
Learning-to-Optimize with PAC-Bayesian Guarantees:
Theoretical Considerations and Practical Implementation

Michael Sucker michael.sucker@math.uni-tuebingen.de

Department of Mathematics
University of Tübingen
Tübingen, Germany

Jalal Fadili jalal.fadili@ensicaen.fr

ENSICAEN
Normandie Université
CNRS, GREYC, France

Peter Ochs ochs@cs.uni-saarland.de

Department of Mathematics and Computer Science

Saarland University

Saarbrücken, Germany

Abstract

We use the PAC-Bayesian theory for the setting of learning-to-optimize. To the best
of our knowledge, we present the first framework to learn optimization algorithms with
provable generalization guarantees (PAC-Bayesian bounds) and explicit trade-off between
convergence guarantees and convergence speed, which contrasts with the typical worst-case
analysis. Our learned optimization algorithms provably outperform related ones derived
from a (deterministic) worst-case analysis. The results rely on PAC-Bayesian bounds for
general, possibly unbounded loss-functions based on exponential families. Then, we refor-
mulate the learning procedure into a one-dimensional minimization problem and study the
possibility to find a global minimum. Furthermore, we provide a concrete algorithmic real-
ization of the framework and new methodologies for learning-to-optimize, and we conduct
four practically relevant experiments to support our theory. With this, we showcase that
the provided learning framework yields optimization algorithms that provably outperform
the state-of-the-art by orders of magnitude.

1 Introduction

Typically, optimization algorithms are derived by considering a class of problems, which
consists of three ingredients: First, the model, which summarizes the imposed assumptions
and common properties of the problems within that class. Second, the oracle, which de-
scribes the information the algorithm actually receives during run-time. And third, the
stopping criterion, that specifies when the algorithm terminates. For example, consider all
convex and continuously differentiable functions with Lipschitz continuous gradient (model),
a first-order method that has access to the function value and its gradient in each iteration
(oracle), with the overall goal to decrease the residual in function values up to a certain
threshold (stopping-criterion).

1

Based on this class, one can perform a worst-case analysis to make sure that in any case a
sufficient descent property, for example in function values, does hold along the iterations,
which allows to prove convergence and derive corresponding convergence rates. Thus, such
a worst-case analysis allows for theoretical guarantees by being applicable to any case in
question. However, often this comes at the cost of slower convergence in the typical case,
as considering the worst-case only is inevitably accompanied by a negligence of informa-
tion and thus, an overly conservative estimation in most of the cases. Hence, there is
an inherent trade-off between applicability in terms of imposed assumptions, theoretical
guarantees and practical performance. A worst-case analysis aims for one of the extremes:
Strong theoretical guarantees at the cost of potentially strong assumptions and practical
performance. Doing so, we get an uniform upper bound on the performance. Yet, if the
worst-case is actually equally likely as any other problem in that class, this indeed is the
best one can hope for, as there are simple examples for which this upper bound then also
matches the best possible lower bound, yielding the notion of an optimal algorithm. There-
fore, to improve the performance of an optimization algorithm, one needs to have access
to more information about the problems at hand. This can be done analytically, that is,
by imposing further restrictive assumptions, or statistically under the assumption that the
single problem instances are not equally likely to be observed. Here, the first approach
boils down to reducing the class of functions in question, hence a change of the model.
That means that one might get a faster algorithm, yet at the expense of less applicability.
Therefore, it does not alter the underlying trade-off effectively. The second approach, how-
ever, rather aims for a change of the oracle and tries to use structure in the given class of
functions, which is explicitly not analytically tractable, that is, not already encoded in the
model. This means that, if there is actually more structure in the class of functions than
the model describes analytically (the model is larger than the problem class at hand), fast
algorithms can be obtained without making further restrictive assumptions. The premise
for this is that one actually manages to access and use this structure in other ways than
by pen and paper, for example, statistically. One particular way to do this is to learn the
optimization algorithm on a given data set. For this, the oracle gets enriched by access
to a data set that can be used for a training phase. By doing so, the algorithm becomes
data-dependent and can in turn enrich its oracle by the statistical structure of the class
of problems. Hence, learning actually alleviates the bounds of analytical tractability by
introducing data-dependency. Furthermore, it also allows for new algorithms, which cannot
be analyzed (or even derived) analytically and therefore were not tractable before. The
whole process can be automated, such that, in total, one can access more information and
train more complicated algorithms with actually less hand-crafting. Hence, there is a huge
potential up-side to learning optimization algorithms. However, there is no free-lunch. In-
deed, there is also a down-side: Since one insists on using structure and algorithms that
are explicitly not analytically tractable, one looses some theoretical guarantees that were
built upon exactly these analytic features. Hence, while learning alleviates the bounds of
analytical tractability, it does it at the cost of loosing the typical theoretical guarantees.
Since the practical usefulness of an optimization algorithm without convergence guarantees
is at least questionable, this is a major problem, and poses the first central question:

What kind of theoretical guarantees can be given for such a learned optimization
algorithm? Are we able to ensure its usefulness?

2

Hence, in the first part of this paper we provide a theoretical framework for learning an
optimization algorithm based on its performance on the training set, that is, based on the
empirical risk together with a generalization bound for the (true) risk. A popular framework
that provides such generalization bounds is the PAC-Bayesian approach to learning, which
we apply to the setting of learning-to-optimize. This yields the following informal version
of our main theoretical result (compare Theorem 4.1 together with Corollary 3.5):

Theorem 1.1 (Informal) Under mild boundedness assumptions on the optimization algo-
rithm, the Q-average population loss Rg of the last iterate can be bounded by the Q-average
empirical loss R̂g of the last iterate plus some remainder term rN that vanishes with the
size N of the data set, that is, for all ε > 0:

PD

{
∀λ ∈ Λ, ∀Q ∈ P : Q[Rg] ≤ Q[R̂g] + rN

}
≥ 1− ε .

This result states that it is unlikely to observe a data set for which the given bound on the
risk of the last iterate would not hold uniformly in λ or Q. Especially, the uniformity in Q
allows for learning such a distribution Q. To proof this result, in Theorem 3.3 we provide a
general PAC-Bayesian theorem for data-dependent exponential families, which holds under
mild assumptions, thus being widely applicable. Then, in Corollary 3.5, by specifying the
natural parameters and the sufficient statistics, that is, by choosing a specific exponential
family, we directly deduce a PAC-Bayesian generalization bound. Here, since these two
results are widely applicable and constructive in nature, they might be of independent
interest. Finally, to be able to apply Theorem 3.3 and Corollary 3.5 to the setting of
learning-to-optimize we identified suitable properties of optimization algorithms, such that
the corresponding assumptions are satisfied (compare Theorem 4.1 and Theorem 4.9).
Taken together, this provides one possible answer to the central question posed above about
the theoretical guarantees. However, while being a generalization bound, these guarantees
are a statement about relative values, that is, how the true risk compares to the empirical
risk. Though, they do not directly imply that these have to be small absolute values. Thus,
one still has to train the optimization algorithm in such a way that the empirical risk is
indeed small enough to be worth the effort. Hence, the second central question that arises
is of a more practical nature and pertains to the actual training of such an algorithm:

How do we learn an optimization algorithm, so that its performance is clearly superior to
the one achieved by a worst-case analysis?

Therefore, in the second part of this work, we develop a concrete algorithmic realization,
which allows for learning an optimization algorithm and evaluating the corresponding the-
oretical guarantee. This involves several design choices and tricks that have not been used
before and which are of interest in their own right. Furthermore, as empirical evaluation of
our claims, we conduct four practically relevant experiments, all dealing with very differ-
ent classes of functions, thereby demonstrating the wide applicability and strong practical
performance of our approach. Examples are shown in Figure 1. Each subplot compares
the performance of the learned algorithm to that of a standard algorithm on different prob-
lems: a smooth and strongly convex quadratic toy problem (upper left), a high-dimensional,
smooth and convex image processing problem (upper right), a non-smooth and convex

3

0 100 200 300 400 500 600 700

nit

10−20

10−14

10−8

10−2

104
`(
x

(i
)
)

Loss over Iterations

HBF

Learned

0 100 200 300 400 500 600 700

nit

102

103

104

105

`(
x

(i
)
)

Loss over Iterations

FISTA

Learned

`(x
(5000)
std)

0 10 20 30 40 50

nit

103

104

`(
x

(i
)
)

Loss over Iterations

NAG

Learned

`(x
(1000)
std)

0 50 100 150 200

nit

100

101

102

103

`(
x

(i
)
)

Loss over Iterations

Adam

Learned

c(g(x), yobs)

Figure 1: Some numerical results: Loss over iterations (mean as dashed and median as
dotted line) of the learned algorithm compared to a standard choice.

LASSO problem (lower left), and a non-smooth and non-convex problem of training a neu-
ral network (lower right). Since the learned algorithm is clearly superior in each case, this
provides a possible answer to the question about how to train optimization algorithms.
Taken together, we provide a complete framework to train optimization algorithms with
theoretical guarantees that are (in a certain sense) provably faster than their worst-case
optimal counterparts. With this, we get closer to the ideal case of wide applicability, strong
practical performance and sufficient theoretical guarantees. In particular, this work is a far
reaching extension of our conference paper (Sucker and Ochs, 2023) by extending and clar-
ifying the theoretical results in Sections 3, and by the algorithmic realization together with
its evaluation in Sections 5 and 6, which additionally includes a probabilistic constraining
procedure for sampling algorithms in Sections 5.2.

1.1 Related Work

The literature on both learning-to-optimize and the PAC-Bayes learning approach is vast.
Hence, the discussion of learning-to-optimize will mainly focus on learning procedures for
optimization algorithms and on approaches that provide some theoretical guarantees. Espe-
cially, this excludes many model-free approaches, which replace the whole update step with
a learnable mapping such as a neural network. Chen et al. (2021) provide a good overview
about the variety of approaches in learning-to-optimize, and good introductory references
for the PAC-Bayesian approach are given by Guedj (2019) and Alquier (2021).

4

Broader Context of Learning-to-Optimize. Solving optimization problems is an in-
tegral part of machine learning. Thus, learning-to-optimize has significant overlap with the
areas of meta-learning (or “learning-to-learn”) and AutoML. The first one is a subset of
learning-to-optimize, as, while learning-to-optimize applies to general optimization prob-
lems, meta-learning is mostly concerned with determining parameters of machine learning
models, that is, minimizing a training loss (Vilalta and Drissi, 2002; Hospedales et al.,
2021). AutoML, however, more broadly refers to automating all steps necessary to create
a machine learning application, which thus also involves the choice of an optimization al-
gorithm and its hyperparameters (Yao et al., 2018; Hutter et al., 2019; He et al., 2021).
Hence, most relevant for this work is model selection.

Learning-to-Optimize with Guarantees. Chen et al. (2021) point out that learned
optimization methods may lack theoretical guarantees for the sake of convergence speed.
That being said, there are applications where a convergence guarantee is of highest priority.
To underline this, Moeller et al. (2019) provide an example where a purely learning-based
approach fails to reconstruct the crucial details in a medical image. Also, they prove con-
vergence of their method by restricting the output to descent directions, for which mathe-
matical guarantees exist. The basic idea is to trace the learned object back to, or constrain
it to, a mathematical object with convergence guarantees. Similarly, Sreehari et al. (2016)
provide sufficient conditions under which the learned mapping is a proximal mapping. Re-
lated schemes, under different assumptions and guarantees, are given by Chan et al. (2016),
Teodoro et al. (2017), Tirer and Giryes (2018), Buzzard et al. (2018), Ryu et al. (2019),
Sun et al. (2019), Terris et al. (2021) and Cohen et al. (2021). A major advantage of these
methods is the fact that the number of iterations is not restricted a priori. However, a
major drawback is their restriction to specific algorithms and problems. Another approach,
which limits the number of iterations, yet in principle can be applied to every iterative opti-
mization algorithm, is unrolling, pioneered by Gregor and LeCun (2010). Xin et al. (2016)
study the IHT algorithm and show that it is, under some assumptions, able to achieve a
linear convergence rate. Likewise, Chen et al. (2018) establish a linear convergence rate for
the unrolled ISTA. However, a difficulty in the theoretical analysis of unrolled algorithms
is actually the notion of convergence itself, such that one rather has to consider the gen-
eralization performance. Only few works have addressed this: Either directly by means
of Rademacher complexity (Chen et al., 2020b), or indirectly in form of a stability analy-
sis (Kobler et al., 2020), as algorithmic stability is linked to generalization (Bousquet and
Elisseeff, 2000, 2002; Shalev-Shwartz et al., 2010). We consider a mixture of the iterative
approach and the unrolling approach: The theoretical analysis corresponds to the approach
of unrolling, that is, a fixed number of iterations, and the resulting PAC-Bayesian general-
ization bound applies to this particular number osubsubsectionf iterations only. However, in
our implementation and experiments, we stay more closely to the iterative approach of learn-
ing an update step that can be applied for an arbitrary number of iterations. Further, while
the resulting algorithms do include neural networks in their update step, the construction is
closely related to the model-based approach, as it is inspired by analytical algorithms.

Typical Problems and Tricks in Learning-to-Optimize. The literature contains a
vast amount of approaches, tricks and problems about learning procedures for optimization
algorithms. We only touch briefly upon the ones that are most relevant for the present work:

5

Besides the actual optimizer, a typical design choice is that of the loss function. Here, either
the final loss or a weighted sum of the losses incurred along the iterations is typically being
used (Chen et al., 2021). This extends to choices about the computational graph, as one
has to decide which gradients are computed during training. An assumption already made
by Andrychowicz et al. (2016) and widely adopted thereafter, is to neglect higher-order
derivatives. Importantly, if the theoretical analysis is coherent with the computational
graph, one is allowed to do whatever works here.
A major problem of many learned optimization algorithms, especially the ones based on
recurrent neural networks, is their restriction to a certain number of iterations, that is,
they cannot be trained for an arbitrary number of iterations due to instabilities, such as
vanishing or exploding gradients, and memory bottlenecks. Further, often they do not
generalize well to more iterations (Andrychowicz et al., 2016; Chen et al., 2017; Lv et al.,
2017; Chen et al., 2021). A typical way to mitigate this problem is to split the whole
trajectory into smaller parts, for which the vanishing/exploding gradient phenomenon does
not occur, which effectively also solves the memory problem. However, this often does not
lead to fully satisfactory results either, such that other approaches have been proposed:
Lv et al. (2017) introduce random scaling of the coordinates and the addition of a convex
function to the objective. Metz et al. (2019) propose not to model the recurrent nature of
optimization algorithms directly, and therefore to replace the recurrent neural network with
a multilayer perceptron, to “smooth” the loss, and to dynamically use two unbiased gradient
estimators instead of one. Doing so they manage to train algorithms that are faster in wall-
clock time than standard ones like Adam. Wichrowska et al. (2017) introduce a hierarchical
RNN architecture consisting of three RNNs, and additionally draw the number of unrollings
and the unrolling length from a heavy-tailed exponential distribution. While achieving the
needed generalization, this approach is computationally costly and does not achieve the same
wall-clock time as simple optimization algorithms. Chen et al. (2020a) consider improved
training techniques in general, and they introduce a progressive scheme that gradually
increases the unrolling length, and an imitation learning approach by learning from analytic
optimizers first. We will introduce a new loss function for training optimization algorithms,
motivated by an intuitive theoretical argument. To our best knowledge, this loss function
is new. Here, we will typically also ignore higher-order derivatives in the computational
graph, as the algorithms performance is analyzed independently of this step in the learning
procedure. Further, we found that a combination of many of the above mentioned approaches
works well: 1) We use a single learned update based on MLPs and analytic algorithms
instead of an RNN. 2) We split the trajectory into subtrajectories and randomize its total
length, however, in a different and new way, again motivated by theoretical considerations.
3) We start the learning procedure with imitation learning to find an initialization that
performs similar to analytic algorithms.

PAC-Bounds through Change-of-Measure. The PAC-Bayesian framework allows for
giving high probability bounds on the risk, either as an oracle or as an empirical bound.
The key ingredients are so-called change-of-measure inequalities. The choice of such an in-
equality strongly influences the corresponding bound. The one used most often is based on
a variational representation of the Kullback–Leibler divergence due to Donsker and Varad-
han (1975), employed, for example, by Catoni (2004, 2007). Yet, not all bounds are based

6

on a variational representation, that is, holding uniformly over all posterior distributions
(Rivasplata et al., 2020). However, most bounds involve the Kullback–Leibler divergence as
measure of proximity, for example, those by McAllester (2003a,b), Seeger (2002), Langford
and Shawe-Taylor (2002), or the general PAC-Bayes bound of Germain et al. (2009). More
recently, other divergences have been used: Honorio and Jaakkola (2014) prove an inequality
for the χ2-divergence, which is also used by London (2017). Bégin et al. (2016) and Alquier
and Guedj (2018) use the Renyi-divergence (α-divergence). Ohnishi and Honorio (2021)
propose several PAC-bounds based on general f-divergences, which include the Kullback–
Leibler-, α- and χ2-divergences. Even more recently, Amit et al. (2022) propose to replace
the Kullback-Leibler divergence by so-called “integral probability metrics”, which encom-
pass, for example, the Wasserstein distance that obeys many favorable properties and also
captures the geometry of the underlying space (see Villani et al., 2009). Motivated by this,
Haddouche and Guedj (2023) also investigate PAC-Bayesian generalization bounds for the
Wasserstein distance and their interplay with the output of optimization algorithms. A ma-
jor advantage of using the Wasserstein distances instead of the Kullback-Leibler divergence
is the fact that it does not constrain the support of the distribution a-priori through the
choice of the prior. On the other hand, it demands assumptions on the loss function, which
are not necessarily satisfied in learning-to-optimize. We give a general PAC-Bayesian the-
orem based on exponential families. Here, the role of prior, posterior, divergence and data
dependence will be given naturally. Moreover, this approach allows us to implement a more
abstract learning framework that can be applied to a wide variety of algorithms.

Boundedness of the Loss Function. A major drawback of many of the existing PAC-
Bayes bounds is the assumption of a bounded loss-function. However, this assumption is
mainly there to apply some exponential moment inequality like the Hoeffding- or Bernstein-
inequality (Rivasplata et al., 2020; Alquier, 2021). Several ways have been developed to
solve this problem: Germain et al. (2009) explicitly include the exponential moment in the
bound, Alquier et al. (2016) use so-called Hoeffding- and Bernstein-assumptions, Catoni
(2004) restricts to the sub-Gaussian or sub-Gamma case. Another possibility to ensure
the generalization or exponential moment bounds is to use properties of the algorithm in
question. London (2017) uses algorithmic stability to provide PAC-Bayes bounds for SGD.
We consider suitable properties of optimization algorithms aside from algorithmic stability
to ensure the exponential moment bounds. To the best of our knowledge, this is new.

Minimization of the PAC-Bound. The PAC-bound relates the true risk to other terms
such as the empirical risk. Yet, it does not directly say anything about the absolute num-
bers. Thus, in learning procedures based on the PAC-Bayesian theory one typically aims
to minimize this bound: Langford and Caruana (2001) compute non-vacuous numerical
generalization bounds through a combination of PAC-bounds with a sensitivity analysis.
Dziugaite and Roy (2017) extend this by minimizing the PAC-bound directly. Pérez-Ortiz
et al. (2021) also consider learning as minimization of the PAC-Bayes bound and provide
tight generalization bounds. Thiemann et al. (2017) are able to solve the minimization
problem resulting from their PAC-bound by alternating minimization. Further, they pro-
vide sufficient conditions under which the resulting minimization problem is quasi-convex.
We also follow this approach and consider learning as minimization of the PAC-Bayesian
upper-bound, however, applied to the context of learning-to-optimize.

7

Choice of the Prior. A common difficulty in learning with PAC-Bayesian bounds is
the choice of the prior distribution, as it heavily influences the performance of the learned
models and the generalization bound (Catoni, 2004; Dziugaite et al., 2021; Pérez-Ortiz et al.,
2021). In part, and especially for the Kullback-Leibler divergence, this is due to the fact
that the divergence term can dominate the bound, keeping the posterior close to the prior.
This leads to the idea of choosing a data- or distribution-dependent prior (Seeger, 2002;
Parrado-Hernández et al., 2012; Lever et al., 2013; Dziugaite and Roy, 2018; Pérez-Ortiz
et al., 2021), which, by using an independent subset of the data set, gets optimized to yield a
good performance. The choice of the prior distribution is crucial for the performance of our
learned algorithms. Thus, we use a data-dependent prior. Further, we show how the prior
is essential in preserving crucial properties during learning. It is key to control the trade-off
between convergence guarantee and convergence speed. Based on these insights, a major
part of our algorithmic realization is concerned with constructing such a prior distribution.

More Generalization Bounds. There are many areas of machine learning research that
study generalization bounds and have not been discussed here. Importantly, the vast field
of “stochastic optimization” (SO) provides generalization bounds for specific algorithms.
The main differences to our setting are the learning approach and the assumptions made:

• In most of the cases, the concrete algorithms studied in SO generate a single point estimate
by either minimizing the (regularized) empirical risk functional over a possibly large data
set, or by repeatedly updating the point estimate based on a newly drawn (small) batch
of samples. Then, one studies the properties of this point in terms of the stationarity
measure of the true risk functional (Bottou et al., 2018; Davis and Drusvyatskiy, 2022;
Bianchi et al., 2022). In our case, as we consider the PAC-Bayesian learning approach,
the final object to be studied is a distribution over hyperparameters.

• As the setting in SO is more explicit, more assumptions have to be made. Typical
assumptions are (weak) convexity (Shalev-Shwartz et al., 2009; Davis and Drusvyatskiy,
2019), bounded gradients (Défossez et al., 2022), bounded noise (Davis and Drusvyatskiy,
2022), or smoothness (Kavis et al., 2022). Since we consider an abstract optimization
algorithm, and the problem of finding a distribution over its hyperparameters, all of these
assumptions cannot be made without severely limiting the applicability of our results.

We provide a principled way to learn a distribution over general hyperparameters of an
abstract algorithm under weak assumptions and go explicitly beyond analytically tractable
quantities. Therefore, the methodology is independent of the chosen implementation.

2 Problem Setup & Assumptions

In this section we establish the notation, formalize the setting, and state the main assump-
tions that are used throughout the remainder of the text.

Notation. We will endow every topological space X with the corresponding Borel-σ-
algebra B(X), and, given a product space X × Y of two measurable spaces (X,A) and
(Y,B), we endow it with the product-σ-algebra A ⊗ B. To denote the product space of a
larger number of spaces X1, ..., Xn, we will use

∏n
i=1Xi as the shorthand for X1 × ...×Xn

8

and
⊗n

i=1 B(Xi) for the product-σ-algebra. Further, if X = X1 = ... = Xn, we also use
Xn =

∏n
i=1Xi. If we are given a multivariate function f : X×Y → Z, then f(x, ·) : Y → Z

denotes the function y 7→ f(x, y) with fixed element x ∈ X. Similarly, for a set C ⊂ X × Y
we denote the section of C for fixed x ∈ X by Cx := {y ∈ Y : (x, y) ∈ C}. In general,
generic sets are denoted in the typewriter font, for example A, and 1A denotes the function
that is equal to one for x ∈ A and zero else, while ιA denotes the function that is equal to
zero for x ∈ A and +∞ else.1 For a measure µ on a measurable space X, and a measurable
function f on X, µ[f] denotes the integral of f w.r.t. µ, while, if f ≥ 0, f · µ denotes the
measure given by (f ·µ)[A] =

∫
A f(x) µ(dx), that is, (f ·µ)[X] = µ[f] and (f ·µ)[A] = µ[f ·1A].

Hence, by definition, the measure f ·µ is absolutely continuous w.r.t. µ, written as f ·µ≪ µ,
with f being the corresponding density. Here, the set of all measures on a measurable space
(X,X) will be denoted by M(X) := {µ : X → [0,∞] : µ is a measure}, and the set of
all probability measures that are absolutely continuous w.r.t. µ ∈ M(X) are denoted by
P(µ) := {ν ∈M(X) : ∥ν∥ = ν[X] = 1 and ν ≪ µ}. Here, the Kullback-Leibler divergence
between two measures ν and µ is defined as

DKL(µ ∥ ν) =

{
µ[log(f)] =

∫
X log(f(x)) µ(dx), µ≪ ν with density f ,

+∞, otherwise .

If µ = P is actually the specific probability measure of the underlying probability space(
Ω,F ,P

)
, the corresponding expectation is denoted by E[f] := P[f] =

∫
Ω f(ω) P(dω).

Random variables, that is, measurable functions on
(
Ω,F ,P

)
, are written in Fraktur-font,

for example X. Given two random variables, say X :
(
Ω,F ,P

)
→ X and Y :

(
Ω,F ,P

)
→ Y ,

integration of a function f on X × Y w.r.t. the induced probability measure P(X,Y) is
specified by the subscript (X,Y), that is:

E [f(X,Y)] =

∫
Ω
f (X,Y) (ω) P(dω) =

∫
X×Y

f(x, y) P(X,Y)(dx, dy) = P(X,Y)[f] = E(X,Y) [f] .

If we are given a regular version of the conditional distribution of Y, given X, denoted
by PY|X, their joint distribution P(X,Y) can be disintegrated into the product PX ⊗ PY|X of
the marginal PX and the probability kernel (x,B) 7→ PY|X=x[B], which allows us to use the
notation:

E[f(X,Y)] =

∫
X

∫
Y
f(x, y) PY|X=x(dy) PX(dx) = EX

[
EY|X=x [f(x, ·)]

]
.

Note that, in this case, naively changing the order of integration is not allowed. However,
if X and Y are independent, their joint distribution P(X,Y) is given by the product measure
PX ⊗ PY for which Fubini’s theorem is applicable, and the iterated integration is clarified
by the corresponding subscripts X,Y:

E [f(X,Y)] = (PX ⊗ PY) [f] =

∫
X

∫
Y
f(x, y) PY(dy) PX(dx) = EX [EY [f(x, ·)] |x=X] .

1. We omit the name here, as both 1A and ιA are called “indicator function”. The former in probability
theory, the latter in optimization.

9

Furthermore, we will denote the extended real numbers by R̄ := R ∪ {−∞,+∞}. Since it
holds that B(R̄)|R = B(R), any B(R)-measurable function can be identified with a B(R̄)-
measurable function (Klenke, 2013, p. 38, Corollary 1.87). Finally, our theoretical results
will rely on the notions of probability kernels, Polish spaces, and exponential families, whose
definitions are recalled in Appendix A.

2.1 Main Assumptions and Definitions

We assume that, inside the class of functions that is encoded analytically in the model, we
are given a distribution over loss-functions with a specific structure, which is modelled by
a random variable:

Assumption 2.1 We are given a probability space
(
Ω,F ,P

)
and, for some fixed N ∈ N,

we are given random variables S,S1, ...,SN :
(
Ω,F ,P

)
→ Θ, where Θ is a Polish space.

Further, we are given a non-negative and measurable loss-function ℓ : Rn ×Θ→ [0,+∞].

Remark 2.2 The assumption of a Polish space is not restrictive, yet suffices to ensure
the existence of regular versions of the conditional probability distribution, that is, for the
disintegration of a joint distribution into a marginal and a corresponding probability kernel
(see Kallenberg, 2021, Thm. 8.5).

Then, ideally, we would like to find a solution to each realization of the random objective:

Find x′ : Θ→ Rn, s.t. x′(S) ∈ argmin
x∈Rn

ℓ(x,S) a.s. (1)

However, we will only solve a relaxed version of (1) and provide generalization bounds
for the average performance. Implicitly, we assume that we are given several realizations

ℓ(·, θ1), ..., ℓ(·, θN) with similar structure, as θ1, ..., θN
iid∼ PS. This is close to the “standard”

learning problem, where an algorithm gets trained on a data set and then applied to unseen
data. For this, we need to have a data set:

Definition 2.3 The measurable function D :
(
Ω,F ,P

)
−→ ΘN , ω 7→ (S1, ...,SN) (ω)

is called a data set. Here, ΘN is called the data-space. If the induced distribution PD =
P(S1,...,SN) factorizes into the product of the marginals, that is, if PD =

⊗N
i=1 PSi, it is

called independent and if, additionally, it satisfies PD =
⊗N

i=1 PS, it is called i.i.d.

PAC-Bayesian generalization bounds involve a so-called posterior distribution, which usu-
ally is a “data-dependent distribution”. Often, this term is left unspecified. Yet, as also
pointed out by Rivasplata et al. (2020), this is an instance of a probability kernel (also called
a “stochastic”- or “Markov kernel”). Another commonly used name is “regular conditional
probability”, following the definition of a regular conditional distribution through probabil-
ity kernels (Catoni, 2004; Alquier, 2008). In our opinion, the notion of a probability kernel
is the least ambiguous one, leading to the following definition:

Definition 2.4 Let D be a data set with data-space ΘN , and let X be a measurable space.
A probability kernel from ΘN to X is called a data-dependent distribution on X.

10

For solving problem (1), for every realization θ of S, we apply an optimization algorithm
A to ℓ(·, θ). For this, we consider a similar setting as London (2017), that is, randomized
algorithms are considered as deterministic algorithms with randomized hyperparameters:

Definition 2.5 Let H be a Polish space and n ∈ N. A measurable function

A : H × Rn ×Θ −→ Rn, (α, x(0), θ) 7→ A(α, x(0), θ) ,

is called a parametric algorithm and H is called the hyperparameter space of A. Rn is the
space of the optimization variable, Θ the space of the parameters of the problem instance,
and H the space of the hyperparameters of the algorithm.

Remark 2.6 A corresponds to the whole algorithm, that is, its output is the final iterate
of the optimization procedure, which has to be stopped after some iteration k ∈ N, and could
be contrasted with the notion of an estimator in statistics. However, one can also model a
single update-step, and recover A as k-fold concatenation of this update-step.

Here, learning A refers to finding a distribution Q on H based on its performance on
a data set D. In the PAC-Bayesian approach to learning and generalization, one needs
a reference distribution, which can (and should) encode prior knowledge about suitable
choices of hyperparameters, called the prior :

Assumption 2.7 We are given a parametric optimization algorithm A with Polish hy-
perparameter space H, and a (prior) distribution PH on H that is induced by a random
variable H :

(
Ω,F ,P

)
−→ H, which is independent of the data set D and S. Further, the

initialization x(0) ∈ Rn is given and fixed.

Notation 2.8 We will refer to the random variable S as the parameters of the loss-function
ℓ and to H as the hyperparameters of the algorithm A. Further, to simplify the notation,
we also use the short-hand ℓ(α, θ) := ℓ(A(α, θ), θ). Furthermore, if not needed explicitly,
x(0) and

(
Ω,F ,P

)
will not be mentioned anymore in the following.

Now, we define the risk of a randomized parametric optimization algorithm as usual:

Definition 2.9 Suppose S and ℓ satisfy Assumption 2.1, and A satisfies Assumption 2.7.
Further, let D = (S1, ...,SN) be an i.i.d. data set with distribution

⊗N
i=1 PS that is inde-

pendent of S. The risk of A is defined as the measurable function:

R : H −→ [0,+∞], α 7→ E [ℓ (A(α,S),S)] = E[ℓ(α,S)] = ES[ℓ(α, ·)] .

Similarly, the empirical risk of A on D is defined as the measurable function:

R̂ : H ×ΘN −→ [0,+∞], (α,D) 7→ R̂(α,D) =
1

N

N∑
i=1

ℓ (α,Si) .

The following theory is based on exponential families (see Definition A.4). This is a class
of distributions on some space X, which is mainly build upon three parts: a function η on
some index set Λ, a function T on X, and a distribution µ on X. Since we want to have
a distribution over hyperparameters α ∈ H, we will choose X = H. However, then, the
exponential family (Qλ)λ∈Λ is not data-dependent. Therefore, we will define data-dependent
exponential families by extending the domain of T from X to X ×ΘN .

11

Definition 2.10 Let D be a data set with data-space ΘN , and let Λ be a non-empty index
set. A family of probability measures (Qλ)λ∈Λ on a measurable space X is called an data-
dependent exponential family (in η and T), if there is a dominating probability measure µ,
that is, (Qλ)λ∈Λ ⊂ P(µ), functions η : Λ→ Rk, A : Λ→ (0,+∞), and measurable functions
T : X×ΘN → Rk, h : X → (0,+∞), such that we have Qλ(d) = hA(λ) exp (⟨η(λ), T (·, d)⟩) ·
µ for every λ ∈ Λ, d ∈ ΘN , that is, Qλ(d,B) =

∫
B h(x)A(λ) exp(⟨η(λ), T (x, d)⟩) µ(dx),

B ∈ B(X).

Remark 2.11 If η describes a lower-dimensional manifold in Rk, (Qλ)λ∈Λ is called a
curved exponential family (Efron, 1975), whose properties might differ from the ones for
linear exponential families (η(λ) = λ ∈ Rk), for example, convexity of the map λ 7→ A(λ).

We introduce data-dependency through T , since it strongly affects the shape of the distri-
bution and, contrary to η, is defined on the underlying space X. Since we want to learn a
distribution over hyperparameters α ∈ H, we make the following assumption:

Assumption 2.12 On the hyperparameter space H, we are given a data-dependent expo-
nential family (Qλ)λ∈Λ in η and T with dominating probability measure µ = PH, such that
the map α 7→ h(α) exp(⟨η(λ), T (α, d)⟩) is non-trivial and integrable w.r.t. PH for every
λ ∈ Λ, d ∈ ΘN , that is, EH [h exp(⟨η(λ), T (·, d)⟩)] ∈ (0,∞).

Remark 2.13 (i) In PAC-Bayes, the dominating measure PH is usually referred to as
prior and every distribution Q ∈ P(PH) is referred to as a posterior. This deviates
from the standard definitions of prior and posterior in Bayesian statistics.

(ii) The integrability assumption is slightly restrictive, as it affects the choice of h, η and
T . However, in Section 4 we will construct η and T such that this holds anyway.

The last integral in Assumption 2.12 will be of great interest in the following. Here, we will
use a similar notation as in Barndorff–Nielsen (2014) and denote

c(λ, d) :=

∫
H
h(α) exp(⟨η(λ), T (α, d)⟩) PH(dα) = EH {h exp(⟨η(λ), T (·, d)⟩)} ,

κ(λ, d) := log (c(λ, d)) = log (EH {h exp (⟨η(λ), T (·, d)⟩)}) ,
(2)

or for short, κ = log(c). With this notation, it holds that A(λ) = c(λ)−1. Through this,
as shown in Lemma B.1, every member of the data-dependent exponential family is indeed
a data-dependent distribution on H in the sense of Definition 2.4. Finally, we will restrict
the space Λ to a compact set. This is needed to get a uniform bound in λ, and such ideas
appeared in the literature (see Langford and Caruana, 2001; Catoni, 2007; Alquier, 2021).

Assumption 2.14 Λ is a compact set with finite covering O := {O1, ...,OK}, that is,
Λ ⊂

⋃K
i=1Oi, such that there is a constant CO, which, for every d ∈ ΘN , allows for the

bound maxi=1,...,K supλ,λ′∈Oi
κ(λ, d)− κ(λ′, d) ≤ CO.

Remark 2.15 The existence of a general finite covering for Λ is a consequence of the
compactness. However, the existence of the constant CO is non-trivial. It does hold, for
example, if Λ is a finite set (K = |Λ|, CO = 0), or, if (Λ, ρ) is a compact metric space and
κ is Lipschitz-continuous in λ (uniformly in d) with Lipschitz constant L, such that CO =
L ·maxi=1,...,K diam Oi, where the diameter of a set A is given by diam A = supx,y∈A ρ(x, y).

12

3 General PAC-Bayesian Theorem

In this section we prove the following general PAC-Bayesian bound for data-dependent
exponential families, which then can be specialized into a generalization bound of the learned
parametric optimization algorithm A. It is based on the following two lemmas, whose proofs
can be found in Appendix C and D, respectively. The first lemma is a form of the Donsker–
Varadhan variational formulation and yields uniformity in the distributions Q:

Lemma 3.1 Suppose that Assumption 2.12 holds and define κ as in (2). Then for every
λ ∈ Λ and d ∈ ΘN :

κ(λ, d) = sup
Q∈P(PH)

Q [⟨η(λ), T (·, d)⟩+ log(h)]−DKL(Q ∥ PH) .

Furthermore, for every λ ∈ Λ, the supremum is attained at Qλ(d).

Similarly, the second lemma yields uniformity in λ ∈ Λ. For this, we need to be able to
cover Λ, and to control λ 7→ κ(λ, d) for every d ∈ ΘN , as specified in Assumption 2.14.

Lemma 3.2 Suppose that Assumption 2.14 holds and assume that P{κ(λ,D) > s} ≤
exp(−s) for all s ∈ R and λ ∈ Λ. Then P{supλ∈Λ κ(λ,D) ≤ log(K/ϵ) + CO} ≥ 1− ϵ.

Taken together, these two lemmas allow us to state the PAC-Bayesian theorem in its general
form:

Theorem 3.3 Suppose that Assumptions 2.12 and 2.14 hold, and assume that ED[c(λ, ·)] ≤
1 for all λ ∈ Λ. Then, it holds that:

P
{
∀λ ∈ Λ, ∀Q ∈ P(PH) :

Q [⟨η(λ), T (·, d)⟩+ log(h)] |d=D ≤ DKL(Q ∥ PH) + log

(
K

ε

)
+ CO

}
≥ 1− ε .

Proof For every λ ∈ Λ, c(λ,D) is a non-negative random variable, and x 7→ exp(x) is
monotonically increasing. Thus, Markov’s inequality yields for s ∈ R:

P {c(λ,D) > exp(s)} ≤ E[c(λ,D)]

exp(s)
≤ exp(−s) .

Thus, P {κ(λ,D) > s} ≤ exp(−s), because c(λ,D) > exp(s) is equivalent to κ(λ,D) =
log(c(λ,D)) > s. Hence, Lemma 3.2 is applicable and gives:

P
{
sup
λ∈Λ

κ(λ,D) ≤ log

(
K

ε

)
+ CO

}
≥ 1− ε .

Using Lemma 3.1 gives:

P

{
sup
λ∈Λ

sup
Q∈P(PH)

Q[⟨η(λ), T (·, d)⟩+ log(h)]|d=D −DKL(Q ∥ PH) ≤ log
(K
ε

)
+ CO

}
≥ 1− ε .

Simply rearranging and reformulating yields the result.

13

Remark 3.4 (i) Note that the statement is still true for a data-dependent prior PH: De-
noting the additional data set by D′, one needs to assume that E [c(λ, (D,D′))] ≤ 1.
Also Lemma 3.1 still applies “pointwise” (with the appropriate notational adjust-
ments). Intuitively, this is due to the fact that the PAC-bound is a statement about
relative, and not absolute values.

(ii) In Section 4 we provide sufficient conditions s.t. E[c(λ,D)] ≤ 1 holds for all λ > 0.

(iii) log(K) bears the intrinsic dimension of Λ and thus, in full generality, might be large.
For our generalization bound, however, it has only a minor influence, since there
Λ ⊂ R, and the the empirical risk is typically much larger.

For the rest of the paper, we will have h ≡ 1, such that log(h) ≡ 0. The following corollary,
whose proof is given in Appendix E, shows how to transform Theorem 3.3 into a high-
probability bound on the risk.

Corollary 3.5 (PAC-Bayesian Generalization Bound) Denote the coordinates of T
and η by T = (T (1), T (2), ..., T (k)) =: (T (1), T (r)) and η = (η(1), η(2), ..., η(k)) =: (η(1), η(r)).
If T (1) = R − R̂ and η(1) > 0, the following are equivalent for any λ ∈ Λ, d ∈ ΘN ,
Q ∈ P(PH):

(i) Q [⟨η(λ), T (·, d)⟩] ≤ DKL(Q ∥ PH) + log
(
K
ε

)
+ CO,

(ii) Q[R] ≤ Q[R̂(·, d)] + 1
η(1)(λ)

(
DKL(Q ∥ PH) + log

(
K
ε

)
+ CO −Q

[
⟨η(r)(λ), T (r)(·, d)⟩

])
.

In particular, if Theorem 3.3 applies, we can replace (i) with (ii).

4 Learning-to-Optimize with Guarantees

Here, we consider properties of optimization algorithms, that assert the necessary condition
E[c(λ,D)] ≤ 1 for all λ ∈ Λ to employ the PAC-Bayesian bound from Section 3.

4.1 Guaranteed Convergence

In the next theorem, the additional assumption on A is sufficient to ensure the assumptions
of Theorem 3.3. Essentially, it requires the loss of the algorithm’s output to be bounded.
Yet, as shown in Section 4.2, it is too restrictive to learn hyperparameters that allow for a
significant acceleration compared to the standard choices from a worst-case analysis.

Theorem 4.1 Suppose that S and ℓ satisfy Assumption 2.1, and suppose that A satisfies
Assumption 2.7. Further, assume that there is a constant C ≥ 0 and a measurable function
ρ : H −→ [0,∞), such that for every α ∈ H it holds that ℓ(α, ·) ≤ Cρ(α)ℓ(x(0), ·) PS-a.s.
Furthermore, let D be a corresponding i.i.d. data set of size N ∈ N. Finally, assume that
E
[
ℓ(x(0),S)2

]
<∞, and define η : (0,∞) −→ R2 and T : H ×ΘN −→ R2 through:

η(λ) :=

(
λ, −λ2

2

)
, T (α, d) :=

(
R(α)− R̂(α, d), ρ2(α)C2

N
E
[
ℓ(x(0),S)2

])
.

Then it holds that E[c(λ,D)] ≤ 1 for all λ > 0.

14

Proof Since H and D are independent, their joint distribution is given by the product
measure PD ⊗ PH. Further, exp ≥ 0, such that Fubini’s theorem is applicable and allows to
do the integration iteratively, that is:

E
[
exp

(
λ(R(H)− R̂(H,D))

)]
= E

{
E
[
exp

(
λ(R(α)− R̂(α,D))

)] ∣∣∣
α=H

}
.

Hence, first consider the inner integral for a fixed α ∈ H. Then, by definition and the i.i.d.
assumption one gets:

E
[
exp

(
λ(R(α)− R̂(α,D))

)]
= E

{
exp

(
− λ

N

N∑
i=1

(ℓ(α,Si)− E[ℓ(α,S)])

)}

=
N∏
i=1

ES

{
exp

(
− λ

N
(ℓ(α, ·)− ES[ℓ(α, ·)])

)}
.

The loss-function is non-negative and ,by assumption, A can be bounded PS-a.s. Thus,
for every α ∈ H, ℓ(α,S) is a non-negative random variable with finite second-moment,
as ES[ℓ(α, ·)2] ≤ C2ρ(α)2ES

[
ℓ(x(0), ·)2

]
< ∞. Thus, by Lemma B.2, the boundedness

assumption on A, and the monotonicity of the exponential function, one gets the bound:

ES

{
exp

(
− λ

N
(ℓ(α, ·)− ES[ℓ(α, ·)])

)}
≤ exp

(λ2

2N2
ES[ℓ(α, ·)2]

)
≤ exp

(λ2

2N2
C2ρ(α)2ES[ℓ(x

(0), ·)2]
)
.

Therefore we have the following bound:

E
[
exp

(
λ(R(α)− R̂(α,D))

)]
≤

N∏
i=1

exp
(λ2

2N2
C2ρ(α)2ES

[
ℓ(x(0), ·)2

])
= exp

(λ2

2N
C2ρ(α)2ES

[
ℓ(x(0), ·)2

])
.

This can be rearranged into E
{
exp

(
λ(R(α)− R̂(α,D))− λ2

2
C2

N ρ(α)2ES[ℓ(x
(0), ·)2]

)}
≤ 1,

as the right-hand side does not depend on D. Since H and D are independent, and α ∈ H
was arbitrary, this inequality does hold PH-a.s. Therefore, one directly gets the bound

E
{
exp

(
λ(R(H)− R̂(H,D))− λ2

2
C2

N ρ(H)2ES[ℓ(x
(0), ·)2]

)}
≤ 1. Now, again by Fubini’s

theorem, one can also switch the order of integration to get:

E
{
E
[
exp

(
λ(R(H)− R̂(H, d))− λ2

2

C2

N
ρ(H)2ES[ℓ(x

(0), ·)2]
)] ∣∣∣

d=D

}
≤ 1 .

Inserting the definition of η and T gives E {E [exp (⟨η(λ), T (H, d)⟩)] |d=D} ≤ 1. Here, the
inner term is the same as E [exp (⟨η(λ), T (H, d)⟩)] =

∫
H exp (⟨η(λ), T (α, d))⟩) PH(dα) =

c(λ, d). Hence, this is the same as E[c(λ,D)] ≤ 1.

15

Remark 4.2 The argument still works for a data-dependent prior, if the corresponding
data sets D′ and D are independent: While interchanging the integration w.r.t. D′ and
H is not allowed, an interchange w.r.t. H and D is still valid (under the integral), that
is, for a function f it would hold E [f(H,D,D′)] = ED′

{
EH|D′=d′ [ED [f(α, ·, d′)] |α=H]

}
=

ED′
{
ED

[
EH|D′=d′ [f(·, d, d′)] |d=D

]}
, and the inner term is ≤ 1 in any case. The premise

here is that the boundedness assumption on A holds.

4.2 Conditioning on Convergence

Most of the time, the previous approach learns hyperparameters that ensure convergence,
since the boundedness assumption on A implicitly requires weak theoretical worst-case es-
timates almost surely. If, for example, the considered class of functions (ℓ(·, θ))θ∈Θ is that
of general quadratic functions, the convergence behaviour is accurately represented by ana-
lytic quantities from a worst-case analysis. Thereby, the boundedness prevents “aggressive”
step-size parameters that lie outside the worst-case convergence regime, as they would lead
to a diverging behaviour, which increases the incurred empirical risk dramatically. Thus,
to motivate the upcoming discussion, consider the following thought-experiment:

Example 4.3 Consider ℓ(x, θ) := θ
2x

2 and assume that the chosen algorithm is gradient

descent, that is x(k+1) = x(k) − τℓ′(x(k), θ). For a given θ, the optimal step-size is τ = 1
θ ,

which gives convergence in one step. However, if θ is given by samples from the distribution
PS = 0.99δ1 + 0.01δ100, a worst-case analysis would suggest to take τw = 1

100 . In this case,
we would have an algorithm that converges in a single step for 1% of the problem instances,
while having a linear convergence rate of (99

100)
k for the other 99%. Another choice is to

take τd = 1, which leads to an algorithm that does converge in a single step for 99% of the
problem instances, but diverges in 1% of the cases. By restricting to the 99% of the cases
where convergence does occur, the overall difference in speed is drastic.

Hence, in this section, a different approach is taken: We actually allow for divergence, if it
only occurs in rare cases with a controllable probability, that is, “almost surely” is relaxed
to “with a sufficiently large probability”. Essentially, we only consider the loss for all those
hyperparameters, where the loss is bounded by a certain constant, as well as the probability
for that to occur. Then, in Section 4.2.1, we develop a technique that allows the user to
actually control this probability. Clearly, a stronger guarantee trades for convergence speed.

Definition 4.4 Given a measurable function g : Θ → R, the (parametric) sublevel set
Lg ⊂ H × Θ is defined as Lg = {(α, θ) ∈ H × Θ : ℓ(α, θ) ≤ g(θ)}. The sections of Lg for
fixed α ∈ H will be denoted by Lg,α.

Remark 4.5 The concrete choice of g will influence the PAC-Bayesian bound. Again, for
proving the result, the essential property is that the loss after applying A can be bounded.

In Lemma B.3 we show that Lg is indeed a measurable set. This is not obvious, as the loss
function and the algorithm are composed in a non-standard way. This result further implies
that the sections Lg,α are measurable, too. Since H and Θ are Polish spaces, the product
H×Θ is again Polish. Hence, there exists a regular version of the conditional probability of
S, given H, that is, a kernel H → Θ, (α,B) 7→ PS|H=α[B]. By Witting (2013, Thm. 1.122,

16

p.124), this determines a regular version of the conditional probability of (H,S), given H,
through H → H × Θ, (α,B) 7→ P(H,S)|H=α[B] := PS|H=α[Bα]. Here, for any measurable
function f : H ×Θ→ R for which E[f(H,S)] exists, it holds PH-a.s.:

E {f(H,S) | H = α} =
∫
Θ
f(α, θ) PS|H=α(dθ) . (3)

Thus, we get PH-a.s. the equality P{(H,S) ∈ B | H = α} = PS|H=α[Bα]. In particular, this
applies to the sublevel set Lg, and the map α 7→ PS|H=α[Lg,α] is measurable.

Definition 4.6 Let Lg be a parametric sublevel set. Define the sublevel probability as the
measurable function α 7→ p(α) := PS|H=α[Lg,α].

Lemma 4.7 Suppose Assumption 2.7 holds, and let PS[Lg,α] > 0 for every α ∈ H. Then
we have PH-a.s.:

(i) p(α) = PS[Lg,α],

(ii) E
{
ℓ(H,S) · 1Lg(H,S) | H = α

}
= ES[ℓ(α, ·)1Lg,α] = p(α) · ES[ℓ(α, ·) | Lg,α].

Proof By (3) and the independence of S and H, we have E
{
ℓ(H,S)1Lg(H,S) | H = α

}
=∫

Θ ℓ(α, θ)1Lg,α(θ) PS(dθ) = ES[ℓ(α, ·)1Lg,α] PH-a.s., which shows the first equality of (ii).
Since PS[Lg,α] > 0, the elementary conditional expectation is defined as ES[ℓ(α, ·) | Lg,α] =
ES[ℓ(α,·)1Lg,α]

PS[Lg,α]
. Again by independence we have PH-a.s. the equality PS[Lg,α] = PS|H=α[Lg,α] =

p(α), which shows (i) and the second equality of (ii).

This construction allows us to give a more fine-grained analysis of the algorithm, as it allows
to trade the boundedness assumption for the sublevel probability. This basically extends
a worst-case analysis, which would correspond to an uniform upper bound. Motivated by
Lemma 4.7, to actually analyze the algorithm in this setting, we define the sublevel risk and
its empirical counterpart as the expect loss conditioned on the sublevel set:

Definition 4.8 Let Lg be a parametric sublevel set. Then the sublevel risk Rg : H →
[0,+∞] is defined as the conditional expectation of the loss given Lg,α:

α 7→ Rg(α) := ES [ℓ(α, ·) | Lg,α] =

{
1

p(α)ES[ℓ(α, ·)1Lg,α], if p(α) > 0 ;

0, otherwise .

Given a data set D = (S1, ...,SN), the empirical sublevel risk R̂g : H × ΘN → [0,+∞] is

defined as (α,D) 7→ R̂g(α,D) := 1
p(α)

1
N

∑N
i=1 1Lg,α(Si)ℓ(α,Si).

The following theorem is a direct generalization of Theorem 4.1. Especially, note that the
additional assumption on A is not needed anymore.

Theorem 4.9 Suppose that S and ℓ satisfy Assumption 2.1, and suppose that A satisfies
Assumption 2.7. Further, let D be a corresponding i.i.d. data set of size N ∈ N, and let

17

Lg be a parametric sublevel set with sublevel probability p. Assume that PH{p > 0} = 1 and
ES[g

2] <∞. Define η : (0,∞) −→ R2 and T : H ×ΘN −→ R2 as

η(λ) :=

(
λ, −λ2

2

)
, T (α, d) :=

(
Rg(α)− R̂g(α, d),

1

p(α)2N
ES

[
g21Lg,α

])
.

Then, for all λ > 0, it holds that E[c(λ,D)] ≤ 1.

Proof The proof is very similar to the proof of Theorem 4.1 and basically uses the same
reasoning. Let ℓg(α, θ) := 1Lg,α(θ)ℓ(α, θ). Since H and D are independent, and exp ≥ 0,
one gets from Fubini’s theorem:

E
[
exp(λ(Rg(H)− R̂g(H,D)))

]
= E

{
E
[
exp(λ(Rg(α)− R̂g(α,D)))

] ∣∣∣
α=H

}
.

Thus, first consider a fixed α ∈ H with p(α) > 0. Then, by definition and the i.i.d.
assumption, it holds that:

E
[
exp(λ(Rg(α)− R̂g(α,D)))

]
= E

{
exp

(
− λ

Np(α)

N∑
i=1

(ℓg(α,Si)− ES[ℓg(α, ·)])

)}

=
N∏
i=1

ES

{
exp

(
− λ

Np(α)
(ℓg(α, ·)− ES[ℓg(α, ·)])

)}
.

ℓg(α, ·) is non-negative, and by definition of the parametric sublevel set has a finite second-
moment, that is ES[ℓg(α, ·)2] ≤ ES[g

21Lg,α] < ∞. Hence, by Lemma B.2 we have the

inequality ES

{
exp

(
− λ

Np(α) (ℓg(α, ·)− ES[ℓg(α, ·)])
)}
≤ exp

(
λ2

2N2p(α)2
E
[
ℓg(α, ·)2

])
. Thus:

E
[
exp(λ(Rg(α, ·)− R̂g(α,D)))

]
≤ exp

(
λ2

2Np(α)2
ES

[
g21Lg,α

])
.

This can be rearranged into E
{
exp

(
λ(Rg(α)− R̂g(α,D))− λ2

2Np(α)2
ES

[
g21Lg,α

])}
≤ 1,

since the right-hand side is independent ofD. As this holds for any α with p(α) > 0, which in

turn does hold PH-a.s., we get E
{
exp

(
λ(Rg(H)− R̂g(H,D))− λ2

2Np(H)2
ES

[
g21Lg,α

]
|α=H

)}
≤

1. Changing the order of integration with Fubini’s theorem, we get:

E
{
E
[
exp

(
λ(Rg(H)− R̂g(H, d))−

λ2

2Np(H)2
ES

[
g21Lg,α

]
|α=H

)] ∣∣∣
d=D

}
≤ 1 .

Using the definition of η and T , this is the same as E {E [exp(⟨η(λ), T (H, d)⟩)] |d=D} ≤ 1 . The
inner term can be rewritten as E [exp(⟨η(λ), T (H, d)⟩)] =

∫
H exp(⟨η(λ), T (α, d)⟩) PH(dα) =

c(λ, d). Hence, in total we get E [c(λ,D)] ≤ 1.

Remark 4.10 Since PH{p > 0} = 1, under the prior the algorithm should be able to “reach”
the sublevel set. This is a constraint on the support (see Definition A.5) of PH, which is
not satisfied without further ado. Section 5 provides a construction for achieving this.

18

4.2.1 Implementing the Non-divergence – Speed Trade-Off

In Section 4.2, care has to be taken in the choice of the prior PH: Just minimizing the upper
bound as much as possible can lead to a neglection of a high sublevel probability, that is,
the algorithm is especially fast on a small subset of the parameters, while it diverges for
the rest, because the term 1

p(α) might not compensate for the smaller sublevel risk. Thus,

if a certain sublevel probability εconv ∈ [0, 1] has to be ensured, one has to enforce it. We
propose to use absolute continuity:

Lemma 4.11 Let εconv ∈ [0, 1] and assume that p(H) ≥ εconv a.s. Then, for every Q ∈
P(PH) we have Q{p < εconv} = 0.

Proof Since {p ≥ εconv} = {p < εconv}c, we have PH{p < εconv} = 0. Thus, the result
follows by definition of absolute continuity.

Though the proof is trivial, this lemma has a very important consequence, which we want
to stress: If one can guarantee that a required property is satisfied for the prior, it will be
preserved during the PAC-Bayesian learning process, that is, if the prior only puts mass on
hyperparameters that ensure a certain sublevel probability, the posterior will do the same.
We will enforce this constraint in the learning procedure, which is discussed next.

5 Learning Procedure

This section deals with the learning procedure, that is, how the abstract framework discussed
in Sections 3 and 4 is actually implemented. Hence, this is also the beginning of the second
part of the paper, which is of a more practical kind and less theoretical. The resulting
learning procedure is visualized in Figure 2 and consists of four steps:

(i) Find an initialization that is trainable in a stable way: This is due to the fact that
one might include, for example, a neural network in the update step of A, which, if
initialized randomly, might predict points at the very beginning, that are so far off that
one encounters numerical instabilities. Hence, we first train the algorithm to “follow”
another algorithm A′, just for the purpose of non-divergence.

(ii) Locate the prior by finding a point α(0) ∈ H that satisfies the constraint in Subsec-
tion 4.2 and yields a good performance. For this, we perform a constrained version of
stochastic empirical risk minimization with a new, specifically designed loss function.

(iii) Starting from α(0), construct the prior distribution by running a constrained version
of a sampling algorithm.

(iv) Compute the posterior distribution by finding the optimal λ∗ ∈ Λ and performing the
reweighting with the closed form for Qλ∗ .

Hence, first, in Subsection 5.1 we will identify the optimal posterior Q∗ in the abstract
setting. Second, in Section 5.2, we realize the constraining procedure, which allows to keep
an optimization or sampling procedure inside an abstractly defined set A. Lastly, we put
things together in Section 5.3 and finalize the learning procedure by concretizing each single
step: Section 5.3.1 deals with the pre-computation phase in (i), Section 5.3.2 deals with the

19

α

f(α)

1) Find initialization by imitation.

α

f(α)

supp(PH)

2) Locating the prior.

α

f(α)

3) Construct the prior.

α

f(α)

4) Compute the posterior.

Figure 2: Learning procedure: 1) Imitation learning. 2) Probabilistically constrained
stochastic empirical risk minimization. 3) Construct prior through sampling.
4) Compute posterior by performing the PAC-Bayesian learning step.

initialization in (ii), Section 5.3.3 provides the concrete choice of prior distribution in (iii),
and Section 5.3.4 finally yields the posterior distribution in (iv).

5.1 Minimization of the PAC-Bound

Because learning is phrased as minimizing the PAC-Bayesian upper-bound, this is the first
thing to do. Hence, in this subsection we consider η, T and item (ii) from Corollary 3.5.
We seek for λ ∈ Λ and Q ∈ P(PH) that minimize the upper-bound in Corollary 3.5 (ii),
that is, we want to solve:

inf
λ∈Λ

inf
Q∈P(PH)

Q[R̂(·, d)] +
(
DKL(Q ∥ PH) + log

(
K
ε

)
+ CO −Q

[
⟨η(r)(λ), T (r)(·, d)⟩

])
η(1)(λ)

.

By factoring out − 1
η(1)(λ)

again, this is actually the same as:

inf
λ∈Λ

− 1

η(1)(λ)

(
sup

Q∈P(PH)
Q[⟨η(λ), T̃ (·, d)⟩]−DKL(Q ∥ PH)− log

(
K

ε

)
− CO

)
,

20

C

Y

X
x

Cx

x′

Cx′

PY[Cx]

X

pl

pu

1

0
supp(P̃X)

Figure 3: Construction of P̃X: On the left, the set C ⊂ X × Y and two of its sections
Cx,Cx′ ⊂ Y are visualized. On the right, the function p(x) = PY[Cx], the interval
[pl, pu], and the resulting support supp(P̃X) of P̃X are visualized. Note that,
contrary to the visualization here, p can actually be highly discontinuous.

where T̃ (α, d) :=
(
−R̂(α, d), T (r)(α, d)

)
. Since log(K/ε) + CO is a constant, Lemma 3.1

shows that the term inside the brackets is given by κ̃(λ, d) − log(K/ε) − CO, where κ̃
corresponds to the exponential family (Q̃λ)λ∈Λ built upon T̃ and η (with h ≡ 1). Fur-
thermore, it shows that the (in this sense) optimal posterior distribution Q ∈ P(PH) is
given by the corresponding member of the data-dependent exponential family Q̃λ(d) ∝
exp(⟨η(λ), T̃ (·, d)⟩) · PH, usually called the Gibbs posterior (Alquier, 2021). By denoting
F (λ, d) := − 1

η(1)(λ)
(κ̃(λ, d)− log(K/ε)−CO), one is left with solving the following problem:

inf
λ∈Λ

F (λ, d), (4)

which for Λ ⊂ R is one-dimensional. Based on Theorem 4.1 and Theorem 4.9, we have
to restrict to Λ ⊂ (0,+∞), such that the solution to (4) can be seen as an approximation
to the global minimum infλ>0 F (λ, d). For the latter one, one can show that the solution
set lies in a compact interval [Λmin,Λmax], with Λmin > 0, since F (λ, d) → ∞ as λ → 0 or
λ → ∞. Under our assumptions, F (·, d) is continuously differentiable. Hence, since Λ is
compact, F (·, d) is Lipschitz-continuous on Λ and the minimum in (4) is attained. For a
finite Λ ⊂ [Λmin,Λmax], the optimization reduces to grid search. For Λ = [Λmin,Λmax], we
employ grid search as initialization for gradient-based optimization. However, we still might
get stuck in a (close to optimal) local minimum. The computational bottleneck is given by
evaluating λ 7→ κ̃(λ, d). In Sections 5.3.3 and 5.3.4 we will ensure that this is cheap.

5.2 Sampling under Probabilistic Constraints

In this section, we describe a methodology that allows for sampling from a distribution that
is probabilistically constrained in the following sense: We are given two independent random
variables X :

(
Ω,F ,P

)
→ X, Y :

(
Ω,F ,P

)
→ Y taking values in the Polish spaces X and Y ,

with joint and marginal distributions P(X,Y), PX and PY, respectively. Further, we consider

21

a measurable set C ⊂ X × Y , and we want to generate samples X = x ∈ X, such that the
probability of (X,Y) lying in C, given X = x, takes values in a certain interval:

P(X,Y)|X=x[C] = PY|X=x[Cx] ∈ [pl, pu] ⊂ [0, 1] .

By independence of X and Y, this is PX-almost surely the same as PY[Cx] ∈ [pl, pu], and
we will use the later formulation from now on. While having an abstract description of C,
we do not have any explicit information about its geometrical or topological properties, let
alone access to a distance or a projection onto it, and the marginal PY can only be accessed
via samples Y1, ...,Yn, n ∈ N. However, since we are able to evaluate, for every x ∈ X and
n ∈ N, whether Yn ∈ Cx, this allows to define a function p : X → [0, 1], given by:

P(X,Y)[C] = (PX ⊗ PY)[C] =

∫
X

∫
Y
1C(x, y) PY(dy) PX(dx) =

∫
X
PY[Cx] PX(dx)

=:

∫
X
p(x) PX(dx) .

Then p is indeed a measurable function, taking values in [0, 1]. Thus, for pl, pu ∈ [0, 1] with
pl < pu, we can define a measurable set A :=

{
x ∈ X : PY[Cx] ∈ [pl, pu]

}
, which yields a

new measure P̃X on X by restricting to A, that is, for a measurable set B ⊂ X it holds:

P̃X[B] :=
(
(1[pl,pu] ◦ p) · PX

)
[B] = (1A · PX) [B] = PX[A ∩ B] .

Therefore, as stated before, we have the following goal:

Goal: Sample from P̃X, that is, get X1, ...,XK ∼ PX, such that PY[Cx]|x=Xi ∈ [pl, pu].

This construction is depicted in Figure 3: The left figure visualizes the sections {Cx}x∈X of
the set C, while the right figure shows the corresponding construction of the support of P̃X.
Here, we assume that the imposed constraint is realizable.

Assumption 5.1 The measure P̃X has a non-empty support.

Remark 5.2 Assumption 5.1 includes two things: (i) There have to be points x ∈ X
(hyperparameters) for which the property in C does hold, that is, it has to be realizable. (ii)
The support of PX (prior) has to have a non-empty intersection with this region.

Example 5.3 Consider the random variables S and H from Section 4. By Lemma 4.11
we want to have p(H) ∈ [εconv, 1], where the sublevel probability is given as p(α) = PS[Lα]
(Lemma 4.7), and the sublevel set L ⊂ H × Θ is measurable by Lemma B.3. Thus, this
corresponds to the identification X = H, Y = Θ, and pl = εconv, pu = 1.

5.2.1 Incorporation into a Sampling Procedure

By definition it holds that PX = P̃X on A. Hence, the only distinction between samples from
P̃X and samples from PX is the restriction to the set A. Therefore, since many sampling
algorithms sample from unnormalized measures anyways, it suffices to be able to sample
from PX, if the restriction to A can be satisfied in other ways. Thus, we have to integrate

22

Algorithm 1 Iterative estimation of the probability p

Require: pl, pu, ε ∈ [0, 1].
a, b← 1, 1 ▷ Initialize with uninformative prior.
while Qa,b(pu)−Qa,b(pl) ≥ ε do ▷ Qa,b is the quantile function for Beta(a, b).

Draw I ∼ Ber(p)
a← a+ I and b← b+ (1− I)

end while

this constraint into a sampling procedure for PX. Because we do not have any geometrical
or topological information about the set C, we have to resort to statistical information:
We have access to i.i.d. samples Y1, ...,Yn ∼ PY, and, for a given x ∈ X, we are able to
evaluate the i.i.d. Bernoulli-distributed random variables In := 1{Yn ∈ Cx}, n ∈ N. These
have the parameter P{In = 1} = P{Yn ∈ Cx} = PY[Cx] = p(x). Thus, by estimating p(x)

with an estimator p̂(x), we can approximate the constraint A with Â:

A = {x ∈ X : p(x) ∈ [pl, pu]} ≈ {x ∈ X : p̂(x) ∈ [pl, pu]} =: Â .

Given a sample Xi ∼ PX, we resort to a simple accept-reject mechanism as in Metropolis-
Hastings-type algorithms (Robert and Casella, 2004), to decide whether Xi ∈ A, that is,
whether Xi can actually be regarded as a sample from P̃X.

Remark 5.4 We believe that this is the only reasonable choice here, which keeps an iterative
algorithm inside Â. However, it does not provide a way into Â, let alone A.

We estimate p(x) in a Bayesian way, as it allows us to balance accuracy against computa-
tional complexity through uncertainty-quantification, which we use as a stopping criterion:
We place a Beta-prior Beta(a(0), b(0)) over the interval [0, 1]. As we do not have prior
knowledge, and the map x 7→ p(x) can be discontinuous2, we use a noninformative prior
(Berger, 1985, Ch. 3.3), that is, a0 = b0 = 1. Since the Beta distribution is the conjugate
prior for the Bernoulli distribution (Berger, 1985, p.130), that is, the posterior is again a
Beta-distribution, after observing a sample Ik+1, the parameters a(k), b(k) get updated as:

a(k+1) = a(k) + Ik+1, b(k+1) = b(k) + (1− Ik+1) .

Hence, we can perform the estimation iteratively: We only draw a new sample In+1 as
long as Q(n)(pu) − Q(n)(pl) ≥ ε, where Q(n) denotes the quantile-function of the distribu-
tion Beta(a(n), b(n)), and pu, pl, ε ∈ [0, 1] are parameters that specify the accuracy of the

estimation. Finally, one can use the posterior mean a(n)

a(n)+b(n) or posterior mode a(n)−1
a(n)+b(n)−2

(provided a(n), b(n) > 1) as point estimate p̂x. This procedure is summarized in Algorithm 1
and depicted in Figure 4.

Remark 5.5 By adjusting pl, pu or ε, one can balance between accuracy and computational
complexity. Yet, the number of iterations needed also depends crucially on the true proba-
bility: For p ≈ 0 or p ≈ 1, the uncertainty decreases significantly faster than for p ≈ 0.5.

2. Consider learning the step-size parameter α > 0 for gradient descent on quadratic functions with largest
eigenvalue L: The algorithm converges for α < 2

L
(p(α) = 1) and diverges for α > 2

L
(p(α) = 0) .

23

0.0 0.2 0.4 0.6 0.8 1.0

p

0

5

f
a
,b

(p
)

n = 0

fa,b(p)

p

qu, ql

0.0 0.2 0.4 0.6 0.8 1.0

p

n = 30

fa,b(p)

p

qu, ql

0.0 0.2 0.4 0.6 0.8 1.0

p

n = 60

fa,b(p)

p

qu, ql

Figure 4: Iterative estimation of p(x): The black line shows the density fa(n),b(n) of

Beta(a(n), b(n)) after having observed I1, ...,In. The red dotted line indicates
the true probability p, which we are trying to estimate, and the blue dashed lines
indicate the lower and upper quantiles ql, qu corresponding to pl and pu. The
procedure stops as soon as qu − ql < ε, which is indicated by the double-headed
arrow. Here, we use ql = 0.05, qu = 0.95, ε = 0.15 and p = 0.8.

5.2.2 Broader Context

Different, yet conceptually similar ideas have appeared in the context of cutting the com-
putational cost of Bayesian Markov Chain Monte Carlo algorithms through subsampling:
Korattikara et al. (2014) introduce sequential hypothesis tests to reach the binary accept-
reject decision in the Metropolis-Hastings algorithm on subsamples of the data set. Simi-
larly, Bardenet et al. (2014) estimate the accept-reject step on a random subset of the data,
in a way that guarantees to coincide with the true accept-reject step with a user-specified
probability. Maclaurin and Adams (2014) introduce an auxiliary binary variable zn ∈ {0, 1},
which allows to query only a subset of the data for the computation of the exact likelihood.
And Quiroz et al. (2018) use a subsampling and bias-correction strategy to speed-up the
sampling procedure. Here, Bardenet et al. (2017) provides a summary and discussion of
different approximations and their biases (and errors). We leave the corresponding analysis
for our proposed approximation to future work.

5.2.3 Choice of the Sampling Procedure

Often, the hyperparameters α ∈ H of the learned algorithm A are high-dimensional. Thus,
we resort to using stochastic gradient Langevin dynamics (Welling and Teh, 2011) as the
underlying sampling algorithm, which gets constrained to the set Â by use of the previously
described procedure. This is summarized in Algorithm 2. However, if it fits the application,
other sampling algorithms can be used, too. The computational overhead of the additional
estimation depends on the cost of evaluating 1{Yn ∈ Cx}. In our case it is rather expensive,
as every sample In requires to run the algorithm A. However, this is to be expected, as the
“prediction” of an optimization algorithm corresponds to approximating the solution of a
minimization problem.

Remark 5.6 Algorithm 2 requires to start in the set Â. If such a point is not known, one
can still run the algorithm and just “start” the accept-reject mechanism as soon as one has
found a point x ∈ Â. However, it is not guaranteed that such a point will actually be found.

24

Algorithm 2 Probabilistically constrained sampling

Require: pl, pu ∈ [0, 1], nmax ∈ N, x0 ∈ Â.
n← 0 and x← x0
while n ≤ nmax do

1) Draw a proposal x′ with SGLD starting from x.
2) Estimate p(x′) = PY[Cx′] by p̂(x′) with Algorithm 1.
if p̂(x′) ∈ [pl, pu] then

x← x′

else
Reject x′.

end if
end while

5.3 Putting Things Together

In the abstract learning procedure described in Sections 3 and 4 everything relies on the
existence of a prior distribution PH that a) gives a good performance of the algorithm in
terms of a small risk, and b) ensures the user-specified sublevel probability. Both a) and b)
have to be enforced through the construction of the prior PH, which is why often a data-
dependent prior is used (Parrado-Hernández et al., 2012; Lever et al., 2013; Dziugaite and
Roy, 2017, 2018; Dziugaite et al., 2021). Note that a) and b) are qualitatively different: a)
asks for a certain location and concentration of PH, while b) puts hard constraints on its
support, that is, it excludes many frequently used distributions with unconstrained support.
Therefore, a significant part of the learning procedure deals with the construction of this
prior only. Since the prior will be data-dependent, yet has to be independent of the data
set that is used in the PAC-Bayesian learning procedure in Section 5.3.4, we have to split
the data set D into independent parts Dprior, Dval, Dtrain and Dtest, where Dprior and
Dval are used for the construction of the prior distribution, Dtrain is used for the PAC-
Bayesian learning step, and Dtest is the test set to evaluate the performance, that is, it is
only needed for the experiments. Nevertheless, for notational simplicity, we will use the
generic D, implicitly assuming the above partitioning. As the data set is fixed now, it
will be described by the corresponding realization D = {θ1, ..., θN} of the random variable
D = {S1, ...,SN}.

Remark 5.7 Through the choice of the sampling algorithm, the concrete learning procedure
described here mainly applies to the case H = Rd, d ∈ N. Nevertheless, the general method-
ology is still applicable to other Polish spaces, if this choice can be adjusted accordingly.

5.3.1 Finding a Trainable Initialization

To increase numerical stability, we start with “imitation learning” (Chen et al., 2020a), that
is, the algorithm A should “follow” another algorithm A′, for example, gradient descent.
For this, we minimize the mean squared error between the iterates of the two algorithms:
Given a starting point x(0) ∈ Rn, an iteration number s ∈ N, and a parameter θ ∈ Θ,
denote the first s iterates of A(α, θ, x(0)) by x(1), ..., x(s) ∈ Rn and the ones of A′(x(0), θ) by

25

Algorithm 3 Procedure to find an initialization

Require: Data set Dprior, x
(0) ∈ Rn, s, ninit ∈ N and ε > 0.

m← +∞ and sample θ ∼ UDprior .

while 1
ninit

m > ε do
m← 0
for i = 1, ..., ninit do

1) Compute (x(1), y(1)), ..., (x(s), y(s)) with A(α, θ, x(0)) and A′(θ, x(0)), resp.
2) Compute ℓinit(α, θ, x

(0), s) = 1
s

∑s
k=1 ∥x(k) − y(k)∥22.

3) Update m← m+ ℓinit(α, θ, x
(0), s)

4) Update α by backpropagation and Adam. ▷ Other algorithms possible.
5) Update θ, x(0) and s based on Section 5.3.2.

end for
end while

y(1), ..., y(s) ∈ Rn. Then, define the loss as the mean squared error over these iterations:

ℓinit(α, θ, x
(0), s) :=

1

s

s∑
k=1

∥x(k) − y(k)∥22 .

In each iteration, that is, each prediction of tuples (x(1), y(1)), ..., (x(s), y(s)), the parameters
θ, x(0) and s are randomized as described in Section 5.3.2. We postpone the discussion of this
step, as it is an integral part of the learning step described there, while being less important
here. We terminate the process as soon as the average loss over ninit ∈ N iterations reaches

a certain level of accuracy ε > 0, that is, as soon as 1
ninit

∑ninit
i=1 ℓinit(αi, θi, x

(0)
i , s) < ε. The

choice of ninit and ε depends on the problem at hand. Usually, rough estimates suffice
(ε ≤ 10), as the purpose is to prevent divergence, and not actual imitation of A′. The
procedure is summarized in Algorithm 3.

5.3.2 Locating the Prior

Empirically, the performance of the learned algorithm is significantly improved by the fol-
lowing two design choices, namely randomizing the trajectory length and using the ratio of
successive losses. The motivation is to prevent overfitting and to learn a scale-independent
contraction of the loss:
1) Ratio of Losses: Since the algorithmA(α, ·) should achieve a small riskR(α) = ES[ℓ(α, ·)],
yet minimizing R is intractable, the canonical loss function to be minimized is R̂(α,DN) =
1
N

∑N
i=1 ℓ(α, θi). As H might be high-dimensional, we resort to stochastic empirical risk

minimization, that is, in each iteration the observed loss would be of the form ℓ(α, θi).
While this kind of loss was used extensively before, for learning-to-optimize it has a strong
disadvantage: The overall outcome gets penalized only after the application of the whole
algorithm, that is, after nmax iterations of the update-step. Thus, it does not take the tra-
jectory into account. Further, often it is hard to minimize and does not lead to the desired
performance. To circumvent this, Andrychowicz et al. (2016) proposed to use the sum over
the incurred losses, that is, to consider ℓ̃train(α, θ, x

(0)) :=
∑n

i=1 ℓ(x
(i), θ). Again, this for-

mulation has a decisive flaw: Under most objectives, if the algorithm performs reasonably

26

Algorithm 4 Procedure to locate the prior

Require: Data sets Dprior, Dval, numbers nmax, n, s ∈ N with s ≤ n, initialization x(0) and
thresholds pl, pu ∈ [0, 1] with pl < pu.
...
Set x← x(0) and b← false, and sample θ ∼ UDprior ▷ b = Point inside constraint?
...
for i = 1, ..., nmax do ▷ Other stopping criteria possible.

..
1.a) Compute x(1), ..., x(s) with A(α, θ, x(0)).
1.b) Compute ℓtrain(α, θ, x

(0), s) =
∑s

i=1 1{ℓ(x(i−1),θ)>0}
ℓ(x(i),θ)

ℓ(x(i−1),θ)
.

1.c) Construct a proposal α̃ by using backpropagation and Adam.
..
2) Estimate p(α̃) by p̂(α̃) with Algorithm 1 on Dval.
if p̂(α̃) ∈ [pl, pu] then ▷ If point inside constraint, just update.

α← α̃ and b← true
else ▷ If not...

if b = true then ▷ ...reject moving outside constraint.
Reject α̃, set x(0) ← x, sample θ ∼ UDprior , and continue with 1).

else ▷ ...accept, if constraint has not been found yet.
α← α̃

end if
end if
..
3) Draw r ∼ Ber(sn).
if r = 0 then

x(0) ← x(s)

else r = 1
x(0) ← x and sample θ ∼ UDprior

end if
..

end for

well, the loss at the beginning is several orders of magnitude larger than the loss at the
end, that is, ℓ(x(1), θ)≫ ℓ(x(n), θ). Hence, ℓ̃train mainly penalizes the loss at the beginning,
leading to an algorithm that minimizes the loss very fast in early iterations, but slows down
a lot in later iterations. This is due to ℓ̃train being scale-sensitive. Additionally, the incurred
loss might vary strongly with the initialization x(0) alone, thereby introducing ambiguity
into the incurred losses. We propose to use the ratio of losses of successive iterates:

ℓtrain(α, θ, x
(0), s) :=

s∑
i=1

1{ℓ(x(i−1),θ)>0}
ℓ(x(i), θ)

ℓ(x(i−1), θ)
, s ∈ N, s ≤ n .

This has several advantages: First, the loss is not scale-sensitive anymore, such that it
favours hyperparameters that yield a good performance in each iteration. Second, there is

27

no ambiguity in the observed loss through the initialization, as the only criterion is a strong
contraction of the loss (instead of a small loss). Intuitively, the algorithm A gets trained
to have a fast convergence rate. Third, the incurred losses do not vary too much, which
empirically makes it easier to choose hyperparameters of the learning procedure. However,
it also has a disadvantage: If the function values do indeed converge in a setting where the

optimal loss is strictly greater than zero, this gets fully penalized, as then ℓ(x(i),θ)

ℓ(x(i−1),θ)
≡ 1. For

now, we do not know how to get rid off this problem (apart from just stopping the iterations
in case of convergence) while keeping the advantages, yet we (successfully) combat it with
a decreasing step-size during training.
2) Randomized Trajectory Length: Training A with fixed initialization x(0) and fixed tra-
jectory length n ∈ N, leads to overfitting, that is, applying A at another starting point x̃(0),
or applying it for more than n iterations typically leads to divergence. To get rid off this,
we propose the following randomization: Given N ∋ s ≤ n, set p := s

n and y := x(0).

0) Sample a parameter θ uniformly at random from DN .

1) Compute x(1), ..., x(s) with A(α, θ, y) and the loss ℓtrain(α, θ, y, s), and update α.

2) Sample r(k) ∼ Ber(p). If r(k) = 0, set y := x(s) and go to step 1). If r(k) = 1, set
y := x(0) and go to step 0).

The random variable r(k) decides whether the algorithm gets restarted from x(0) with a new
parameter θ̃, or if one continuous the current trajectory. To update α, we use backpropa-
gation and Adam. The choice p = s

n ensures that the expected trajectory-length equals n:

Define τ := inf{k ∈ N : r(k) = 1}. Then, τ ∼ Geo(p) is a geometrically distributed with
expectation E[τ] = 1

p . Therefore, the actual length L = s · τ of the trajectory is (basically)

a geometrically distributed random variable with E[L] = sE[τ] = s1p = sns = n.

Remark 5.8 (i) Similarly to Andrychowicz et al. (2016), during training we omit the
computation of second order derivatives. Additionally, and surprisingly, it usually
suffices to consider single iterates, that is s = 1, where the iterates are treated inde-
pendently in the computational graph. That amounts to learning an update step that
is agnostic to the recurrent nature of the optimization algorithm and just learns to
adapt to the local geometry of the loss function along the iterations.

(ii) Splitting the trajectory into several parts has been used before, especially in model-
free approaches based on recurrent neural networks (Andrychowicz et al., 2016; Chen
et al., 2017; Metz et al., 2019), where the main motivation are training instabilities
and memory bottlenecks. Similarly, randomizing the trajectory length did appear in
Wichrowska et al. (2017). Yet, to our knowledge, our specific randomization is new,
theoretically motivated, and solves the problem of generalizing to more iterations quite
effectively.

Empirically, by using these design choices we are able to train A in a way such that it
performs equally well on several orders of magnitude of the loss function, and that it can
be used for more iterations than it was actually trained for. The procedure is summarized
in Algorithm 4 and consists of three steps:

28

Algorithm 5 Procedure to construct the prior

Require: Data sets Dprior (sampling) and Dval (constraint), ns ∈ N and α ∈ supp(P̃H).
1) Starting from α, run Algorithm 2 (with ℓtrain, and randomized trajectory length) to
get the points α1, ..., αns ∈ H.
2) Evaluate φprior on {α1, ..., αns} by evaluating R̂g corresponding to Dprior.
3) Compute PH{αj}, that is, PH{αj} = σ (φprior(α1), ..., φprior(αns))j .

1) Given θ, x(0) and s ∈ N, compute a new proposal α̃ by performing one step of Adam
on ℓtrain(α, θ, x

(0), s), corresponding to s iterations of A.

2) Check for the constraint p(α̃) ∈ [pl, pu] by estimating it with Algorithm 1. If the
constraint is satisfied (or one did not find any point inside the constraint so far),
accept α̃. Otherwise, reject it and sample a new problem instance θ̃ ∼ UDN

.

3) If α̃ got accepted, update θ and x(0) by randomizing the length of the trajectory.

5.3.3 Constructing the Prior

Besides the performance and the sublevel guarantees, the only assumption on the prior PH

is its independence of Dtrain. Further, by Lemma 3.1 the functional form of the posterior is
fully specified, namely it is of the form:

Qλ(d) ∝ exp(φλ(·, d)) · PH, λ ∈ Λ , (5)

where the potential is given by φλ(α, d) = ⟨η(λ), T̃ (α, d)⟩. Hence, for mathematical conve-
nience, we will construct PH by approximating the distribution P′ given by

P′ ∝ exp
(
−R̂g,prior − ι[pl,pu] ◦ p

)
· µ ,

where µ denotes another measure on H, which allows to sample from P′ (possibly unnor-
malized). In our experiments it holds H = Rd and we choose µ = λd, where λd is the d-
dimensional Lebesgue measure. For sampling, we use (in principal) the Stochastic Gradient
Langevin Dynamics algorithm. However, for ease of implementation and its practicability,
we use the output of the backpropagation algorithm as proxy for the (sub)gradient, which
is an element of a so-called conservative set-valued field (Bolte and Pauwels, 2021), which
can be shown (under mild assumptions) to be λd-almost everywhere the same as the true
gradient (Bianchi et al., 2022). Since we have to resort to a sampling algorithm to get points
α1, ..., αns ∈ H, ns ∈ N, we define the prior distribution directly as a discrete distribution,
that is PH{α} := 1

Z

∑ns
i=1 aiδαi{α}. Thus, PH is the suitable normalized discrete measure

on H corresponding to α1, ..., αn, where the coefficients and the normalization constant are

given by Z =
∑ns

i=1 ai with ai = exp
(
−R̂g,prior(αi)− ι[pl,pu] (p̂(αi))

)
. When α1, ..., αns ∈ H

are given, the corresponding probabilities can equivalently be expressed with the so-called

softmax function σ(x1, ..., xn)j =
exp(xj)∑ns
i=1 exp(xi)

: Define the potential φprior : H → R as

φprior(α) = −R̂g,prior(α)− ι[p−,p+] (p̂(α)) to get:

PH{αj} =
exp (φprior(αj))∑ns
i=1 exp (φprior(αi))

= σ (φprior(α1), ..., φprior(αns))j .

29

Algorithm 6 Procedure to construct the posterior

Require: Points {α1, ..., αns}, values {φprior(α1), ..., φprior(αns)}, data set Dtrain.
1) Evaluate T̃ (αi, d), i = 1, ..., ns, on Dtrain.
2) Setup {φλ(α1, d), ..., φλ(αns , d)} as functions in λ.
3) Solve λ∗ ∈ argminλ∈Λ F (λ, d). ▷ F (λ∗, d) is the predicted PAC-bound.
4) Compute Qλ∗(d, {αj}) = σ (φλ∗(α1, d), ..., φλ∗(αns , d))j , j = 1, ..., ns.
5) Optional: Choose α∗ = argmaxi=1,...,ns

Qλ∗(d, {αi}) as final point-estimate.

Hence, the prior distribution is given by evaluating the softmax-function, where the poten-
tials φprior have to be computed only once for every αi, i = 1, ..., ns. This is summarized in
Algorithm 5. Note that for sampling α1, ..., αns , the loss function ℓtrain is used again.

Remark 5.9 As one would approximate the intractable integrals with Monte-Carlo esti-
mates anyway, choosing a discrete measure is less restrictive than it seems, and it has the
additional advantage of allowing for exact instead of approximate inference.

5.3.4 Computing the Posterior

Given a discrete prior PH, every posterior Q ∈ P(PH) is also discrete with the same support
{α1, ..., αns}. Then, by the closed-form solution (5) for the supremum, for every λ ∈ Λ the
optimal posterior Qλ(d) is given by:

Qλ(d, {αj}) =
exp

(
⟨η(λ), T̃ (αj , d)⟩+ φprior(αj)

)
∑ns

i=1 exp
(
⟨η(λ), T̃ (αi, d)⟩+ φprior(αj)

) = σ (φλ(α1, d), ..., φλ(αn, d))j ,

with the potential φλ : H × ΘN → R, (α, d) 7→ ⟨η(λ), T̃ (α, d)⟩ + φprior(α). Thus, to get
the distribution Qλ(d) as a function of λ, one has to compute T̃ (αi, d) only once for every
i = 1, ..., ns, such that it can be evaluated with the softmax function. Hence, the only
missing ingredient is the optimal λ∗ ∈ Λ, which is found as described in Section 5.1. After
evaluating the potentials φλ(·, d), which has to be done anyways, evaluating κ̃(·, d) in λ is
cheap. The process is summarized in Algorithm 6.

6 Experiments

We consider the smooth and strongly convex problem of minimizing quadratic functions with
varying strong convexity and smoothness constants, a high-dimensional image processing
problem, the non-smooth Lasso problem, and the non-smooth and non-convex problem of
training a neural network. We use the following training procedure in all experiments:
N = Nprior + Ntrain + Nval + Ntest denotes the total number of datapoints, and we use
Nprior = ... = Ntest = 250. (Sub)Gradients are defined by the output of backpropagation as
it is implemented in PyTorch (Paszke et al., 2019), and we use g(θ) := aℓ(x(0), θ)b, a, b > 0,
to define the sublevel set Lg. In Algorithm 1, we use pl = 0.95, pu = 1.0, ql = 0.01,
qu = 0.99, and ε = 0.075. Thus, the algorithm should reach Lg in at least 95% of the cases,
and for the estimation of the sublevel probability it should concentrate 98% of the mass
within a distance of 0.075. In Algorithm 2, we use stochastic gradient Langevin dynamics to

30

draw 102 samples, where we decay the step-size starting from α = 10−6. In Algorithm 3, we
use Adam with an initial step-size of 10−3, which gets reduced by a factor of 0.5 every 200
iterations, until an accuracy of ε = 10−2 is reached, or for at most ninit = 103 iterations.
In Algorithm 4, we use Adam with an initial step-size of 10−4, which gets reduced by
a factor of 0.5 every 2 · 104 iterations, for a total of nmax = 2 · 105 iterations. We use
a trajectory length of s = 1, that is, only single points, and update the constraint only
every 2 · 104 iterations (with a reset to previous iterates, if we have left the set Â). In
Algorithm 6, we use a finite Λ with |Λ| = 75 · 103, and an accuracy (of the PAC-bound)
of ε = 0.05. As we contrast the learned algorithm to first-order methods, in each iteration
A has access to iterates, (sub)gradients, and function values, and the update is solely
based on these. Here, we perform preprocessing: The (sub)gradient is split into its norm

∥∇ℓ(x(k))∥ and the corresponding unit vector d
(k)
1 . Further, the norm is transformed to

n
(k)
1 := log(1+ ∥∇ℓ(x(k))∥) to be less scale-sensitive. The iterates x(k), x(k−1) are combined

into the momentum term m(k) := x(k) − x(k−1), which also is split into the unit vector

d
(k)
2 and the transformed norm n

(k)
2 . In the evaluation, we will always show the loss over

the iterations in the upper left plot, the performance in terms of computation time in the
upper right plot, the loss histogram with predicted PAC-bound in the lower left plot, and the
final estimate for the sublevel probability, that is, whether the probabilistically constrained
optimization/sampling procedure did work correctly, in the lower right plot. Finally, note
that we always show the performance of a single sample α∗, and not the mean performance.

Remark 6.1 (i) We always use the output of the backpropagation algorithm instead of
exact (sub-)gradients, that is, the learned algorithms do not rely on smoothness.

(ii) We use 100 samples only, as they are very costly: To evaluate the potentials φprior

and φλ(·, d) on a single sample α ∈ H, one has to compute all losses ℓ(α, θi), i =
1, ..., Nprior +Ntrain, that is, “solving” Nprior +Ntrain optimization problems.

6.1 Quadratics

As first problem we consider strongly convex quadratic functions with varying strong con-
vexity, varying smoothness and varying right-hand side, that is, each optimization problem
is of the form:

min
x∈Rn

1

2
∥Ax− b∥2 , A ∈ Rn×n, b ∈ Rn .

Thus, the parameters are given by θ = (A, b) ∈ Rn2+n =: Θ, while the optimization variable
is x ∈ Rn, where we use n = 200.

Construction of the Parameters. To control the strong-convexity and smoothness of

ℓ, we specify intervals [m−,m+], [L−, L+] ⊂ (0,+∞), and sample m1, ...,mN
iid∼ U[m−,m+],

L1, ..., LN
iid∼ U[L−,L+]. Then, the matrices Aj , j = 1, ..., N , are created as diagonal matrices

with entries ajii =
√
mj + i ·

√
Lj−

√
mj

n , i = 1, ..., n, that is, we linearly interpolate from
√
mj to

√
Lj . Hence, the matrix AT

j Aj has smallest and largest eigenvalue mj and Lj ,
respectively. To change the relative position between the ellipsoid of the quadratic and the

31

d
(k)
1

d
(k)
2

d
(k)
1 ⊙ d

(k)
2 C

o
n
v
2
d
(
3
,
1
6
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
6
,
1
6
,
1
,
b
i
a
s
=
F
)

C
o
n
v
2
d
(
1
6
,
1
6
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
6
,
1
6
,
1
,
b
i
a
s
=
F
)

C
o
n
v
2
d
(
1
6
,
1
6
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
6
,
1
,
1
,
b
i
a
s
=
F
)

d(k)

n
(k)
1

n
(k)
2

L
i
n
e
a
r
(
2
,
8
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
8
,
8
,
b
i
a
s
=
F
)

L
i
n
e
a
r
(
8
,
8
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
8
,
8
,
b
i
a
s
=
F
)

L
i
n
e
a
r
(
8
,
8
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
8
,
1
,
b
i
a
s
=
F
)

s(k)

x(k)

x(k+1) := x(k) + s(k) · d(k)

Figure 5: Update step of A for quadratic problems: The directions d
(k)
1 , d

(k)
2 and d

(k)
1 ⊙d

(k)
2

are inserted as different channels into the Conv2d-block, which performs 1 × 1
“convolutions”, that is, the algorithm acts coordinate-wise on the input. The
scales n(1), n(2) get transformed separately by the fully-connected block.

initialization, we randomize the right-hand side by sampling b1, ..., bN
iid∼ N (µ,Σ), where we

create µ and Σ = CTC by sampling µi, Ci,k
iid∼ U[−5,5], i, k = 1, ..., n.

Baseline. Assuming that it is not feasible to compute Lθ andmθ for each problem instance
ℓθ separately, the given class of functions is L+-smooth and m−-strongly convex. Hence,
as baseline we use heavy-ball with friction (HBF) (Polyak, 1964), whose update is given by
x(k+1) = x(k) − τ∇f(x(k)) + β

(
x(k) − x(k−1)

)
, where the optimal worst-case convergence

rate is attained for τ =
(

2√
L++

√
µ−

)2
, β =

(√
L+−√

µ−√
L++

√
µ−

)2
(Nesterov, 2018).

Algorithm. The algorithmic update of the learned algorithm A is visualized in Figure 5

and consists of two blocks: The update-block combines the gradient direction d
(k)
1 , the

momentum direction d
(k)
2 , and their “interaction” d

(k)
1 ⊙ d

(k)
2 into the new update-direction

d(k), while the other block computes a step-size based on the corresponding logarithmically
transformed norms n(1) and n(2). Interestingly, the theoretically redundant concatenation
of two linear layers (1x1 convolutional layers, resp.) does seem to increase training stability.

Results. The upper left plot of Figure 6 shows that the learned algorithm outperforms
HBF by orders of magnitude and, despite being trained for ntrain = 350 iterations, one can
use it for at least 700 iterations in most cases (≥ 90%). However, the mean indicates that
there are single instances for which instabilities occur, and, by comparing it to the median,
one observes that the mean is far from being representative of the “typical” performance.
Further, the algorithm performs well on very different orders of magnitude, ranging from
1e5 to 1e−20. The upper right plot confirms that also in terms of computation time the
learned algorithm is way faster than heavy-ball, and the lower left plot shows that the
predicted PAC-bound is quite tight. Lastly, the lower right plot shows that the algorithm
will not converge in all of the cases, yet satisfies the specified constraints pl and pu.

32

0 100 200 300 400 500 600 700

nit

10−20

10−14

10−8

10−2

104

`(
x

(i
)
)

Loss over Iterations

HBF

Learned

ntrain

0 50 100 150 200 250

nproblem

0

50

100

150

200

t
[s

]

Cumulative Time

1.00E-02

1.00E-04

1.00E-06

10−17 10−13 10−9 10−5 10−1 103

`(x(nmax))

0

10

20

30

Loss Histogram

PAC-Bound

Learned

HBF

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p

Sublevel Prob.

pl, pu

p(α) = 97.2 %

F (pu)− F (pl) = 0.9333

Figure 6: Upper left: The dashed lines represent the mean losses, while the dotted lines
represent the median losses over the iterations x(i), i = 0, ..., 700. The shaded
regions represent the 10th to 90th percentile (80 % of the test data). The learned
algorithm A is shown in blue, while HBF is shown in red. Upper right: The
different lines indicate the cumulative computation time the two algorithms need
to solve all the test problems up to a certain accuracy (in function values) mea-
sured by ℓ(x(i), θ) < ε. However, note that, since the learned algorithm is not
guaranteed to stop by itself, both algorithms are run for maximally nmax = 1e4
iterations. Lower left: Loss histogram after ntrain = 350 iterations with pre-
dicted PAC-bound. Lower right: Estimated sublevel probability. The orange
dashed line shows the point estimate, while the orange solid line shows the Beta-
posterior arising from a non-informative prior. The gray dotted lines indicate the
constraints pl, pu and show the feasible region as green line.

6.2 Image Processing

We consider (gray-scale) image denoising/deblurring with a regularizer given as smooth
approximation to the L1-norm of the image derivative, that is, problems of the form:

min
x∈Rn

1

2
∥Ax−b∥2+λ

n∑
i,j=1

√
(Dhx)

2
i,j + (Dwx)2i,j + ε2 λ ∈ R, A,Dh, Dw ∈ Rn×n, b ∈ Rn .

The matrix A describes the “blurring” of the image, while Dh and Dw are the discrete image
derivatives in h- and w-direction, respectively, which are used to penalize local changes in

33

d
(k)
1

d
(k)
2

d
(k)
1 ⊙ d

(k)
2 C

o
n
v
2
d
(
3
,
1
6
,
3
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
6
,
1
6
,
3
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
6
,
1
,
3
,
b
i
a
s
=
F
)

d(k)

n
(k)
1

n
(k)
2

L
i
n
e
a
r
(
2
,
8
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
8
,
8
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
8
,
1
,
b
i
a
s
=
F
)

s(k)

x(k)

x(k+1) := x(k) + s(k) · d(k)

Figure 7: Update step of A for the image-processing problems: The directions d
(k)
1 , d

(k)
2

and d
(k)
1 ⊙ d

(k)
2 are inserted as different channels (in the shape of the image) into

the Conv2d-block, which performs a 3 × 3-convolution. The scales n(1), n(2) get
transformed separately by the fully-connected block.

the image. We use images of height Nh = 250 and width Nw = int(0.75 ·Nh) = 187. Thus,
the dimension n of the optimization space is given by n = 46750. Further, as parameters θ
we use the observed image and the regularization parameter, that is, θ = (b, λ) ∈ Rn+1 =: Θ.

Construction of the Parameters. Throughout, we use ε = 0.01. For computational
efficiency, the matrices A,Dh, Dw are implemented through the convolution of the image x
with a corresponding kernel (with reflective boundary conditions). For A, we use a standard
(5× 5)-Gaussian kernel, while Dh and Dw are given through the kernels:

kh =

0 0 0
0 −1 0
0 1 0

 ∈ R3×3 and kw =

0 0 0
0 −1 1
0 0 0

 ∈ R3×3 .

Additionally, after blurring an image with A, we add centered Gaussian noise εi,j with

standard deviation σ = 25
256 to each pixel, that is, bi,j = (Ax∗)i,j + εi,j with εi,j

iid∼ N (0, σ),
i = 1, ..., Nh, j = 1, ..., Nw. The regularization parameters λi ∈ R, i = 1, ..., N , are given by

sampling uniformly, that is, λi
iid∼ U[λ−,λ+], where we use λ− = 0.05 and λ+ = 0.5.

Baseline. Since the problem is smooth and convex, yet not strongly convex, the baseline
algorithm is given by the accelerated gradient descent algorithm due to Nesterov (1983). Its
update is given by first computing y(k+1) = x(k) + tk−1

tk+1
(x(k) − x(k−1)) followed by setting

x(k+1) = y(k) − τ∇f(y(k+1)). We use the optimal choices tk+1 = 1
2

(
1 +

√
1 + 4t2k

)
and

τ = 1
L . Here, the smoothness constant L is given by the largest eigenvalue of ATA+ λ

εD
TD,

where D ∈ R2n×n is given by “stacking” Dh and Dw, that is, D =
(
Dh Dw

)T
.

Algorithm. The algorithmic update of A is visualized in Figure 7 and consists of an

update-block, which combines d
(k)
1 , d

(k)
2 and their “interaction” d

(k)
1 ⊙ d

(k)
2 into the new

34

0 10 20 30 40 50

nit

103

104

`(
x

(i
)
)

Loss over Iterations

NAG

Learned

`(x
(1000)
std)

ntrain

0 50 100 150 200 250

nproblem

0

100

200

300

400

t
[s

]

Cumulative Time

1.00E+01

5.00E+00

1.00E+00

103

`(x(nmax))

0

10

20

30

40

Loss Histogram

PAC-Bound

Learned

NAG

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p

Sublevel Prob.

pl, pu

p(α) = 100.0 %

F (pu)− F (pl) = 1.0000

Figure 8: Upper left: Dashed lines represent mean losses, while dotted lines show median
losses over the iterations x(i), i = 0, ..., 50. The shaded regions represent the 10th
to 90th percentile (80 % of the test data). The learned algorithm A is shown
in blue, while NAG is shown in red. Upper right: The different lines show
the cumulative computation time the two algorithms need to solve all the test
problems up to a certain accuracy (in function values) measured by ℓ(x(i), θ) −
ℓ(x

(1000)
std , θ) < ε. However, note that both algorithms are run for maximally

nmax = 1000 iterations. Lower left: Loss histogram after ntrain = 50 iterations
with predicted PAC-bound. Lower right: Estimated sublevel probability: The
orange dashed line shows the point estimate, while the orange solid line shows
the Beta-posterior arising from a non-informative prior. The gray dotted lines
indicate to the constraints pl, pu and show the feasible region as green line.

update direction d(k), and a block to compute a step-size from the norms of the gradient and
momentum term. Note that we use 3×3-convolutions this time, that is, we incorporate the
knowledge about an image-processing problem into the design of the optimization algorithm.

Results. The results of this experiment are summarized in Figure 8. The upper left plot
shows that the learned algorithm is much faster than NAG in terms of the loss over the
iterations, reaching a loss close to the ground-truth after only 5 iterations. The upper right
plot confirms this finding also in terms of computation time. Yet, one can observe a strong
increase in computation time for the dotted line (loss per pixel of about 1

46750), indicating
that the learned algorithm often is not able to reach this accuracy. In the lower left plot, one

35

d
(k)
1

d
(k)
2

d
(k)
1 ⊙ d

(k)
2

d
(k)
3

C
o
n
v
2
d
(
4
,
6
4
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
6
4
,
6
4
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
6
4
,
6
4
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
6
4
,
1
,
1
,
b
i
a
s
=
F
)

d(k)

n
(k)
1

n
(k)
2

n
(k)
3

L
i
n
e
a
r
(
3
,
6
4
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
6
4
,
6
4
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
6
4
,
6
4
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
6
4
,
1
,
b
i
a
s
=
F
)

s(k)

x̃(k+1)

x(k)

C
o
n
v
2
d
(
3
,
6
4
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
6
4
,
6
4
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
6
4
,
6
4
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
6
4
,
1
,
1
,
b
i
a
s
=
F
)

S
i
g
m
o
i
d

z

τ

proxτ (z ⊙ x̃(k+1))

Figure 9: Algorithmic update for the Lasso-problem: Additionally to the directions d
(k)
1 ,

d
(k)
2 and d

(k)
1 ⊙ d

(k)
2 , we add the subgradient ∂∥x(k)∥1 as input d

(k)
3 . Hence, also

the lower block, which computes the step-size s(k), gets an additional input n
(k)
3 ,

namely the (transformed) norm of the subgradient. Then, d(k) and s(k) get used
to compute a new point x̃(k+1) := x(k)+s(k) ·d(k), which, together with the current
point x(k) and the subgradient, gets fed into the “sparsity-block”, which computes
a vector in [0, 1]d that is used to decrease the coordinates of x̃(k+1). Finally, we
apply the proximal-map with learned parameter τ to get the next iterate.

can observe that the predicted PAC-bound is not perfectly tight, yet provides the guarantee
to outperform NAG. Finally, the lower right plot shows that the probabilistically constraint
optimization/sampling procedure did work correctly, as the point estimate is equal to one,
that is, the algorithm did reach the sublevel set in 100% of the test cases.

6.3 Lasso-Problem

Here we consider the Lasso problem (Tibshirani, 1996), that is, a non-smooth problem of
the form:

min
x∈Rn

1

2
∥Ax− b∥22 + λ∥x∥1 A ∈ Rp×n, b ∈ Rp ,

with p ≤ n. Thus, we are solving an overdetermined system of linear equations with an
additional ℓ1-regularization term, which promotes sparsity in the solution (see Hastie et al.,
2009). Hence, the optimization variable is given by x ∈ Rn.

Construction of the Parameters. The same matrix A ∈ Rp×n with dimensions n = 350
and p = 70 is used for all problem instances. Here, we sample each entry uniformly, that

36

is, ai,j
iid∼ U[−10,10], i = 1, ..., p, j = 1, ..., n. Thus, the parameters θ are given by the right-

hand side and the regularization parameter, that is, θ = (b, λ) ∈ Rp+1 =: Θ. For this, the

regularization parameter λ is also sampled uniformly, that is, λi
iid∼ U[λ−,λ+], i = 1, ..., N ,

with λ− = 0.01 and λ+ = 0.5, while the right-hand side is sampled from a multivariate

normal distribution, that is, bi
iid∼ N (µ,Σ), i = 1, ..., N , where we first construct µ and

Σ = CTC by sampling each entry of µ and C uniformly at random in [−5, 5].

Baseline. We use the FISTA algorithm (Beck and Teboulle, 2009) as baseline, which
performs an extrapolation step followed by a proximal gradient step, that is, abbreviating
h(x) := 1

2∥Ax − b∥2 and g(x) := λ∥x∥1, the update is given by first computing y(k) =

x(k) + β(k)
(
x(k) − x(k−1)

)
followed by setting x(k+1) = proxτg

(
y(k) − τ∇h(y(k))

)
. Here, the

proximal mapping is defined as x̂ = proxτg(x̄) = argminx∈Rn λ∥x∥1 + 1
2τ ∥x− x̄∥22, and can

be computed efficiently in closed-form yielding the so-called soft-thresholding operator :

x̂i =

{
x̄i − τλ x̄i

|x̄i| , |x̄i| > τλ ;

0 , otherwise ,
, i = 1, ..., n .

We choose τ = 1/L, where L is the largest eigenvalue of ATA, that is, the smoothness

parameter of h, while β(k) is set to β(k) := (tk − 1)/tk+1 with tk+1 = (1 +
√

1 + 4t2k)/2.

Algorithm. The algorithmic update of the learned algorithm A for this experiment is
visualized in Figure 9 and consists of three blocks: First, an update-block, which combines

the directions d
(k)
1 , d

(k)
2 , their interaction d

(k)
1 ⊙d

(k)
2 , and the direction d

(k)
3 (of the L1-norm)

into an update direction d(k). Second, a block to compute a step-size s(k) based on the
norms of the gradient, subgradient and momentum term. And a final block, which is able
to scale the single coordinates of a given point down, and, together with the proximal map,
is used to promote sparsity in the solution. However, by appropriate scaling afterwards we
ensure that the proximal map does not change the norm of the given point, to avoid that
the network reduces the loss by just putting coordinates to zero.

Results. The results of this experiment are summarized in Figure 10. The upper left
plot shows that the learned algorithm outperforms FISTA by several orders of magnitude,

achieving a loss that is slightly smaller than the one of x
(5000)
std after only 200 iterations,

and one can observe that the learned algorithm can be used for more iterations than it was
trained for. The upper right plot confirms that it is also way faster in terms of computation
time. Yet, the increase in computation time for the dotted line indicates an increased
difficulty to reach the level of accuracy, that is, A might not reach arbitrary levels of
accuracy. The lower left plot shows that the predicted PAC-bound is not perfectly tight
here, yet guarantees that A will outperform FISTA on average. And the lower right plot
indicates that the probabilistically constrained optimization/sampling procedure did work
as intended, since the algorithm did reach the sublevel set in all of the test cases.

6.4 Training Neural Networks

This experiment considers the problem of training a neural network on a regression problem,
that is, A is trained to predict the parameters β ∈ Rp of a neural network Nβ, which then is
used to predict a function g : R→ R. Hence, the optimization variable is given by β ∈ Rp.

37

0 100 200 300 400 500 600 700

nit

102

103

104

105

`(
x

(i
)
)

Loss over Iterations

FISTA

Learned

`(x
(5000)
std)

ntrain

0 50 100 150 200 250

nproblem

0

100

200

300

t
[s

]

Cumulative Time

1.00E+01

5.00E+00

1.00E+00

102 103 104

`(x(nmax))

0

25

50

75

100

125

Loss Histogram

PAC-Bound

Learned

FISTA

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p

Sublevel Prob.

pl, pu

p(α) = 99.6 %

F (pu)− F (pl) = 1.0000

Figure 10: Upper left: Dashed lines represent the mean losses, while dotted lines repre-
sent the median losses over the iterations x(i), i = 0, ..., 700. The shaded region
represents the 10th to 90th percentile (80 % of the test data). The green hor-
izontal lines represent the loss achieved by FISTA after 5000 iterations, which
serves as approximation for the solution, while the vertical dash-dotted line
indicates the number of iterations the algorithm was trained for. FISTA is
shown in red and the learned algorithm in blue. Upper right: The different
lines show the cumulative computation time the two algorithms need to solve
all the test problems up to a certain accuracy (in function-values) measured by

ℓ(x(i), θ)−ℓ(x(5000)std , θ) < ε. However, note that both algorithms are run for max-
imally nmax = 5000 iterations. Lower left: Loss histogram (after ntrain = 350
iterations) with the predicted PAC-bound. Lower right: Estimated sublevel
probability: The orange dashed line shows the point estimate, while the orange
solid line shows the Beta-posterior arising from a non-informative prior. The
gray dotted lines indicate the constraints pl, pu and show the feasible region as
green line.

Construction of the Parameters. We assume that the neural network should learn a
function g : R→ R from noisy observations yj , that is yj = g(xj) + ε with ε ∼ N (0, 1). For
this, we construct polynomials gi, i = 1, ..., N , of degree d = 5 as follows: For every function

gi, we sample points {xi,j}Kj=1 (here: K = 50) uniformly in [−2, 2], that is, xi,j
iid∼ U[−2, 2],

i = 1, ..., N , j = 1, ...,K. Then, we sample the coefficients (ci,0, ..., ci,5) of gi uniformly in

38

n
(k)
1

n
(k)
2

ℓ(k)

ℓ(k−1)

s(k)

L
i
n
e
a
r
(
5
,
8
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
8
,
8
,
b
i
a
s
=
F
)

R
e
L
U

L
i
n
e
a
r
(
8
,
4
,
b
i
a
s
=
F
)

s1

s2

s3

s4

g

m

s1 · g ⊙ d
(k)
1

s2 · d(k)
1

s3 · d(k)
2

s4 · m ⊙ d
(k)
2

x(k)

x(k−1)

C
o
n
v
2
d
(
6
,
1
6
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
6
,
1
6
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
6
,
1
6
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
6
,
1
6
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
6
,
1
6
,
1
,
b
i
a
s
=
F
)

R
e
L
U

C
o
n
v
2
d
(
1
6
,
1
,
1
,
b
i
a
s
=
F
)

d(k) x(k+1)

Figure 11: Algorithmic update for training the neural network: Based on the two norms

n
(k)
1 and n

(k)
2 , the scalar product s(k) := ⟨d(k)1 , d

(k)
2 ⟩, and the current and previous

(logarithmically scaled) loss ℓ(k), ℓ(k−1), we compute four scalars s1, ..., s4, which

are used for weighting d
(k)
1 , d

(k)
2 , and their corresponding pre-conditioned versions

g ⊙ d
(k)
1 and m ⊙ d

(k)
2 . Together with the current and previous point, they get

fed (as separate channels) into the first layer of a 1x1-convolutional block, which
computes an update direction d(k). Then, we update x(k+1) := x(k) + d(k).

[−5, 5], that is, ci,l
iid∼ U[−5, 5], i = 1, ..., N , l = 0, ..., 5. Lastly, we get the values yi,j as:

yi,j = gi(xi,j) + εi,j with εi,j
iid∼ N (0, 1), i = 1, ..., N, j = 1, ..., 50 .

For every function gi : R → R the neural network is trained on the data set θi := {Xi, Yi}
with Xi = (xi,1, ..., xi,K) ∈ RK and Yi = (yi,1, ..., yi,K) ∈ RK . Hence, the data set will serve
as the parameter θ of the loss function ℓ : Rp×Θ→ R≥0, such that the parameter space Θ
can be identified as the space of these data sets, that is, Θ = RK×2.

Loss Function. Since the mean square error is the standard choice for training models on
regression tasks, the loss is given by ℓ(β, θi) := c(N(β,Xi), Yi) :=

1
K

∑K
j=1(Nβ(xi,j)− yi,j)

2.

Architecture. As model we use a fully-connected two layer neural network with ReLU-
activation functions. To have more features in the input layer, the input x is transformed
into the vector (x, x2, ..., x5). Hence, the parameters β ∈ Rp are given by the weights
A1 ∈ R50×5, A2 ∈ R1×50 and biases b1 ∈ R50, b2 ∈ R of the two fully-connected layers.
Therefore, the optimization space is of dimension p = (5 · 50) + (1 · 50) + 50 + 1 = 351.

Baseline. As baseline we use Adam (Kingma and Ba, 2015) (as it is implemented in
PyTorch), which is a widely used optimization algorithms for training neural networks. For
tuning, we perform a grid search over 100 step-size parameters, such that its performance
is best for the given n iterations. Note that originally Adam was introduced for stochastic
optimization, while we use it in the “full-batch setting” here, that is, without stochasticity.

39

0 25 50 75 100 125 150 175 200

nit

100

101

102

103

`(
x

(i
)
)

Loss over Iterations

Adam

Learned

c(g(x), yobs)

ntrain

0 50 100 150 200 250

nproblem

0

25

50

75

100

125

t
[s

]

Cumulative Time

1.00E+00

1.00E-01

1.00E-02

100 101

`(x(nmax))

0

10

20

30

Loss Histogram

PAC-Bound

Learned

Adam

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p

Sublevel Prob.

pl, pu

p(α) = 100.0 %

F (pu)− F (pl) = 1.0000

Figure 12: Upper left: Dashed lines represent the mean losses, while dotted lines represent
the median losses over the iterations β(i), i = 0, ..., 200. The shaded regions
indicate the 10th to 90th percentile of the losses (80 % of the test data). The
vertical, dashdotted line shows the number of iterations A was trained for, and
the horizontal, green, dashed line represents the average loss of the ground-truth
function g (equal to one, as we added standard Gaussian noise). Upper right:
The different lines show the cumulative computation time of the two algorithms
to solve all the test problems up to a certain accuracy (in function values)
measured by ℓ(β(i), θ) − c(Xi, Yi) < ε. However, note that both algorithms
are run for maximally nmax = 5000 iterations. Lower left: Loss histogram
(after ntrain iterations) and PAC-bound. Lower right: Estimated sublevel
probability: The orange dashed line shows the point estimate, while the orange
solid line shows the Beta-posterior arising from a non-informative prior. Here,
the gray dotted lines indicate the constraints pl, pu and show the feasible region
as green line.

Algorithm. The algorithmic update in Figure 11 consists of two blocks: A weighting

block, which computes four weights s1, ..., s4 based on the norms n
(k)
1 , n

(k)
2 , the losses

ℓ(x(k), θ), ℓ(x(k−1), θ), and the scalar product ⟨d(k)1 , d
(k)
2 ⟩. Each of these gets multiplied with

d
(k)
1 , d

(k)
2 , or the “pre-conditioned” versions, which we compute by pointwise multiplication

with the learned vectors g and m. Then, additionally to the x(k) and x(k−1), these weighted
directions get fed into an update-block, which computes the final update direction d(k).

40

Results. The upper left plot of Figure 12 shows that the learned algorithm clearly out-
performs Adam, reaching the ground-truth loss after about 25 iterations, while Adam is
not able to reach it within 200 iterations. Further, while the algorithm was trained for 100
iterations, it can be applied for more. The upper right plot confirms that also in terms of
computation time A is way faster in training the neural network than Adam, and, as the
learned algorithm goes below the ground-truth loss at around 25 iterations, all three levels
of accuracy are reached similarly fast. The lower left plot shows that the predicted PAC-
bound is not perfectly tight, yet yields a reasonable bound on the average performance,
and guarantees to perform at least as good as Adam (on average). The lower right plot
indicates that the probabilistically constrained optimization/sampling procedure did work
correctly, as the algorithm did reach the sublevel set in all test cases.

7 Discussion and Limitations

The motivation for this paper was to use more structure in a given problem than is analyt-
ically tractable. For this, we considered a distribution over parametric loss functions and
formulated the (ultimate) goal in (1), that is, to find a solution to each realization from this
distribution. Under reasonable assumptions, this problem is too general to be solved. This
led to the formulation of the performance of an algorithm in terms of its risk. However,
since this is intractable, we derived PAC-Bayesian generalization bounds relating the risk
to the empirically observable performance on a data set. This resulted in the formulation of
a training objective, which relies heavily on the existence of a prior distribution satisfying
our assumptions and yielding a good performance. As such a distribution is typically not
known, we derived a procedure to construct it. This involved several key choices, including
the loss-function, specific randomization steps, and, especially, the probabilistic constraints.
Finally, we validated the resulting learning procedure on four practically relevant problems
and showed that it yields a superior performance. While these experimental results are
promising, we nevertheless see four main limitations of our work. First, the only guarantee
that is provided by the PAC-Bayesian bound is an upper bound on the function value after a
specified number of iterations. In particular, it does not guarantee that the function values,
the iterates, or the gradient norm actually do converge. Second, our learning procedure
is not guaranteed to work and still involves many design choices. Third, one still has to
find a good architecture for each given problem, which can be time-consuming. Fourth,
the presented algorithmic procedure is quite elaborate, and its implementation is tedious.
Additionally, the training procedure (offline) has a high computational cost, which, at least
in part, however, is due to the nature of learning-to-optimize. All these are promising
directions of research that we leave to a future work.

Acknowledgments and Disclosure of Funding

M. Sucker and P. Ochs acknowledge funding by the German Research Foundation under
Germany’s Excellence Strategy – EXC number 2064/1 – 390727645. Furthermore, J. Fadili
and P. Ochs are supported by the ANR-DFG joint project TRINOM-DS under the numbers
ANR-20-CE92-0037-01 and OC150/5-1.

41

Appendix A. Supplementary Definitions

Definition A.1 (Probability Kernel) Let (X,X), (Y,Y) be measurable spaces. A func-
tion µ : X × Y → [0,∞], (x,A) 7→ µ(x,A) is called a kernel from X to Y , written as
µ : X → Y , if for every set A ∈ Y, the map x 7→ µ(x,A) is measurable, and for every point
x ∈ X, the map A 7→ µ(x,A) is a measure. Furthermore, µ is called a probability kernel
from X to Y , if µ(x, Y) = 1 for every x ∈ X.

Definition A.2 (Polish space) A topological space is said to be Polish if it is separable
and admits a complete metrization.

Remark A.3 Examples of Polish spaces are countable discrete spaces, Rn with the standard
topology, separable Banach spaces with the norm toplogy, or countable products of Polish
spaces.

Definition A.4 (Exponential Family) Let Λ be a non-empty index set. A family of
probability measures (Qλ)λ∈Λ on a measurable space X is called an exponential family
(in η and T), if there is a dominating probability measure µ, that is, (Qλ)λ∈Λ ⊂ P(µ),
functions η : Λ → Rk, A : Λ → (0,+∞), and measurable functions T : X → Rk, h :
X → (0,+∞), such that for every λ ∈ Λ we have Qλ = hA(λ) exp (⟨η(λ), T ⟩) · µ, that is,
Qλ[B] =

∫
B h(x)A(λ) exp(⟨η(λ), T (x)⟩) µ(dx), B ∈ B(X).

Definition A.5 (Support of a Measure) Let S be a topological space, and let µ be a
measure on S. The support of µ is defined as:

supp (µ) := {s ∈ S : µ[B] > 0 for every neighborhood B of s} .

Remark A.6 The support of a measure is closed, that is, Borel measurable, and satisfies
µ (supp (µ)c) = 0.

Appendix B. Supplementary Lemmas

Lemma B.1 Under Assumption 2.12, Qλ is a data-dependent distribution for every λ ∈ Λ.

Proof Denote the density of Qλ w.r.t. PH by fλ(α, d) :=
h(α)
c(λ,d) exp (⟨η(λ), T (α, d)⟩). The

map c(λ, ·) : ΘN → [0,∞) is B(ΘN) measurable, as T is measurable w.r.t. the product-
σ-algebra and PH is a finite measure (Kallenberg, 2021, Lemma 1.28, p.25). Hence, fλ is
measurable w.r.t. B(H)⊗B(ΘN), since c(λ, d) ∈ (0,∞). Thus, it holds that Qλ = fλ ·PH is
a kernel from from ΘN to H (Kallenberg, 2021, Lem. 3.2, p.56). Finally, Qλ : ΘN → H is
actually a probability kernel, since c(λ, d) is the corresponding normalization constant.

Since the loss-function is neither assumed to be bounded nor to satisfy any self-bounding
or bounded-difference property, the following result is needed. It states that non-negative
random variables with finite second moment satisfy a one-sided sub-Gaussian inequality. It
can be found as Exercise 2.9 on page 47 in Boucheron et al. (2013).

42

Lemma B.2 Let X be a non-negative random variable with finite second moment. Then,

for every λ > 0 it holds E [exp (−λ(X− E[X]))] ≤ exp
(
λ2

2 E[X2]
)
.

Lemma B.3 The sublevel set Lg is measurable.

Proof As g is assumed to be measurable, it suffices to show that the specific composition of
ℓ and A is measurable, that is, ℓ◦A : H×Θ→ [0,+∞], (α, θ) 7→ ℓ(A(α, θ), θ) is measurable
w.r.t. B(H) ⊗ B(Θ) and B([0,+∞]). Since ℓ ≥ 0 is measurable, there exists a sequence of
simple3 functions ℓn with ℓ = limn→∞ ℓn. Thus, since limits of measurable functions are
measurable, it suffices to consider the case of a simple function ℓ : Rn×Θ→ R. Then, how-
ever, since addition and multiplication are measurable, it suffices to consider characteristic
functions of the form 1A for a measurable set A ∈ B(Rn)⊗B(Θ). Since the product-σ-algebra
is generated by cylinder sets of the form B×D with B ∈ B(Rn), D ∈ B(Θ), it actually suffices
to consider the case ℓ = 1B×D, that is, (ℓ◦A)(α, θ) = 1B×D(A(α, θ), θ) = 1B(A(α, θ))1D(θ).
The second term is obviously measurable, and the first term is measurable as a (standard)
composition of two measurable functions. Therefore, the conclusion follows.

Appendix C. Proof of Lemma 3.1

Proof Take any λ ∈ Λ and d ∈ ΘN . First, let Q ∈ P(PH) be arbitrary. By the Radon-
Nikodym theorem, there exists a measurable function f ≥ 0, s.t. Q = f · PH. Since the
convention 0 · ∞ = 0 applies throughout measure theory, one has:

DKL(Q ∥ PH) = Q [log(f)] = PH [f log(f)] = PH

[
1{f>0}f log(1{f>0}f)

]
.

Hence, w.l.o.g. we can assume that f > 0 PH-a.s. Then, by Jensen’s inequality, one gets:

Q[⟨η(λ), T (·, d)⟩+ log(h)]−Q[log(f)] = Q
[
log

(
h

f
exp (⟨η(λ), T (·, d)⟩)

)]
≤ log

(
Q
[
h

f
exp (⟨η(λ), T (·, d)⟩)

])
= log

(
(f · PH)

[
h

f
exp (⟨η(λ), T (·, d)⟩)

])
= log (PH [h exp (⟨η(λ), T (·, d)⟩)]) = κ(λ, d) .

Hence, we have κ(λ, d) ≥ Q[⟨η(λ), T (·, d)⟩ + log(h)] − DKL(Q ∥ PH) for any probability
measure Q≪ PH. Now consider the member of the exponential family:

DKL(Qλ(d) ∥ PH) =

∫
H
log (h(α)A(λ, d) exp(⟨η(λ), T (α, d)⟩)) Qλ(d, dα)

=

∫
H
log(h(α)) + ⟨η(λ), T (α, d)⟩ Qλ(d, dα) + log(A(λ, d))

=

∫
H
log(h(α)) + ⟨η(λ), T (α, d)⟩ Qλ(d, dα)− log (c(λ, d))

=

∫
H
log(h(α)) + ⟨η(λ), T (α, d)⟩ Qλ(d, dα)− κ(λ, d).

3. A function is called simple, if it is of the form ℓn =
∑K

i=1 a
i
n1Ai

n
with disjoint sets Ai

n.

43

Rearranging yields κ(λ, d) =
∫
H log(h(α)) + ⟨η(λ), T (α, d)⟩ Qλ(d, dα)−DKL(Qλ,d ∥ PH).

Appendix D. Proof of Lemma 3.2

Proof W.l.o.g. assume that Oi ̸= ∅ and choose λi ∈ Oi, i = 1, ...,K. Then, for every
d ∈ ΘN , it holds that:

sup
λ∈Λ

κ(λ, d) ≤ max
i=1,...,K

sup
λ∈Oi

κ(λ, d) = max
i=1,...,K

{
κ(λi, d) + sup

λ∈Oi

(κ(λ, d)− κ(λi, d))

}
≤ max

i=1,...,K
κ(λi, d) + CO .

Thus, in total one gets for s ∈ R:

P
{
sup
λ∈Λ

κ(λ,D) > s

}
≤ P

{
max

i=1,...,K
κ(λi,D) + CO > s

}
≤

K∑
i=1

P {κ(λi,D) + CO > s}

≤
K∑
i=1

exp(CO − s) = K exp(CO − s) .

Taking s = log
(
K
ϵ

)
+ CO gives P

{
supλ∈Λ κ(λ,D) > log

(
K
ϵ

)
+ CO

}
≤ ϵ.

Appendix E. Proof of Corollary 3.5

Proof The two forumlas are simply rewritings of each other: By assumption, bilinear-
ity and definition of the euclidean scalar product, and linearity of the integral, the term
Q[⟨η(λ), T (·, d)⟩] can be split up as:

Q[⟨η(λ), T (·, d)⟩] = Q[η(1)(λ)(R− R̂(·, d))] +Q[⟨η(r)(λ), T (r)(·, d)⟩]
= η(1)(λ)Q[R]− η(1)(λ)Q[R̂(·, d)] +Q[⟨η(r)(λ), T (r)(·, d)⟩] .

Simply rearranging the terms then yields the result, as η(1) > 0.

44

References

Pierre Alquier. PAC-Bayesian bounds for randomized empirical risk minimizers. Mathe-
matical Methods of Statistics, 17(4):279–304, 2008.

Pierre Alquier. User-friendly introduction to PAC-Bayes bounds. arXiv preprint
arXiv:2110.11216, 2021.

Pierre Alquier and Benjamin Guedj. Simpler PAC-Bayesian bounds for hostile data. Ma-
chine Learning, 107(5):887–902, 2018.

Pierre Alquier, James Ridgway, and Nicolas Chopin. On the properties of variational ap-
proximations of Gibbs posteriors. Journal of Machine Learning Research, 17(1):8374–
8414, 2016.

Ron Amit, Baruch Epstein, Shay Moran, and Ron Meir. Integral probability metrics PAC-
Bayes bounds. Advances in Neural Information Processing Systems, 35:3123–3136, 2022.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau,
Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient
descent by gradient descent. Advances in neural information processing systems, 29, 2016.

Rémi Bardenet, Arnaud Doucet, and Chris Holmes. Towards scaling up markov chain
monte carlo: an adaptive subsampling approach. In International conference on machine
learning, pages 405–413. PMLR, 2014.

Rémi Bardenet, Arnaud Doucet, and Chris Holmes. On Markov chain Monte Carlo methods
for tall data. Journal of Machine Learning Research, 18(47), 2017.

Ole Barndorff–Nielsen. Information and exponential families: in statistical theory. John
Wiley & Sons, 2014.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

Luc Bégin, Pascal Germain, François Laviolette, and Jean-Francis Roy. PAC-Bayesian
bounds based on the Rényi divergence. In Artificial Intelligence and Statistics, pages
435–444. PMLR, 2016.

James O. Berger. Statistical decision theory and Bayesian analysis. Springer-Verlag, 1985.

Pascal Bianchi, Walid Hachem, and Sholom Schechtman. Convergence of constant step
stochastic gradient descent for non-smooth non-convex functions. Set-Valued and Varia-
tional Analysis, pages 1–31, 2022.

Jérôme Bolte and Edouard Pauwels. Conservative set valued fields, automatic differenti-
ation, stochastic gradient methods and deep learning. Mathematical Programming, 188
(1):19–51, 2021.

Leon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. Siam Review, 60(2):223–311, 2018.

45

Stephane Boucheron, Gabor Lugosi, and Pascal Massart. Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

Olivier Bousquet and André Elisseeff. Algorithmic stability and generalization performance.
Advances in Neural Information Processing Systems, 13, 2000.

Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of Machine
Learning Research, 2:499–526, 2002.

Gregery T Buzzard, Stanley H Chan, Suhas Sreehari, and Charles A Bouman. Plug-and-
play unplugged: Optimization-free reconstruction using consensus equilibrium. SIAM
Journal on Imaging Sciences, 11(3):2001–2020, 2018.

Olivier Catoni. Statistical learning theory and stochastic optimization: Ecole d’Eté de Prob-
abilités de Saint-Flour, XXXI-2001, volume 1851. Springer Science & Business Media,
2004.

Olivier Catoni. PAC-Bayesian supervised classification: The thermodynamics of statistical
learning. Lecture Notes-Monograph Series, 56:i–163, 2007.

Stanley H Chan, Xiran Wang, and Omar A Elgendy. Plug-and-play ADMM for image
restoration: Fixed-point convergence and applications. IEEE Transactions on Computa-
tional Imaging, 3(1):84–98, 2016.

Tianlong Chen, Weiyi Zhang, Zhou Jingyang, Shiyu Chang, Sijia Liu, Lisa Amini, and
Zhangyang Wang. Training stronger baselines for learning to optimize. Advances in
Neural Information Processing Systems, 33:7332–7343, 2020a.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang
Wang, and Wotao Yin. Learning to optimize: A primer and a benchmark. arXiv preprint
arXiv:2103.12828, 2021.

Xiaohan Chen, Jialin Liu, Zhangyang Wang, and Wotao Yin. Theoretical linear conver-
gence of unfolded ISTA and its practical weights and thresholds. Advances in Neural
Information Processing Systems, 31, 2018.

Xinshi Chen, Yufei Zhang, Christoph Reisinger, and Le Song. Understanding deep archi-
tecture with reasoning layer. Advances in Neural Information Processing Systems, 33:
1240–1252, 2020b.

Yutian Chen, Matthew W Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P
Lillicrap, Matt Botvinick, and Nando Freitas. Learning to learn without gradient descent
by gradient descent. In International Conference on Machine Learning, pages 748–756.
PMLR, 2017.

Regev Cohen, Michael Elad, and Peyman Milanfar. Regularization by denoising via fixed-
point projection. SIAM Journal on Imaging Sciences, 14(3):1374–1406, 2021.

Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly
convex functions. SIAM Journal on Optimization, 29(1):207–239, 2019.

46

Damek Davis and Dmitriy Drusvyatskiy. Graphical convergence of subgradients in non-
convex optimization and learning. Mathematics of Operations Research, 47(1):209–231,
2022.

Alexandre Défossez, Leon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence
proof of adam and adagrad. Transactions on Machine Learning Research, 2022. ISSN
2835-8856.

Monroe D Donsker and SR Srinivasa Varadhan. Asymptotic evaluation of certain Markov
process expectations for large time, i. Communications on Pure and Applied Mathematics,
28(1):1–47, 1975.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization
bounds for deep (stochastic) neural networks with many more parameters than training
data. In Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelli-
gence, UAI 2017, Sydney, Australia, August 11-15, 2017. AUAI Press, 2017.

Gintare Karolina Dziugaite and Daniel M Roy. Data-dependent PAC-Bayes priors via
differential privacy. Advances in neural information processing systems, 31, 2018.

Gintare Karolina Dziugaite, Kyle Hsu, Waseem Gharbieh, Gabriel Arpino, and Daniel Roy.
On the role of data in PAC-Bayes bounds. In International Conference on Artificial
Intelligence and Statistics, pages 604–612. PMLR, 2021.

Bradley Efron. Defining the curvature of a statistical problem (with applications to second
order efficiency). The Annals of Statistics, pages 1189–1242, 1975.

Pascal Germain, Alexandre Lacasse, François Laviolette, and Mario Marchand. PAC-
Bayesian learning of linear classifiers. In Proceedings of the 26th Annual International
Conference on Machine Learning, pages 353–360, 2009.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceed-
ings of the 27th international conference on international conference on machine learning,
pages 399–406, 2010.

Benjamin Guedj. A primer on PAC-Bayesian learning. In Proceedings of the second congress
of the French Mathematical Society, volume 33, 2019.

Maxime Haddouche and Benjamin Guedj. Wasserstein PAC-Bayes learning: Exploiting
optimisation guarantees to explain generalisation, 2023.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learn-
ing: data mining, inference and prediction. Springer, 2 edition, 2009.

Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art.
Knowledge-Based Systems, 212:106622, 2021.

Jean Honorio and Tommi Jaakkola. Tight bounds for the expected risk of linear classifiers
and PAC-Bayes finite-sample guarantees. In Artificial Intelligence and Statistics, pages
384–392. PMLR, 2014.

47

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning
in neural networks: A survey. IEEE transactions on pattern analysis and machine intel-
ligence, 44(9):5149–5169, 2021.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learning: meth-
ods, systems, challenges. Springer Nature, 2019.

O. Kallenberg. Foundations of Modern Probability. Probability theory and stochastic mod-
elling. Springer, 2021. ISBN 9783030618728.

Ali Kavis, Kfir Yehuda Levy, and Volkan Cevher. High probability bounds for a class of
nonconvex algorithms with adagrad stepsize. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=dSw0QtRMJkO.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR 2015, 2015.

Achim Klenke. Wahrscheinlichkeitstheorie. Springer Spektrum, 2013.

Erich Kobler, Alexander Effland, Karl Kunisch, and Thomas Pock. Total deep variation:
A stable regularizer for inverse problems. arXiv preprint arXiv:2006.08789, 2020.

Anoop Korattikara, Yutian Chen, and Max Welling. Austerity in MCMC land: Cutting
the Metropolis-Hastings budget. In International conference on machine learning, pages
181–189. PMLR, 2014.

John Langford and Rich Caruana. (Not) bounding the true error. In T. Dietterich, S. Becker,
and Z. Ghahramani, editors, Advances in Neural Information Processing Systems, vol-
ume 14. MIT Press, 2001.

John Langford and John Shawe-Taylor. PAC-Bayes and margins. Advances in neural
information processing systems, 15, 2002.

Guy Lever, François Laviolette, and John Shawe-Taylor. Tighter PAC-Bayes bounds
through distribution-dependent priors. Theoretical Computer Science, 473:4–28, 2013.

Ben London. A PAC-Bayesian analysis of randomized learning with application to stochastic
gradient descent. Advances in Neural Information Processing Systems, 30, 2017.

Kaifeng Lv, Shunhua Jiang, and Jian Li. Learning gradient descent: Better generalization
and longer horizons. In International Conference on Machine Learning, pages 2247–2255.
PMLR, 2017.

Dougal Maclaurin and Ryan P Adams. Firefly Monte Carlo: Exact MCMC with subsets
of data. In 30th Conference on Uncertainty in Artificial Intelligence, UAI 2014, pages
543–552. AUAI Press, 2014.

David McAllester. Simplified PAC-Bayesian margin bounds. In Learning theory and Kernel
machines, pages 203–215. Springer, 2003a.

48

https://openreview.net/forum?id=dSw0QtRMJkO

David McAllester. PAC-Bayesian stochastic model selection. Machine Learning, 51(1):5–21,
2003b.

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-
Dickstein. Understanding and correcting pathologies in the training of learned optimizers.
In Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 4556–4565. PMLR, 2019.

Michael Moeller, Thomas Mollenhoff, and Daniel Cremers. Controlling neural networks
via energy dissipation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3256–3265, 2019.

Yurii Nesterov. A method for solving the convex programming problem with convergence
rate O(1/k2). Proceedings of the USSR Academy of Sciences, 269:543–547, 1983.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Yuki Ohnishi and Jean Honorio. Novel change of measure inequalities with applications
to PAC-Bayesian bounds and Monte Carlo estimation. In International Conference on
Artificial Intelligence and Statistics, pages 1711–1719. PMLR, 2021.

Emilio Parrado-Hernández, Amiran Ambroladze, John Shawe-Taylor, and Shiliang Sun.
PAC-Bayes bounds with data dependent priors. Journal of Machine Learning Research,
13(1):3507–3531, 2012.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates, Inc., 2019.

Maŕıa Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári. Tighter
risk certificates for neural networks. Journal of Machine Learning Research, 22(227):
1–40, 2021.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

Matias Quiroz, Robert Kohn, Mattias Villani, and Minh-Ngoc Tran. Speeding up MCMC
by efficient data subsampling. Journal of the American Statistical Association, 2018.

Omar Rivasplata, Ilja Kuzborskij, Csaba Szepesvári, and John Shawe-Taylor. PAC-Bayes
analysis beyond the usual bounds. Advances in Neural Information Processing Systems,
33:16833–16845, 2020.

C.P. Robert and G. Casella. Monte Carlo statistical methods. Springer New York, 2004.

Ernest Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang, and Wotao Yin.
Plug-and-play methods provably converge with properly trained denoisers. In Interna-
tional Conference on Machine Learning, pages 5546–5557. PMLR, 2019.

49

Matthias Seeger. PAC-Bayesian generalisation error bounds for Gaussian process classifi-
cation. Journal of Machine Learning Research, 3:233–269, 2002.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Stochastic
convex optimization. In COLT, volume 2, page 5, 2009.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability,
stability and uniform convergence. Journal of Machine Learning Research, 11:2635–2670,
2010.

Suhas Sreehari, S Venkat Venkatakrishnan, Brendt Wohlberg, Gregery T Buzzard,
Lawrence F Drummy, Jeffrey P Simmons, and Charles A Bouman. Plug-and-play pri-
ors for bright field electron tomography and sparse interpolation. IEEE Transactions on
Computational Imaging, 2(4):408–423, 2016.

Michael Sucker and Peter Ochs. PAC-Bayesian learning of optimization algorithms. In In-
ternational Conference on Artificial Intelligence and Statistics, pages 8145–8164. PMLR,
2023.

Yu Sun, Brendt Wohlberg, and Ulugbek S Kamilov. An online plug-and-play algorithm for
regularized image reconstruction. IEEE Transactions on Computational Imaging, 5(3):
395–408, 2019.

Afonso M Teodoro, José M Bioucas-Dias, and Mário AT Figueiredo. Scene-adapted plug-
and-play algorithm with convergence guarantees. In 2017 IEEE 27th International Work-
shop on Machine Learning for Signal Processing (MLSP), pages 1–6. IEEE, 2017.

Matthieu Terris, Audrey Repetti, Jean-Christophe Pesquet, and Yves Wiaux. Enhanced
convergent PNP algorithms for image restoration. In 2021 IEEE International Conference
on Image Processing (ICIP), pages 1684–1688. IEEE, 2021.

Niklas Thiemann, Christian Igel, Olivier Wintenberger, and Yevgeny Seldin. A strongly
quasiconvex PAC-Bayesian bound. In International Conference on Algorithmic Learning
Theory, pages 466–492. PMLR, 2017.

Robert Tibshirani. Regression shrinkage and selection via the LASSO. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 58(1):267–288, 1996.

Tom Tirer and Raja Giryes. Image restoration by iterative denoising and backward projec-
tions. IEEE Transactions on Image Processing, 28(3):1220–1234, 2018.

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Arti-
ficial intelligence review, 18:77–95, 2002.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML), pages
681–688, 2011.

50

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Col-
menarejo, Misha Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned optimizers
that scale and generalize. In International conference on machine learning, pages 3751–
3760. PMLR, 2017.

Hermann Witting. Mathematische Statistik I: Parametrische Verfahren bei festem Stich-
probenumfang. Springer-Verlag, 2013.

Bo Xin, Yizhou Wang, Wen Gao, David Wipf, and Baoyuan Wang. Maximal sparsity with
deep networks? Advances in Neural Information Processing Systems, 29, 2016.

Quanming Yao, Mengshuo Wang, Yuqiang Chen, Wenyuan Dai, Yu-Feng Li, Wei-Wei Tu,
Qiang Yang, and Yang Yu. Taking human out of learning applications: A survey on
automated machine learning. arXiv preprint arXiv:1810.13306, 2018.

51

	Introduction
	Related Work

	Problem Setup & Assumptions
	Main Assumptions and Definitions

	General PAC-Bayesian Theorem
	Learning-to-Optimize with Guarantees
	Guaranteed Convergence
	Conditioning on Convergence
	Implementing the Non-divergence – Speed Trade-Off

	Learning Procedure
	Minimization of the PAC-Bound
	Sampling under Probabilistic Constraints
	Incorporation into a Sampling Procedure
	Broader Context
	Choice of the Sampling Procedure

	Putting Things Together
	Finding a Trainable Initialization
	Locating the Prior
	Constructing the Prior
	Computing the Posterior

	Experiments
	Quadratics
	Image Processing
	Lasso-Problem
	Training Neural Networks

	Discussion and Limitations
	Supplementary Definitions
	Supplementary Lemmas
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Corollary 3.5

