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THE IF-THEN POLYTOPE: CONDITIONAL RELATIONS OVER MULTIPLE SETS OF
BINARY VARIABLES*

ROBERT BURLACU', PATRICK GEMANDER', AND TOBIAS KUENT

Abstract. Inspired by its occurrence as a substructure in a stochastic railway timetabling model, we study in this work
a special case of the bipartite boolean quadric polytope. It models conditional relations across three sets of binary variables,
where selections within two ”if” sets imply a choice in a corresponding "then” set. We call this polytope the if-then polytope.

We introduce a new class of valid inequalities and prove that, in contrast to the well-known McCormick inequalities,
they are sufficient to completely characterize the description of the polytope. We develop a separation algorithm that
finds these inequalities in polynomial time and propose an additional clique-based method for precomputing tight cuts.
Furthermore, we show that for a chain of several if-then relations, the descriptions of the if-then polytopes for each individual
relation already yield the convex hull of the chained polytope. This is present in our application from the field of stochastic
timetabling and also enables a broader application of our results in practice. A comprehensive computational study shows
the usefulness of the new inequalities in state-of-the-art branch-and-cut solvers for real-world timetabling applications and
instances of the quadratic assignment problem.

Key words. Quadratic Assignment Problem, Integer Programming, Fixed Recourse Stochastic Problem, Boolean
Quadric Polytope, Bipartite Graphs, Multiple-Choice Constraints, Convex Hull, Branch-and-Cut, Railway Timetabling
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1. Introduction. The famous boolean quadric polytope
QP(G) = conv{(z,z) € {0,1}VYF | 22 = 2, (1,5) € E}

was introduced in [28] for general undirected graphs G = (V, E). In this paper, we consider the case,
where G = (X UY, F) is bipartite and additional multiple-choice constraints apply to both sets X and Y.
This structure is inherent in diverse optimization problems, for instance where bipartite graphs serve as a
modeling basis, as in assignment and transportation problems, and additionally a single option must be
selected from a large number of alternatives.

For illustration purposes, consider the search for the shortest path in a time-expanded graph, where
the nodes have three attributes: time, velocity, and position. Such a graph is employed to minimize the
energy consumption of a train’s driving profile. Notably, every subgraph that is formed by considering
all nodes between two consecutive timestamps exhibits a bipartite structure. The edges within these
subgraphs are assigned costs that indicate the energy consumption of the train during the travel between
the two timestamps. More formally, we can represent this as a binary quadratic program. To this end, at
timestamp ¢, we associate each node u € U with a variable x,, and at timestamp ¢ + 1, each node v € V'
with a variable y,. For each edge (uv) € E, we introduce a variable p,, with assigned costs ¢,,. For
each point in time, we have to decide for a specific velocity and position, which implies a multiple-choice
constraint at both observed timestamps. Consequently, the objective is given by

miIl{ Z CuvPuv | Z Ty = ]_, Z Yy = ]_7 TulYo = Duv, (’LL’U) c E’7 (x,y,p) c {07 1}UUVUE}'
(w)EE uelU veEV

In practice, it is irrelevant which edge is chosen specifically; our only concern is to evaluate the cost of
the edge. To facilitate this, we group edges with identical costs together, introduce a variable z; for each
group [ € L and assign the corresponding costs ¢;. With f : E — L as the function that maps each edge
to its group, we can now formulate the problem as

min{z C1z ‘ Z Ty =1, Z Yyp = 1, Zzl =1, xyuyy < Zf(uv)> (’U/U) €L, (%yaz) € {Oa 1}UUVUL}'

leL uelU veV leL

This formulation gives rise to a distinctive polytope, termed the if-then polytope, because it entails the
selection of one variable each from two if sets of variables, which in turn implies the selection of one
variable from the then set.
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2 R. BURLACU, P. GEMANDER, AND T. KUEN

Related Literature. The foundational work in [28], introducing the boolean quadric polytope QP(G)
for general undirected graphs G, has been pivotal, laying the groundwork for a deeper understanding
of unconstrained binary quadratic programming. Although no constraints are involved, the quadratic
objective alone yields an NP-hard problem, as shown in [2]. Over the last decades, the boolean quadric
polytope has been studied intensively, resulting in many facet classes and corresponding separation
algorithms, and the observation of symmetries and other geometric properties; see e.g. [3, 32, 23]. We
refer the reader to [21] for a comprehensive survey on applications and solution methods for general
unconstrained binary quadratic programming. In recent years, the geometry and other properties of
the bipartite boolean quadric polytope BQP(G), the special case of QP(G) where G is bipartite, have
been studied in [29, 34, 30, 35] together with various heuristic approaches ([13, 18, 20, 37]). Applications
containing this polytope stem, for example, from the fields of data mining [26] and bioinformatics [11].

Binary quadratic programs with linear and/or quadratic constraints are among the best studied
classes of integer nonlinear problems, primarily because they allow to model a large number of diverse
applications [4]. Although a variety of different solution approaches have been proposed over the last
decades, these programs are usually tackled by linearizing the quadratic parts of the problem and
subsequently passing the equivalent linear representation to a general purpose mixed-integer linear
programming solver. Two of the most commonly used linearization schemes are the so-called standard
linearization from [17] and Glover’s method from [16]. Another frequently utilized approach is proposed
in [33]. Recently, the authors of [14] conducted a comprehensive computational study on various
applications to determine the optimal manner of applying these linearization methods with additional
enhancements. Alongside these general methods, a wide range of approaches have been developed that
are specifically tailored to different classes of constraints. For example, in [24] an efficient and compact
reformulation for binary quadratic programs with assignment constraints has been proposed. A thorough
comparison of different methods for binary quadratic programs with an additional cardinality constraint
is given in [25]. In recent years, multiple-choice (or set-packing) structures have also been studied in more
detail. Closely related to the if-then polytope, the authors of [9] investigated the special case of BQP(G)
with additional multiple-choice inequalities for partitions that apply only to the X nodes of the bipartite
graph. This extension was motivated by an application to a real-world pooling problem arising in tea
production. In contrast, in this paper, we consider a single multiple-choice equality for all X and all Y’
nodes. The bipartite quadratic assignment problem [31] and the bilinear assignment problem [38] are also
closely related problems that involve the study of BQP(G) with multiple-choice constraints on multiple,
non-disjoint subsets of both X and Y.

Potential applications for if-then polytopes are manifold. One natural candidate emerges in the field of
fixed recourse stochastic programming, which deals with optimization problems involving decision-making
under uncertainty. A subclass of these problems - namely those with endogenous uncertainties - deals
with uncertainties that depend on the decisions made and optimized. When modeling uncertain outcomes
using scenario variables, these variables must be coupled to the decision variables of the problem. Consider
a decision where one element can be selected from a set and a set of binary variables that models the
realization of another uncertain variable. Assume that this uncertain variable has influence the outcome
of the decision in reality, which is again modeled by a set of binary scenario variables. Then the if-then
polytope is a way to model the relationship between the decision and the two realizations. A concrete
example of an application with endogenous uncertainties is a stochastic railway timetabling model, which
is one of the main motivations for this paper and is described in [8]. The underlying clique problem with
multiple-choice constraints was introduced in [10] and analyzed in [8]. In [7], the scenario extension was
added, where the delay of a train is an uncertain value, depending on decisions regarding departure and
running times.

Another occurrence of if-then polytopes can be found in the quadratic assignment problem (QAP).
It poses a fundamental optimization challenge that has intrigued researchers and practitioners across
various disciplines. Originating in operations research, the QAP involves optimizing the allocation of
resources considering both assignment and distance-related costs, presenting a significant computational
challenge. The QAP finds broad applications in diverse fields. First, it was introduced by [22] in the
context of optimally locating facilities. Other applications include scheduling problems ([15]), airline
maintenance operations ([27]) or reactionary chemistry ([36]). A comprehensive overview of the QAP is
given in [1]. An overview for different model formulations can be found in [6]. In the quadratic integer
formulation, costs are assigned to products of binary variables that are present in several multiple-choice
constraints. Similar to the above mentioned shortest path problem in time-expanded graphs, we can
group products of variables with equal costs and with that establish an if-then substructure.
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Contribution. Initially motivated by an application from real-world stochastic timetabling, we study
a polyhedral substructure of this problem that models conditional relations across three sets of binary
variables, i.e., where selections within two ”if” sets imply a choice in a corresponding ”then” set: the
if-then polytope. Our contribution is a new class of valid inequalities for this polytope. In contrast to
the unconstrained (bipartite) boolean quadric polytope, the special structure of the if-then polytope
allows us to prove that this class of inequalities is sufficient for a complete description. We develop a
separation algorithm that finds these inequalities in polynomial time. Supplementary to this, we present
a clique-based method that is able to determine a priori tight cuts. Furthermore, we show that for a
chain of several if-then polytopes, the descriptions of the individual if-then polytopes already provide a
complete description of the chained polytope. This enables a much broader application of our results in
practice. In a comprehensive computational study, we investigate the aforementioned applications from
the field of real-world stochastic timetabling and the quadratic assignment problem. We demonstrate the
strength of the new cuts by incorporating them into the state-of-the-art solver Gurobi [19], which speeds
up the solution process by orders of magnitude.

Structure of the Paper. After a short definition of the if-then polytope in Section 2, we derive a new
class of valid inequalities in Section 3. We then prove in Section 4 that these inequalities together with
bound inequalities completely describe the if-then polytope. Additionally, we present efficient ways to
use n-block inequalities to optimize over the if-then polytope using either a precomputation routine or a
separation algorithm. Preparing the comprehensive computational study of Section 6, we first analyze
the chaining of multiple if-then polytopes in Section 5, that arise in the application for stochastic railway
timetabling.

2. Problem Definition. Let z € {0,1}%, y € {0,1}?, and z € {0,1}” be three vectors of binary
variables and «, B, v > 1. The implications between the three vectors are given by a relation matrix M.
If z; = 1 holds for some i € [a], and y; = 1 for some j € [3], this implies the choice z; = 1, where [ = M;;
is the corresponding entry of the implication relation matrix. Note that we assume that each [ € [y] is
contained in M. We must choose exactly one z-, one y-, and one z-variable to be equal to one, while
respecting the implications stated in M. The set of feasible points is thus given by:

a B vy
S(M) = {(z,y,2) € {0, 1}IBIDT oy < 20p V(3 5) € o] x [B], sz = Zyj = ZZZ =1}
j=1 1=1

i=1

We can linearize the bilinear terms in the definition of S(M) to equivalently write:

a B

~
S(M) = {(.’E,y,Z) € {0,1}[a]u[5]u[7] | £ +yj < ZM;; +1 V(Za]) € [Oé] X [ﬁ]a sz = Zyj = ZZZ = 1}
i=1 j=1 =1

In the following, we consider the so-called if-then polytope P(M) := conv(S(M)), which arises as the
convex hull of S(M). The multiple-choice equations imply that the polytope is not full dimensional.
Observation 2.1. We have dim(P(M)) < a+f+~v — 3.

Note that there are cases of M for which dim(P(M)) < oo+ 8+ — 3 holds. For example, if:

M =

wW W =
—_ =N

2
1
1
the equation x1 + yo + y3 = 21 + 229 is valid for P(M), in addition to the multiple-choice constraints.

Any optimization problem over P(M) is inherently easy and can be solved in polynomial time just
by enumerating all the vertices.

LEMMA 2.2. The vertices of P(M) are given by e; + eayj + €atpym,,; for alli € [a] and j € [B],
where e, for m € [a+ B+ 7] denotes the m-th standard unit vector in {0,1}>TA+7,

Proof. As P(M) is the convex hull of a set of binary points, these are precisely the vertices of P(M).0

It can still be benefitial to study the facet description of P(M) whenever there are applications in which
the determined constraints are part of a larger system. In addition to its theoretical properties, the
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if-then polytope has important practical applications, particularly in the field of stochastic optimization.
For example, it arises naturally in the study of fixed-recourse problems in stochastic linear programming,
where a decision maker faces a sequence of decisions, with the later decisions depending on the outcomes
of the earlier ones. The if-then polytope can be used to model the set of feasible solutions to such
problems, and to derive efficient algorithms for finding optimal solutions.

3. Valid Inequalities. In this section we describe and fully characterize a new class of valid
inequalities for P(M) which we call n-block inequalities because of their block-like representation in the
relation matrix M.

o
o I B i IS
S

Figure 1: Construction of the 3-block inequality
1 + 223 + x4 + 2y1 + 3y2 + y3 + 2y4 < 221 + 323 + 24 + 3.

3.1. n-Block Inequalities. A block Mx y is defined as the submatrix of M where the selected
row indices are in X C [o] and the selected column indices are in Y C [5]. The consideration of such
blocks allows to strengthen the formulation of P(M). We denote the set of z-indices contained in the
block Mxy by ZM(X,Y) = {M;; : (i,j) € X x Y}. If we have 2; = 1 and y; = 1 with i € X and
j €Y, then it follows that z; = 1 for some | € Z™(X,Y). Consequently, we can formulate the following
1-block-inequality

(3.1) Zxﬂrz.yj < Z 2+ 1,
i€X JEY 1€ZM (X,Y)
that is valid for P(M) for each subset of rows X C [a] and each subset of columns Y C [3].

Observation 3.1. There exist at most (2% — 1)(2° — 1) many non-equivalent up to scaling 1-block
inequalities that are valid for P(M).

We can derive even stronger inequalities when taking n € IN blocks into account. For each k € [n],
select rows X}, C [a] and columns Yy C [] of the matrix M to define n blocks such that the subsets
are sorted by inclusion as follows: Xj 1 C X and Yy, C Yjqq for all k € [n — 1]. For a subset of the
chosen blocks, indexed by K C [n], we define the set of entries of M that are located in the intersection
of k-many of the blocks as

(3.2) EM(K) = {M;; : |{k € K : (i,7) € X}, x Y3.}| > s}.
Then we can construct what we call the n-block inequality
(3.3) Z ait; + Z bjy; < Z az +mn,

icla] Jjels] lep]

where the respective variable coefficients are given by

(3.4) a;=/{k€n] :ie X}, 1ié€]lqa],
(3.5) bj=Wkeln] : jeYe}l, Jjelbl,
(3.6) a=max{ke[n] :1€ZM(n))}, €]

We can use the sorting of the blocks by inclusion to efficiently determine the number of blocks intersecting
in one entry (¢,7) of M from the coefficients a; and b;. The value of a; indicates that ¢ is contained in the
first a; blocks Mx, vy, for k € [a;], whereas b; indicates that j is contained in the last b; blocks Mx, v,
for k € {n —b; +1,...,n}. This leads to

(3.7 = max{0,a; +b; —n} VIe€[y].

= max
i,j€la] x[B]:M;;=1

We will use this formula later in this section when characterizing n-block inequalities.
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THE IF-THEN POLYTOPE 5
Example 3.2. Figure 1 illustrates the construction of the 3-block inequality
1+ 223+ 374 +2y1 +3y2 +y3 + 2y < 221 + 323+ 24+ 3

out of the three blocks M{1,374},{2}, M{374},{17274} and M{4}7{1,273,4} of the matrix

2 2

[
LW — DN
= =
W >

The colour of each entry signifies the number of blocks intersecting there. For each I € [4], the colour of
the darkest cell it is contained in indicates the maximum value of & for which [ is in Z2({1,2,3}). This
value corresponds to its coefficient ¢;. We can derive the colour of a given cell (4, j) in the matrix M
efficiently from the coefficients a; and b; via the previously defined sorting of the blocks by inclusion.
If we take for example (4,7) = (4,1), where ay = 3 and b; = 2 hold, we know that row 4 is in the two
leftmost and column 1 in the two rightmost of the three blocks depicted in Figure 1. This implies that
they jointly only lie in the two rightmost blocks, which is why (4, 1) is in the intersection of exactly 2
blocks. Note that this 3-block inequality dominates the sum of the 1-block inequalities derived when
considering each block individually, because some of the coefficients of the z-variables are smaller. For
example, | = 4 does not lie in the intersection of any two of the three blocks, but is contained in each of
them. Therefore ¢4 = 1, whereas in the addition of the three 1-block inequalities the coefficient of z4
would be 3.

LEMMA 3.3. The n-block inequalities (3.3) are valid for P(M) for allmn € N.

Proof. We prove the result by induction over the number of blocks n. For n = 1, the validity of the
1-block inequalities follows from construction.

For the case n = 2, we prove the validity of the 2-block inequalities obtained from two blocks Mx, v,
and My, y,. To this end, we sum up the two 1-block inequalities for the two blocks (3.8a), (3.8b), the
1-block inequality (3.8¢c) for the intersection Mx,nx,,v;ny, and the inequalities (3.8d) and (3.8e) derived
by adding the multiple-choice constraints for the z- and y-variables and non-negativity constraints for
some of the z-variables, respectively:

(3.8a) Z i + Z Yj — Z 2 <1

i€X, jeyy 1€ZM(X1,Y71)

(3.8b)  + Do+ d y— Y & =1
i€Xo JEY: 1€EZM (X2,Ys)

(38c)  + doowit Y - > g =1
1€ X1NXo JEY1INY?, lEZM(XlﬂXQ,YlﬂY2)

(3.8d)  + domi+ >y =2
i€la] J€[B]

(3.8¢)  + > -z <0

lEZJM(XlﬂXQ,YlﬂYQ)U((Z]W(Xl,Yl)UZ]W(X27Y2))\(ZM(X1,Yl)ﬁZ]u(Xz,YQ)))

(3.8f) = 2 I N > DY ui-> DY a <5

k=1ieXy k=1j€Yy} k=11ez} ([2])
(3.8g) £ Z ZmZZ% Z PO =%
k=1i€X} k=1j€Yy k=11e=M([2])

Inequality (3.8f) is valid for P(M) as it is the sum of four valid inequalities. Further, all variables are
binary, which implies that the 2-block inequality (3.8g) is equivalent to (3.8f) for the integer points in
P(M).

For the induction step n —1 — n, we can derive the n-block inequality composed of n blocks Mx, v,
for k € [n] via a combination of the n-many (n — 1)-block inequalities that can be built out of the
blocks Mx,, y,, for k' € K}, where K denotes the index subset of [n] not containing &, i.e., Ky := [n]\ {k}.
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We can write the n-block inequality as

(3.9) Z a;T; + Z biy; < Z az +n,

i€la] J€E[B] lely]

for a € R, b € RP and ¢ € R” as defined in (3.4), (3.5) and (3.6), respectively. For k € [n], denote the
corresponding (n — 1)-block inequality composed of the blocks indexed by K}, as

(3.10) Z alrz; + Z bK’“yj < Z ¢ Fa+n—1.
i€lal lefv]
First, we show

(1/(n—1)) ZCLK":al

ke[n]

for all i € [o]. For any i € [a] and k € [n], we have a* = a; — 1 iff i € X}, and a™* = a; otherwise. As
we have |{k € [n] : i € Xi}| = as,

K
Dkep) % :@i'(ai_l)"‘(n_ai)'ai —u
n—1 n—1 !

holds. Analogously,

(1/(n=1)) > b =1,
ken]

for all j € [f] follows. Next, we show

(/n-1) Y ] <

k€e[n]

for all [ € [y]. Obviously, removing one block will not cause an element in the matrix to be intersected
by more blocks. Therefore, clKk < ¢ holds for all [ € [y]. Moreover, we can neglect the case where ¢; is
strictly smaller than n — 1, because for any p € N, the inequality n(n —p)/(n — 1) > n —p+ 1 holds
iff p < 1. Therefore for [(1/(n—1)) X 4epm ¢ | to be strictly greater than ¢;, the inequality ¢; > n — 1
would have to hold. There are only two cases left to consider, namely ¢; =nand ¢; =n—1. If ¢p =n
for some I" € [y], then (1/(n —1)) > )¢ cf,(’“ < ¢p holds, because cf,(’“ <n—1for all k € [n]. Thus,

let ¢; = n — 1 for some [ € [y]. For any tuple (i/,5') € [a] x [8] in the intersection of exactly n — 1
blocks, there exists exactly one k € [n] for which (¢/,7’) is not in X} x Y. The sorting of the blocks, i.e.,
Xi11 € Xy and Yy, C Y4 for all k € [n — 1], implies that this one block is either the first or the last
block, and since n is greater than 2, this block is not the second block. As a consequence, we obtain that
cl{(2 =n — 2, and since

-2 —1)-(n—-1 -2
(-4 @-V -1 _n-2
n—1 n—1

for n > 3, the relation | (1/(n — 1)) Zke[n] *] < ¢ holds.
Now summing up all the (n — 1)-block 1nequahtles (3.10) for all k € [n] and dividing result by n — 1
yields

Z a;T; + Z bjy; < Z clzl +n,

i€la] J€(B] lely]

for some ¢ € RY. Further, |¢] < ¢ holds for all | € Urex ZM (X}, Yy), as we have already shown. The
inequality remains valid when rounding down the coefficients of the z-variables because of the multiple-

choice constraints and the z-variables being binary. Now adding the appropriate bound inequalities, we
obtain (3.9). d
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THE IF-THEN POLYTOPE 7

3.2. Characterization of n-Block Inequalities. It is straightforward to recognize if a general
inequality of the form

(3.11) Z aix; + Z biy; < Z az+d

i€la] J€[B] lely]

is an n-block inequality if a’, ', ¢/, d’ € Ng. We first set n := d’. Then we construct the n blocks Mx y
for k € [n] via setting X, = {i € [a] : a; > k} and Y}, := {j € [B] : b > n — k}. This ensures both the
sorting of the blocks by inclusion and Conditions (3.4) and (3.5). It remains to verify Condition (3.6).

Nevertheless, the addition of multiple-choice constraints for the x-, y- and z-variables and scaling may
lead to inequalities that are equivalent to n-block inequalities but for which there are no subsets X and Y},
such that Conditions (3.4), (3.5) and (3.6) are fulfilled. We will therefore now derive three properties
that any inequality of the form (3.11) possesses if it is equivalent to an n-block inequality up to addition
of multiple-choice constraints and scaling. To this end, we introduce the notations i := argmin, ¢, a; and
= = argmaxe(q] a;, and similarly j and } as well as [ and [, when referring to the indices of the maximum
and minimum coefﬁ(nents of a/, b and ¢, respectively. The sorting of the blocks by inclusion implies that
at least one row with index ¢ e [a] and at least one column with index j € [3] have to lie in each of the n
blocks. Hence, in any n-block inequality, the highest occurring coefficients of the x-, y- and z-variables,
respectively, are all equal to n. After adding multiple-choice constraints and scaling, this property relaxes
to

(I) a; + b =cp+d.
Further, as already seen in Section 3.1,
(3.12) = i,je[oc]nxla;]{:M,;j:l max{0,a; +b; —n} Vi€ [v]

holds for any n-block inequality. To carry this relation between the coeflicients over to n-block inequalities
that have been transformed via the addition of multiple-choice constraints and scaling, we have to reverse
this procedure. First, we scale the considered inequality such that all variable coefficients and the constant
on the right-hand side are integer. Then we subtract adequate multiples of the three multiple-choice
constraints, namely

(af +cp—cf) - sz—a + ¢ - 0+ —cp) Zy]—b + ¢ - Zzl—cl,
J€lB] le[]
such that the resulting inequality fulfills the above-mentioned property of the equality of the highest
variable coefficients. As a consequence, Condition (3.12) becomes

(11) c a fafi+b;fb§+c;—)} Vi e [v].

= max max{cf, < ;
(i,4)€la] x[B]:M; ;=1 =

Since all coefficients in an n-block inequality are non-negative, the above reverse transformation also
implies the necessity of

(I11) al —

?

~

/ / / / / /
< [ (&8 b‘;_bggcl*_cl

\s\

The following lemma shows that Conditions (I), (II) and (III) in fact suffice to fully characterize all
inequalities that are equivalent to an n-block inequality.

LEMMA 3.4. An inequality of the form Zze (o] a,z; + Z]e 8] biy; < Zle[y] cjz1 + dis equivalent
to an n-block inequality for some n € N up to addition of multiple-choice constraints and scaling iff
Conditions (1), (IT) and (III) are met.

Proof. Consider the inequality

(3.13) Z aiw; + Z biy; < Z qa+d,
i€la] j€lBl] L[]

where w.l.o.g. o', ¥/, ¢/, and d’ shall be integer. Further, we assume that this inequality fulfills

Conditions (I)—(IIT). We now show that via subtraction of multiple-choice constraints, we can transform
this inequality to an n-block inequality of the form

(3.14) ZZxﬁZZngZ > u+n,
k=11e= (n])

=1lieX; k=1jeY,
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8 R. BURLACU, P. GEMANDER, AND T. KUEN

by determining the appropriate n € N as well as the sets X, and Y3, that need to be sorted by inclusion
as follows: Xy11 € Xy and Yy, C Yy for all k € [n — 1]. Additionally \Uke[n]Z (X1, Yi)| < 7 has to
hold. By Condition (I), the following sum of multiple-choice constraints is valid for P(M):

(—a; +¢;—q) le—k (=05 + ;=) Zyﬂ* :fl; —chzl—l-c—

i€la] J€[B] =—a}=b +c lel]
1 1 o 1

Adding this equation to Inequality (3.13) yields

(3.15) Z(ag—ag—&—cg— x1—|—z b tog—c <Z =)zt —q.

i€la] JEB] lef]

Note that now the maximum coefficient for each set of variables x, y and z equals c— — Cz Additionally,
each coefficient is non-negative due to Condition (III). Now define for k € [¢; — ¢]] the subsets

Xp={icla]|a;—a;+cg—c >k},  Yi={j€[f]|b; 05>k}

Each i € [a] is contained in (aj — af + ¢f — ¢j)-many sets in {Xj : k € [¢; — ¢]}. Similarly, each j € [5] is
contained in (b — b’ + ¢; — ¢;)-many sets in {Yy : k € [¢} — ¢]}. Further, let n == ¢ — ¢;. Now, for (3.15)
to be an n-block 1nequahty it remains to show that each [ € [y] lies in the intersection of ¢} — ci and not

more blocks from {Xy x Vi : k € [n]}, ie.,

max{k € [} —c]] : L€ Y ([b— )} =¢]—¢ VIE ]

Namely, if for any " € [y] we have I’ € E}/([¢} — ¢j]) for some k > 1, then ' € 237, ([¢} — ¢]]) follows
trivially. The sorting of Xj and ) implies that for a pair (i, ) € [o] x [5] to be in Xy x Yy for some
k' € [c; — ¢], the conditions i € X}, for k € [k'] and j € Yy for k € {k',...,c; — ¢/} have to hold. In
particular, for the defined sets X}, and Y}, for k € [¢} — ¢, the number of blocks containing the entry (i, )

of M can be calculated as

{Ekelcg—ql : (i,7) € X xYk}|:max{0, (ag—a%—i—c;——c_;—i—b;-—b%—i—c;——c_;—n)}.

Therefore, we need to have

et 0 (0= el 6 =) =l el
This is indeed equivalent to Condition (IT). Thus, we have shown that any inequality of the form
Dicla] T + 2 jep ViV < Yy 2 + d' s equivalent to an n-block inequality for some n € N if
Conditions (I),(IT) and (III) are met.

The reverse implication, i.e., every inequality equal to an n-block inequality for n € IN up to addition
of multiple-choice constraints and scaling fulfills Conditions (I),(II) and (III), follows directly from their
derivation. ]

4. Facets. Facets are the tightest possible linear cuts which can be added to the description of P(M)
and are therefore useful for the branch-and-cut algorithm for solving optimization problems over P(M).
In the following it is shown that the so-far described classes of valid inequalities namely n-block and
bound inequalities are sufficient to fully describe P(M). Additionally, we introduce a separation algorithm
and a preprocessing routine to efficiently make use of these inequalities in a branch-and-cut procedure.

4.1. Convex Hull.
LEMMA 4.1. All facets of P(M) are induced by either n-block inequalities or lower bounds.
Proof. Let F be a facet of P(M) which is induced by the valid inequality
(4.1) Z a;x; + Z biy; < chzl—i—d
i€[a] JEB] le[]

a,v,c,d € Ny. Further, let V = {v,,...,vs, } be a set of affine independent vertices for v := dim(P(M))
with V C F. By Lemma 2.2, all vertices in V' have the form

Vi = €2 + €aq4¥ T+ Cat B4+ M,0,u
k k et



o
[\

W W W w w
S O s W

3

o
oo

w W
o ot Ot Ot Ot Ot Ot Gt

w

iy

362
363
364
365
366

THE IF-THEN POLYTOPE 9

for some t), = (t7,t}) € [a] x [8]. The tuple ¢, sufficiently characterizes the vertex vy,. It indicates that
x; = 1fori =}, x; = 0 otherwise and y; = 1 for j = t}, y; = 0 otherwise. If there is an index i’ € [a] such
that there is no vertex in V fulfilling x;; = 1, then F lies on the hyperplane {(x,y, z) € R®*#+Y 1 2, = 0}
and since we can rule out that this hyperplane is a superset of P(M), F is induced by the bound inequality
x; > 0. This holds analogously for j € [3] and [ € [y]. Note that P(M) ¢ {(z,y,2) € R*F*+7 : 2 =0}
for all I € [v] follows from the assumption that each [ € [y] is contained in M.

Now assume that for all i € [«] there is at least one k' € [v] with ¢, = 4, and that the same holds for
all j € [f] and | € [7]. W.l.o.g., we can assume

ag =bw =cy =d=0

x Y
et

for one k € [v] where M;zv = 1 since any inequality can be transformed to this form by subtracting

multiple-choice constraints. Inserting those informations in (4.1) implies that all vertices vy, in V' fulfill

the equation a¢ + by = cu,, . We now want to show that Conditions (I), (II) and (III) from Lemma 3.4
k k

hold.
First, we verify

a;—i—b;

= Cy-

By assumption, there is a k¥’ € [v] for which Mti/t}i/ = [ holds, hence ag, + bt}Z/ = ¢;. Now consider the
vertex characterized by the tuple (4,5). Since the inequality defining F' must be valid for this vertex, we
have a; + b; < cpr;; < ¢ and therefore age, = a7 and thr = b;. This implies a; + b; = ¢;, which certifies
Condition (I).

Now, we show

4.2 = max max{0,a; + b,
4.2) ' delalx Al = t i)

for all I € [y]. For all & € [v] for which Mz v, = L holds, we have agr, + b, = ¢;. Thus, there are i € [a]

and j € [f] such that a; + b; = ¢; holds. The validity of the considered inequality for P(M) implies
a; +bj < ecpy, forall i, j € [a] x []. This validates Condition (II).
Finally, we have to show

a; > a; — cj, b; > b; —¢j.

To this end, define the two subsets X := {i € [a]\ {i} : a; <0} and Y = {j € B\ {j} : b; < 0} and
suppose that X or Y is non-empty. Lifting these selected coefficients leads to a valid block inequality
dominating (4.1), contradicting the assumption that (4.1) is facet-defining. Consider the inequality

(4.3) a4+ Y Wy <Y an+d,
€[]

Jelp] lep]

where a; = 0 holds for all i € X, and a;' = a] otherwise, and where b7 = 0 holds for all j € Y, and
b = b otherwise. We can construct the sets

Xp={i€a] : a] >k}
and
Vo= {jelf]: b >d -k}

and set n’ := ¢;. Now as in the proof of Lemma 3.4 the number of blocks containing the entry (4, j) of M
can be calculated as

{keld]: (i,j) € Xy x Y }| = max {0,a] + by —n'}.
Together with (4.2) for the transformed variables,

a= ma, max<{0, a; b
: iyje[a]x[ﬁ)](;]\/[ij:l X{ , @i + J}7
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10 R. BURLACU, P. GEMANDER, AND T. KUEN

we observe the equivalence of (4.3) and the following n’-block inequality, which is valid for P(M):

Since Inequality (4.3) dominates Inequality (4.1), the latter cannot be facet-defining, which contradicts
the assumption. Thus, Condition (IIT) holds as well. Altogether, this means that (4.1) is equivalent to an

n-block inequality. ]
THEOREM 4.2. The full convez-hull description of P(M) is given by the multiple-choice constraints,
the non-negativity constraints and the n-block constraints for n < n for some fized n € N.

4.2. Separating n-Block Inequalities. To support a branch-and-cut algorithm by adding useful
cuts we develope a seperation routine which identifies n-block inequalities which cut off a given non-integer
point with maximum violation. As shown in Section 3.2 there are many different inequalities equivalent
up to addition of multiple-choice constraints and scaling. Hence, we need to find a unique representation
for these cuts.

DEFINITION 4.3. An inequality of the form Zie[a} a;xT; + Eje[ﬂ] biy; < Ele[w] iz + d is called a
normalized block inequality if it is equivalent to an n-block inequality and if mine(, ¢; = 0 as well as
maX;c[q] @i = maxc(g) bj = maxey ¢ =1 hold.

Note that any facet can be transformed to a normalized n-block inequality by subtracting multiples of
the multiple-choice constraints until min;cj,) ¢; = 0 as well as max;e[q] @; = max;e(g) b; = maxjeyc =d
hold and then dividing by max;c,) ¢;, which also leads to d = 1. This is possible because of Condition (I)
from Lemma 3.4. As a consequence, all normalized block inequalities also fulfill this condition. We can
make use of the fact that for normalized block inequalities, Condition (II) simplifies to

o = max max{0,a; +b; — 1} VI € [v].
LS el ™ =1 )

Further, Condition (III) can be ensured by bounding the a- and b-variables from below by zero. This
allows us to state an optimization problem to find normalized block inequalities which are maximally
violated by a given not necessarily integer point p = (z,y,2) ¢ P(M) with p > 0:

(4.4) (a,b,c)Ier}?S)%P(M) Z a;T; + Z bjy; — aqz—1,
i€la] J€(8] le[v]

PSEE(M) :={a € [0,1]%,b€[0,1)7,c€[0,1]7 : ¢ > a;+b; =1 Vi€, (i,4) € [a] x [B] : My; =1}

The variables (a, b, ¢) € [0,1]2T5%7 are the left-hand side coefficients of the normalized block inequality
we search for while the constraints enforce Conditions (I) - (III).

THEOREM 4.4. Assume s > 0 and 3 ;e Ti = X je(p Ui = 2icpy @ = 1. Then every vertex of
PSEP (M) which is optimal for (4.4) yields the coefficients of a normalized block inequality.

Proof. Let s = (a,b, ) a vertex of PSEFP(M). We show that conditions (I) - (III) are satisfied. Since
s is a vertex of PSEP (M) and optimal for (4.4), there is no s’ € P¥PP (M), s’ # s which has the same or
a higher objective value as s.

We have to verify that the highest value in each variable set is equal to one, @; = 135 =¢ =1
If none of the highest values is equal to one, we can multiply all values by some positive factor staying
feasible and increasing the objective value. We know a; + 53 — 1 = ¢;, otherwise we could decrease ¢;
while again staying feasible and increasing the objective value. Therefore, w.l.0.g. assume @; = 1. If now
53 # 1 it follows & # 1. Now we add 1 — 53 to all values of b and & The multiple-choice constraints lead
to the fact that we arrive at a feasible point s’ which has the same objective function value as s. This
proves a; = 55 = ¢; = 1, conditions (I) and (III) follow trivially.

The non-bound constraints in PSFF (M) directly imply

¢ > max max O,di+5-—1 Vi e [v].
LS gelalx (M=t { i~ b

The equality and therefore condition (II) is obvious given that increasing values of ¢ leads to decreasing
the objective value. 0
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Remark 4.5. Normalized block inequalities can be separated from points satisfying multiple-choice
constraints in polynomial time.

To separate only 1-block inequalities it suffices to limit the solution space to binary values of a, b
and c¢. By adding the constraint Zle[w] ¢; = v the amount of z-variables in the resulting inequality is
restricted to a chosen value v.

Numerical results on our test instances in Section 6 show that the presented separation routine
actually almost always separates facets if we perturb p slightly by some constant € > 0. But there are
edge cases in which a non-facet n-block inequality is more violated by an infeasible point than any facet.
The following is an example for this exception.

Example 4.6. Consider the relation matrix

I
W NN
B o
SN

and p= (0,3, 3,%,0,3,0,0,0,0,1). The constraint

1 1 1
§$1+$2+$3+y1+§yz+y3§§Z1+22+23+24+1

is violated by 1. It can be conically combined by the facets

(0.5-) Ti+To+y1+y2+ys<z1+ 22+ 24+25+1

(15) L —|—2 +x3 + +2 + <1 +2 + +2 +1
.0 =T =T X - —Z —Z V4 —Z.
31 32 3 TY1 32/2 y3_31 32 3 34

and the multiple-choice constraints

(05) —x1—$2—$3§—1
(1-) —yp—ye—ys<—1
(0.5-) 21+ttt <1

and is therefore not itself a facet. But it nevertheless is more violated by p than the facets it can be
assembled from and in fact any facet of P(M).

4.3. Precomputing 1-Block Inequalities Using Cliques. Experience shows that 1-block in-
equalities form the largest part of the facets of P(M). Since it is relatively computationally easy to find
good 1-block inequalities for P(M) it can be useful to add some of them before starting the optimization
process. The problem to find a block in M as large as possible which contains only a given subset Z
of [y] can be formulated as a clique problem with a quadratic objective function. For that, we build a
graph GY(M) = (VE(M), EY(M)) whose nodes VE (M) = Vg (M) UViE (M) = {vf, ..., 05} U{oY, ..., v}
correspond to either a row or a column of M. Now, edges are introduced such that the subgraphs of
G (M) induced by the variable set V.¢ (M) and Vi¥ (M), respectively, are complete. Additionally, two
nodes v¥ € V¢ (M) for i € [a] and vf € Vi€ (M) for j € [] are connected by an edge if the z-index M;;
is contained in Z. The selected nodes in a clique in G¢(M) correspond to the rows and columns of M
forming a block which only contains indices in the given subset Z of [y]. If all rows and all columns of a
block A are contained in a block B and both A and B contain the same set of z-indices, the inequality
induced by A is dominated by the inequality induced by B. Hence, to make the block as big as possible,
we want to optimize over its volume. The quadratic objective function is given as the number of selected
nodes in V¢ (M) times the number of selected nodes in Vi¥ (M). We can either solve this clique problem
exactly or use a heuristic.

Ezample 4.7 (Example 3.2 continued).
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Figure 2: Clique problem to find maximum 1-block only containing indices in {1, 2}.

Figure 2 shows a Matrix M and the corresponding graph G¢(M). To find the largest 1-block
in M which contains only the z-indices 1 and 2, we find a clique in G¢(M) which maximizes the
function f(x) = (Zle Xv??) . (ijl va), where the binary variable y indicates the selection of a

v J
node. The optimal solution forms the grey shaded block of size 4 in Figure 2. The 1-block inequality
To + 3+ Y2 +ys < 21 + 22 + 1 can be added to the model.

5. Chained If-Then. Inspired by an application in stochastic programming, we now chain several
if-then-related variable sets with multiple-choice constraints over a given planning horizon ¢t € [T], T € N.
For each time step ¢ € [T], there are two vectors of binary variables with multiple-choice condition
zt € {0,1}* and y* € {0,1}% and a matrix M* describing the implications between the variable sets,
which are given as follows:

If 2t = 1 for some i € o] and y§71 = 1for j' € [B;-1], then ¢} =1,
for all t € [T], where j := M fj, and 5° € {0,1}" is a given vector with multiple-choice condition. The set
of feasible points can thus be expressed as all binary vectors (z,y') € {0,1} 5+ for t € [T] which
fulfill the following constraints:

(5.1) dat=>"yi=1 Vte[T]

1€ JEBL
(5.2) wiyT <yhpe 41 VEE[T], Vi€ ), Vi€ [Bial.
i

Let M :={M" : t € [T]} denote the set of all implication matrices used in the instance. By

SIM) = {(a',....aT, s yT) € {0,112em P e (1] (5.1), (5.2)),

we denote the binary feasible points for Constraints (5.1) and (5.2). We then call the convex hull of these
feasible points P(M) := conv(S(M)).

LEMMA 5.1. There are [ [, oy vertices of P(M).

Proof. Each point in S(M) can be identified by the z-variables which are set to one. For a given

vector y¥ € {0,1}% the values of the variables y§ can be derived recursively via y; => (i37): ML = xﬁy;ifl

Further, each of the [],., a; configurations of possible values for the z-variables lead to feasible points
in S(M). As P(M) is the convex hull of a set of binary points, these points are all vertices of P(M).0

To derive a full outer description of P(M) we model it as an instance of the clique problem with multiple-
choice constraints (CPMC) under a cycle-free dependency graph which has been studied in [8]. In CPMC
the task is to find an m-clique in an m-partite graph G = (V, E'). This can be seen as a clique problem with
additional multiple-choice constraints on the selection of the nodes from each subset in the m-partition V
of V. The convex hull polytope for an instance (G, V) is denoted as PCPMC(G, V).

We first construct an undirected graph GM = (VM, EM) as follows. For all ¢ € [T, each variable x,
i € [oy] and yt, j € [By], is represented by a node Uzt OT Uyt in VM, respectively. For each entry M}; in
the implication matrices Mt t € [T, we further introduce a node Ut - Each node is assigned to exactly

J
one node subset, namely v, to Vye, vy to Ve and v,,e  to Vie, t € [T, 0 € [oy), § € [Be], 5" € [Bi—1]-
i j i’
Additionally, we introduce the node subset Vo containing only one node v,o , where y?, = 1. These node
J

subsets constitute a partition VM of VM into disjoint stable subsets. Now we introduce edges such that
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for each t € [T] the subgraph of G induced by all nodes in V¢, Vi1 and Vj+ is a complete tripartite
graph on the three variable sets. Additionally, each node v,,: , i € [ay], j* € [B¢—1], is connected to the
ij

nodes v,¢, v, :—1 and v, where j is the entry ij, in the corresponding implication matrix. We can
k2 v J

Yy

J
now decompose G into subgraphs G, ..., G, where GM = (VM, EM) is induced by the node set
VM = Vyt-1 U Ve U Ve UV for all t € [T] and connect each pair of nodes which are not in the same
subgraph.

Observation 5.2. An integer point in P(M) corresponds to an integer point in PCPMC(GM pM),

The dependency graph G = (V,€) of a CPMC instance (G,V) is defined as follows. Each node
partition set in G is represented by a node in G. Two nodes V; and V; are connected by an edge if and
only if there exist two nodes v € V; and w € Vj such that there is no edge connecting v and w in G. The
dependency graph for the CPMC instance constructed above is depicted in Figure 3.

Figure 3: Dependency graph for the CPMC extension of P(M).

It can be observed that G is a forest, which is the prerequisite for the main result of [8] giving a
complete description for PCPMC(G, V).

THEOREM 5.3 ([8], Theorem 3.1). Let T = (G,V) be an instance of (CPMC) with a cycle-free
dependency graph. Then PCTMC(G V) is completely described by the constraints

(5.3a) da,=1 VUV
velU

(5.3b) Z xy <1 V stable sets S CV
veES

(5.3¢) T, >0 YweV.

Theorem 5.3 implies that the convex hull of the feasible points in the extended formulation of the chained
if-then problem is given by the multiple-choice constraints (5.3a) on the variable sets Vi, Vi and V¢
for all ¢ € [T, the stable-set constraints (5.3b) and the non-negativity constraints (5.3c) for all variables.

Note that the nodes in the intersection of two of the subgraphs G, ..., G4 form a stable set in GM.
Since the stable-set polytope for GM is identical to the clique polytope for its complement graph G™, we
can use the following result from [12] to state that the outer description for PCPMC(GM VM) decomposes
into the outer descriptions for each of the polytopes PCPMC (G{Mt}, V{Mt}) for all t € [T1].

THEOREM 5.4 ([12], Theorem 4.1). Let G* = (V! E') and G* = (V2,E?) be graphs such that
G'NG? = (VINnV2 E'NE?) is complete and let Ajxy < by, Asxe < by be complete descriptions of
the stable-set polytopes of G' and G2, respectively. Then the union of these linear systems is a complete
description of the stable-set polytope of the graph G* U G? == (VI U V2, E' U E?).

To obtain an outer description of P(M), we use Fourier-Motzkin elimination to project the variables m! e
i € [ay), j' € [Bi_1], t € [T], out of the linear system describing the convex hull of PCPMC(GM M),
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Each variable mf,,, i € [oy], j' € [B;-1], t € [T] is included in the inequality system describing the convex

hull of PCPMC(GIM* T PIM'}) for exactly one ¢ € [T]. Therefore, the Fourier-Motzkin elimination can
be performed for each t € [T] separately. This implies that the linear system describing the convex hull
of P(M) decomposes into the inequalities describing the convex hull of P(M) for all M € M.

COROLLARY 5.5. The polytope P(M) is completely described by the non-negativity constraints and
all n-block inequalities which are facet-defining for any of the polytopes P(M), M € M.

6. Computational Results. We conduct some numerical experiments to evaluate the impact of
n-block inequalities on the solution time for problems which include if-then structures. We test the
clique-based algorithm to precompute 1-block inequalities as described in Section 4.3, a purely cut-based
solution algorithm on if-then instances with randomly generated relation matrices and the separation
algorithm from Section 4.2, and customized precomputed n-block inequalities on real-world stochastic
timetabling instances.

All algorithms were implemented in Python 3.10.13 using Gurobi 11.0.0 to solve mixed-integer
problems. We performed the calculations on a server with an Intel Xeon E3-1240 v6 CPU, 32 GB RAM,
4 cores, HT disabled and 3.70 GHz base frequency.

6.1. Random Matrix Tests. To estimate the benefit of adding block inequalities to problems
which lack observable structure in the relations between the three variable sets indexed in [a], [5],
and [y], we first conduct performance tests with random relation matrices. To this end, we insert n-block
inequalities into the problem at two access points: before the solution algorithm is started and during the
branch-and-cut procedure.

6.1.1. Precomputing 1-Block Inequalities Using Cliques Tests. We evaluate the impact
of 1-block inequalities generated by the clique-based algorithm in Section 4.3 on quadratic matrices of
various sizes with different ratios for the number of z-indices in relation to the matrix size. For each
configuration of a, 5, and ~y, we perform 300 runs on randomly generated relation matrices to stabilize
the results. Each run involves optimizing a cost function over P(M). We select random cost coefficients
for the z- and y-variables and determine the cost coefficients for the z-variables such that the mean cost
of all integer points in P(M) equals zero.

As the set [y] increases in size, the number of different combinations of z-indices also increases.
Since 1-block inequalities can be built for each subset of [y], 1-block inequalities for only one ! € [v]
make up a relatively small part of the total set of facets of P(M), assuming that the facets are evenly
distributed across the subsets of z-indices they contain. To evaluate this distribution, we measure the
closure of the integrality gap when adding all 1-block inequalities for different-sized subsets of [y] in the
corresponding blocks. We define the integrality gap closure as the difference between the optimal integer
solution value and the optimal value of the relaxed problem with and without the precomputed 1-block
cuts. We discard any run where the linear program (LP) solution equals the solution to the integer
program (IP). In each run, we alternate between optimizing the LP relaxation of P(M) and cutting
off the resulting non-integer point using an 1-block inequality containing a fixed amount of z-variables
found by the adjusted separation algorithm described in Section 4.2. Table 1 shows that increasing the

Table 1 Integrality gap closure by 1-block inequalities.

Config ZM| <1 |ZM|<2 |ZM| <3 |ZM]<4 [ZM|<5
a=p=10,y=12 8.27% 71.87% 93.34% 97.59% 98.58%
a=p3=10,v=20 2.75% 42.28% 70.22% 86.03% 93.59%
a=p3=10,y=28 1.34% 29.69% 52.68% 69.74% 82.31%
a=p=15v=27 2.25% 40.18% 65.90% 82.88% 92.13%
a=03=15y=45 0.62% 19.62% 37.59% 53.42% 66.65%
a=p03=15v=63 0.14% 12.50% 24.29% 35.52% 45.91%
a=p3=20,v=48 0.55% 24.55% 44.14% 59.79% 73.18%
a=p£3=20,v=380 0.16% 11.79% 22.27% 31.89% 41.06%

a=p=20y=112 0.07% 8.26%  16.14%  23.37%  30.26%

number of combinations of z-variables in the added 1-block inequalities yields solution values of the LP
relaxations which are significantly closer to the solution value of the IPs. As a result, more cuts have
to be computed, which can slow down the subsequent branch-and-cut process. Therefore the achieved
closure of the integrality gap is relativized by the number of cuts which were produced. In Table 2, the
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Table 2 Integrality gap closure by 1-block inequalities per cut.
Config (ZM| <1 |ZM[ <2 |ZM] <3 |ZM] <4 |ZM] <5

a=p=10,vy=12 0.6890%  0.9214%  0.3132%  0.1231%  0.0622%
a=p=10,v=20 0.1373%  0.2014%  0.0520%  0.0139%  0.0043%
a=p03=10,v=28 0.0477%  0.0731%  0.0143%  0.0029%  0.0007%
a=p=15y=27 0.1872%  0.5151%  0.2211%  0.1045%  0.0581%
a=p=15v=45 0.0309%  0.0934%  0.0278%  0.0086%  0.0031%
a=p=15~v=063 0.0049%  0.0308%  0.0066%  0.0015%  0.0004%
a=p=20v=48 0.0462%  0.3147%  0.1481%  0.0754%  0.0462%
a=L3=20,v=80 0.0082%  0.0561%  0.0165%  0.0051%  0.0019%
a=0=20,y=112 0.0025%  0.0204%  0.0044%  0.0010%  0.0002%

cells of Table 1 are divided by the number of possible combinations of z-indices which are contained
in the generated blocks ZLZ:I‘ (;) For all observed instances, including 1-block inequalities with two
z-variables has the biggest impact on the average integrality gap closure per cut. Building on that finding,
we configure the performance test for the clique algorithm to precompute 1-block inequalities such that
for each z-index (ZM = {i}) and for each pair of z-indices (Z™ = {I1,15}) we calculate the largest block
(X, Y) in M which contains only I € Z*. We then add the corresponding 1-block cut

Z%-&-Zwﬁ Z z+1,

i€X jeY lezM

to the description of P(M). We present the achieved integrality gap closures in Table 3. For small

Table 3 Percentage of gap closure via clique block generation.

Config v/(a-B) =0.0625 ~/(a-B)=0.125 ~/(a-p)=0.1875 ~/(a-pB)=0.25
a=F=8 64.67% 61.55% 46.85% 40.70%
a=08=12 40.85% 28.65% 22.91% 16.24%
a=p=16 25.95% 17.19% 14.34% 9.62%
a=0=20 18.55% 12.05% 9.81% 6.656%

instances o = 8 = 8, v = 4 the integrality gap is getting closed by almost two thirds. But the amount of
gap closure decreases when increasing the size of M, while keeping its ratio to the number of z-indices
constant. Table 4 shows that the average size of the computed blocks |X| - |Y| does not increase for
larger matrices M. Therefore, the computed blocks cover a smaller portion of M for larger matrices.

Table 4 Average size of the maximum blocks.

Config v/(a-8) =0.0625 ~/(a-f5)=0.125 ~/(a-B)=0.1875 ~/(a-p)=0.25
a=0=8 11.67 6.85 4.64 4.43
a=p=12 9.55 6.17 4.29 4.22
a=p=16 8.60 5.81 4.11 4.09
a=0=20 8.02 5.57 3.97 4.00

Nevertheless, adding 1-block inequalities computed by the presented clique-based algorithm to the
description of P(M) can be beneficial for the solution process if the ratio v/(« - 8) is small.

6.1.2. Cut Algorithm Tests. Since we established that the class of all n-block inequalities defines
the convex hull of P(M), we can use a purely n-block-cut based solution algorithm to optimize over
P(M). The following test instances were generated in the same way as in the previous section. The
presented measurements include the number of n-block-cuts which were used to separate non-integer
solutions (Table 5) and their distribution over the number n of blocks they consist of (Table 6). As
expected, the number of required cuts increases both with the matrix size « - 8 and with the number of z
indices in M. The total amount of runtime in the solution process which accounts for the cut generations
scales well with the instance size. 1-block inequalities make up the largest part of the used cuts for
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Table 5 Number of used cuts.

Config v/(a-B)=0.04 ~/(a-B)=012 ~/(a-F)=0.2 ~/(a-5)=028
a=p=5 - 261 944 1590
a=04=10 472 2511 5500 8904
a=p3=15 1307 6122 12551 18938
a=p=20 2679 10437 20875 31465

Table 6 Distribution of n.
Config n=1 n=2 n=3 n=4 n2>5

a=0=5 ~y=7 95.05% 4.24% 0.29% 0.43% 0.00%
a=p=10,y=28 96.12% 3.55% 0.17% 0.14% 0.03%
a=p=15 ~v=63 97.54% 2.23% 0.12% 0.06% 0.06%
a=p=20,v=112 98.12% 1.72% 0.09% 0.06% 0.01%

all tested instances. Hence, even though there is no upper bound on the number of facets for if-then
problems presented in this paper, the bound on the number (2% — 1)(27 — 1) of 1-block inequalities from
Observation 3.1 is numerically a good estimate for the maximum number of facets around an integer
solution to the problem.

6.2. Application to Fixed Recourse Stochastic Programming. One application field for if-
then polytopes lies in fixed recourse stochastic programming (FRSP). The following studies are carried out
on a case study for energy-efficient timetable optimization in underground train networks. The underlying
model synchronizes braking and acceleration phases of locally close trains to make use of recuperation
energy which braking trains generate. Additionally, power-saving driving behavior is supported. This is
done by slightly changing departure times and running times in the train timetable. For every leg in the
table, one can choose from a discrete set of departure and running time combinations. The mixed-integer
optimization model to minimize the total energy consumption is given by

min Zzt
teT
s.t. Z DijdrtTijdr < 2t, VGET
(i,5)€J,(d,r)€Ci;
z¢ >0, VteT
re X.

Finding a feasible timetable x € X is modeled as a clique problem with multiple-choice constraints. A
detailed description of the mathematical model can be found in [8].

The fixed recourse stochastic aspect is present in the scenario extension of the timetabling model. This
feature is described in [7] and provides a way to deal with uncertainties and delays in the operation of the
underground network. Decisions for the running- and departure times in the table have influence on the
realization of the uncertainties with respect to delays. We now observe the inequalities added for the full
recovery model in [7]. The constraints linking the timetable variables z;;q4, and the variables yg;; 147~ of
scenario s for each leg (i, j) and the leg before (i, — 1) with departure times d,d” and running times r, r”
are given by

Tijdr + Ysij—1d'r’ — 1 < Ysigdrr-
The departure time d’ and running time 7’ can be calculated from d,d” and r,r" as follows:

d =maxd,d" + 1" + hijj_1 + 04,
r'=maxrj,r— (d —d— 8sij) + psij-
Here, h;j is the minimum dwell time for leg (i, ), r;; is the minimum running time for leg (4, j), ds;; is

the deviation from the nominal dwell time before leg (7, j) in scenario s, and ps;; denotes the deviation
from the nominal running time for leg (¢, 7) in scenario s.
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The if-then relation can be expressed as if a train arrives at a station at time d’ +1" and it is planned
to depart at time d with running time r, we forecast that the train will depart at time d’ with running time r'.
For each leg (i, ) and each scenario s, there are three binary vectors a;; € {0, 1}1Cil 4,1 € {0,1}Cs0-11)
and y;; € {0, 1}'0“‘1' | with multiple-choice constraints for which a relation matrix can be set up. For one
leg (i,7) and one scenario s, the relation matrix M*¥ is similar to Figure 4.

Y1,060 Y1,5,60 ¥Y1,10,60 Y1,15,60 Y1,20,60

12,105,50
22,105,55
22,105,60
Z2,110,50
22,110,55
72,110,60

Figure 4: Example relation matrix structure for one leg and one scenario. Equal indices marked by the
same gray tone.

The observable L-shaped structure for equal indices holds for every instance. For each index [ in M*%
there are at most two blocks in M*% which contain [ and these blocks contain all [ in M*%. This property
makes the following preprocessing step feasible.

Preprocessing. In the preprocessing for the scenario instances, we remove all McCormick constraints
from S(M?*%7) and replace them by at most two 1-block inequalities. These blocks can be constructed
such that they contain exactly one index and the union of these blocks form M*%. In this way, we can
both reduce the number of constraints in S(M*¥) and strengthen the formulation.

Instances. The computations were performed for 60 instances of timetables grouped into 6 instance
configurations. All instances are generated on real-world data provided by our partners at VAG, the
operator of public transport in the city of Nuremberg, Germany. The names of the instance configurations
follow the scheme dt|ss|nt|sn, where for each leg in the timetable model, d¢ is the maximum time the
departure time can be delayed or advanced, ss is the step size in the resulting time interval, nt is the
number of possible running times. The number of included scenarios is given by sn. For each instance
configuration, we test 10 different time horizons throughout the day, with each time horizon having a
duration of 30 minutes. In order to obtain small instances which can be solved to optimality, we only
optimize over one line of the train system.

Computational Results. For each test instance, we compare five solution configurations. ORI is the
model without if-then cuts. For PRE the preprocessing step described above is applied. Additional to
the preprocessing for PRE+SEP the separation algorithm is performed. A variant of PRE+SEP where
we only use if-then cuts and disallow Gurobi to use other cut types is carried out in Cuts=0. In SEP
n-block inequalities are only separated during the solution process but no preprocessing was performed.
We separate via a Gurobi callback at each node in the branch-and-bound tree one maximally violated
normalized n-block constraint for each if-then substructure in the problem if the violation is greater or
equal 0.1. The number of if-then cuts added to the model is presented in Table 7. It presents the mean
values for each instance configuration of constraint counts and the percentage of separated cuts which
constitute facets of P(M). Con ORI and Con PRE denote the number of constraints in the model after
Gurobi presolve without and with the inclusion of preprocessed cuts, respectively. Sep SEP and Sep
PRE+SEP represent the counts of constraints added as user cuts during the solution process without
and with preprocessing. The column Facet % indicates the percentage of the separated cuts which are
facets of P(M). Since in almost all cases the separated inequalities were in fact facets we only added
facets to the model and neglected the separated non-facets, without a major increase in time used in the
separation routine.

To evaluate the impact of the n-block inequalities discovered in this paper on the solution performance
we compare the time the Gurobi solver takes to solve the instances to optimality and, since this may be
interesting from a practical point of view, to a MIP optimality gap of 1%. The time limit for the solver
was set to 10 hours. This was enough time to solve each instance to optimality in at least one solution
configuration. Tables 8 and 9 show for each instance configuration and each solution configuration the
geometric mean of the runtime to optimality and to a MIP optimality gap of 1%, respectively. The
column z Factor is the impact indicator and represents the factor by which the runtime of ORI could be
shortened by if-then cuts. If for an instance the solver did not reach the demanded gap in under 10 hours
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Table 7 FRSP test: Number of constraints which are added before and after the solution process starts
and percentage of separated cuts which are facets of P(M).

Config Con ORI Con PRE Sep SEP  Sep PRE+4+SEP Facet %
10/5|2|2 19450 3124 671 319 100%
12]3]1]2 27397 3568 821 365 100%
12]6]4/2 80392 6347 726 339 99%
15/3|3)2 170094 8321 1409 814 99%
182|1]2 108811 6929 4039 2129 100%
10/5[1|3 37217 8637 8344 4769 97%

Table 8 FRSP test: Geometric mean runtime solving to optimality.

Config ORI PRE PRE+SEP Cuts=0 SEP ‘ x Factor
10/5/2/2 4474 24.1 24.6 15.4 60.5 29.0
12|3‘1|2 2272.2 137.7 47.3 37.8 131.9 60.1
12/6]4|2 16722.9 465.7 112.5 142.5 180.6 148.7
15]3]3]2 33910.7 5176.3 437.9 604.3 936.0 77.4
18J2]1]2 25010.6 2453.8 485.9 593.8 1278.1 51.5
10/5/1|3 17756.2 1337.9 740.0 1004.8 2314.6 24.0

it was counted as 10 hours. The number of instances which could be solved to optimality is presented in
Table 10 for each instance configuration and each solution configuration.

Results Analysis. The special structure in the relation matrices seems to be very suitable for the
application of if-then cuts. Preprocessing 1-block inequalities reduced the number of constraints after
Gurobi presolve by more than 75%, for 15|3|3|2 by 95% on average. Although the constraint matrix in
this new formulation is more densely filled, it results in much shorter runtimes of PRE compared to ORI
All of the constraints separated as user cuts in a Gurobi callback were 1-block inequalities. This is due to
the special block structure in the relation matrix. These cuts seem to be very effective in closing the dual
bound. Due to the quickness of the separation LP, frequently calling the separation routine does not have
a negative effect on the runtime. Comparing ORI and SEP we observe a constant improvement across all
instance configurations by this separation. The computational study suggests, that the convex hull of
if-then instances with a relation matrix structured as in this test consists of lower bounds and 1-block
inequalities only. Combining the preprocessing and the separation routine we observe a significant impact
of if-then cuts to the solution of the scenario timetable models both to optimality and to a MIP gap
of 1%. PRE+SEP in contrast to ORI was able to solve all tested instances to optimality. Particularly
impressive is the difference in the number of solved instances in the configuration 15|3|3|2. While the
model without if-then cuts could not be solved to optimality after 10 hours in 90% of the instances, the
geometric mean runtime of PRE+SEP was 437.9 seconds. In a little less than 1 hour, Gurobi was able to
reduce the MIP gap to 1% but was not able to close the dual bound further in the next 9 hours. Here the
separation of 1-block inequalities turned out to be crucial. Setting the Gurobi parameter Cuts to 0 and
with that disallowing any other cut class than if-then cuts to be separated did improve the runtime to
optimality in 2 of the 6 test configurations. The runtime to a MIP gap of 1% was improved in half of the
instance configurations. Overall these classical cut classes like MIR, RLT or BQP cuts did not have a
major impact on the solution performance when if-then cuts were added.

6.3. Application to the Quadratic Assignment Problem. Koopmans and Beckmann presented
a quadratic integer formulation for the quadratic assignment problem in [22]. In their application case,
they aim to optimize the allocation of a set of m plants to m specific locations, modeled by binary
variables € {0,1}™*™. The objective is to minimize the total cost, which combines distance-based
costs, flow-based costs, and placement costs. Mathematically, it involves three input matrices representing
commodity flows between facilities (F' € R"*™), distances between locations (D € R’"*™), and placement
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Table 9 FRSP test: Geometric mean runtime solving to a MIP optimality gap of 1%.

Config ORI PRE PRE+SEP Cuts=0 SEP ‘ x Factor
10]5/2|2 85.0 4.3 6.5 5.9 34.0 19.9
12/3]1]2 171.0 10.7 12.0 7.6 69.0 22.6
12/64)2 396.2 81.7 55.8 72.6 116.6 7.1
15]3]3]2 3451.8 267.6 187.9 143.6 554.1 24.0
18J2]1]2 3545.0 201.7 106.2 136.1 371.6 33.4
1015[1|3 547.4 91.1 53.1 103.2 189.7 10.3

Table 10 FRSP test: Number of instances which were solved to optimality in under 10 hours.

Config ORI PRE PRE+SEP Cuts=0 SEP
10/5/2|2 10/10 10/10 10/10 10/10 10/10
123]1]2 10/10 10/10 10/10 10/10 10/10
12/6/4]2 8/10 10/10 10/10 10/10 10/10
15|3|3]2 1/10 10/10 10/10 10/10 10/10
182[1]2 2/10 9/10 10/10 10/10 9/10
10/5/1/3 5/10 10/10 10/10 10/10 10/10

costs (B € R"*™). The quadratic integer model becomes

ZZZfijxikdkll'jl + Z bijxi;

1j=1k=11=1 i,j=1

s.t. Zl'ij = 1, Vj € [m]
i=1

Zl‘ij =1, Vie [m]
j=1

z;; €{0,1}, Vij € [m]?.

Ms

(QAP)

-
Il

3

We can reformulate (QAP) into an if-then polytope based model as follows. Define
X = {iyiy € [m]? | iy =i} for all i € [m] and Y7 := {j1jo € [m]? | jo = 5} for all j € [m].

We can group pairs of elements iip € X' and j;j € Y7 with identical costs fiipdj, ; together and introduce
a variable zl] for each cost group | € Z¥ with corresponding costs ¢’ . For each ij € [m]?, we define a
function f¥ : [m]? — Z% which maps i2j; to the cost group of iigjj for each pair of elements iy € X°
and j1j € YJ. This yields an equivalent formulation of (QAP):

i€[m] je[m]leZt i,j=1
s.t. Z Tijo = 1, Vi € [m]
=D&
Z zj; =1, Vjé€[m]
jijeYd
>zl =1, Vije[m]?
lezii

TiinTjyj < qu(lzj ) Viigj1j € [m]*
z;; €{0,1}, Vij € [m]?.

Here, we can directly observe an if-then instance with relation matrix M%¥ where Mlj = [ (g, j1) for

iz € [m] and j; € [m] as a substructure of (QAP) for each ij € [m]2. The chaining of these instances
differs from the one observed in Section 5.
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Figure 5: Dependency graph for the chaining of if-then instances of Model (QAP) with n = 2.

As Figure 5 shows, the dependency graph of the CPMC extension for (QAP) is not a forest, therefore
n-block inequalities for the substructured if-then polytopes are not necessarily sufficient to define the
convex hull of the feasible points of Model (QAP). Still, these n-block inequalities are valid and lead to
significant improvements for the solution process of (ITQAP), as the subsequent computational study
demonstrates.

Instances. We analyze 28 instances from the well established QAPLIB [5]. Note that the number in
the name of the instances equals the parameter m in Model (ITQAP).

Computational Results. We solve each instance both with and without the use of the separation
algorithm for normalized n-block inequalities described in Section 4.2. At each node in the branch-and-
bound tree, we collect the maximally violated cut in each if-then subproblem. All cuts with violations
greater than or equal to 0.01 and at least 10% of the maximum observed violation at the node are then
passed to Gurobi as UserCuts. Gurobi then decides, whether to add the cut to the model. We omitted a
comprehensive analysis of the relation matrix which could be used to add instance-adapted constraints
to the model in preprocessing in order to show the performance of the separated cuts on general QAP
instances. The precomputing of cuts using the clique technique described in Section 4.3 was also not
carried out, because the z-ratio, i.e., the ratio of the number of z-indices () to the matrix size (« - 3)
was too big, as we can see in Column v/(« - ) of Table 11.

All instances were solved with a time limit of 10 hours. Column Sep Provided of Table 11 shows
the number of separated if-then cuts for each instance. Sep Used displays the number of cuts which
were added to the model by Gurobi. We point out that the separation LP (4.4) exclusively produced
facet-defining inequalities. The runtime to optimality or the relative MIP optimality gap in case of the
time limit being exceeded for the model with (IFTHEN) and without (ORIGINAL) separated n-block
inequalities are also displayed in Table 11. The shorter runtime or smaller optimality gap are marked in
bold.

Results Analysis. We sorted Table 11 by the z-ratio to illustrate the strong correlation of this
parameter with the positive impact of the separated if-then cuts. For low values of v/(«a - 3), the
separation of n-block inequalities yields a significant improvement in reducing the relative MIP optimality
gap and shortens the runtime drastically. The fast runtime of the separation LP enables to add a large
number of inequalities which help the solver to cut off non-integer solutions. However, higher z-ratios
worsen the performance of the separated cuts. They can even lead to higher MIP optimality gaps. The
numerical results in Table 11 indicate a positive effect of if-then cuts for z-ratios up to about 0.3. The
results are consistent with the observations in Section 6.1. Low z-ratios lead to potentially larger 1-blocks
when fixing the z-indices in the block. These 1-blocks can be utilized to form tight n-block inequalities.
In contrast to the FRSP case study, in the QAP study not only 1-block inequalities were separated, but
also blocks for higher values of n < 80, even though 1-block inequalities make up the largest proportion
at around 90%.

7. Conclusion. In this article, we introduced the if-then polytope, a special case of the bipartite
quadric polytope that models conditional relations across three sets of binary variables, where selections
within two ”if” sets imply a choice in a corresponding ”then” set. We provided the complete description
of the polytope using solely newly defined and characterized n-block inequalities and bound constraints.
Additionally, we showed how to separate these n-block inequalities in polynomial time and presented a
routine to efficiently precompute tight 1-block inequalities if the structure of the relation matrix is known.
In a comprehensive computational study, we finally demonstrated the usefulness of n-block cuts for two
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Table 11 QAP study results: z-ratio v/(« - 8), number of separated cuts (Sep Provided), number of cuts
used by Gurobi (Sep Used), runtime/MIP optimality gap after 10 hours without separation (ORIGINAL)
and with separation (IFTHEN).

Config ~v/(a- B) Sep Provided Sep Used ORIGINAL IFTHEN
chr18b 0.0357 1841 1333 5.1% 124.1
nugl6b 0.0606 557850 55105 61.2% 5.1%
nugl6a 0.0693 405074 66239 81.2% 8.9%
nuglh 0.0712 239121 38906 52.1% 22155.7
nugl4 0.0781 222419 30857 64.2% 15185.7
scr20 0.0826 86759 29343 29.9% 8.0%
had20 0.0867 66820 28312 96.0% 14.3%
chrl8a 0.0959 16026 11053 27207.8 1417.5
had18 0.0973 221810 25076 94.6% 11.0%
nugl?2 0.0979 13508 6231 16053.8 439.3
had16 0.1127 190317 22271 87.7% 6.8%
scrld 0.1134 5741 3042 6359.4 762.6
chrlba 0.1141 5717 5 802.5 236.3
chr15b 0.1141 4602 590 304.4 192.0
chrl5c 0.1141 5777 574 122.2 179.5
scrl2 0.1375 2692 1426 207.1 83.5
had14 0.1396 60990 11162 67.9% 10607.3
had12 0.1525 65653 7391 41.3% 2649.1
lipa20b 0.2080 86306 11493 94.0% 2.6%
tailbb 0.2893 112754 12128 0.6% 29469.7
tail2b 0.3888 59506 6771 4167.9 7806.2
tailOb 0.4047 4273 3330 67.0 182.9
tailOa 0.6558 9824 2830 1803.9 2385.6
tail2a 0.6934 158225 3529 17.5% 22.2%
rou20 0.7010 12756 12204 94.4% 100.0%
tailba 0.7133 27661 6482 76.2% 99.9%
roulb 0.7472 31620 8878 71.1% 88.4%
roul2 0.7645 7772 3517 22.9% 39.6%

application fields: Fixed recourse stochastic programming and the quadratic assignment problem.

Overall, this work provides a deeper insight into the structure of binary quadratic problems with
multiple-choice constraints and a new approach to efficient optimization over the if-then polytope. However,
there is still a lot of potential for further research. On the theoretical part, the chaining of relation
matrices that was present in the stochastic railway timetabling model can be extended to other tree-like
structures. An increase of the number of related binary sets with multiple-choice constraints would lead
to new constraint classes that can be analyzed. With regard to possible applications, we see a wide
range even beyond the areas addressed so far. One promising candidate, for example, are piecewise
linear relaxations for mixed-integer nonlinear programming. Here, the domain of a nonlinear function is
typically divided into segments with the help of binary variables, on which a linear relaxation is then
created. As only one segment can be selected, we again have a multiple choice structure. The approach
in this paper can therefore be a powerful tool to tackle relationships across multiple piecewise linear
relaxations of nonlinear terms.
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of our work.
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