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Abstract. Inspired by its occurrence as a substructure in a stochastic railway timetabling model, we study in this work4
a special case of the bipartite boolean quadric polytope. It models conditional relations across three sets of binary variables,5
where selections within two ”if” sets imply a choice in a corresponding ”then” set. We call this polytope the if-then polytope.6

We introduce a new class of valid inequalities and prove that, in contrast to the well-known McCormick inequalities,7
they are sufficient to completely characterize the description of the polytope. We develop a separation algorithm that8
finds these inequalities in polynomial time and propose an additional clique-based method for precomputing tight cuts.9
Furthermore, we show that for a chain of several if-then relations, the descriptions of the if-then polytopes for each individual10
relation already yield the convex hull of the chained polytope. This is present in our application from the field of stochastic11
timetabling and also enables a broader application of our results in practice. A comprehensive computational study shows12
the usefulness of the new inequalities in state-of-the-art branch-and-cut solvers for real-world timetabling applications and13
instances of the quadratic assignment problem.14
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1. Introduction. The famous boolean quadric polytope18

QP(G) := conv{(x, z) ∈ {0, 1}V ∪E | xixj = zij , (i, j) ∈ E}19

was introduced in [28] for general undirected graphs G = (V, E). In this paper, we consider the case,20
where G = (X ∪ Y, E) is bipartite and additional multiple-choice constraints apply to both sets X and Y .21
This structure is inherent in diverse optimization problems, for instance where bipartite graphs serve as a22
modeling basis, as in assignment and transportation problems, and additionally a single option must be23
selected from a large number of alternatives.24

For illustration purposes, consider the search for the shortest path in a time-expanded graph, where25
the nodes have three attributes: time, velocity, and position. Such a graph is employed to minimize the26
energy consumption of a train’s driving profile. Notably, every subgraph that is formed by considering27
all nodes between two consecutive timestamps exhibits a bipartite structure. The edges within these28
subgraphs are assigned costs that indicate the energy consumption of the train during the travel between29
the two timestamps. More formally, we can represent this as a binary quadratic program. To this end, at30
timestamp i, we associate each node u ∈ U with a variable xu and at timestamp i + 1, each node v ∈ V31
with a variable yv. For each edge (uv) ∈ E, we introduce a variable puv with assigned costs cuv. For32
each point in time, we have to decide for a specific velocity and position, which implies a multiple-choice33
constraint at both observed timestamps. Consequently, the objective is given by34

min{
∑

(uv)∈E

cuvpuv |
∑
u∈U

xu = 1,
∑
v∈V

yv = 1, xuyv = puv, (uv) ∈ E, (x, y, p) ∈ {0, 1}U∪V ∪E}.35

In practice, it is irrelevant which edge is chosen specifically; our only concern is to evaluate the cost of36
the edge. To facilitate this, we group edges with identical costs together, introduce a variable zl for each37
group l ∈ L and assign the corresponding costs cl. With f : E → L as the function that maps each edge38
to its group, we can now formulate the problem as39

min{
∑
l∈L

clzl |
∑
u∈U

xu = 1,
∑
v∈V

yv = 1,
∑
l∈L

zl = 1, xuyv ≤ zf(uv), (uv) ∈ E, (x, y, z) ∈ {0, 1}U∪V ∪L}.40

This formulation gives rise to a distinctive polytope, termed the if-then polytope, because it entails the41
selection of one variable each from two if sets of variables, which in turn implies the selection of one42
variable from the then set.43
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Related Literature. The foundational work in [28], introducing the boolean quadric polytope QP(G)44
for general undirected graphs G, has been pivotal, laying the groundwork for a deeper understanding45
of unconstrained binary quadratic programming. Although no constraints are involved, the quadratic46
objective alone yields an NP-hard problem, as shown in [2]. Over the last decades, the boolean quadric47
polytope has been studied intensively, resulting in many facet classes and corresponding separation48
algorithms, and the observation of symmetries and other geometric properties; see e.g. [3, 32, 23]. We49
refer the reader to [21] for a comprehensive survey on applications and solution methods for general50
unconstrained binary quadratic programming. In recent years, the geometry and other properties of51
the bipartite boolean quadric polytope BQP(G), the special case of QP(G) where G is bipartite, have52
been studied in [29, 34, 30, 35] together with various heuristic approaches ([13, 18, 20, 37]). Applications53
containing this polytope stem, for example, from the fields of data mining [26] and bioinformatics [11].54

Binary quadratic programs with linear and/or quadratic constraints are among the best studied55
classes of integer nonlinear problems, primarily because they allow to model a large number of diverse56
applications [4]. Although a variety of different solution approaches have been proposed over the last57
decades, these programs are usually tackled by linearizing the quadratic parts of the problem and58
subsequently passing the equivalent linear representation to a general purpose mixed-integer linear59
programming solver. Two of the most commonly used linearization schemes are the so-called standard60
linearization from [17] and Glover’s method from [16]. Another frequently utilized approach is proposed61
in [33]. Recently, the authors of [14] conducted a comprehensive computational study on various62
applications to determine the optimal manner of applying these linearization methods with additional63
enhancements. Alongside these general methods, a wide range of approaches have been developed that64
are specifically tailored to different classes of constraints. For example, in [24] an efficient and compact65
reformulation for binary quadratic programs with assignment constraints has been proposed. A thorough66
comparison of different methods for binary quadratic programs with an additional cardinality constraint67
is given in [25]. In recent years, multiple-choice (or set-packing) structures have also been studied in more68
detail. Closely related to the if-then polytope, the authors of [9] investigated the special case of BQP(G)69
with additional multiple-choice inequalities for partitions that apply only to the X nodes of the bipartite70
graph. This extension was motivated by an application to a real-world pooling problem arising in tea71
production. In contrast, in this paper, we consider a single multiple-choice equality for all X and all Y72
nodes. The bipartite quadratic assignment problem [31] and the bilinear assignment problem [38] are also73
closely related problems that involve the study of BQP(G) with multiple-choice constraints on multiple,74
non-disjoint subsets of both X and Y .75

Potential applications for if-then polytopes are manifold. One natural candidate emerges in the field of76
fixed recourse stochastic programming, which deals with optimization problems involving decision-making77
under uncertainty. A subclass of these problems - namely those with endogenous uncertainties - deals78
with uncertainties that depend on the decisions made and optimized. When modeling uncertain outcomes79
using scenario variables, these variables must be coupled to the decision variables of the problem. Consider80
a decision where one element can be selected from a set and a set of binary variables that models the81
realization of another uncertain variable. Assume that this uncertain variable has influence the outcome82
of the decision in reality, which is again modeled by a set of binary scenario variables. Then the if-then83
polytope is a way to model the relationship between the decision and the two realizations. A concrete84
example of an application with endogenous uncertainties is a stochastic railway timetabling model, which85
is one of the main motivations for this paper and is described in [8]. The underlying clique problem with86
multiple-choice constraints was introduced in [10] and analyzed in [8]. In [7], the scenario extension was87
added, where the delay of a train is an uncertain value, depending on decisions regarding departure and88
running times.89

Another occurrence of if-then polytopes can be found in the quadratic assignment problem (QAP).90
It poses a fundamental optimization challenge that has intrigued researchers and practitioners across91
various disciplines. Originating in operations research, the QAP involves optimizing the allocation of92
resources considering both assignment and distance-related costs, presenting a significant computational93
challenge. The QAP finds broad applications in diverse fields. First, it was introduced by [22] in the94
context of optimally locating facilities. Other applications include scheduling problems ([15]), airline95
maintenance operations ([27]) or reactionary chemistry ([36]). A comprehensive overview of the QAP is96
given in [1]. An overview for different model formulations can be found in [6]. In the quadratic integer97
formulation, costs are assigned to products of binary variables that are present in several multiple-choice98
constraints. Similar to the above mentioned shortest path problem in time-expanded graphs, we can99
group products of variables with equal costs and with that establish an if-then substructure.100
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Contribution. Initially motivated by an application from real-world stochastic timetabling, we study101
a polyhedral substructure of this problem that models conditional relations across three sets of binary102
variables, i.e., where selections within two ”if” sets imply a choice in a corresponding ”then” set: the103
if-then polytope. Our contribution is a new class of valid inequalities for this polytope. In contrast to104
the unconstrained (bipartite) boolean quadric polytope, the special structure of the if-then polytope105
allows us to prove that this class of inequalities is sufficient for a complete description. We develop a106
separation algorithm that finds these inequalities in polynomial time. Supplementary to this, we present107
a clique-based method that is able to determine a priori tight cuts. Furthermore, we show that for a108
chain of several if-then polytopes, the descriptions of the individual if-then polytopes already provide a109
complete description of the chained polytope. This enables a much broader application of our results in110
practice. In a comprehensive computational study, we investigate the aforementioned applications from111
the field of real-world stochastic timetabling and the quadratic assignment problem. We demonstrate the112
strength of the new cuts by incorporating them into the state-of-the-art solver Gurobi [19], which speeds113
up the solution process by orders of magnitude.114

Structure of the Paper. After a short definition of the if-then polytope in Section 2, we derive a new115
class of valid inequalities in Section 3. We then prove in Section 4 that these inequalities together with116
bound inequalities completely describe the if-then polytope. Additionally, we present efficient ways to117
use n-block inequalities to optimize over the if-then polytope using either a precomputation routine or a118
separation algorithm. Preparing the comprehensive computational study of Section 6, we first analyze119
the chaining of multiple if-then polytopes in Section 5, that arise in the application for stochastic railway120
timetabling.121

2. Problem Definition. Let x ∈ {0, 1}α, y ∈ {0, 1}β , and z ∈ {0, 1}γ be three vectors of binary122
variables and α, β, γ ≥ 1. The implications between the three vectors are given by a relation matrix M .123
If xi = 1 holds for some i ∈ [α], and yj = 1 for some j ∈ [β], this implies the choice zl = 1, where l = Mij124
is the corresponding entry of the implication relation matrix. Note that we assume that each l ∈ [γ] is125
contained in M . We must choose exactly one x-, one y-, and one z-variable to be equal to one, while126
respecting the implications stated in M . The set of feasible points is thus given by:127

S(M) := {(x, y, z) ∈ {0, 1}[α]∪[β]∪[γ] | xi · yj ≤ zMij
∀(i, j) ∈ [α] × [β],

α∑
i=1

xi =
β∑

j=1
yj =

γ∑
l=1

zl = 1}.128

We can linearize the bilinear terms in the definition of S(M) to equivalently write:129

S(M) = {(x, y, z) ∈ {0, 1}[α]∪[β]∪[γ] | xi + yj ≤ zMij
+ 1 ∀(i, j) ∈ [α] × [β],

α∑
i=1

xi =
β∑

j=1
yj =

γ∑
l=1

zl = 1}.130

In the following, we consider the so-called if-then polytope P (M) := conv(S(M)), which arises as the131
convex hull of S(M). The multiple-choice equations imply that the polytope is not full dimensional.132

Observation 2.1. We have dim(P (M)) ≤ α + β + γ − 3.133

Note that there are cases of M for which dim(P (M)) < α + β + γ − 3 holds. For example, if:134

M =

 1 2 2
3 1 1
3 1 1

 ,135

136

the equation x1 + y2 + y3 = z1 + 2z2 is valid for P (M), in addition to the multiple-choice constraints.137
138

Any optimization problem over P (M) is inherently easy and can be solved in polynomial time just139
by enumerating all the vertices.140

Lemma 2.2. The vertices of P (M) are given by ei + eα+j + eα+β+Mij
for all i ∈ [α] and j ∈ [β],141

where em for m ∈ [α + β + γ] denotes the m-th standard unit vector in {0, 1}α+β+γ .142

Proof. As P (M) is the convex hull of a set of binary points, these are precisely the vertices of P (M).143

It can still be benefitial to study the facet description of P (M) whenever there are applications in which144
the determined constraints are part of a larger system. In addition to its theoretical properties, the145
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if-then polytope has important practical applications, particularly in the field of stochastic optimization.146
For example, it arises naturally in the study of fixed-recourse problems in stochastic linear programming,147
where a decision maker faces a sequence of decisions, with the later decisions depending on the outcomes148
of the earlier ones. The if-then polytope can be used to model the set of feasible solutions to such149
problems, and to derive efficient algorithms for finding optimal solutions.150

3. Valid Inequalities. In this section we describe and fully characterize a new class of valid151
inequalities for P (M) which we call n-block inequalities because of their block-like representation in the152
relation matrix M .153

4

1
3

4 1 4
1 3 3 1 3 4 3

2 4 4 2
2 2 1 4
4 1 1 4
1 3 4 3

Figure 1: Construction of the 3-block inequality
x1 + 2x3 + 3x4 + 2y1 + 3y2 + y3 + 2y4 ≤ 2z1 + 3z3 + z4 + 3.

3.1. n-Block Inequalities. A block MX,Y is defined as the submatrix of M where the selected154
row indices are in X ⊆ [α] and the selected column indices are in Y ⊆ [β]. The consideration of such155
blocks allows to strengthen the formulation of P(M). We denote the set of z-indices contained in the156
block MX,Y by ZM (X, Y ) := {Mij : (i, j) ∈ X × Y }. If we have xi = 1 and yj = 1 with i ∈ X and157
j ∈ Y , then it follows that zl = 1 for some l ∈ ZM (X, Y ). Consequently, we can formulate the following158
1-block-inequality159

(3.1)
∑
i∈X

xi +
∑
j∈Y

yj ≤
∑

l∈ZM (X,Y )

zl + 1,160

that is valid for P (M) for each subset of rows X ⊆ [α] and each subset of columns Y ⊆ [β].161

Observation 3.1. There exist at most (2α − 1)(2β − 1) many non-equivalent up to scaling 1-block162
inequalities that are valid for P (M).163

We can derive even stronger inequalities when taking n ∈ N blocks into account. For each k ∈ [n],164
select rows Xk ⊆ [α] and columns Yk ⊆ [β] of the matrix M to define n blocks such that the subsets165
are sorted by inclusion as follows: Xk+1 ⊆ Xk and Yk ⊆ Yk+1 for all k ∈ [n − 1]. For a subset of the166
chosen blocks, indexed by K ⊆ [n], we define the set of entries of M that are located in the intersection167
of κ-many of the blocks as168

ΞM
κ (K) := {Mij : |{k ∈ K : (i, j) ∈ Xk × Yk}| ≥ κ}.(3.2)169170

Then we can construct what we call the n-block inequality171

(3.3)
∑
i∈[α]

aixi +
∑

j∈[β]

bjyj ≤
∑
l∈[γ]

clzl + n,172

where the respective variable coefficients are given by173

ai = |{k ∈ [n] : i ∈ Xk}|, i ∈ [α],(3.4)174

bj = |{k ∈ [n] : j ∈ Yk}|, j ∈ [β],(3.5)175

cl = max {k ∈ [n] : l ∈ ΞM
k ([n])}, l ∈ [γ].(3.6)176177

We can use the sorting of the blocks by inclusion to efficiently determine the number of blocks intersecting178
in one entry (i, j) of M from the coefficients ai and bj . The value of ai indicates that i is contained in the179
first ai blocks MXk,Yk

for k ∈ [ai], whereas bj indicates that j is contained in the last bj blocks MXk,Yk
180

for k ∈ {n − bj + 1, ..., n}. This leads to181

cl = max
i,j∈[α]×[β]:Mij=l

max{0, ai + bj − n} ∀l ∈ [γ].(3.7)182
183

We will use this formula later in this section when characterizing n-block inequalities.184
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Example 3.2. Figure 1 illustrates the construction of the 3-block inequality185

x1 + 2x3 + 3x4 + 2y1 + 3y2 + y3 + 2y4 ≤ 2z1 + 3z3 + z4 + 3186

out of the three blocks M{1,3,4},{2}, M{3,4},{1,2,4} and M{4},{1,2,3,4} of the matrix187

M =


2 4 4 2
2 2 1 4
4 1 1 4
1 3 4 3

 .188

The colour of each entry signifies the number of blocks intersecting there. For each l ∈ [4], the colour of189
the darkest cell it is contained in indicates the maximum value of κ for which l is in ΞM

κ ({1, 2, 3}). This190
value corresponds to its coefficient cl. We can derive the colour of a given cell (i, j) in the matrix M191
efficiently from the coefficients ai and bj via the previously defined sorting of the blocks by inclusion.192
If we take for example (i, j) = (4, 1), where a4 = 3 and b1 = 2 hold, we know that row 4 is in the two193
leftmost and column 1 in the two rightmost of the three blocks depicted in Figure 1. This implies that194
they jointly only lie in the two rightmost blocks, which is why (4, 1) is in the intersection of exactly 2195
blocks. Note that this 3-block inequality dominates the sum of the 1-block inequalities derived when196
considering each block individually, because some of the coefficients of the z-variables are smaller. For197
example, l = 4 does not lie in the intersection of any two of the three blocks, but is contained in each of198
them. Therefore c4 = 1, whereas in the addition of the three 1-block inequalities the coefficient of z4199
would be 3.200

Lemma 3.3. The n-block inequalities (3.3) are valid for P (M) for all n ∈ N.201

Proof. We prove the result by induction over the number of blocks n. For n = 1, the validity of the202
1-block inequalities follows from construction.203

For the case n = 2, we prove the validity of the 2-block inequalities obtained from two blocks MX1,Y1204
and MX2,Y2 . To this end, we sum up the two 1-block inequalities for the two blocks (3.8a), (3.8b), the205
1-block inequality (3.8c) for the intersection MX1∩X2,Y1∩Y2 and the inequalities (3.8d) and (3.8e) derived206
by adding the multiple-choice constraints for the x- and y-variables and non-negativity constraints for207
some of the z-variables, respectively:208 ∑

i∈X1

xi +
∑
j∈Y1

yj −
∑

l∈ZM (X1,Y1)

zl ≤ 1(3.8a)209

+
∑

i∈X2

xi +
∑
j∈Y2

yj −
∑

l∈ZM (X2,Y2)

zl ≤ 1(3.8b)210

+
∑

i∈X1∩X2

xi +
∑

j∈Y1∩Y2

yj −
∑

l∈ZM (X1∩X2,Y1∩Y2)

zl ≤ 1(3.8c)211

+
∑
i∈[α]

xi +
∑

j∈[β]

yj ≤ 2(3.8d)212

+
∑

l∈ZM (X1∩X2,Y1∩Y2)∪((ZM (X1,Y1)∪ZM (X2,Y2))\(ZM (X1,Y1)∩ZM (X2,Y2)))

−zl ≤ 0(3.8e)213

= 2 ·

 2∑
k=1

∑
i∈Xk

xi +
2∑

k=1

∑
j∈Yk

yj −
2∑

k=1

∑
l∈ΞM

2 ([2])

zl

 ≤ 5(3.8f)214

P(M)⇐⇒
2∑

k=1

∑
i∈Xk

xi +
2∑

k=1

∑
j∈Yk

yj −
2∑

k=1

∑
l∈ΞM

2 ([2])

zl ≤ 2.(3.8g)215

216

Inequality (3.8f) is valid for P (M) as it is the sum of four valid inequalities. Further, all variables are217
binary, which implies that the 2-block inequality (3.8g) is equivalent to (3.8f) for the integer points in218
P (M).219

For the induction step n − 1 → n, we can derive the n-block inequality composed of n blocks MXk,Yk
220

for k ∈ [n] via a combination of the n-many (n − 1)-block inequalities that can be built out of the221
blocks MXk′ ,Yk′ for k′ ∈ Kk, where Kk denotes the index subset of [n] not containing k, i.e., Kk := [n]\{k}.222
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We can write the n-block inequality as223 ∑
i∈[α]

aixi +
∑

j∈[β]

bjyj ≤
∑
l∈[γ]

clzl + n,(3.9)224

225

for a ∈ Rα, b ∈ Rβ and c ∈ Rγ as defined in (3.4), (3.5) and (3.6), respectively. For k ∈ [n], denote the226
corresponding (n − 1)-block inequality composed of the blocks indexed by Kk as227 ∑

i∈[α]

aKk
i xi +

∑
j∈[β]

bKk
j yj ≤

∑
l∈[γ]

cKk

l zl + n − 1.(3.10)228

229

First, we show230

(1/(n − 1))
∑

k∈[n]

aKk
i = ai231

232

for all i ∈ [α]. For any i ∈ [α] and k ∈ [n], we have aKk
i = ai − 1 iff i ∈ Xk, and aKk

i = ai otherwise. As233
we have |{k ∈ [n] : i ∈ Xk}| = ai,234 ∑

k∈[n] aKk
i

n − 1 = ai · (ai − 1) + (n − ai) · ai

n − 1 = ai235
236

holds. Analogously,237

(1/(n − 1))
∑

k∈[n]

bKk
j = bj238

239

for all j ∈ [β] follows. Next, we show240

⌊(1/(n − 1))
∑

k∈[n]

cKk

l ⌋ ≤ cl241

242

for all l ∈ [γ]. Obviously, removing one block will not cause an element in the matrix to be intersected243
by more blocks. Therefore, cKk

l ≤ cl holds for all l ∈ [γ]. Moreover, we can neglect the case where cl is244
strictly smaller than n − 1, because for any p ∈ N, the inequality n(n − p)/(n − 1) ≥ n − p + 1 holds245
iff p ≤ 1. Therefore for ⌊(1/(n − 1))

∑
k∈[n] cKk

l ⌋ to be strictly greater than cl, the inequality cl ≥ n − 1246
would have to hold. There are only two cases left to consider, namely cl = n and cl = n − 1. If cl′ = n247
for some l′ ∈ [γ], then (1/(n − 1))

∑
k∈[n] cKk

l′ ≤ cl′ holds, because cKk

l′ ≤ n − 1 for all k ∈ [n]. Thus,248

let cl̃ = n − 1 for some l̃ ∈ [γ]. For any tuple (i′, j′) ∈ [α] × [β] in the intersection of exactly n − 1249
blocks, there exists exactly one k ∈ [n] for which (i′, j′) is not in Xk × Yk. The sorting of the blocks, i.e.,250
Xk+1 ⊆ Xk and Yk ⊆ Yk+1 for all k ∈ [n − 1], implies that this one block is either the first or the last251
block, and since n is greater than 2, this block is not the second block. As a consequence, we obtain that252
cK2

l̃
= n − 2, and since253

(n − 2) + (n − 1) · (n − 1)
n − 1 = n − 2

n − 1 + n − 1 < n254
255

for n ≥ 3, the relation ⌊(1/(n − 1))
∑

k∈[n] cKk

l̃
⌋ ≤ cl̃ holds.256

Now summing up all the (n − 1)-block inequalities (3.10) for all k ∈ [n] and dividing result by n − 1257
yields258 ∑

i∈[α]

aixi +
∑

j∈[β]

bjyj ≤
∑
l∈[γ]

c′
lzl + n,259

260

for some c′ ∈ Rγ . Further, ⌊c′
l⌋ ≤ cl holds for all l ∈ ∪k∈KZM (Xk, Yk), as we have already shown. The261

inequality remains valid when rounding down the coefficients of the z-variables because of the multiple-262
choice constraints and the z-variables being binary. Now adding the appropriate bound inequalities, we263
obtain (3.9).264
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3.2. Characterization of n-Block Inequalities. It is straightforward to recognize if a general265
inequality of the form266

(3.11)
∑
i∈[α]

a′
ixi +

∑
j∈[β]

b′
jyj ≤

∑
l∈[γ]

c′
lzl + d′267

is an n-block inequality if a′, b′, c′, d′ ∈ N0. We first set n := d′. Then we construct the n blocks MX,Y268
for k ∈ [n] via setting Xk := {i ∈ [α] : a′

i ≥ k} and Yk := {j ∈ [β] : b′
j > n − k}. This ensures both the269

sorting of the blocks by inclusion and Conditions (3.4) and (3.5). It remains to verify Condition (3.6).270
Nevertheless, the addition of multiple-choice constraints for the x-, y- and z-variables and scaling may271

lead to inequalities that are equivalent to n-block inequalities but for which there are no subsets Xk and Yk272
such that Conditions (3.4), (3.5) and (3.6) are fulfilled. We will therefore now derive three properties273
that any inequality of the form (3.11) possesses if it is equivalent to an n-block inequality up to addition274
of multiple-choice constraints and scaling. To this end, we introduce the notations

¯
i := argmini∈[α] a′

i and275

ī := argmaxi∈[α] a′
i, and similarly

¯
j and j̄ as well as

¯
l and l̄, when referring to the indices of the maximum276

and minimum coefficients of a′, b′ and c′, respectively. The sorting of the blocks by inclusion implies that277
at least one row with index i ∈ [α] and at least one column with index j ∈ [β] have to lie in each of the n278
blocks. Hence, in any n-block inequality, the highest occurring coefficients of the x-, y- and z-variables,279
respectively, are all equal to n. After adding multiple-choice constraints and scaling, this property relaxes280
to281

(I) a′
ī + b′

j̄ = c′
l̄
+ d′.282

Further, as already seen in Section 3.1,283

cl = max
i,j∈[α]×[β]:Mij=l

max{0, ai + bj − n} ∀l ∈ [γ](3.12)284
285

holds for any n-block inequality. To carry this relation between the coefficients over to n-block inequalities286
that have been transformed via the addition of multiple-choice constraints and scaling, we have to reverse287
this procedure. First, we scale the considered inequality such that all variable coefficients and the constant288
on the right-hand side are integer. Then we subtract adequate multiples of the three multiple-choice289
constraints, namely290

(a′
ī + c′

¯
l − c′

l̄
) ·

∑
i∈[α]

xi = a′
ī + c′

¯
l − c′

l̄
, (b′

j̄ + c′

¯
l − c′

l̄
) ·

∑
j∈[β]

yj = b′
j̄ + c′

¯
l − c′

l̄
, c′

¯
l ·

∑
l∈[γ]

zl = c′

¯
l,291

such that the resulting inequality fulfills the above-mentioned property of the equality of the highest292
variable coefficients. As a consequence, Condition (3.12) becomes293

(II) c′
l = max

(i,j)∈[α]×[β]:Mij=l
max

{
c′

¯
l,

(
a′

i − a′
ī + b′

j − b′
j̄ + c′

l̄

)}
∀l ∈ [γ].294

Since all coefficients in an n-block inequality are non-negative, the above reverse transformation also295
implies the necessity of296

(III) a′
ī − a′

¯
i ≤ c′

l̄
− c′

¯
l, b′

j̄ − b′

¯
j ≤ c′

l̄
− c′

¯
l.297

The following lemma shows that Conditions (I), (II) and (III) in fact suffice to fully characterize all298
inequalities that are equivalent to an n-block inequality.299

Lemma 3.4. An inequality of the form
∑

i∈[α] a′
ixi +

∑
j∈[β] b′

jyj ≤
∑

l∈[γ] c′
lzl + d′ is equivalent300

to an n-block inequality for some n ∈ N up to addition of multiple-choice constraints and scaling iff301
Conditions (I), (II) and (III) are met.302

Proof. Consider the inequality303 ∑
i∈[α]

a′
ixi +

∑
j∈[β]

b′
jyj ≤

∑
l∈[γ]

c′
lzl + d′,(3.13)304

305

where w.l.o.g. a′, b′, c′, and d′ shall be integer. Further, we assume that this inequality fulfills306
Conditions (I)–(III). We now show that via subtraction of multiple-choice constraints, we can transform307
this inequality to an n-block inequality of the form308

(3.14)
n∑

k=1

∑
i∈X̄k

xi +
n∑

k=1

∑
j∈Ȳk

yj ≤
n∑

k=1

∑
l∈ΞM

k
([n])

zl + n,309
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by determining the appropriate n ∈ N as well as the sets X̄k and Ȳk, that need to be sorted by inclusion310
as follows: X̄k+1 ⊆ X̄k and Ȳk ⊆ Ȳk+1 for all k ∈ [n − 1]. Additionally |∪k∈[n]Z

M (X̄k, Ȳk)| < γ has to311
hold. By Condition (I), the following sum of multiple-choice constraints is valid for P (M):312

(−a′
ī + c′

l̄
− c′

¯
l)

∑
i∈[α]

xi︸ ︷︷ ︸
=1

+(−b′
j̄ + c′

l̄
− c′

¯
l)

∑
j∈[β]

yj︸ ︷︷ ︸
=1

= −d′︸︷︷︸
=−a′

ī
−b′

j̄
+c′

l̄

−c′

¯
l

∑
l∈[γ]

zl︸ ︷︷ ︸
=1

+c′
l̄
− c′

¯
l.313

Adding this equation to Inequality (3.13) yields314

(3.15)
∑
i∈[α]

(a′
i − a′

ī + c′
l̄
− c′

¯
l)xi +

∑
j∈[β]

(b′
j − b′

j̄ + c′
l̄
− c′

¯
l)yj ≤

∑
l∈[γ]

(c′
l − c′

¯
l)zl + c′

l̄
− c′

¯
l.315

Note that now the maximum coefficient for each set of variables x, y and z equals c′
l̄
− c′

¯
l. Additionally,316

each coefficient is non-negative due to Condition (III). Now define for k ∈ [c′
l̄
− c′

¯
l] the subsets317

Xk := {i ∈ [α] | a′
i − a′

ī + c′
l̄
− c′

¯
l ≥ k}, Yk := {j ∈ [β] | b′

j − b′
j̄ > −k}.318319

Each i ∈ [α] is contained in (a′
i − a′

ī
+ c′

l̄
− c′

¯
l)-many sets in {Xk : k ∈ [c′

l̄
− c′

¯
l]}. Similarly, each j ∈ [β] is320

contained in (b′
j − b′

j̄
+ c′

l̄
− c′

¯
l)-many sets in {Yk : k ∈ [c′

l̄
− c′

¯
l]}. Further, let n := c′

l̄
− c′

¯
l. Now, for (3.15)321

to be an n-block inequality it remains to show that each l ∈ [γ] lies in the intersection of c′
l − c′

¯
l and not322

more blocks from {Xk × Yk : k ∈ [n]}, i.e.,323

max{k ∈ [c′
l̄
− c′

¯
l] : l ∈ ΞM

k ([c′
l̄
− c′

¯
l])} = c′

l − c′

¯
l ∀l ∈ [γ].324

Namely, if for any l′ ∈ [γ] we have l′ ∈ ΞM
k ([c′

l̄
− c′

¯
l]) for some k > 1, then l′ ∈ ΞM

k−1([c′
l̄
− c′

¯
l]) follows325

trivially. The sorting of Xk and Yk implies that for a pair (i, j) ∈ [α] × [β] to be in Xk′ × Yk′ for some326
k′ ∈ [c′

l̄
− c′

¯
l], the conditions i ∈ Xk for k ∈ [k′] and j ∈ Yk for k ∈ {k′, . . . , c′

l̄
− c′

¯
l} have to hold. In327

particular, for the defined sets X̄k and Ȳk for k ∈ [c′
l̄
− c′

¯
l], the number of blocks containing the entry (i, j)328

of M can be calculated as329

|{k ∈ [c′
l̄
− c′

¯
l] : (i, j) ∈ Xk × Yk}| = max

{
0,

(
a′

i − a′
ī + c′

l̄
− c′

¯
l + b′

j − b′
j̄ + c′

l̄
− c′

¯
l − n

)}
.330

Therefore, we need to have331

max
(i,j)∈[α]×[β]:Mij=l

max
{

0,
(

a′
i − a′

ī + c′
l̄
− c′

¯
l + b′

j − b′
j̄ + c′

l̄
− c′

¯
l − n

)}
= c′

l − c′

¯
l.332

This is indeed equivalent to Condition (II). Thus, we have shown that any inequality of the form333 ∑
i∈[α] a′

ixi +
∑

j∈[β] b′
jyj ≤

∑
l∈[γ] c′

lzl + d′ is equivalent to an n-block inequality for some n ∈ N if334
Conditions (I),(II) and (III) are met.335

The reverse implication, i.e., every inequality equal to an n-block inequality for n ∈ N up to addition336
of multiple-choice constraints and scaling fulfills Conditions (I),(II) and (III), follows directly from their337
derivation.338

4. Facets. Facets are the tightest possible linear cuts which can be added to the description of P (M)339
and are therefore useful for the branch-and-cut algorithm for solving optimization problems over P (M).340
In the following it is shown that the so-far described classes of valid inequalities namely n-block and341
bound inequalities are sufficient to fully describe P (M). Additionally, we introduce a separation algorithm342
and a preprocessing routine to efficiently make use of these inequalities in a branch-and-cut procedure.343

4.1. Convex Hull.344

Lemma 4.1. All facets of P (M) are induced by either n-block inequalities or lower bounds.345

Proof. Let F be a facet of P (M) which is induced by the valid inequality346 ∑
i∈[α]

aixi +
∑

j∈[β]

bjyj ≤
∑
l∈[γ]

clzl + d,(4.1)347

348

a′, b′, c′, d′ ∈ N0. Further, let V = {vt1 , . . . , vtν
} be a set of affine independent vertices for ν := dim(P (M))349

with V ⊆ F . By Lemma 2.2, all vertices in V have the form350

vtk
= etx

k
+ eα+ty

k
+ eα+β+Mtx

k
t

y
k

351
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for some tk = (tx
k, ty

k) ∈ [α] × [β]. The tuple tk sufficiently characterizes the vertex vtk
. It indicates that352

xi = 1 for i = tx
k, xi = 0 otherwise and yj = 1 for j = ty

k, yj = 0 otherwise. If there is an index i′ ∈ [α] such353
that there is no vertex in V fulfilling xi′ = 1, then F lies on the hyperplane {(x, y, z) ∈ Rα+β+γ : xi′ = 0}354
and since we can rule out that this hyperplane is a superset of P (M), F is induced by the bound inequality355
xi ≥ 0. This holds analogously for j ∈ [β] and l ∈ [γ]. Note that P (M) ̸⊂ {(x, y, z) ∈ Rα+β+γ : zl = 0}356
for all l ∈ [γ] follows from the assumption that each l ∈ [γ] is contained in M .357

Now assume that for all i ∈ [α] there is at least one k′ ∈ [ν] with tx
k′ = i, and that the same holds for358

all j ∈ [β] and l ∈ [γ]. W.l.o.g., we can assume359

atx
κ

= bty
κ

= cMtx
κt

y
κ

= d = 0360
361

for one κ ∈ [ν] where Mtx
κty

κ
=

¯
l since any inequality can be transformed to this form by subtracting362

multiple-choice constraints. Inserting those informations in (4.1) implies that all vertices vtk
in V fulfill363

the equation atx
k

+ bty
k

= cMtx
k

t
y
k

. We now want to show that Conditions (I), (II) and (III) from Lemma 3.4364

hold.365
First, we verify366

aī + bj̄ = cl̄.367368

By assumption, there is a k′ ∈ [ν] for which Mtx
k′ ty

k′
= l̄ holds, hence atx

k′
+ bty

k′
= cl̄. Now consider the369

vertex characterized by the tuple (̄i, j̄). Since the inequality defining F must be valid for this vertex, we370
have aī + bj̄ ≤ cMīj̄

≤ cl̄ and therefore atx
k′

= aī and bty

k′
= bj̄ . This implies aī + bj̄ = cl̄, which certifies371

Condition (I).372
Now, we show373

cl = max
i,j∈[α]×[β]:Mij=l

max{0, ai + bj}(4.2)374
375

for all l ∈ [γ]. For all k′ ∈ [ν] for which Mtx
k′ ty

k′
= l holds, we have atx

k′
+ bty

k′
= cl. Thus, there are i ∈ [α]376

and j ∈ [β] such that ai + bj = cl holds. The validity of the considered inequality for P (M) implies377
ai + bj ≤ cMij

for all i, j ∈ [α] × [β]. This validates Condition (II).378
Finally, we have to show379

a
¯
i ≥ aī − cl̄, b

¯
j ≥ bj̄ − cl̄.380381

To this end, define the two subsets X := {i ∈ [α] \ {̄i} : ai < 0} and Y := {j ∈ β \ {j̄} : bj < 0} and382
suppose that X or Y is non-empty. Lifting these selected coefficients leads to a valid block inequality383
dominating (4.1), contradicting the assumption that (4.1) is facet-defining. Consider the inequality384 ∑

i∈[α]

a′′
i xi +

∑
j∈[β]

b′′
j yj ≤

∑
l∈[γ]

clzl + d′,(4.3)385

386

where a′′
i = 0 holds for all i ∈ X, and a′′

i = a′
i otherwise, and where b′′

j = 0 holds for all j ∈ Y , and387
b′′

j = b′
j otherwise. We can construct the sets388

X̄k := {i ∈ [α] : a′′
i ≥ k}389

and390

Ȳk := {j ∈ [β] : b′′
j > d′ − k}391

and set n′ := cl̄. Now as in the proof of Lemma 3.4 the number of blocks containing the entry (i, j) of M392
can be calculated as393

|{k ∈ [d′] : (i, j) ∈ X̄k × Ȳk}| = max
{

0, a′′
i + b′′

j − n′} .394

Together with (4.2) for the transformed variables,395

cl = max
i,j∈[α]×[β]:Mij=l

max{0, ai + bj},396
397
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10 R. BURLACU, P. GEMANDER, AND T. KUEN

we observe the equivalence of (4.3) and the following n′-block inequality, which is valid for P (M):398

n̄∑
k=1

∑
i∈X̄k

xi +
n̄∑

k=1

∑
j∈Ȳk

yj −
n̄∑

k=1

∑
l∈ΞM

k
([n̄])

zl ≤ n′.399

Since Inequality (4.3) dominates Inequality (4.1), the latter cannot be facet-defining, which contradicts400
the assumption. Thus, Condition (III) holds as well. Altogether, this means that (4.1) is equivalent to an401
n-block inequality.402

Theorem 4.2. The full convex-hull description of P (M) is given by the multiple-choice constraints,403
the non-negativity constraints and the n-block constraints for n ≤ n̄ for some fixed n̄ ∈ N.404

4.2. Separating n-Block Inequalities. To support a branch-and-cut algorithm by adding useful405
cuts we develope a seperation routine which identifies n-block inequalities which cut off a given non-integer406
point with maximum violation. As shown in Section 3.2 there are many different inequalities equivalent407
up to addition of multiple-choice constraints and scaling. Hence, we need to find a unique representation408
for these cuts.409

Definition 4.3. An inequality of the form
∑

i∈[α] aixi +
∑

j∈[β] bjyj ≤
∑

l∈[γ] clzl + d is called a410
normalized block inequality if it is equivalent to an n-block inequality and if minl∈[γ] cl = 0 as well as411
maxi∈[α] ai = maxl∈[β] bj = maxl∈[γ] cl = 1 hold.412

Note that any facet can be transformed to a normalized n-block inequality by subtracting multiples of413
the multiple-choice constraints until minl∈[γ] cl = 0 as well as maxi∈[α] ai = maxj∈[β] bj = maxl∈[γ] cl = d414
hold and then dividing by maxl∈[γ] cl, which also leads to d = 1. This is possible because of Condition (I)415
from Lemma 3.4. As a consequence, all normalized block inequalities also fulfill this condition. We can416
make use of the fact that for normalized block inequalities, Condition (II) simplifies to417

cl = max
i,j∈[α]×[β]:Mij=l

max{0, ai + bj − 1} ∀l ∈ [γ].418
419

Further, Condition (III) can be ensured by bounding the a- and b-variables from below by zero. This420
allows us to state an optimization problem to find normalized block inequalities which are maximally421
violated by a given not necessarily integer point p = (x̄, ȳ, z̄) /∈ P (M) with p ≥ 0:422

max
(a,b,c)∈P SEP (M)

∑
i∈[α]

aix̄i +
∑

j∈[β]

bj ȳj −
∑
l∈[γ]

clz̄l − 1,(4.4)423

P SEP (M) :={a ∈ [0, 1]α, b ∈ [0, 1]β , c ∈ [0, 1]γ : cl ≥ ai + bj − 1 ∀l ∈ [γ], (i, j) ∈ [α] × [β] : Mij = l}424425

The variables (a, b, c) ∈ [0, 1]α+β+γ are the left-hand side coefficients of the normalized block inequality426
we search for while the constraints enforce Conditions (I) - (III).427

Theorem 4.4. Assume s ≥ 0 and
∑

i∈[α] x̄i =
∑

j∈[β] ȳj =
∑

l∈[γ] z̄l = 1. Then every vertex of428

P SEP (M) which is optimal for (4.4) yields the coefficients of a normalized block inequality.429

Proof. Let s = (ã, b̃, c̃) a vertex of P SEP (M). We show that conditions (I) - (III) are satisfied. Since430
s is a vertex of P SEP (M) and optimal for (4.4), there is no s′ ∈ P SEP (M), s′ ̸= s which has the same or431
a higher objective value as s.432

We have to verify that the highest value in each variable set is equal to one, ãī = b̃j̄ = c̃l̄ = 1.433
If none of the highest values is equal to one, we can multiply all values by some positive factor staying434
feasible and increasing the objective value. We know ãī + b̃j̄ − 1 = c̃l̄, otherwise we could decrease c̃l̄435
while again staying feasible and increasing the objective value. Therefore, w.l.o.g. assume ãī = 1. If now436
b̃j̄ ̸= 1 it follows c̃l̄ ̸= 1. Now we add 1 − b̃j̄ to all values of b̃ and c̃. The multiple-choice constraints lead437
to the fact that we arrive at a feasible point s′ which has the same objective function value as s. This438
proves ãī = b̃j̄ = c̃l̄ = 1, conditions (I) and (III) follow trivially.439

The non-bound constraints in P SEP (M) directly imply440

c̃l ≥ max
i,j∈[α]×[β]:Mij=l

max{0, ãi + b̃j − 1} ∀l ∈ [γ].441
442

The equality and therefore condition (II) is obvious given that increasing values of c̃ leads to decreasing443
the objective value.444
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Remark 4.5. Normalized block inequalities can be separated from points satisfying multiple-choice445
constraints in polynomial time.446

To separate only 1-block inequalities it suffices to limit the solution space to binary values of a, b447
and c. By adding the constraint

∑
l∈[γ] cl = ν the amount of z-variables in the resulting inequality is448

restricted to a chosen value ν.449
Numerical results on our test instances in Section 6 show that the presented separation routine450

actually almost always separates facets if we perturb p slightly by some constant ϵ > 0. But there are451
edge cases in which a non-facet n-block inequality is more violated by an infeasible point than any facet.452
The following is an example for this exception.453

Example 4.6. Consider the relation matrix454

M =

2 5 1
2 1 4
3 4 3

455

456

and p = (0, 1
2 , 1

2 , 1
2 , 0, 1

2 , 0, 0, 0, 0, 1). The constraint457

1
2x1 + x2 + x3 + y1 + 1

2y2 + y3 ≤ 1
2z1 + z2 + z3 + z4 + 1458

459

is violated by 1. It can be conically combined by the facets460

(0.5 · ) x1 + x2 + y1 + y2 + y3 ≤ z1 + z2 + z4 + z5 + 1461

(1.5 · ) 1
3x1 + 2

3x2 + x3 + y1 + 2
3y2 + y3 ≤ 1

3z1 + 2
3z2 + z3 + 2

3z4 + 1462
463

and the multiple-choice constraints464

(0.5 · ) − x1 − x2 − x3 ≤ −1465

(1 · ) − y1 − y2 − y3 ≤ −1466

(0.5 · ) z1 + z2 + z3 + z4 + z5 ≤ 1467

468469

and is therefore not itself a facet. But it nevertheless is more violated by p than the facets it can be470
assembled from and in fact any facet of P (M).471

4.3. Precomputing 1-Block Inequalities Using Cliques. Experience shows that 1-block in-472
equalities form the largest part of the facets of P (M). Since it is relatively computationally easy to find473
good 1-block inequalities for P (M) it can be useful to add some of them before starting the optimization474
process. The problem to find a block in M as large as possible which contains only a given subset Z475
of [γ] can be formulated as a clique problem with a quadratic objective function. For that, we build a476
graph GC(M) = (V C(M), EC(M)) whose nodes V C(M) = V C

X (M) ∪ V C
Y (M) = {vx

1 , ..., vx
α} ∪ {vy

1 , ..., vy
β}477

correspond to either a row or a column of M . Now, edges are introduced such that the subgraphs of478
GC(M) induced by the variable set V C

X (M) and V C
Y (M), respectively, are complete. Additionally, two479

nodes vx
i ∈ V C

X (M) for i ∈ [α] and vy
j ∈ V C

Y (M) for j ∈ [β] are connected by an edge if the z-index Mij480
is contained in Z. The selected nodes in a clique in GC(M) correspond to the rows and columns of M481
forming a block which only contains indices in the given subset Z of [γ]. If all rows and all columns of a482
block A are contained in a block B and both A and B contain the same set of z-indices, the inequality483
induced by A is dominated by the inequality induced by B. Hence, to make the block as big as possible,484
we want to optimize over its volume. The quadratic objective function is given as the number of selected485
nodes in V C

X (M) times the number of selected nodes in V C
Y (M). We can either solve this clique problem486

exactly or use a heuristic.487

Example 4.7 (Example 3.2 continued).488
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vx
1

vx
2

vx
3

vx
4

vy
1

vy
2

vy
3

vy
4

2 4 4 2
2 2 1 4
4 1 1 4
1 3 4 3

Figure 2: Clique problem to find maximum 1-block only containing indices in {1, 2}.

Figure 2 shows a Matrix M and the corresponding graph GC(M). To find the largest 1-block489
in M which contains only the z-indices 1 and 2, we find a clique in GC(M) which maximizes the490

function f(χ) =
(∑4

i=1 χvx
i

)
·

(∑4
j=1 χvy

j

)
, where the binary variable χ indicates the selection of a491

node. The optimal solution forms the grey shaded block of size 4 in Figure 2. The 1-block inequality492
x2 + x3 + y2 + y3 ≤ z1 + z2 + 1 can be added to the model.493

5. Chained If-Then. Inspired by an application in stochastic programming, we now chain several494
if-then-related variable sets with multiple-choice constraints over a given planning horizon t ∈ [T ], T ∈ N.495
For each time step t ∈ [T ], there are two vectors of binary variables with multiple-choice condition496
xt ∈ {0, 1}αt and yt ∈ {0, 1}βt and a matrix M t describing the implications between the variable sets,497
which are given as follows:498

If xt
i = 1 for some i ∈ [αt] and yt−1

j′ = 1 for j′ ∈ [βt−1], then yt
j = 1,499

for all t ∈ [T ], where j := M t
ij′ and y0 ∈ {0, 1}β0 is a given vector with multiple-choice condition. The set500

of feasible points can thus be expressed as all binary vectors (xt, yt) ∈ {0, 1}αt+βt+γt for t ∈ [T ] which501
fulfill the following constraints:502 ∑

i∈αt

xt
i =

∑
j∈βt

yt
j = 1 ∀t ∈ [T ](5.1)503

xt
i + yt−1

j′ ≤ yt
Mt

ij′
+ 1 ∀t ∈ [T ], ∀i ∈ [αt], ∀j′ ∈ [βt−1].(5.2)504

505

Let M := {M t : t ∈ [T ]} denote the set of all implication matrices used in the instance. By506

S(M) := {(x1, . . . , xT , y1, . . . , yT ) ∈ {0, 1}
∑

t∈[T ]
αt+βt ∀t ∈ [T ] : (5.1), (5.2)},507508

we denote the binary feasible points for Constraints (5.1) and (5.2). We then call the convex hull of these509
feasible points P (M) := conv(S(M)).510

Lemma 5.1. There are
∏

t∈T αt vertices of P (M).511

Proof. Each point in S(M) can be identified by the x-variables which are set to one. For a given512
vector y0 ∈ {0, 1}β0 , the values of the variables yt

j can be derived recursively via yt
j =

∑
(i,j′) : Mt−1

ij′ =j xt
iy

t−1
j′ .513

Further, each of the
∏

t∈T αt configurations of possible values for the x-variables lead to feasible points514
in S(M). As P (M) is the convex hull of a set of binary points, these points are all vertices of P (M).515

To derive a full outer description of P (M) we model it as an instance of the clique problem with multiple-516
choice constraints (CPMC) under a cycle-free dependency graph which has been studied in [8]. In CPMC517
the task is to find an m-clique in an m-partite graph G = (V, E). This can be seen as a clique problem with518
additional multiple-choice constraints on the selection of the nodes from each subset in the m-partition V519
of V . The convex hull polytope for an instance (G, V) is denoted as P CPMC(G, V).520

We first construct an undirected graph GM = (V M, EM) as follows. For all t ∈ [T ], each variable xt
i,521

i ∈ [αt] and yt
j , j ∈ [βt], is represented by a node vxt

i
or vyt

j
in V M, respectively. For each entry M t

ij in522

the implication matrices M t, t ∈ [T ], we further introduce a node vmt
ij

. Each node is assigned to exactly523

one node subset, namely vxt
i

to Vxt , vyt
j

to Vyt and vmt
ij′

to Vmt , t ∈ [T ], i ∈ [αt], j ∈ [βt], j′ ∈ [βt−1].524

Additionally, we introduce the node subset Vy0 containing only one node vy0
j′

, where y0
j′ = 1. These node525

subsets constitute a partition VM of V M into disjoint stable subsets. Now we introduce edges such that526
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for each t ∈ [T ] the subgraph of G induced by all nodes in Vxt , Vyt−1 and Vyt is a complete tripartite527
graph on the three variable sets. Additionally, each node vmt

ij′
, i ∈ [αt], j′ ∈ [βt−1], is connected to the528

nodes vxt
i
, vyt−1

j′
and vyt

j
, where j is the entry M t

ij′ in the corresponding implication matrix. We can529

now decompose GM into subgraphs GM
1 , . . . , GM

T , where GM
t = (V M

t , EM
t ) is induced by the node set530

V M
t := Vyt−1 ∪ Vxt ∪ Vyt ∪ Vmt for all t ∈ [T ] and connect each pair of nodes which are not in the same531

subgraph.532

Observation 5.2. An integer point in P (M) corresponds to an integer point in P CPMC(GM, VM).533

The dependency graph G = (V, E) of a CPMC instance (G, V) is defined as follows. Each node534
partition set in G is represented by a node in G. Two nodes Vi and Vj are connected by an edge if and535
only if there exist two nodes v ∈ Vi and w ∈ Vj such that there is no edge connecting v and w in G. The536
dependency graph for the CPMC instance constructed above is depicted in Figure 3.537

Vxt Vyt−1

Vmt

VytVxt+1

Vmt+1

Vyt+1

Figure 3: Dependency graph for the CPMC extension of P (M).

It can be observed that G is a forest, which is the prerequisite for the main result of [8] giving a538
complete description for P CPMC(G, V).539

Theorem 5.3 ([8], Theorem 3.1). Let I = (G, V) be an instance of (CPMC) with a cycle-free540
dependency graph. Then P CPMC(G, V) is completely described by the constraints541 ∑

v∈U

xv = 1 ∀U ∈ V(5.3a)542 ∑
v∈S

xv ≤ 1 ∀ stable sets S ⊆ V(5.3b)543

xv ≥ 0 ∀v ∈ V.(5.3c)544545

546

Theorem 5.3 implies that the convex hull of the feasible points in the extended formulation of the chained547
if-then problem is given by the multiple-choice constraints (5.3a) on the variable sets Vxt , Vyt and Vmt548
for all t ∈ [T ], the stable-set constraints (5.3b) and the non-negativity constraints (5.3c) for all variables.549

Note that the nodes in the intersection of two of the subgraphs GM
1 , . . . , GM

T form a stable set in GM.550

Since the stable-set polytope for GM is identical to the clique polytope for its complement graph ḠM, we551
can use the following result from [12] to state that the outer description for P CPMC(GM, VM) decomposes552
into the outer descriptions for each of the polytopes P CPMC(G{Mt}, V{Mt}) for all t ∈ [T ].553

Theorem 5.4 ([12], Theorem 4.1). Let G1 = (V 1, E1) and G2 = (V 2, E2) be graphs such that554
G1 ∩ G2 := (V 1 ∩ V 2, E1 ∩ E2) is complete and let A1x1 ≤ b1, A2x2 ≤ b2 be complete descriptions of555
the stable-set polytopes of G1 and G2, respectively. Then the union of these linear systems is a complete556
description of the stable-set polytope of the graph G1 ∪ G2 := (V 1 ∪ V 2, E1 ∪ E2).557

To obtain an outer description of P (M), we use Fourier-Motzkin elimination to project the variables mt
ij′ ,558

i ∈ [αt], j′ ∈ [βt−1], t ∈ [T ], out of the linear system describing the convex hull of P CPMC(GM, VM).559
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14 R. BURLACU, P. GEMANDER, AND T. KUEN

Each variable mt
ij′ , i ∈ [αt], j′ ∈ [βt−1], t ∈ [T ] is included in the inequality system describing the convex560

hull of P CPMC(G{Mt}, V{Mt}) for exactly one t ∈ [T ]. Therefore, the Fourier-Motzkin elimination can561
be performed for each t ∈ [T ] separately. This implies that the linear system describing the convex hull562
of P (M) decomposes into the inequalities describing the convex hull of P (M) for all M ∈ M.563

Corollary 5.5. The polytope P (M) is completely described by the non-negativity constraints and564
all n-block inequalities which are facet-defining for any of the polytopes P (M), M ∈ M.565

6. Computational Results. We conduct some numerical experiments to evaluate the impact of566
n-block inequalities on the solution time for problems which include if-then structures. We test the567
clique-based algorithm to precompute 1-block inequalities as described in Section 4.3, a purely cut-based568
solution algorithm on if-then instances with randomly generated relation matrices and the separation569
algorithm from Section 4.2, and customized precomputed n-block inequalities on real-world stochastic570
timetabling instances.571

All algorithms were implemented in Python 3.10.13 using Gurobi 11.0.0 to solve mixed-integer572
problems. We performed the calculations on a server with an Intel Xeon E3-1240 v6 CPU, 32 GB RAM,573
4 cores, HT disabled and 3.70 GHz base frequency.574

6.1. Random Matrix Tests. To estimate the benefit of adding block inequalities to problems575
which lack observable structure in the relations between the three variable sets indexed in [α], [β],576
and [γ], we first conduct performance tests with random relation matrices. To this end, we insert n-block577
inequalities into the problem at two access points: before the solution algorithm is started and during the578
branch-and-cut procedure.579

6.1.1. Precomputing 1-Block Inequalities Using Cliques Tests. We evaluate the impact580
of 1-block inequalities generated by the clique-based algorithm in Section 4.3 on quadratic matrices of581
various sizes with different ratios for the number of z-indices in relation to the matrix size. For each582
configuration of α, β, and γ, we perform 300 runs on randomly generated relation matrices to stabilize583
the results. Each run involves optimizing a cost function over P (M). We select random cost coefficients584
for the x- and y-variables and determine the cost coefficients for the z-variables such that the mean cost585
of all integer points in P (M) equals zero.586

As the set [γ] increases in size, the number of different combinations of z-indices also increases.587
Since 1-block inequalities can be built for each subset of [γ], 1-block inequalities for only one l ∈ [γ]588
make up a relatively small part of the total set of facets of P (M), assuming that the facets are evenly589
distributed across the subsets of z-indices they contain. To evaluate this distribution, we measure the590
closure of the integrality gap when adding all 1-block inequalities for different-sized subsets of [γ] in the591
corresponding blocks. We define the integrality gap closure as the difference between the optimal integer592
solution value and the optimal value of the relaxed problem with and without the precomputed 1-block593
cuts. We discard any run where the linear program (LP) solution equals the solution to the integer594
program (IP). In each run, we alternate between optimizing the LP relaxation of P (M) and cutting595
off the resulting non-integer point using an 1-block inequality containing a fixed amount of z-variables596
found by the adjusted separation algorithm described in Section 4.2. Table 1 shows that increasing the

Table 1 Integrality gap closure by 1-block inequalities.

Config |ZM | ≤ 1 |ZM | ≤ 2 |ZM | ≤ 3 |ZM | ≤ 4 |ZM | ≤ 5
α = β = 10, γ = 12 8.27% 71.87% 93.34% 97.59% 98.58%
α = β = 10, γ = 20 2.75% 42.28% 70.22% 86.03% 93.59%
α = β = 10, γ = 28 1.34% 29.69% 52.68% 69.74% 82.31%
α = β = 15, γ = 27 2.25% 40.18% 65.90% 82.88% 92.13%
α = β = 15, γ = 45 0.62% 19.62% 37.59% 53.42% 66.65%
α = β = 15, γ = 63 0.14% 12.50% 24.29% 35.52% 45.91%
α = β = 20, γ = 48 0.55% 24.55% 44.14% 59.79% 73.18%
α = β = 20, γ = 80 0.16% 11.79% 22.27% 31.89% 41.06%
α = β = 20, γ = 112 0.07% 8.26% 16.14% 23.37% 30.26%

597
number of combinations of z-variables in the added 1-block inequalities yields solution values of the LP598
relaxations which are significantly closer to the solution value of the IPs. As a result, more cuts have599
to be computed, which can slow down the subsequent branch-and-cut process. Therefore the achieved600
closure of the integrality gap is relativized by the number of cuts which were produced. In Table 2, the601
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Table 2 Integrality gap closure by 1-block inequalities per cut.

Config |ZM | ≤ 1 |ZM | ≤ 2 |ZM | ≤ 3 |ZM | ≤ 4 |ZM | ≤ 5
α = β = 10, γ = 12 0.6890% 0.9214% 0.3132% 0.1231% 0.0622%
α = β = 10, γ = 20 0.1373% 0.2014% 0.0520% 0.0139% 0.0043%
α = β = 10, γ = 28 0.0477% 0.0731% 0.0143% 0.0029% 0.0007%
α = β = 15, γ = 27 0.1872% 0.5151% 0.2211% 0.1045% 0.0581%
α = β = 15, γ = 45 0.0309% 0.0934% 0.0278% 0.0086% 0.0031%
α = β = 15, γ = 63 0.0049% 0.0308% 0.0066% 0.0015% 0.0004%
α = β = 20, γ = 48 0.0462% 0.3147% 0.1481% 0.0754% 0.0462%
α = β = 20, γ = 80 0.0082% 0.0561% 0.0165% 0.0051% 0.0019%
α = β = 20, γ = 112 0.0025% 0.0204% 0.0044% 0.0010% 0.0002%

cells of Table 1 are divided by the number of possible combinations of z-indices which are contained602

in the generated blocks
∑|ZM |

k=1
(

γ
k

)
. For all observed instances, including 1-block inequalities with two603

z-variables has the biggest impact on the average integrality gap closure per cut. Building on that finding,604
we configure the performance test for the clique algorithm to precompute 1-block inequalities such that605
for each z-index (ZM = {l}) and for each pair of z-indices (ZM = {l1, l2}) we calculate the largest block606
(X, Y ) in M which contains only l ∈ ZM . We then add the corresponding 1-block cut607 ∑

i∈X

xi +
∑
j∈Y

yj ≤
∑

l∈ZM

zl + 1,608

to the description of P (M). We present the achieved integrality gap closures in Table 3. For small

Table 3 Percentage of gap closure via clique block generation.

Config γ/(α · β) = 0.0625 γ/(α · β) = 0.125 γ/(α · β) = 0.1875 γ/(α · β) = 0.25
α = β = 8 64.67% 61.55% 46.85% 40.70%
α = β = 12 40.85% 28.65% 22.91% 16.24%
α = β = 16 25.95% 17.19% 14.34% 9.62%
α = β = 20 18.55% 12.05% 9.81% 6.65%

609
instances α = β = 8, γ = 4 the integrality gap is getting closed by almost two thirds. But the amount of610
gap closure decreases when increasing the size of M , while keeping its ratio to the number of z-indices611
constant. Table 4 shows that the average size of the computed blocks |X| · |Y | does not increase for612
larger matrices M . Therefore, the computed blocks cover a smaller portion of M for larger matrices.

Table 4 Average size of the maximum blocks.

Config γ/(α · β) = 0.0625 γ/(α · β) = 0.125 γ/(α · β) = 0.1875 γ/(α · β) = 0.25
α = β = 8 11.67 6.85 4.64 4.43
α = β = 12 9.55 6.17 4.29 4.22
α = β = 16 8.60 5.81 4.11 4.09
α = β = 20 8.02 5.57 3.97 4.00

613
Nevertheless, adding 1-block inequalities computed by the presented clique-based algorithm to the614
description of P (M) can be beneficial for the solution process if the ratio γ/(α · β) is small.615

6.1.2. Cut Algorithm Tests. Since we established that the class of all n-block inequalities defines616
the convex hull of P (M), we can use a purely n-block-cut based solution algorithm to optimize over617
P (M). The following test instances were generated in the same way as in the previous section. The618
presented measurements include the number of n-block-cuts which were used to separate non-integer619
solutions (Table 5) and their distribution over the number n of blocks they consist of (Table 6). As620
expected, the number of required cuts increases both with the matrix size α · β and with the number of z621
indices in M . The total amount of runtime in the solution process which accounts for the cut generations622
scales well with the instance size. 1-block inequalities make up the largest part of the used cuts for623
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Table 5 Number of used cuts.
Config γ/(α · β) = 0.04 γ/(α · β) = 0.12 γ/(α · β) = 0.2 γ/(α · β) = 0.28
α = β = 5 - 261 944 1590
α = β = 10 472 2511 5500 8904
α = β = 15 1307 6122 12551 18938
α = β = 20 2679 10437 20875 31465

Table 6 Distribution of n.
Config n = 1 n = 2 n = 3 n = 4 n ≥ 5
α = β = 5, γ = 7 95.05% 4.24% 0.29% 0.43% 0.00%
α = β = 10, γ = 28 96.12% 3.55% 0.17% 0.14% 0.03%
α = β = 15, γ = 63 97.54% 2.23% 0.12% 0.06% 0.06%
α = β = 20, γ = 112 98.12% 1.72% 0.09% 0.06% 0.01%

all tested instances. Hence, even though there is no upper bound on the number of facets for if-then624
problems presented in this paper, the bound on the number (2α − 1)(2β − 1) of 1-block inequalities from625
Observation 3.1 is numerically a good estimate for the maximum number of facets around an integer626
solution to the problem.627

6.2. Application to Fixed Recourse Stochastic Programming. One application field for if-628
then polytopes lies in fixed recourse stochastic programming (FRSP). The following studies are carried out629
on a case study for energy-efficient timetable optimization in underground train networks. The underlying630
model synchronizes braking and acceleration phases of locally close trains to make use of recuperation631
energy which braking trains generate. Additionally, power-saving driving behavior is supported. This is632
done by slightly changing departure times and running times in the train timetable. For every leg in the633
table, one can choose from a discrete set of departure and running time combinations. The mixed-integer634
optimization model to minimize the total energy consumption is given by635

min
∑
t∈T

zt636

s.t.
∑

(i,j)∈J,(d,r)∈Cij

pijdrtxijdr ≤ zt, ∀t ∈ T637

zt ≥ 0, ∀t ∈ T638

x ∈ X.639640

Finding a feasible timetable x ∈ X is modeled as a clique problem with multiple-choice constraints. A641
detailed description of the mathematical model can be found in [8].642

The fixed recourse stochastic aspect is present in the scenario extension of the timetabling model. This643
feature is described in [7] and provides a way to deal with uncertainties and delays in the operation of the644
underground network. Decisions for the running- and departure times in the table have influence on the645
realization of the uncertainties with respect to delays. We now observe the inequalities added for the full646
recovery model in [7]. The constraints linking the timetable variables xijdr and the variables ysij−1d′′r′′ of647
scenario s for each leg (i, j) and the leg before (i, j − 1) with departure times d, d′′ and running times r, r′′648
are given by649

xijdr + ysij−1d′′r′′ − 1 ≤ ysijd′r′ .650

The departure time d′ and running time r′ can be calculated from d, d′′ and r, r′′ as follows:651

d′ = max d, d′′ + r′′ +
¯
hij−1 + δsij ,652

r′ = max
¯
rij , r − (d′ − d − δsij) + ρsij .653654

Here,
¯
hij is the minimum dwell time for leg (i, j),

¯
rij is the minimum running time for leg (i, j), δsij is655

the deviation from the nominal dwell time before leg (i, j) in scenario s, and ρsij denotes the deviation656
from the nominal running time for leg (i, j) in scenario s.657
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The if-then relation can be expressed as if a train arrives at a station at time d′′ +r′′ and it is planned658
to depart at time d with running time r, we forecast that the train will depart at time d′ with running time r′.659
For each leg (i, j) and each scenario s, there are three binary vectors xij ∈ {0, 1}|Cij |, yij−1 ∈ {0, 1}|Csij−1|,660
and yij ∈ {0, 1}|Csij | with multiple-choice constraints for which a relation matrix can be set up. For one661
leg (i, j) and one scenario s, the relation matrix Msij is similar to Figure 4.662

y1,0,60 y1,5,60 y1,10,60 y1,15,60 y1,20,60
x2,105,50
x2,105,55
x2,105,60
x2,110,50
x2,110,55
x2,110,60

Figure 4: Example relation matrix structure for one leg and one scenario. Equal indices marked by the
same gray tone.

The observable L-shaped structure for equal indices holds for every instance. For each index l in Msij663
there are at most two blocks in Msij which contain l and these blocks contain all l in Msij . This property664
makes the following preprocessing step feasible.665

Preprocessing. In the preprocessing for the scenario instances, we remove all McCormick constraints666
from S(Msij) and replace them by at most two 1-block inequalities. These blocks can be constructed667
such that they contain exactly one index and the union of these blocks form Msij . In this way, we can668
both reduce the number of constraints in S(Msij) and strengthen the formulation.669

Instances. The computations were performed for 60 instances of timetables grouped into 6 instance670
configurations. All instances are generated on real-world data provided by our partners at VAG, the671
operator of public transport in the city of Nuremberg, Germany. The names of the instance configurations672
follow the scheme dt|ss|nt|sn, where for each leg in the timetable model, dt is the maximum time the673
departure time can be delayed or advanced, ss is the step size in the resulting time interval, nt is the674
number of possible running times. The number of included scenarios is given by sn. For each instance675
configuration, we test 10 different time horizons throughout the day, with each time horizon having a676
duration of 30 minutes. In order to obtain small instances which can be solved to optimality, we only677
optimize over one line of the train system.678

Computational Results. For each test instance, we compare five solution configurations. ORI is the679
model without if-then cuts. For PRE the preprocessing step described above is applied. Additional to680
the preprocessing for PRE+SEP the separation algorithm is performed. A variant of PRE+SEP where681
we only use if-then cuts and disallow Gurobi to use other cut types is carried out in Cuts=0. In SEP682
n-block inequalities are only separated during the solution process but no preprocessing was performed.683
We separate via a Gurobi callback at each node in the branch-and-bound tree one maximally violated684
normalized n-block constraint for each if-then substructure in the problem if the violation is greater or685
equal 0.1. The number of if-then cuts added to the model is presented in Table 7. It presents the mean686
values for each instance configuration of constraint counts and the percentage of separated cuts which687
constitute facets of P (M). Con ORI and Con PRE denote the number of constraints in the model after688
Gurobi presolve without and with the inclusion of preprocessed cuts, respectively. Sep SEP and Sep689
PRE+SEP represent the counts of constraints added as user cuts during the solution process without690
and with preprocessing. The column Facet % indicates the percentage of the separated cuts which are691
facets of P (M). Since in almost all cases the separated inequalities were in fact facets we only added692
facets to the model and neglected the separated non-facets, without a major increase in time used in the693
separation routine.694

To evaluate the impact of the n-block inequalities discovered in this paper on the solution performance695
we compare the time the Gurobi solver takes to solve the instances to optimality and, since this may be696
interesting from a practical point of view, to a MIP optimality gap of 1%. The time limit for the solver697
was set to 10 hours. This was enough time to solve each instance to optimality in at least one solution698
configuration. Tables 8 and 9 show for each instance configuration and each solution configuration the699
geometric mean of the runtime to optimality and to a MIP optimality gap of 1%, respectively. The700
column x Factor is the impact indicator and represents the factor by which the runtime of ORI could be701
shortened by if-then cuts. If for an instance the solver did not reach the demanded gap in under 10 hours702
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Table 7 FRSP test: Number of constraints which are added before and after the solution process starts
and percentage of separated cuts which are facets of P (M).

Config Con ORI Con PRE Sep SEP Sep PRE+SEP Facet %
10|5|2|2 19450 3124 671 319 100%
12|3|1|2 27397 3568 821 365 100%
12|6|4|2 80392 6347 726 339 99%
15|3|3|2 170094 8321 1409 814 99%
18|2|1|2 108811 6929 4039 2129 100%
10|5|1|3 37217 8637 8344 4769 97%

Table 8 FRSP test: Geometric mean runtime solving to optimality.

Config ORI PRE PRE+SEP Cuts=0 SEP x Factor
10|5|2|2 447.4 24.1 24.6 15.4 60.5 29.0
12|3|1|2 2272.2 137.7 47.3 37.8 131.9 60.1
12|6|4|2 16722.9 465.7 112.5 142.5 180.6 148.7
15|3|3|2 33910.7 5176.3 437.9 604.3 936.0 77.4
18|2|1|2 25010.6 2453.8 485.9 593.8 1278.1 51.5
10|5|1|3 17756.2 1337.9 740.0 1004.8 2314.6 24.0

it was counted as 10 hours. The number of instances which could be solved to optimality is presented in703
Table 10 for each instance configuration and each solution configuration.704

Results Analysis. The special structure in the relation matrices seems to be very suitable for the705
application of if-then cuts. Preprocessing 1-block inequalities reduced the number of constraints after706
Gurobi presolve by more than 75%, for 15|3|3|2 by 95% on average. Although the constraint matrix in707
this new formulation is more densely filled, it results in much shorter runtimes of PRE compared to ORI.708
All of the constraints separated as user cuts in a Gurobi callback were 1-block inequalities. This is due to709
the special block structure in the relation matrix. These cuts seem to be very effective in closing the dual710
bound. Due to the quickness of the separation LP, frequently calling the separation routine does not have711
a negative effect on the runtime. Comparing ORI and SEP we observe a constant improvement across all712
instance configurations by this separation. The computational study suggests, that the convex hull of713
if-then instances with a relation matrix structured as in this test consists of lower bounds and 1-block714
inequalities only. Combining the preprocessing and the separation routine we observe a significant impact715
of if-then cuts to the solution of the scenario timetable models both to optimality and to a MIP gap716
of 1%. PRE+SEP in contrast to ORI was able to solve all tested instances to optimality. Particularly717
impressive is the difference in the number of solved instances in the configuration 15|3|3|2. While the718
model without if-then cuts could not be solved to optimality after 10 hours in 90% of the instances, the719
geometric mean runtime of PRE+SEP was 437.9 seconds. In a little less than 1 hour, Gurobi was able to720
reduce the MIP gap to 1% but was not able to close the dual bound further in the next 9 hours. Here the721
separation of 1-block inequalities turned out to be crucial. Setting the Gurobi parameter Cuts to 0 and722
with that disallowing any other cut class than if-then cuts to be separated did improve the runtime to723
optimality in 2 of the 6 test configurations. The runtime to a MIP gap of 1% was improved in half of the724
instance configurations. Overall these classical cut classes like MIR, RLT or BQP cuts did not have a725
major impact on the solution performance when if-then cuts were added.726

6.3. Application to the Quadratic Assignment Problem. Koopmans and Beckmann presented727
a quadratic integer formulation for the quadratic assignment problem in [22]. In their application case,728
they aim to optimize the allocation of a set of m plants to m specific locations, modeled by binary729
variables x ∈ {0, 1}m×m. The objective is to minimize the total cost, which combines distance-based730
costs, flow-based costs, and placement costs. Mathematically, it involves three input matrices representing731
commodity flows between facilities (F ∈ Rm×m

+ ), distances between locations (D ∈ Rm×m
+ ), and placement732
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Table 9 FRSP test: Geometric mean runtime solving to a MIP optimality gap of 1%.

Config ORI PRE PRE+SEP Cuts=0 SEP x Factor
10|5|2|2 85.0 4.3 6.5 5.9 34.0 19.9
12|3|1|2 171.0 10.7 12.0 7.6 69.0 22.6
12|6|4|2 396.2 81.7 55.8 72.6 116.6 7.1
15|3|3|2 3451.8 267.6 187.9 143.6 554.1 24.0
18|2|1|2 3545.0 201.7 106.2 136.1 371.6 33.4
10|5|1|3 547.4 91.1 53.1 103.2 189.7 10.3

Table 10 FRSP test: Number of instances which were solved to optimality in under 10 hours.

Config ORI PRE PRE+SEP Cuts=0 SEP
10|5|2|2 10/10 10/10 10/10 10/10 10/10
12|3|1|2 10/10 10/10 10/10 10/10 10/10
12|6|4|2 8/10 10/10 10/10 10/10 10/10
15|3|3|2 1/10 10/10 10/10 10/10 10/10
18|2|1|2 2/10 9/10 10/10 10/10 9/10
10|5|1|3 5/10 10/10 10/10 10/10 10/10

costs (B ∈ Rm×m
+ ). The quadratic integer model becomes733

min
m∑

i=1

m∑
j=1

m∑
k=1

m∑
l=1

fijxikdklxjl +
m∑

i,j=1
bijxij(QAP)734

s.t.
m∑

i=1
xij = 1, ∀j ∈ [m]735

m∑
j=1

xij = 1, ∀i ∈ [m]736

xij ∈ {0, 1}, ∀ij ∈ [m]2.737738

We can reformulate (QAP) into an if-then polytope based model as follows. Define

Xi := {i1i2 ∈ [m]2 | i1 = i} for all i ∈ [m] and Y j := {j1j2 ∈ [m]2 | j2 = j} for all j ∈ [m].

We can group pairs of elements ii2 ∈ Xi and j1j ∈ Y j with identical costs fii2dj1j together and introduce739
a variable zij

l for each cost group l ∈ Zij with corresponding costs c̃ij
l . For each ij ∈ [m]2, we define a740

function f ij : [m]2 → Zij which maps i2j1 to the cost group of ii2j1j for each pair of elements ii2 ∈ Xi741
and j1j ∈ Y j . This yields an equivalent formulation of (QAP):742

min
∑

i∈[m]

∑
j∈[m]

∑
l∈Zij

c̃ij
l zij

l +
m∑

i,j=1
bijxij(ITQAP)743

s.t.
∑

ii2∈Xi

xii2 = 1, ∀i ∈ [m]744

∑
j1j∈Y j

xj1j = 1, ∀j ∈ [m]745

∑
l∈Zij

zij
l = 1, ∀ij ∈ [m]2746

xii2xj1j ≤ zij
fij(i2j1), ∀ii2j1j ∈ [m]4747

xij ∈ {0, 1}, ∀ij ∈ [m]2.748749

Here, we can directly observe an if-then instance with relation matrix M ij , where M ij
i2j1

:= f ij(i2, j1) for750
i2 ∈ [m] and j1 ∈ [m] as a substructure of (QAP) for each ij ∈ [m]2. The chaining of these instances751
differs from the one observed in Section 5.752
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Figure 5: Dependency graph for the chaining of if-then instances of Model (QAP) with n = 2.

As Figure 5 shows, the dependency graph of the CPMC extension for (QAP) is not a forest, therefore753
n-block inequalities for the substructured if-then polytopes are not necessarily sufficient to define the754
convex hull of the feasible points of Model (QAP). Still, these n-block inequalities are valid and lead to755
significant improvements for the solution process of (ITQAP), as the subsequent computational study756
demonstrates.757

Instances. We analyze 28 instances from the well established QAPLIB [5]. Note that the number in758
the name of the instances equals the parameter m in Model (ITQAP).759

Computational Results. We solve each instance both with and without the use of the separation760
algorithm for normalized n-block inequalities described in Section 4.2. At each node in the branch-and-761
bound tree, we collect the maximally violated cut in each if-then subproblem. All cuts with violations762
greater than or equal to 0.01 and at least 10% of the maximum observed violation at the node are then763
passed to Gurobi as UserCuts. Gurobi then decides, whether to add the cut to the model. We omitted a764
comprehensive analysis of the relation matrix which could be used to add instance-adapted constraints765
to the model in preprocessing in order to show the performance of the separated cuts on general QAP766
instances. The precomputing of cuts using the clique technique described in Section 4.3 was also not767
carried out, because the z-ratio, i.e., the ratio of the number of z-indices (γ) to the matrix size (α · β)768
was too big, as we can see in Column γ/(α · β) of Table 11.769

All instances were solved with a time limit of 10 hours. Column Sep Provided of Table 11 shows770
the number of separated if-then cuts for each instance. Sep Used displays the number of cuts which771
were added to the model by Gurobi. We point out that the separation LP (4.4) exclusively produced772
facet-defining inequalities. The runtime to optimality or the relative MIP optimality gap in case of the773
time limit being exceeded for the model with (IFTHEN ) and without (ORIGINAL) separated n-block774
inequalities are also displayed in Table 11. The shorter runtime or smaller optimality gap are marked in775
bold.776

Results Analysis. We sorted Table 11 by the z-ratio to illustrate the strong correlation of this777
parameter with the positive impact of the separated if-then cuts. For low values of γ/(α · β), the778
separation of n-block inequalities yields a significant improvement in reducing the relative MIP optimality779
gap and shortens the runtime drastically. The fast runtime of the separation LP enables to add a large780
number of inequalities which help the solver to cut off non-integer solutions. However, higher z-ratios781
worsen the performance of the separated cuts. They can even lead to higher MIP optimality gaps. The782
numerical results in Table 11 indicate a positive effect of if-then cuts for z-ratios up to about 0.3. The783
results are consistent with the observations in Section 6.1. Low z-ratios lead to potentially larger 1-blocks784
when fixing the z-indices in the block. These 1-blocks can be utilized to form tight n-block inequalities.785
In contrast to the FRSP case study, in the QAP study not only 1-block inequalities were separated, but786
also blocks for higher values of n ≤ 80, even though 1-block inequalities make up the largest proportion787
at around 90%.788

7. Conclusion. In this article, we introduced the if-then polytope, a special case of the bipartite789
quadric polytope that models conditional relations across three sets of binary variables, where selections790
within two ”if” sets imply a choice in a corresponding ”then” set. We provided the complete description791
of the polytope using solely newly defined and characterized n-block inequalities and bound constraints.792
Additionally, we showed how to separate these n-block inequalities in polynomial time and presented a793
routine to efficiently precompute tight 1-block inequalities if the structure of the relation matrix is known.794
In a comprehensive computational study, we finally demonstrated the usefulness of n-block cuts for two795
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Table 11 QAP study results: z-ratio γ/(α · β), number of separated cuts (Sep Provided), number of cuts
used by Gurobi (Sep Used), runtime/MIP optimality gap after 10 hours without separation (ORIGINAL)
and with separation (IFTHEN ).

Config γ/(α · β) Sep Provided Sep Used ORIGINAL IFTHEN
chr18b 0.0357 1841 1333 5.1% 124.1
nug16b 0.0606 557850 55105 61.2% 5.1%
nug16a 0.0693 405074 66239 81.2% 8.9%
nug15 0.0712 239121 38906 52.1% 22155.7
nug14 0.0781 222419 30857 64.2% 15185.7
scr20 0.0826 86759 29343 29.9% 8.0%
had20 0.0867 66820 28312 96.0% 14.3%
chr18a 0.0959 16026 11053 27207.8 1417.5
had18 0.0973 221810 25076 94.6% 11.0%
nug12 0.0979 13508 6231 16053.8 439.3
had16 0.1127 190317 22271 87.7% 6.8%
scr15 0.1134 5741 3042 6359.4 762.6
chr15a 0.1141 5717 5 802.5 236.3
chr15b 0.1141 4602 590 304.4 192.0
chr15c 0.1141 5777 574 122.2 179.5
scr12 0.1375 2692 1426 207.1 83.5
had14 0.1396 60990 11162 67.9% 10607.3
had12 0.1525 65653 7391 41.3% 2649.1
lipa20b 0.2080 86306 11493 94.0% 2.6%
tai15b 0.2893 112754 12128 0.6% 29469.7
tai12b 0.3888 59506 6771 4167.9 7806.2
tai10b 0.4047 4273 3330 67.0 182.9
tai10a 0.6558 9824 2830 1803.9 2385.6
tai12a 0.6934 158225 3529 17.5% 22.2%
rou20 0.7010 12756 12204 94.4% 100.0%
tai15a 0.7133 27661 6482 76.2% 99.9%
rou15 0.7472 31620 8878 71.1% 88.4%
rou12 0.7645 7772 3517 22.9% 39.6%

application fields: Fixed recourse stochastic programming and the quadratic assignment problem.796
Overall, this work provides a deeper insight into the structure of binary quadratic problems with797

multiple-choice constraints and a new approach to efficient optimization over the if-then polytope. However,798
there is still a lot of potential for further research. On the theoretical part, the chaining of relation799
matrices that was present in the stochastic railway timetabling model can be extended to other tree-like800
structures. An increase of the number of related binary sets with multiple-choice constraints would lead801
to new constraint classes that can be analyzed. With regard to possible applications, we see a wide802
range even beyond the areas addressed so far. One promising candidate, for example, are piecewise803
linear relaxations for mixed-integer nonlinear programming. Here, the domain of a nonlinear function is804
typically divided into segments with the help of binary variables, on which a linear relaxation is then805
created. As only one segment can be selected, we again have a multiple choice structure. The approach806
in this paper can therefore be a powerful tool to tackle relationships across multiple piecewise linear807
relaxations of nonlinear terms.808
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