃∗∥)∥s̃∗∥2

ε

)
min

{
1

σ
2 ∥s̃∗∥ − λ

,
10∥s̃∗∥2

ε

}
. (5.12)

If, in particular, σ2 ∥s
∗∥ − λ ≤ (1− 2σ̄

3 ) ε
10∥s∗∥2 , then q̃(s

t) ≤ q̃(s̃∗) + ε for all

t ≥ 6

η

(
log

(
1 +

λ2+
2σ|g̃(1)|

)
+ log

(∥H∥+ σ∥s̃∗∥)∥s̃∗∥2

ε

)√
10∥s̃∗∥2

ε
· 1

gap ∧ σ
2 ∥s̃∗∥

, (5.13)

where “ gap” represents the distance between λmin and the first eigenvalue of H that is larger than λmin.
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Proof. By [5, Theorem 3.1], it is straightforward to obtain (5.12). As for (5.13), it can be derived
by [5, Theorem 3.1] when σ

2 ∥s̃
∗∥ − λ ≤ ε

10∥s̃∗∥2 , which is implied by σ
2 ∥s

∗∥ − λ ≤ (1− 2σ̄
3 ) ε

10∥s∗∥2 , since

σ

2
∥s̃∗∥ − λ ≤ σ

2
∥s∗∥ − λ+

σ̄ε

20∥s∗∥2
≤ ε

10∥s∗∥2
(1− 2σ̄

3
+
σ̄

2
) ≤ ε

10∥s∗∥2
(1 + σ̄/12)(1− σ̄/6) ≤ ε

10∥s̃∗∥2

by (5.11).

It follows from (5.10) that
10∥s̃∗∥2

ε
≤ (1 + σ̄) · 10∥s

∗∥2

ε
, (5.14)

log
(∥H∥+ σ∥s̃∗∥)∥s̃∗∥2

ε
≤ log

(1 + σ̄)(∥H∥+
√

(1 + σ̄/12)σ∥s∗∥)∥s∗∥2

ε
(5.15)

and √
10∥s̃∗∥2

ε
· 1

gap ∧ σ
2 ∥s̃∗∥

≤ (1 + σ̄)

√
10∥s∗∥2

ε
· 1

gap ∧ σ
2 ∥s∗∥

. (5.16)

In particular, if ε
10∥s∗∥2 ≤ σ

2 ∥s
∗∥ − λ, then by (5.11),

|∥s∗∥ − ∥s̃∗∥| ≤ σ̄

10σ∥s∗∥2
· 10∥s∗∥2(σ

2
∥s∗∥ − λ) =

σ̄

σ
(
σ

2
∥s∗∥ − λ)

which yields
σ

2
∥s̃∗∥ − λ ≥ (1− σ̄

2
)(
σ

2
∥s∗∥ − λ) ≥

σ
2 ∥s

∗∥ − λ

1 + σ̄
.

We thus obtain from (5.14) that

min

{
1

σ
2 ∥s̃∗∥ − λ

,
10∥s̃∗∥2

ε

}
≤ (1 + σ̄)min

{
1

σ
2 ∥s∗∥ − γ

,
10∥s∗∥2

ε

}
. (5.17)

In addition, whenever q̃(st) ≤ q̃(s̃∗) + ε, the following relation holds

q(st) ≤ q̃(st) + γ∥st∥ ≤ q̃(s̃∗) + ε+ γ∥st∥ ≤ q̃(s̃∗) + ε+ γ∥s̃∗∥
≤ q̃(s∗) + ε+ γ∥s̃∗∥
≤ q(s∗) + ε+ γ(∥s∗∥+ ∥s̃∗∥)

≤ q(s∗) + ε+ γ(S +
√

1 + σ̄/12∥s∗∥)
≤ q(s∗) + ε+ 3γS

≤ q(s∗) + (1 + σ̄/8)ε. (5.18)

It is also noteworthy that by Lemma 4.6 (i) in [5] and the setting of γ in (5.4), with probability at least
1− δ ∈ (0, 1),

P
(
|g̃(1)| ≤

√
πγδ√
2n

)
≤ P

(
|g̃(1)| ≤

√
πσσ̄εδ

24(ψ + σ∥s∗∥)
√
2n

)
≤ δ. (5.19)

Then it indicates that
P(|g̃(1)| > b) = P

(
|g̃(1)| >

√
πγδ/

√
2n
)
≥ 1− δ,

where b =
√
πδσσ̄ε

24
√
2n(ψ+σS)

. Hence, as a result of (5.15)-(5.19), the following lemma can be obtained.

Lemma 5.3. Under parameter settings (5.3)-(5.4) and with probability at least 1− δ, q(st) ≤ q(s∗) + ε if

t ≥ 6(1 + σ̄)

η

(
log

(
1 +

λ2+
2σb

)
+ log

(1 + σ̄)(∥H∥+
√

(1 + σ̄/12)σ∥s∗∥)∥s∗∥2

ε/(1 + σ̄/8)

)
min

{
1

σ
2 ∥s∗∥ − λ

,
10∥s∗∥2

ε/(1 + σ̄/8)

}
.
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If, in particular, σ2 ∥s
∗∥ − λ ≤ (1− 2σ̄

3 ) ε
10∥s∗∥2 , then q̃(s

t) ≤ q̃(s̃∗) + ε for all

t ≥ 6(1 + σ̄)

η

(
log

(
1 +

λ2+
2σb

)
+ log

(1 + σ̄)(∥H∥+
√

(1 + σ̄/12)σ∥s∗∥)∥s∗∥2

ε/(1 + σ̄/8)

)√
10∥s∗∥2

ε/(1 + σ̄/8)
· 1

gap ∧ σ
2 ∥s∗∥

.

Based on Theorem 5.3, by setting ε properly we can estimate the lower bound of iteration number
with high probability in order to find an output, st for some t, at kth iteration satisfying (2.7b) with high
probability. Suppose now that (2.7b) holds at kth iteration, namely, with subscripts omitted,

q(st)− q(s∗) ≤ ε, where ε ≤ 1
18σω.

It is easy to check from (5.7) and ∥st∥ ≤
√

|∥st∥2 − ∥s∗∥2|+ ∥s∗∥ that

q̃(st) ≤ q(st) + γ∥st∥ ≤ q(s∗) + ε+ γ∥st∥ ≤ q(s̃∗) + ε+ γ∥s∗∥+ 2.5γ

√
γ

σ

≤ q̃(s̃∗) + γ∥s̃∗∥+ ε+ γ∥s∗∥+ 2.5γ

√
γ

σ

≤ q̃(s̃∗) + ε+ 2γ∥s∗∥+ 4.5γ

√
γ

σ
. (5.20)

Since q̃ is smooth, for any t, by Taylor’s theorem the following equality holds:

q̃(st+1) = q̃(st) + ⟨∇q̃(st), st+1 − st⟩+ 1

2
⟨st+1 − st,∇2q̃(s)(st+1 − st)⟩

for some s ∈ [st, st+1]. Note that for all sufficiently large t,

∥∇2q̃(s)∥ =

∥∥∥∥H +
σ

2
∥s∥I + σ

2

ssT

∥s∥

∥∥∥∥ ≤ ∥H∥+ σmax{∥st∥, ∥st+1∥} ≤ ∥H∥+ σ(S + 2.5

√
γ

σ
) =: Lq̃.

Hence, we obtain

q̃(s̃∗) ≤ q̃(st+1) ≤ q̃(st) + ⟨∇q̃(st), st+1 − st⟩+ Lq̃
2
∥st+1 − st∥2,

which indicates from (5.20) that

(η − η2Lq̃
2

)∥∇q̃(st)∥2 ≤ q̃(st)− q̃(s̃∗) ≤ ε+ 2γ∥s∗∥+ 4.5γ

√
γ

σ
.

As g̃ − g = γζ and ∥∇q(st)∥2 ≤ 2∥∇q̃(st)∥2 + 2γ2, we derive the following inequality:

(η − η2Lq̃
2

)∥∇q(st)∥2 ≤ 2ε+ 4γ∥s∗∥+ 9γ

√
γ

σ
+ 2γ2(η − η2Lq̃

2
)

which implies

∥∇q(st)∥2 ≤
2ε+ 4γ∥s∗∥+ 9γ

√
γ/σ

η − η2Lq̃/2
+ 2γ2.

Recall that η < 1/Lq̃ where Lq̃ = ∥H∥ + σS + 2.5
√
γσ. Besides, by the definition of g and H at each

iteration and with the parameter setting (3.21), we can set g, ∥H∥ and σ in the same order as β. Then
∥s∗∥ = O(1), R = O(1) and γ = O(ε) indicating

∥∇q(st)∥ = O(
√
Lq̃ε+ ε) = O(Lq̃ω

2/3), if ε = O(Lq̃ ω
4/3).

Consequently, (2.7c) can be satisfied at the output of the cubic-solver at kth iteration.
To summarize above analysis, we can finally obtain that under proper parameter settings Condition

A can be achieved with high probability at each iteration, provided that the iteration number of the cubic
solver is sufficiently large.
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6 Discussions on adaptive parameter settings

In the previous sections, non-adaptive penalty parameters and regularization parameters have been con-
sidered. It is worth noting that our algorithms can be adapted to variants with adaptive parameter
settings. In this section, we will delve into discussions on the behavior of ICPD when incorporating
adaptive parameter settings.

6.1 Adaptive penalty parameters

One popular adaptive approach for updating penalty parameters in penalty methods, as discussed in the
literature [3], is based on the improvement of constraint violation. If the constraint violation is reduced,
it indicates that the penalty parameter is sufficiently large and there is no need to increase it. Conversely,
if the constraint violation does not improve, the penalty parameter should be increased. In the case of
equality-constrained optimization, Wang and Yuan [47] studied an augmented Lagrangian trust region
method based on exact function information. They modeled the subproblem at the kth iteration in a
similar way to (2.4), but incorporated a trust region strategy instead of cubic regularization. Both penalty
parameter and trust region radius are adaptively updated, and the global convergence of the proposed
method is presented in [47]. In our proposed algorithms for solving (1.1), we can also adopt a scheme to
update the penalty parameter adaptively. We will consider an adaptive version of ICPD with the penalty
parameter βk updated following the rule:

βk+1 =

{
βk, if ∥c(xk+1)∥ ≤ ϖ∥c(xk)∥,
βk + Γ, if ∥c(xk+1)∥ > ϖ∥c(xk)∥

(6.1)

for k ≥ 1. Here, ϖ ∈ (0, 1) and Γ > 0. As shown in Theorem 3.1, ICPD can terminate in a finite number
of iterations. However, to better understand the theoretical properties of adaptive ICPD, we will skip
the finite termination test and investigate the behavior of {βk}k≥1 generated during the algorithm. Since
{βk} is a non-decreasing sequence following the update scheme (6.1), either {βk} is upper bounded, or
βk approaches infinity as k increases to infinity. In the subsequent analysis, we will address each case
separately. For completeness, we present the adaptive ICPD algorithm in Algorithm 6.1.

Algorithm 6.1 Adaptive ICPD

Input: x1, λ1 = 0, β1 > 0, σ1 > 0, ϵ̄ ∈ (0, 1), ω ∈ (0, 1), ρ1 ∈ (0, β1)
1: for k = 1 . . . do
2: Generate approximate gradient g0k and Hessian H0

k of f at xk, and compute gk and Hk by (2.3).
3: Solve subproblem (2.4) obtaining an inexact solution sk satisfying Condition A and set xk+1 :=

xk + sk.
4: Compute βk+1 through (6.1).
5: Compute ρk+1 ∈ (0, βk+1) and σk+1.
6: Compute λk+1 through (2.8).
7: k := k + 1.
8: end for

6.1.1 Bounded penalty parameters

In this case we assume that there exists βbnd > 0 such that βk ≤ βbnd for all k ≥ 1. The lemma below
indicates that the number of consecutive iterations in which max{∥xk+1−xk∥, ∥xk−xk−1∥} ≥ ϵ̄ is upper
bounded.

Lemma 6.1. Under Assumptions 1-3, Conditions A and B, assume that ω = ϵ̄3 and
∑∞
k=1 ρk ≤ ρ with

ρ > 0, (3.6) and (3.21) hold. Further assume that there exist two positive integers K1,K2 such that
max{∥xk+1 − xk∥, ∥xk − xk−1∥} ≥ ϵ̄ for any k ∈ [K1,K2). Then it holds that

K2 −K1 ≤ l1 :=
⌈C + (3

√
mρ+ βbnd)C

2 − flow
σ̂ϵ̄3

⌉
, (6.2)
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where σ̂ := 1
12L

f
H .

Proof. By applying Lemma 3.3, we obtain that

K2−1∑
k=K1

σ̂kmax{∥xk−xk−1∥3, ∥xk+1−xk∥3} ≤ LβK1
(xK1

, λK1
)− flow+2

√
mC2

K2−1∑
k=K1

ρk+
1

2
C2βbnd. (6.3)

Note that under the condition (3.21) and by (3.24), σ̂k ≥ σ̂. Additionally, it follows from Assumption 3
and Lemma 3.1 together with

∑∞
k=1 ρt ≤ ρ that

LβK1
(xK1 , λK1) ≤ C +

√
mρC2 +

1

2
C2βbnd.

Then we derive the conclusion from (6.3).

The update rule (6.1) indicates that

βk − β1
Γ

≤ J :=
βbnd − β1

Γ
, ∀k ≥ 1.

For simplicity, we next denote kj as the index of iteration when the penalty parameter increases to β1+jΓ,
where j ∈ {0, 1, . . . , J}, i.e.,

kj = min
k∈N

{k : βk = β1 + jΓ}, j ∈ {0, 1, . . . , J}.

Obviously, k0 = 1. Our next theorem shows that for any j ∈ {0, 1, . . . , J}, either kj − kj−1 is upper
bounded or there exists K ∈ [kj−1, kj ] such that

∥c(xk+1)∥ < ϵ and max{∥xk − xk−1∥, ∥xk+1 − xk∥} < ϵ̄ (6.4)

hold at k = K. Then we can identify the iteration index K such that xK+1 satisfies the approximate
second-order stationarity.

Theorem 6.1. Under the conditions of Lemma 6.1 and Assumption 4, for any j ∈ {0, 1, . . . , J}, either
kj−kj−1 ≤ l1+l2+1 with l2 = ⌈ log(Cϵ−1)

logϖ−1 +1⌉ and l1 defined in (6.2), or there exists K ∈ [kj−1+l2, kj−1+

l1+l2] such that (6.4) holds at k = K. Consequently, letting ϵ̄ =
√
ϵ, there exists K ∈ [1, (l1+l2+1)(J+1)]

such that
∥∇f(xK+1) +∇c(xK+1)λ̂K+1∥ = O((ρ+ βbnd)ϵ+ ρK),

∥c(xK+1)∥ < ϵ,

dT (∇2f(xK+1) +
∑m
i=1 λ̂i∇2ci(xK+1))d ≥ −υK∥d∥2 for all d ∈ Null(∇c(xK+1)

T ),

where λ̂ := λK+1 + βkc(xK+1) and υK = O((ρ + βbnd)
√
ϵ + ρKϵ + ρKβ1

−1(ρ + 1)). Moreover, K is in
the order

O
(
βbnd − β1

Γ
·
(
log(Cϵ−1)

log(ϖ−1)
+
C + (3

√
mρ+ βbnd)C

2 − flow
σ̂ϵ1.5

))
.

Proof. Following the update scheme (6.1), for any given ϵ > 0 and under Assumption 4, to achieve
∥c(xk+1)∥ ≤ ϵ the number of consecutive iterations when the penalty parameters keep the same does
not exceed l2. Thus when kj − kj−1 > l1 + l2 + 1, by Lemma 6.1 we obtain that there exists K ∈
[kj−1 + l2, kj−1 + l1 + l2] such that (6.4) holds at k = K. Therefore, due to j ≤ J , it occurs that either
kj − kj−1 ≤ l1 + l2 + 1 for any j ≤ J , or there exists some j ∈ [1, J ] suth that kj − kj−1 > l1 + l2 + 1.
No matter which case occurs, there always exists some K ∈ [1, (l1 + l2 + 1)(J + 1)] such that (6.4) holds
at k = K. Then in analogy to Theorem 3.1 and by ϵ̄ =

√
ϵ we obtain the approximate second-order

stationarity and the order of K.
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6.1.2 Unbounded penalty parameters

We now assume that penalty parameters are unbounded and will eventually approach the infinity. The
following lemma shows that there are infinite number of iterations, denoted by {Ki}i≥1, when max{∥xk−
xk−1∥, ∥xk+1 − xk∥} < ϵ̄, and the times of increase of the penalty parameter between Ki and Ki+1 is
upper bounded for any i ≥ 1.

Lemma 6.2. Under Assumptions 1-4, Conditions A and B, assume that ω = ϵ̄3 and
∑∞
k=1 ρk ≤ ρ with

ρ > 0, (3.6) and (3.21) hold. Then there exists an infinite sequence of iteration indices, denoted by
{Ki}i≥1, such that for any i ≥ 1,{

max{∥xk+1 − xk∥, ∥xk − xk−1∥} < ϵ̄, k = Ki,

max{∥xk+1 − xk∥, ∥xk − xk−1∥} ≥ ϵ̄, Ki < k < Ki+1,
(6.5)

and for any k ∈ [Ki,Ki+1],

βk − βKi

Γ
≤ J1 :=

⌈
16((C + 3

√
mC2ρ)/β1 + C2)

mLcLcg + 18θ
ϵ̄−3

⌉
. (6.6)

Additionally, (3.22) holds true for any K ∈ {Ki}i≥1.

Proof. For any k ≥ 1, let jk = (βk − β1)/Γ. It must hold that jk → ∞ as k → ∞ since the penalty
parameters are unbounded. For a given K > 2, without loss of generality we assume that jK ≥ 2. Then
it is easy to obtain from jK ≤ jK−1 + 1 that∑K−1

k=1 βk
βK

≥ β1 + (β1 + 1 · Γ) + · · ·+ (β1 + jK−1 · Γ)
β1 + jKΓ

≥ 1

2
· (jK−1 + 1)(β1 + jK−1Γ)

β1 + jKΓ

≥ jK−1 + 1

4
(6.7)

→ ∞ as K → ∞.

We denote K1 as the smallest iteration index such that max{∥xk − xk−1∥, ∥xk+1 − xk∥} < ϵ̄. Without
loss of generality, we assume K1 > 1, thus obviously

max{∥xk − xk−1∥, ∥xk+1 − xk∥} ≥ ϵ̄ (6.8)

for k ∈ [1,K1 − 1]. Then (3.23) holds with σ̂k satisfying (3.24), i.e.

K1−1∑
k=1

σ̂k ϵ̄
3 ≤ Lβ1(x1, λ1)− flow + 2

√
mC2ρ+

1

2
C2βK1 ≤ C + 3

√
mC2ρ+ C2βK1

with

σ̂k ≥ 1

4
βk(mLcL

c
g + 18θ), ∀k ∈ [1,K1 − 1].

It, together with (6.7), indicates that K1 is finite and

βK1
− β1
Γ

= jK1 ≤ J1 =
16((C + 3

√
mC2ρ)/β1 + C2)

mLcLcg + 18θ
ϵ̄−3.

Furthermore, in analogy to Theorem 3.1 we can show that (3.22) holds for K = K1. We now assume
that Ki+1 > Ki is the smallest iteration index such that max{∥xk − xk−1∥, ∥xk+1 − xk∥} < ϵ̄ for k > Ki.
Without loss of generality we assume Ki+1−Ki > 1. Then by replicating the above analysis with related
information initialized at (Ki + 1)th iteration in (3.23) and (3.24), we obtain (6.6) and (3.22) holds at
K = Ki+1. Hence, due to the unboundedness of penalty parameters and by induction, we ensure the
existence of the infinite sequence {Ki} as desired.
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With a slight abuse of notation, we still denote kj , j ≥ 0, as the index of iteration when the penalty
parameter increases to β1 + jΓ for j ∈ N, i.e.,

kj = min
k∈N

{k : βk = β1 + jΓ}, j ∈ N.

Obviously, we have k0 = 1 and the sequence {kj}j∈N is infinite as βk is unbounded. We next show that
for any j ∈ N+, either kj −kj−1 is upper bounded or there must exist Ki for some i such that (6.4) holds
at k = Ki. We thus arrive at an iteration index K with xK+1 satisfying the approximate second-order
stationarity.

Theorem 6.2. Under the conditions of Lemma 6.2, for any j ∈ N+, either kj − kj−1 ≤ K̄1 + K̄2 + 1
with

K̄1 =

⌈
log(Cϵ−1)

logϖ−1
+ 1

⌉
and K̄2 =

⌈
1 + 4((C + 3

√
mC2ρ+ C2Γ)/β1 + 1.5C2)

mLcLcg + 18θ
ϵ̄−3

⌉
, (6.9)

or there exists Ki ∈ (kj−1 + K̄1, kj−1 + K̄1 + K̄2] such that (6.4) holds. Furthermore, with J2 :=
⌈(ϵ−1 − β1)/Γ⌉, one of the following cases holds true.

(i) There exists integer K ∈ [1, (K̄1 + K̄2 + 1)J2 − 1] such that

∥c(xK+1)∥ < ϵ,

∥∇f(xK+1) +∇c(xK+1)λ̂K+1∥ = O(ϵ−1ϵ̄2 + ρK), (6.10)

dT (∇2f(xK+1) +

m∑
i=1

λ̂i∇2ci(xK+1))d ≥ −υK∥d∥2 for all d ∈ Null(∇c(xK+1)
T ), (6.11)

where λ̂K+1 := λK+1 + βKc(xK+1) and υK = O(ϵ−1ϵ̄+ ρK ϵ̄
2 + ρKϵ).

(ii) There exists integer K ∈ [(K̄1+K̄2+1)J2, (K̄1+K̄2+1)(J2+J1+1)) such that ∥c(xK+1)∥ = O(ϵ̄2+ϵ),
and (6.10)-(6.11) hold.

Proof. For any fixed j ∈ N+, if kj − kj−1 > K̄1 + K̄2 + 1, it is easy to obtain from Assumption 3
and (6.1) that ∥c(xk+1)∥ < ϵ for any k ∈ (kj−1 + K̄1, kj). We next prove that there exists Ki ∈
(kj−1+ K̄1, kj−1+ K̄1+ K̄2] such that max{∥xk−xk−1∥, ∥xk+1−xk∥} < ϵ̄ for k = Ki, when kj − kj−1 >
K̄1 + K̄2 +1. By the way of contradiction, we now assume that for any k ∈ (kj−1 + K̄1, kj−1 + K̄1 + K̄2],
max{∥xk − xk−1∥, ∥xk+1 − xk∥} ≥ ϵ̄. Then similar to (3.23) and due to βk = βkj−1+K̄1+1 for any k ∈
(kj−1 + K̄1, kj−1 + K̄1 + K̄2] and βkj−1+K̄1+K̄2+1 ≤ βkj−1+K̄1+1 + Γ, we have

kj−1+K̄1+K̄2∑
k=kj−1+K̄1+1

σ̂k ϵ̄
3 ≤ Lβkj−1+K̄1+1

(xkj−1+K̄1+1, λkj−1+K̄1+1)− flow + 2
√
mC2ρ+

1

2
C2β2

kj−1+K̄1+K̄2+1

≤ C + 3
√
mC2ρ+ C2Γ + 1.5C2βkj−1+K̄1+1,

where

σ̂k ≥ 1

4
βkj−1+K̄1+1(mLcL

c
g + 18θ).

It thus leads to

K̄2 ≤
4(C + 3

√
mC2ρ+ C2Γ + 1.5C2βkj−1+K̄1+1)

βkj−1+K̄1+1(mLcL
c
g + 18θ)

ϵ̄−3,

which however contradicts the setting of K̄2 in (6.9). Hence, there must exist integer Ki ∈ (kj−1 +
K̄1, kj−1 + K̄1 + K̄2] such that max{∥xk − xk−1∥, ∥xk+1 − xk∥} < ϵ̄, thus (6.4) holds at k = Ki.

We now prove the second part of the theorem. Note that for any j ≥ J2 := ⌈(ϵ−1 − β1)/Γ⌉, the
penalty parameter satisfies βkj ≥ βkJ2

≥ ϵ−1. Moreover, starting from (kJ2)th iteration, by Lemma 6.2

we obtain that after at most O(ϵ̄−3) times of increase of the penalty parameter we come to some K such
that max{∥xK − xK−1∥, ∥xK+1 − xK∥} < ϵ̄. Therefore, one of the following cases occurs.
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(i) Case 1: there exists some j ∈ [1, J2] such that kj − kj−1 > K̄1 + K̄2 + 1. In this case, by the first
part of this theorem there exists some K ∈ [1, (K̄1 + K̄2 + 1)(J2 − 1) + K̄1 + K̄2] such that

βK ≤ ϵ−1, ∥c(xK+1)∥ < ϵ, max{∥xK − xK−1∥, ∥xK+1 − xK∥} < ϵ̄.

Then through similar analysis to Theorem 3.1, we further derive the desired conclusions.

(ii) Case 2: kj − kj−1 ≤ K̄1 + K̄2 + 1 for any j ∈ [1, J2]. In this case, for any k ≥ (K̄1 + K̄2 + 1)J2,
it must have β−1

k = O(ϵ). Moreover, by the existence of {Ki} as demonstrated in Lemma 6.2,
from ((K̄1 + K̄2 + 1)J2)th iteration until (Ki)th iteration where Ki is the smallest among k >
(K̄1 + K̄2 + 1)J2, the times of increase of the penalty parameter is bounded by J1 according to
(6.6). Between any two successive increase, with iteration indices still denoted by kj−1 and kj for
example, we have proved previously that either kj−kj−1 ≤ K̄1+K̄2+1 orKi ∈ (kj−1, kj−1+K̄1+K̄2]
for some j. It must hold that

Ki − (K̄1 + K̄2 + 1)J2 ≤ (K̄1 + K̄2 + 1)J1 + K̄1 + K̄2.

Then following (3.22) and β−1
Ki

= O(ϵ) we can further obtain (6.10) and (6.11) with K = Ki and

∥c(xK+1)∥ = O(ϵ̄2 + ϵ).

The proof is completed.

Remark 6.1. For both cases presented in Theorem 6.2, by setting appropriate values of ϵ̄ and ρk, we can
obtain xK+1 satisfying the approximate second-order stationarity. This allows us to derive an estimate
on the iteration complexity of ICPD with unbounded adaptive penalty parameters. However, we have to
admit that the complexity order appears to be not quite satisfying. One reason may lie in the estimate of
(6.7). As it is unclear how often βk is changed, the lower bound in (6.7) seems very conservative. On
the other hand, to derive the associated approximate criticality measure we currently simply pursue the
criterion max{∥xk − xk−1∥, ∥xk+1 − xk∥} < ϵ̄ for some k. This however leads to a large gap estimate
between two successive Ki and Ki+1. In order to improve the results we may need to adopt a different
criticality measure.

6.2 Adaptive regularization parameter

Another issue related to Adaptive ICPD is about the adaptive update of cubic regularization parameter
σ. For problem (1.1), if assuming that inexact function values of f can be evaluated at xk and xk + sk,
denoted as fk and f+k , we can adopt a similar strategy to [11] to update σk adaptively. More specifically,
we can compute the reduction ratio rk, i.e. the reduction fk + Ψβk

(xk, λk) − (f+k − Ψβk
(xk + sk, λk))

divided by the predicted model reduction (−qk(sk)). Provided that sk ̸= 0, rk is well-defined. This ratio
can be used to estimate the quality of the predicted model qk. If the ratio is greater than a preset positive
constant, we trust the predicted model and believe it is a good approximation to Lβk

(xk + sk, λk). In
this case, there is no need to increase σ in the next iteration. If, on the other hand, rk is too small or
even negative, σ should be increased to control the step size. It is noteworthy that unlike CR methods
for unconstrained optimization and due to the nonlinearity of constraint functions in general, the ratio
rk will also rely on the penalty parameter βk. As in [11], it requires there exist some γ3 ∈ (0, 1] such that
σk+1 ≥ γ3σk for all successful iterations (see (2.10) in [11]), which also complies with our assumption
on σk as given in (3.6). With this assumption and following our algorithm framework, the complexity
analysis given in this paper can be applied to the case with adaptive σ.
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7 Numerical experiments

7.1 Quadratically constrained nonconvex program

In this subsection, we consider the following quadratically constrained nonconvex program:

min
x∈X

f(x) =
1

N

N∑
i=1

log(1 +
1

2
∥Hix− ci∥2)

s.t. fj(x) =
1

2
xTQjx+ aTj x ≤ bj , j = 1, ...,M,

(7.1)

where X = [−10, 10]n, Hi ∈ Rp×n, ci ∈ Rp, Qj ∈ Rn×n and ai, bi ∈ Rn. For each i ∈ [N ] := {1, . . . , N},
we randomly and independently generate Hi with elements following the standard Gaussian distribution.
For each j ∈ [M ], we generate Qj ∈ Rn×n as the sum of a random matrix and a diagonal matrix with
elements following the uniform distribution on [−1, 1], i.e. U[−1, 1], and aj following U[0.1, 1.1]n. With
a randomly generated point x∗ ∼ U[0, 1]n, we let ci = Hix∗, i ∈ [N ] and bj =

1
2x

T
∗Qjx∗ + aTj x∗, j ∈ [M ].

Obviously, x∗ is a feasible point of (7.1) and f(x∗) = 0, thus x∗ is the optimal solution of (7.1). To obtain
more stable results, we report the trend of average objective function values at all previous iterates, i.e.,∑k
i=1 f(xi)/k and the average of constraint violation

∑M
i=1[fj(x)− bj ]+ over past iterates. All reported

results are the average values obtained from 5 independent runs of each algorithm.
We begin by comparing the performances of ICPD with non-adaptive penalty parameters and adaptive

penalty parameters. In this comparison, we set σ = 10 and γ = 0.1, where γ represents the perturbation
parameter in the subproblem solver. For the non-adaptive case, we set βk = T 1/4, where T is the
maximum iteration number of the algorithm. In the adaptive setting, we follow the update rule in (6.1)
with varying values for β0, ϖ, and Γ. Figure 1 illustrates the results obtained from solving (7.1) with
M = 100, n = 100, and N = 2000. From the figure, it can be observed that the decrease in objective
function values achieved by ICPD with βk ≡ T 1/4 is comparable to that achieved by the adaptive
settings of penalty parameters, while the constraint violation decreases at a faster rate. Based on these
observations, we adopt the non-adaptive setting of the penalty parameter for the subsequent tests.
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(a) β0 = 0.1
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Figure 1: Comparison between ICPD with non-adaptive penalty parameters and adaptive ones: M =
100, n = 100, N = 2000

To provide a detailed analysis of SCPD’s performance, we first examine the impact of the penalty
parameter β on its numerical performance. In this case we consider a scenario where M = n = 50,
T = 1000, σ = 50, Ik = Jk = 2, and γ = 0.1. We report the results in Figure 2. As can be observed from
this figure, when β decreases, the algorithm tends to achieve faster convergence concerning the objective
function value, but this may result in a larger constraint violation. When β is set to T 1/4, the algorithm
achieves relatively lower objective function values and constraint violations. Figure 3 showcases the
impact of σ on the performance of SCPD. We use the same parameter settings as previously mentioned,
with β set to T 1/4. From this figure, we observe that when σ = 20 or 50, SCPD achieves relatively
better overall performance. This result is evident in both the objective function values and the constraint
violations. It is important to note that the specific optimal value of σ may vary depending on the problem
at hand and its characteristics.
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Figure 2: Impact of β on SCPD for (7.1)
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Figure 3: Impact of σ on SCPD for (7.1)

In Figures 4 and 5, we present a comparison between Matlab’s built-in solver Fmincon with ICPD
and SCPD, respectively. For SCPD, we utilize the parameters as mentioned earlier. In the case of
ICPD, we set σ = 10, β = 8, and γ = 0.1. Regarding the settings of Fmincon, we employ the fol-
lowing configurations: Algorithm: ‘interior-point’; ConstraintTolerance: ‘1e-6’; StepTolerance: ‘1e-10’;
BarrierParamUpdate: ‘monotone’; HessianApproximation: ‘bfgs’; SubproblemAlgorithm: ‘factorization’.
When comparing ICPD and Fmincon, we draw the trend of sequences of objective function values and
constraint violations, instead of taking the average over past iterates, for both algorithms. As can be
seen, both ICPD and Fmincon approach similar levels in terms of objective function value and constraint
violation. But within the same number of iterations, ICPD demonstrates slower convergence compared to
Fmincon. On the other hand, when comparing the performances of SCPD and Fmincon, SCPD exhibits
superior behavior within the given number of sample calls. This is reasonable since Fmincon calls a
deterministic algorithm to solve the associated problem thus needs to compute the full information of
functions and gradients. The results in Figures 4 and 5 highlight the potential advantage of SCPD in
large-scale settings.

In Figure 6, we present a numerical comparison between SCPD, SPD [25], and ICPPC [4]. The
experimental settings for SCPD are as follows: T = 1000, σ = 50, β = T 1/4, sampleSize = 2, and
γ = 0.1. For SPD, the parameters are set as T = 995, ηt = 0.03 ∗ T−1/4, β = T 1/4, and ρ = 10, while for
ICPPC we consider a scenario with M = 0.1M and an inner iteration of 2. We test multiple scenarios
with varying values ofM,n and N . Analyzing the objective function values, SCPD exhibits a significantly
faster rate of decrease within the same number of sample generations compared to both SPD and ICPPC.
Regarding the constraint violations, while SPD demonstrates a slightly faster reduction in the early stages,
SCPD eventually achieves lower constraint violations. This indicates that the incorporation of second-
order information in SCPD brings benefits to deliver improved performance when solving nonconvex
constrained optimization problems.
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Figure 4: Comparison between ICPD, SCPD and Fmincon for (7.1): M = 50, n = 50, N = 500

0 50 100 150 200

# of iterations

0

0.5

1

1.5

2

2.5

3

3.5

O
b

je
c
ti
v
e

ICPD

Fmincon

0 10 20 30 40 50

# of iterations

10
-6

10
-4

10
-2

10
0

10
2

V
io

la
ti
o

n

ICPD

Fmincon

0 2000 4000 6000 8000 10000

# of sample generations

0

0.5

1

1.5

2

2.5

3

3.5

O
b

je
c
ti
v
e

SCPD

Fmincon

0 2000 4000 6000 8000 10000

# of sample generations

10
-1

10
0

10
1

10
2

V
io

la
ti
o

n

SCPD

Fmincon

Figure 5: Comparison between ICPD, SCPD and Fmincon for (7.1): M = 50, n = 50, N = 1000
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Figure 6: Comparison between three algorithms for (7.1)

35



7.2 Multi-class Neyman-Pearson classification

In this subsection we consider the multi-class Neyman-Pearson classification (mNPC) problem. The
mNPC problem focuses on learning K models x1, . . . , xK in order to predict the class of a potential data
point ξ. Specifically, the optimization problem is to minimize the loss on one class while controlling its
value on others:

min
∥xk∥≤r, k∈[K]

1

D1

∑
l>1

∑
ξ∈D1

h(xT1 ξ − xTl ξ)

s.t.
1

Dk

∑
l ̸=k

∑
ξ∈Dk

h(xT1 ξ − xTl ξ) ≤ γk, k = 2, . . . ,K,

(7.2)

where h(z) = (1+ ez)−1 is the loss function and Dk represents the training data of the kth class. We use
two datasets from LibSVM1: covtype (K = 7), and mnist (K = 10). In numerical tests, we set r = 0.3
and γk = 0.5(K − 1), i.e. γk = 4.5 for mnist and γk = 3 for covtype. For numerical comparison, we
report performance profiles on SCPD, SPD and ICPPC. For these three algorithms, we set the maximum
number of stochastic gradient computations is 4000. All reported results are the average values obtained
from 5 independent runs of each algorithm.

In Figure 7, we report the numerical results for the datasets mnist and covtype. For the data set
mnist, we set the following parameters for SCPD: T = 1000, λ = 0.3, σ = 30000, β = T 1/4, Ik = Jk = 2
and γ = 0.1. For SPD, we set the parameters as follows: T = 995, ηt = 0.005/t1/4, βt = T 1/4 and
ρ = 0.0067. For ICPPC, we set T = 2000, θt = 0.67, τt = 2.5 and ηt = 2.6 × 10−4. For the dataset
covtype, the parameter settings for SCPD remain the same as above, except for σ which is chosen as
10000. For SPD, the parameters are set as: T = 995, ηt = 0.01/t1/4, βt = 5T 1/4, and ρ = 0.67. As for
ICPPC, we use the following parameter values: T = 2000, θt = 0.67, τt = 2.5, and ηt = 0.003. We set
x0 = 0 for all three algorithms. In Figure 7, we observe that although SPD initially decreases faster,
SCPD can eventually approach close or even lower objective function values and constraint violations.
Furthermore, when evaluating the performance of ICPPC, we notice that its behavior with respect to
constraint violations varies significantly across the two datasets. On the other hand, SCPD appears to
be more robust, performing well regardless of the dataset.

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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Figure 7: Comparison on dataset convtype and mnist for solving (7.2)

8 Conclusion

In this paper we propose an algorithm framework ICPD of cubic-regularized primal-dual methods for
equality constrained optimization. To update the primal variable at each iteration, we construct a
subproblem based on a cubic model obtained from a quadratic approximation to the AL function plus
a cubic regularizer. Under certain conditions on approximate gradients and Hessians of the objective
function, as well as inexact subproblem solutions, we establish the iteration complexity of ICPD to find an
ϵ-FSP and ϵ-SSP, respectively. We then extend the algorithm to a stochastic variant, suitable for problems
where the objective function is in an expectation form. We investigate the oracle complexity regarding
the total number of stochastic gradient and Hessian evaluations to reach approximate stationary points
with high probability. To solve each subproblem with a random perturbation, we apply the standard
gradient descent approach. We show that, under proper parameter settings, the required conditions
imposed on the inexact subproblem solution can be satisfied with high probability at each iteration.
Moreover, we provide theoretical analysis on the behaviour of Adaptive ICPD which updates the penalty
parameter dynamically, and also discuss the applicability of adaptive cubic regularization parameters.
Additionally, we present preliminary numerical results on two test problems to showcase the performance
of the proposed algorithms. As far as we know, the oracle complexity bounds established in this paper for
deterministic constrained optimization without using objective function values and for stochastic problems
to reach first-order stationarity are comparative with existing algorithms. Moreover, as study on second-
order stationarity for general nonlinear constrained stochastic optimization is a relatively unexplored area
in the literature, our analysis in this paper regarding the second-order stationarity are novel.
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