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Abstract. This paper investigates convex quadratic optimization prob-
lems involving n indicator variables, each associated with a continuous
variable, particularly focusing on scenarios where the matrix Q defining
the quadratic term is positive definite and its sparsity pattern corre-
sponds to the adjacency matrix of a tree graph. We introduce a graph-
based dynamic programming algorithm that solves this problem in time
and memory complexity of O(n2). Central to our algorithm is a precise
parametric characterization of the cost function across various nodes of
the graph corresponding to distinct variables. Our computational experi-
ments conducted on both synthetic and real-world datasets demonstrate
the superior performance of our proposed algorithm compared to exist-
ing algorithms and state-of-the-art mixed-integer optimization solvers.
An important application of our algorithm is in the real-time inference
of Gaussian hidden Markov models from data affected by outlier noise.
Using a real on-body accelerometer dataset, we solve instances of this
problem with over 30,000 variables in under a minute, and its online vari-
ant within milliseconds on a standard computer. A Python implemen-
tation of our algorithm is available at https://github.com/aareshfb/

Tree-Parametric-Algorithm.git.

Keywords: Quadratic optimization · Indicator variables · Sparsity ·
Dynamic programming · Hidden Markov models · Trees.

1 Introduction

Given a symmetric and positive definite matrixQ ∈ IRn×n and vectors λ, c ∈ IRn,
we study the following mixed-integer quadratic optimization (MIQP) problem:

min
x∈IRn,z∈{0,1}n

1

2
x⊤Qx+ c⊤x+ λ⊤z (1a)

s.t. xi(1− zi) = 0 i = 1, 2, . . . , n (1b)
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2152777, 2337776, ONR grant N00014-22-1-2127 and AFOSR grant FA9550-22-1-
0369.
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Specifically, we assume that the sparsity pattern of Q ∈ IRn×n is the adjacency
matrix of a connected tree. The binary vector z ∈ {0, 1}n is used to model the
support of the vector x ∈ IRn and λ ∈ IRn is a regularization parameter on the
sparsity of x. If zi = 0, then from constraint (1b), we obtain xi = 0. On the
other hand, if zi = 1 then xi is unconstrained. Without loss of generality, we
assume that the diagonal elements of Q are equal to 1. This can be ensured by
replacing xi ← xi/

√
Qi,i for all i = 1, . . . , n. We also assume λi > 0 for every

i ∈ {1, 2, . . . , n}, as any λi ≤ 0 implies zi = 1 at optimality. The regularizer λ
can model the sparsity of the solution, which makes the above problem useful in
network inference [21, 39], sparse regression [5, 18], and probabilistic graphical
models [34, 36, 37], to name a few.

1.1 Gaussian hidden Markov models

An important application of Problem (1) is in the inference of Gaussian hidden
Markov models (GHMM) [3, 21], where the goal is to estimate hidden states
{xt}Tt=1 of a random process from Kt observations {yk,t}Kt

k=1 at each time t.
We consider the Besag model [7, 8], where the hidden states are assumed to be
jointly Gaussian:

p(x1, . . . , xT ) ∝ exp

(
− 1

2σ1
x2
1 −

T∑
i=2

1

2σ2
t

(xt − xt−1)
2

)
. (2)

Each hidden state xt is indirectly observed via noisy observations yk,t = xt +
ϵk,t + δk,t, k = 1, . . . ,Kt, where ϵk,t is a dense, but light-tailed noise drawn from
N (0, ν2t ), whereas δk,t is an outlier noise that corrupts only a small subset of the
observations. An example of a GHMM is given in Figure 1.

x1 x2 x3 xT

y1,1

y2,1

y3,1 y1,2

y1,3 y2,3

y4,T

y3,T y2,T

y1,T

Fig. 1. An illustration of a GHMM. At every time t, observations {yk,t}Kt
k=1 of the

hidden state xt are collected, some of which may be corrupted with outlier noise (shown
in red). The goal is to infer the hidden states {xt}Tt=1 from these corrupted observations.

One of the earliest applications of GHMMs can be traced back to signal pro-
cessing, aimed at predicting the evolution of a random signal over time by effec-
tively filtering out observational noise [9, 32]. A more contemporary application
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of GHMMs lies in activity recognition utilizing on-body wearable accelerome-
ters [33, 41]. In such contexts, additional consideration may involve assuming
sparsity in the underlying hidden state {xt}Tt=1, which corresponds to the inac-
tive state of the body. Under such settings, it is natural to consider the maximum
a posteriori estimate of the hidden states with ℓ0 regularization to promote the
sparsity prior on the outliers as well as the underlying hidden states. This prob-
lem can be formulated as follows:

min
x,z,w,s

T∑
t=1

Kt∑
k=1

1

ν2t
(yk,t−xt−wk,t)

2
+

1

σ2
1

x2
1+

T∑
t=2

1

σ2
t

(xt−xt−1)
2

+

T∑
t=1

Kt∑
k=1

λk,tzk,t+

T∑
t=1

γtst (3a)

s.t. wk,t(1− zt,k) = 0 t = 1, 2 . . . T ; k = 1, . . .Kt (3b)

xt(1− st) = 0 t = 1, 2 . . . T (3c)

w·,t ∈ IRKt , z·,t ∈ {0, 1}Kt t = 1, 2 . . . T (3d)

x ∈ IRT , s ∈ {0, 1}T . (3e)

In the optimization problem (3), the binary variables {zk,t} capture the presence
of outlier noise in observations {yk,t}. Specifically, zk,t = 1 indicates that yk,t
is likely to be tainted with noise. This can be understood by noting that when
zk,t = 1, the continuous variable wk,t takes the value yk,t − xt at optimality,
thereby nullifying the impact of the observation yk,t on the estimated state xt.
Conversely, zk,t = 0 implies wk,t = 0, indicating that the observation yk,t is
devoid of outlier noise. Moreover, the binary variables {st} capture the support
of the hidden state {xt}, enforcing xt = 0 if and only if st = 0. The above
optimization problem is a special case of Problem (1), where the matrix Q is
positive definite and its support is the adjacency matrix of a tree graph (as
can be seen in Figure 1). An important variant of problem (3), arising in real-
time monitoring and detection of events, is the online variant where observations
{yk,t} become available over time [47]. In such scenarios, where rapid action is
necessary upon detecting anomalous events, re-optimization of Problem (3) must
be performed within milliseconds.

In most cases, Problem (3) is rarely tackled in the literature directly. In-
deed, mixed-integer nonlinear optimization problems are typically regarded as
intractable. Moreover, big-M relaxations of (3) result in poor relaxations with
trivial lower bounds, thus simply resorting to off-the-shelf solvers may prove in-
effective. Thus, practitioners often resort to simpler approximations, consisting
of either using ℓ1-norm penalty to induce sparsity on variables x and w [47],
or using iterative procedures and heuristics to remove outliers [14, 42]. Natu-
rally, such approximations admit fast algorithms, but the solution quality can
be negatively affected. Recently, there has been a renewed interest in developing
improved mixed-integer optimization formulations for problems with sparsity
and outliers [21, 22, 26, 31]. The results indicate that exact methods can indeed
deliver substantially better solutions, especially when outliers are clustered. Typ-
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ical runtimes of mixed-integer optimization methods with strong formulations is
measured in minutes for problems with T in the hundreds, which is adequate for
small-sized offline versions for (3), but far from practical for online problems. In
this paper, we propose a method that solves the online problem to optimality
within milliseconds on a standard computer.

1.2 Related work

For general dense matrix Q, Problem (1) is NP-hard [15, 30]. Earlier methods
based on mixed-integer programming using big-M formulation [5, 6, 17] work reli-
ably for small instances, but exhibit poor scalability [28, 29]. Since then, there has
been a significant improvement in solving these problems over large instances.
One key contribution was the perspective-reformulation technique that obtains
high-quality convex relaxations of the feasible region. Initially introduced in [40],
perspective reformulations have served as the cornerstone for numerous methods
aimed at solving Problem (1) with general Q, either exactly or approximately
[4, 23–25, 43–45].

Due to the NP-hardness of Problem (1) with a general Q, recent endeavors
have shifted focus towards cases where Q possesses a special structure. When Q
exhibits a diagonal structure, it has been demonstrated that a perspective re-
formulation already yields the ideal convex hull characterization of Problem (1)
[12]. Moreover, if the matrix Q can be factorized as Q = Q⊤

0 Q0, where Q0 is
sparse, the problem can be solved in polynomial time under appropriate condi-
tions [18]. In [16], a cardinality-constrained version of Problem (1) is explored,
where Q corresponds to a tree with a maximum degree d, and all coefficients
λi are identical. The authors propose a dynamic programming algorithm that
operates in O(n3d) time. Consequently, this leads to a O(n4) algorithm for the
regularized version discussed in this paper, with the additional restriction that
all coefficients λi are identical.

Perhaps most closely related to our work are two lines of research that inves-
tigate Problem (1) when Q possesses either a path or Stieltjes structure. When
Q is a Stieltjes matrix, it is recently shown that Problem (1) can be converted
into a submodular minimization problem and thus solved in polynomial time [2,
27]. Any Q that has a tree structure can be turned into a Stieltjes matrix with a
simple change of variables. Therefore, Problem (1) can be solved in polynomial
time. An application of the state-of-the-art submodular minimization algorithm
leads to a runtime of O(n5EO), where EO is the complexity of solving a certain
quadratic program [38]. Although this complexity is expected to be improved
with more recent algorithms such as those introduced in [13, 35], they remain
inefficient in medium to large-scale instances. WhenQ takes the form of a tridiag-
onal matrix, the works [19, 20, 36] have introduced dynamic programming (DP)
algorithms capable of solving Problem (1) in O(n2). However, in Section 2, we
provide a detailed discussion on why these dynamic programming algorithms
cannot be readily extended to the more general case of tree structures for Q.
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1.3 Preliminaries and notations

Given a matrix Q ∈ IRn×n and index sets I and J , we denote by QI,J the
sub-matrix of Q whose rows and columns correspond to I and J , respectively.
Similarly, given a vector c ∈ IRn, we denote by cJ a sub-vector of c with indices
corresponding to J . For integers k < l, we define [k : l] = [k, k + 1, . . . , l]. We
use 1lx to denote the indicator function defined over IR that returns 0 for x = 0
and returns 1 for all x ̸= 0. The notations f⋆ and (x⋆, z⋆) are used to denote the
optimal objective value and optimal solution of Problem (1) respectively.

Definition 1. Given a symmetric matrix Q ∈ IRn×n, the support graph of Q,
denoted by supp(Q), is an undirected graph G = (N,E), where N = {1, . . . , n}
and (i, j) ∈ E if and only if Qi,j ̸= 0 for i ̸= j.

In this paper, we consider problems where supp(Q) is a tree. Without loss
of generality, we assume that supp(Q) is connected and rooted. Moreover, we
assume that the edges have a natural orientation toward the root node.4 We
use child(u) to denote the child node of u in the rooted tree supp(Q). Similarly,
we use par(u) to denote the set of parent nodes of u. We assume a topological
ordering for the nodes in supp(Q). More specifically, we assume u < child(u) for
every node in supp(Q). Therefore, node n is always the root node. Since supp(Q)
is a tree, its topological labeling always exists and can be obtained in O(n) time
and memory [1, Algorithm 3.8]. Moreover, due to the considered directions, each
node can only have a single child, but potentially multiple parents. Figure 2
illustrates the topological ordering of an exemplary tree. The degree of each
node u in supp(Q) is denoted as deg(u). If deg(u) ≥ 3, we say u is a branch.
Trees with only one branch are referred to as extended star trees.

Given any node u, suppu(Q) denotes the largest connected sub-tree of supp(Q)
comprised of u and its descendants, that is, any node v ≤ u that has a path to
u. The symbol nu denotes the number of nodes in suppu(Q). Given a node u, we
define Q[u] as the sub-matrix of Q with rows and columns corresponding to the
nodes in suppu(Q). It follows that suppu(Q) = supp(Q[u]). Similarly, we define
c[u] and λ[u] as the sub-vectors of c and λ with indices corresponding to the
nodes of supp(Q[u]).

We refer to fu(α) as the parametric cost at node u, defined as:

fu(α) := min
x∈IRnu ,z∈{0,1}nu

1

2
x⊤Q[u]x+ c⊤[u]x+ λ⊤

[u]z (4a)

s.t. xi(1− zi) = 0 i = 1, 2 . . . , nu (4b)

xnu
= α. (4c)

In simpler terms, fu(α) represents the optimal cost of the sub-problem defined
over the sub-tree suppu(Q) when the root node variable xnu

is set to α. We
define f⋆

u = minα fu(α). Indeed, we have f∗ = f⋆
n.

4 Recall that supp(Q) is undirected; the natural orientation assumption is only to
streamline the presentation of our algorithm.
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Fig. 2. An example of the topological labeling of nodes of a tree. In this example,
child(4) = 5 and par(4) = {2, 3}.

Our next lemma shows that fu(α) can be written as the sum of an indicator
function and the minimum of at most 2nu−1 quadratic and strongly convex
functions, pu,s(·), where s is a binary vector of dimension nu − 1 that indicates
which variables in the subtree are nonzero. For each configuration of s, the
resulting optimization problem can be shown to be strongly convex quadratic.
The proof of this lemma is presented in Appendix 1.

Lemma 1. Suppose that Q is positive definite and supp(Q) is a tree. For any
1 ≤ u ≤ n, fu(α) can be written as:

fu(α) = min
s∈{0,1}nu−1

{pu,s(α)}+ λu1lα,

where, for every s ∈ {0, 1}nu−1, pu,s(α) is quadratic and strongly convex.

This paper extensively uses conjugate functions. Recall that, given a function
f : IR→ IR, its Fenchel conjugate is defined as

f∗(β) = sup
α
{αβ − f(α)}.

A fundamental property of f∗(β) is that it is convex, even if f(α) is not. More-
over, f(α) + f∗(β) ≥ βα, for every α, β ∈ IR.
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2 Dynamic programming over trees

When supp(Q) is a path graph, Problem (1) reduces to the following optimization
problem:

min
x∈IRn,z∈{0,1}n

(
1

2

n∑
i=1

x2
i +

n∑
i=2

Qi,i−1xixi−1

)
+ c⊤x+ λ⊤z (5a)

s.t. xi(1− zi) = 0 i = 1, 2 . . . , n. (5b)

Liu et al. [36] introduced a DP approach for solving the above problem. To
explain this method, let q⋆[k:l] denote the optimal cost of (5) with additional
constraints zi = 1 for every k ≤ i ≤ l and zi = 0 otherwise. A simple calculation
reveals that

q⋆[k:l] =

−
1

2
c⊤[k:l]

(
Q[k:l],[k:l]

)−1
c[k:l] +

∑l
i=k λi 1 ≤ k ≤ l ≤ n

0 k > l.

Let s be the largest index such that z⋆s = 0. Upon setting zs = 0 in (5), the
problem decomposes into two sub-problems: one defined over nodes {1, . . . , s−1}
and the other over nodes {s+1, . . . , n} with the additional constraint that zi = 1
for every i > s. This decomposition implies that f⋆ = q⋆[s+1:n] + f⋆

s−1. More
generally, one can write:

f⋆
i = min

0≤s≤i

{
q⋆[s+1:i] + f⋆

s−1

}
, f⋆

u = 0 for u ≤ 0. (6)

The values of {q[k:l]}k≤l can be computed in O(n2) according to [36, Proposition
2]. Given the values of {q[k:l]}k≤l, the values of f

⋆
1 , f

⋆
2 , . . . , f

⋆
n can be obtained via

the recursive equation (6) in O(n2). Consequently, an overall O(n2) algorithm for
solving (5) emerges. The corresponding optimal solution can also be recovered
with a negligible overhead (see [36] for more details).

A similar DP approach can be extended to trees beyond paths. This extension
is particularly viable due to trees inheriting a similar decomposability property:
when zs = 0 for some node s in the tree, Problem (1) decomposes into smaller
sub-problems defined over the sub-trees, each rooted at one of the children of
s, along with a simple quadratic program over the remaining nodes of the tree.
Unfortunately, our next example illustrates that this decomposability property
is not enough to guarantee the efficiency of the corresponding DP, especially
when the tree possesses multiple branches.

Example 1 (Extended star trees). Consider an extended star tree with only one
branch located at the root. Let B denote the number of branches in the tree,
each composed of L nodes. We define a vector s ∈ {0, . . . , L}B , where each sb
is either 0 or it corresponds to the sb-th node in branch b, with the indices
increasing away from the leaf node. If sb = 0, then the vector s excludes any
node from branch b. Figure 3 depicts the structure of this graph.
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n

s1

s2 sB

L

B

Fig. 3. Simple tree with one branch at its root. A possible choice of s is highlighted in
red.

For any s ∈ {0, . . . , L}B and b ∈ {1, . . . , B}, let f⋆
sb,b

denote the optimal cost
of the sub-problem defined over the sub-tree rooted at node sb within branch b.
Since this sub-tree is a path, the corresponding f⋆

sb,b
can be obtained efficiently

via the aforementioned DP algorithm. We set f⋆
u,b = 0 for every u ≤ 0. Let

s ∈ {0, . . . , L}B denote the set of nodes with the largest indices in each branch
such that z⋆s = 0. Accordingly, let q⋆s denote the optimal cost of Problem (1)
with additional constraints that zi = 0 for all nodes i within the sub-tree rooted
at node sb for branches b = 1, . . . , B, and zi = 1 otherwise. The optimal cost f∗

can be written as:

f⋆ = min
s∈{0,...,L}B

{
q⋆s +

B∑
b=1

f⋆
sb−1,b

}
. (7)

The aforementioned equation implies that, even if f⋆
sb−1,b and q⋆s can be obtained

efficiently, one needs to perform up to (L + 1)B comparisons to determine the
optimal cost f⋆, a process that becomes inefficient with the increasing number
of branches.

To address the inefficiency inherent in the direct DP approach when applied
to general tree structures, we introduce a parametric characterization of the op-
timal cost for Problem (1). Through this characterization, we demonstrate a
significant reduction in the search space of the DP approach, without sacrific-
ing the optimality of the obtained solution. Toward this goal, in Section 3.1, we
revisit Problem (1) for path graphs. Here, we present a parametric algorithm
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for this problem with runtime and memory complexities of O(n2), matching the
worst-case complexity of the DP approach proposed in [36], but significantly
outperforming it in practice. Building upon our parametric algorithm for path
graphs, in the remainder of Section 3, we extend our approach to general tree
structures, showing that it can solve these problems in a similar O(n2) time and
memory. In Section 4, we discuss an important practical consideration regarding
our algorithm. Finally, in Section 5, we assess the performance of our proposed
approach across various case studies. Surprisingly, while its worst-case complex-
ity is O(n2), we observe that the practical runtime of our proposed algorithm
is close to linear in our computations on synthetic and real-world accelerometer
datasets.

3 Parametric algorithm

We first provide a high-level intuition of the proposed algorithm. Recall the
definition of f(α), which we repeat for convenience:

fu(α) := min
x∈IRnu ,z∈{0,1}nu

1

2
x⊤Q[u]x+ c⊤[u]x+ λ⊤

[u]z (8a)

s.t. xi(1− zi) = 0 i = 1, 2 . . . , nu (8b)

xu = α. (8c)

Note that, as the value function of a mixed-integer problem, the parametric cost
fu is not convex. Nonetheless, a key observation is that, since the support graph
is a tree, once the value of xu is fixed, the problem decomposes into independent
subproblems, one for each parent of u. More specifically, Problem (8) reduces to

fu(α) =
1

2
Qu,uα

2 + cuα+ λu1lα +
∑

v∈par(u)

min
ξ∈IR
{fv(ξ) +Quvξα}

=
1

2
Qu,uα

2 + cuα+ λu1lα −
∑

v∈par(u)

f∗
v (−Quvα). (9)

Since the parametric cost fu can be characterized merely based on the conjugate
of the parametric cost of its parents, we can imagine an algorithm that traverses
the graph in topological order, and recursively computes and stores in each node
u either the parametric cost fu or its conjugate f∗

u . These functions turn out to
be piece-wise quadratic, as elaborated in the following definition.

Definition 2. A continuous function f : IR→ IR is termed piece-wise quadratic
with N pieces if there exist scalars −∞ = τ0 < τ1 < · · · < τN = +∞ (also
referred to as breakpoints) and quadratic functions (also referred to as pieces)
p1, . . . , pN such that f(α) = pk(α) for τk−1 ≤ α ≤ τk, where k = 1, . . . , N and
pk(α) ̸= pk+1(α) for some α ∈ IR.

Upon assuming pk(α) = γk,1α
2 + γk,2α + γk,3; k = 1, . . . , N , the condition

pk(α) ̸= pk+1(α) for some α ∈ IR is equivalent to γk,i ̸= γk+1,i for some i ∈
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{1, 2, 3}. Moreover, to store and represent a piece-wise quadratic function with
N pieces, it suffices to store an ordered list of the breakpoints, along with the
coefficients of their corresponding quadratic pieces [(τk, γk,1, γk,2, γk,3)]

N
k=1.

Equation (9) involves sums of value functions, thus the next lemma is critical
to our analysis.

Lemma 2. Consider L piece-wise quadratic functions {fl}Ll=1, each with a set

of breakpoints Γl. The function g =
∑L

l=1 fl is a piece-wise quadratic function

with breakpoints belonging to
⋃L

l=1 Γl.

Proof. Let −∞ = τ0 < τ1 < · · · < τN = +∞ be the ordered elements of
⋃L

l=1 Γl.
The proof follows by noting that none of {fl}Ll=1 contain any breakpoints within
the interval (τk−1, τk); k = 1, . . . , N . Therefore, the set of breakpoints of g can
only belong to {τ0, . . . , τN}. ⊓⊔

In order to design an efficient algorithm, recursive equations of the form (9)
need to be obtained efficiently. A property that will allow us to do so is the
notion of consistency, defined next.

Definition 3. A piece-wise quadratic function f with N pieces p1, . . . , pN is
called consistent if:

1. p1, . . . , pN are strongly convex;
2. f(α) = min

1≤k≤N
{pk(α)} for all α ∈ IR.

Figure 4 depicts two instances of piece-wise quadratic functions, with only one
being consistent.

Fig. 4. Both functions are piece-wise quadratic. The left figure is consistent, while the
right figure is not consistent as it violates the second condition outlined in Definition 3.

From recursion (9) we see that the algorithm requires the computation of
conjugate functions of piece-wise quadratic functions with an indicator variable.
Naturally, the overall complexity of the algorithm depends on the number of
pieces required to represent the conjugate functions. The next proposition, whose
proof we defer to Section 3.3, shows that the number of pieces can increase by
at most 2.
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Proposition 1. Consider f = f̃ + λ1lα, where λ > 0 and f̃ is consistent with
N pieces. There exist an integer M ≤ N + 2 and scalars −∞ = τ0 < τ1 < · · · <
τM = +∞ such that the conjugate function f∗ can be written as

f∗(β) = qk(β), for τk−1 ≤ β ≤ τk; k = 1, . . . ,M, (10)

where

1. q1, . . . , qM are quadratic and convex;
2. qk(β) ̸= qk+1(β) for some β, for k = 1, . . . ,M − 1;
3. f∗(β) = max

1≤k≤M
{qk(β)} for all β ∈ IR.

At a high level, Proposition 1 follows from the geometric interpretation of
conjugate functions. For simplicity, let us assume that λ = 0. Recall that for any
strongly convex and quadratic function pk, its conjugate p∗k is likewise strongly
convex and quadratic. Moreover, −p∗k(β) corresponds to the intercept of a tan-
gent to pk with slope β. For any β ∈ IR, let I(β) denote the minimum index of
the piece at which a tangent to f with slope β intersects f . The proof of the
above proposition relies on two key points: (1) f∗(β) = p∗I(β)(β) for every β ∈ IR;

and (2) I(β) is a non-decreasing function of β. The first observation implies that
f∗ is also piece-wise quadratic. The second observation suggests that I(β) can
have at most N changes, or equivalently, f∗ can possess at most N pieces (the
additional two pieces in Proposition 1 arise only if λ > 0). Figure 5 depicts this
intuition on a simple consistent function.

Fig. 5. A consistent function f(α) with four strongly convex quadratic pieces. For this
function, we have f∗(β) = p∗1(β) for β ≤ β1, f

∗(β) = p∗2(β) for every β1 ≤ β < β2, and
f∗(β) = p∗4(β) for every β2 ≤ β. As a result, f∗(β) has three pieces.

A few observations are in order based on the above proposition. First, the
conjugate function f∗ is not guaranteed to be consistent, even if f is consistent (a
property that holds when λ = 0). Second, the number of pieces of the conjugate
can, in fact, decrease. Intuitively, by computing the conjugate, we implicitly
compute the closed convex envelope of the function f , that is, we compute and
only store the information relevant for optimization instead of the complete
function. While, in general, convex envelopes are notoriously hard to compute,
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the next proposition states that they can be obtained efficiently for consistent
functions.

Proposition 2. Given f = f̃ + λ1lα, where λ > 0 and f̃ is consistent with N
pieces, the conjugate function f∗ can be obtained in O(N) time and memory.

The proof of Proposition 2 is presented in Section 3.4. Equipped with these
results, we are now ready to present our parametric algorithm for path graphs.

3.1 Path graphs

Assume supp(Q) is a path graph. The following lemma is a direct consequence
of Propositions 1 and 2. It characterizes the parametric cost at every node u
based on the parametric cost of its parent node u− 1.

Lemma 3. Suppose that supp(Q) is a path graph. Moreover, given any node u,
suppose that fu−1 = f̃u−1 + λu−11lα, where f̃u−1 is consistent with N pieces.
Then, we can express fu = f̃u+λu1lα, where f̃u is consistent with at most N +2
pieces. Moreover, given fu−1, fu can be found in O(N) time and memory.

Proof. Since f̃u−1 is consistent with N pieces, due to Proposition 1, there exist
an integer M ≤ N +2 and scalars −∞ = τu−1,0 < τu−1,1 < · · · < τu−1,M = +∞
such that the conjugate function f∗

u−1 can be written as:

f∗
u−1(β) = qu−1,k(β), for τu−1,k−1 < β ≤ τu−1,k; k = 1, . . . ,M,

where

1. qu−1,1, . . . , qu−1,M are quadratic and convex;

2. qu−1,k(β) ̸= qu−1,k+1(β) for some β, for k = 1, . . . ,M − 1;

3. f∗
u−1(β) = max

1≤k≤M
{qu−1,k(β)} for all β ∈ IR.

Combined with (9), this implies that fu = f̃u + λu1lα, where

f̃u(α) =
1

2
α2 + cuα− qu−1,k(−Qu,u−1α)︸ ︷︷ ︸

:=pu,k(α)

,

for − τu−1,k

Qu,u−1︸ ︷︷ ︸
:=τu,k−1

< α ≤ −τu−1,k−1

Qu,u−1︸ ︷︷ ︸
:=τu,k

; k = 1, . . . ,M, (11)

where we used Qu,u−1 ̸= 0 since supp(Q) is assumed to be connected. Next,

we establish that f̃u is indeed consistent. First, the strong convexity of pu,k for
k = 1, . . . ,M directly follows from Lemma 1. Second, we observe that pu,k(α) ̸=
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pu,k+1(α) for some α since qu−1,k(β) ̸= qu−1,k+1(β) for some β. Third, we have

f̃u(α) =
1

2
α2 + cuα− f∗

u−1(−Qu,u−1α)

=
1

2
α2 + cuα− max

1≤k≤M
{qu−1,k(−Qu,u−1α)}

= min
1≤k≤M

{
1

2
α2 + cuα− qu−1,k(−Qu,u−1α)

}
= min

1≤k≤M
{pu,k(α)}.

Finally, due to Proposition 2, f∗
u−1 can be obtained in O(N) time and memory.

Combined with (11), this indicates that fu can also be computed in O(N) time
and memory. ⊓⊔

Due to (9), the parametric cost f1 at the leaf node 1 is the sum of an indicator
function and a consistent function with N = 1 piece. Therefore, Lemma 3 implies
that f2 is the sum of an indicator function and a consistent function with N ≤ 3
pieces. Moreover, it can be computed in O(1) time. Repeating this process until
reaching the root node proves that fn can be expressed as the sum of an indicator
function and a consistent function with N ≤ 2n pieces, and it can be computed
in O(1 + 3 + 5+ · · ·+ 2n) = O(n2). Once fn is determined, the optimal cost f⋆

can be derived by minimizing fn over at most 2n strongly convex and quadratic
pieces. The details of this procedure are delineated in Algorithm 1.

Algorithm 1 Parametric algorithm for path graphs

Input: c, λ ∈ IRn, Q ∈ IRn×n, where Q is positive definite and supp(Q) is a path graph
Output: The optimal solution x⋆ and optimal cost f⋆

1: for u = 1, . . . , n do
2: Obtain fu based on f∗

u−1 via Equation (9)
3: Obtain f∗

u based on fu via the breakpoint algorithm (Algorithm 4)
4: u← child(u)
5: end for
6: Obtain f⋆ = min

α
fn(α) and x⋆

n = argmin
α

fn(α)

7: for u = n− 1, . . . , 1 do
8: Set x⋆

u = argmin
α
{fu(α) +Qu+1,ux

⋆
u+1 · α}

9: end for
10: return f⋆ and x⋆

Theorem 1. Algorithm 1 solves Problem (5) in O(n2) time and memory.

Proof. Due to (9), the parametric cost at the leaf node 1 can be written as
f1 = f̃1 + λ11lα, where f̃1 is consistent with N = 1 piece. Consequently, by
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inductively applying Lemma 3 from the leaf to the root node, the correctness of
Algorithm 1 is established.

To show its runtime, we consider the operations within the loops. Since f∗
u−1

has at most 2n pieces, the first operation inside the loop (Line 3) can be executed
in O(n) time. Moreover, the second operation inside the first loop (Line 3) can
be executed in O(N) = O(n) time due to Proposition 2. Hence, the first loop
can be executed in O(n2) time. On the other hand, according to Lemma 3,
fn = f̃n + λn1lα, where f̃n is consistent with at most 2n pieces. Therefore,
Line 6 can be executed in O(n) time by minimizing at most 2n strongly convex
and quadratic functions. Similarly, each operation inside the second loop can
be executed in O(n) time, resulting in O(n2) time and memory for the second
loop. ⊓⊔

3.2 Tree graphs

In this section, we extend our parametric algorithm to the general tree structures.
Toward this goal, we first revisit Example 1 to elucidate the key ideas behind
this extension.

Example 1 (Continued). To obtain the optimal cost, akin to the path graphs, it
suffices to derive the parametric cost fn. This can be achieved by noting that:

fn(α) =
1

2
α2 + cnα+ λn1lα +

∑
v∈par(n)

min
ξ
{Qn,vα · ξ + fv(ξ)}

=
1

2
α2 + cnα+ λn1lα −

∑
v∈par(n)

max
ξ
{−Qn,vα · ξ − fv(ξ)}

=
1

2
α2 + cnα+ λn1lα −

∑
v∈par(n)

f∗
v (−Qn,vα) .

For every v ∈ par(n), suppv(Q) is a path. Therefore, according to our discussion
in the previous section, each f∗

v is consistent with at most 2L+2 pieces, and can
be obtained in O(L2) time via Algorithm 1. Therefore,

∑
v∈par(n) f

∗
v (−Qn,vα)

can be obtained in O(BL2). On the other hand, invoking Lemma 2 implies that∑
v∈par(n) f

∗
v (−Qn,vα) is a piece-wise quadratic function with at most B(2L+2)

pieces. Therefore, the optimal cost f⋆ can be obtained by minimizing different
pieces of fn in O(BL). This brings the complexity of the parametric algorithm to
O(BL2). This is a significant improvement upon the direct DP approach, which
runs in O

(
(L+ 1)B

)
.

Motivated by the above example, we next present the analog of Lemma 3 for
tree graphs.

Lemma 4. Suppose that supp(Q) is a tree graph. Moreover, given any node u,
suppose that fv = f̃v + λv1lα for every v ∈ par(u), where f̃v is consistent with
Nv pieces. Then, we can express fu = f̃u + λu1lα, where f̃u is consistent with at
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most
∑

v∈par(u)(Nv + 2) pieces. Moreover, given {fv}v∈par(u), fu can be found

in O
(∑

v∈par(u) Nv

)
time and memory.

Proof. Since for every v ∈ par(u), f̃v is consistent with Nv pieces, Proposition 1
implies the existence of an integer Mv ≤ Nv +2 and scalars −∞ = τv,0 < τv,1 <
· · · < τv,Mv = +∞ such that f∗

v can be written as:

f∗
v (β) = qv,k(β), for τv,k−1 < β ≤ τv,k; k = 1, . . . ,Mv,

where

1. qv,1, . . . , qv,M are quadratic and convex;

2. qv,k(β) ̸= qv,k+1(β) for some β, for k = 1, . . . ,Mv − 1;

3. f∗
v (β) = max

1≤k≤Mv

{qv,k(β)} for all β ∈ IR.

Let Γv be the ordered list of the breakpoints of f∗
v (−Qu,vα) defined as Γv =

{−τv,k/Qu,v}Mv

k=1. Consider gu(α) =
∑

v∈par(u) f
∗
v (−Qu,vα). According to Lemma 2,

gu is piece-wise quadratic with a set of breakpoints
⋃

v∈par(u) Γv that has a car-

dinality of Nu ≤ 1 +
∑

v∈par(u)(Nv + 2). Given the ordered lists {Γv}v∈par(v),⋃
v∈par(u) Γv can be ordered and stored in O

(∑
v∈par(u) Nv

)
time and mem-

ory. Let −∞ = τu,0 < τu,1 < · · · < τu,Nu = +∞ be the ordered elements of⋃
v∈par(u) Γv. One can write

gu(α) =
∑

v∈par(u)

qv,iv(k)(−Qu,vα)︸ ︷︷ ︸
:=q̃u,k(α)

, for τu,k−1 < α ≤ τu,k; k = 1, . . . , Nu,

(12)

where iv(k) is the index for which [τu,k−1, τu,k] ⊆
[
− τv,iv(k)

Qu,v
,− τv,iv(k)−1

Qu,v

]
if

Qu,v > 0 and [τu,k−1, τu,k] ⊆
[
− τv,iv(k)−1

Qu,v
,− τv,iv(k)

Qu,v

]
if Qu,v < 0. The above

equation combined with (9) implies that fu = f̃u + λu1lα, where

f̃u(α) =
1

2
α2 + cuα− q̃u,k(α)︸ ︷︷ ︸

:=pu,k(α)

, for τu,k−1 < α ≤ τu,k; k = 1, . . . , Nu. (13)

Next, we prove that f̃u is consistent. First, if pu,k and pu,k+1 are identical for
some 1 ≤ k ≤ Nu, one can remove the (k+1)-th piece and set τu,k ← τu,k+1 and
Nu ← Nu−1. This process can be repeated until pu,k and pu,k+1 are not identical
for all 1 ≤ k ≤ Nu − 1. Second, the strong convexity of pu,k for k = 1, . . . , Nu
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directly follows from Lemma 1. Third, note that

gu(α) =
∑

v∈par(u)

f∗
v (−Qu,vα)

=
∑

v∈par(u)

max
1≤k≤Nv

{qv,k(−Qu,vα)}

≥ max
1≤k≤Nu

 ∑
v∈par(u)

qv,iv(k)(−Qu,vα)


= max

1≤k≤Nu

{q̃u,k(α)}

≥ gu(α),

where the last inequality follows from (12). Therefore, we have gu(α) =
max1≤k≤Nu

{q̃u,k(α)}. This leads to

f̃u(α) =
1

2
α2 + cuα− gu(α)

=
1

2
α2 + cuα− max

1≤k≤Nu

{q̃u,k(α)}

= min
1≤k≤Nu

{
1

2
α2 + cuα− q̃u,k(α)

}
= min

1≤k≤M
{pu,k(α)}.

This completes the proof of the consistency of f̃u. Finally, due to Proposi-
tion 2, each f∗

v can be obtained in O (Nv) time and memory. Therefore, gu(α) =∑
v∈par(u) f

∗
v (−Qu,vα) can be obtained in O

(∑
v∈par(u) Nv

)
time and memory.

Combined with fu(α) = (1/2)α2 + cuα + λu1lα − gu(α), this indicates that fu

can also be computed in O
(∑

v∈par(u) Nv

)
time and memory. ⊓⊔

With Lemma 4 in place, we are prepared to present an overview of our para-
metric algorithm for general tree graphs. The algorithm starts with node 1. Since
node 1 represents a leaf node, its parametric cost f1 can be readily determined
based on the recursion (9). Moreover, its conjugate f∗

1 can be obtained in O(1)
due to Proposition 2. Assuming that the parametric costs fv and their conju-
gates f⋆

v are available for every node v < u, the parametric cost fu, can be
obtained based on Lemma 4. Notably, due to the topological ordering of nodes,
all v ∈ par(u) satisfy v < u, ensuring that their conjugate parametric costs
f∗
v needed to characterize fu are known. By repeating this process iteratively,
the algorithm efficiently computes the parametric costs following the increasing
topological ordering.

Algorithm 2 formalizes the aforementioned intuition and presents the pro-
posed parametric algorithm for trees with greater detail.
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Algorithm 2 Parametric algorithm over general trees

Input: c, λ ∈ IRn, Q ∈ IRn×n, where Q is positive definite and supp(Q) has a tree
structure
Output: The optimal solution x⋆ and optimal cost f⋆

1: Label the nodes supp(Q) according to their topological ordering
2: for u = 1, . . . , n do
3: Obtain fu based on {f∗

v }v∈par(u) via Equation (9)
4: Obtain f∗

u from fu via Algorithm 4
5: end for
6: Obtain f⋆ = min

α
fn(α) and x⋆

n = argmin
α

fn(α)

7: J ← par(n)
8: while J ̸= {} do
9: Choose u ∈ J
10: Set x⋆

u = argmin
α
{fu(α) +Qchild(u),ux

⋆
child(u)α}

11: J ← J\{u}
12: J ← J ∪ par(u)
13: end while
14: return f⋆ and x⋆

Theorem 2. Under the assumption that supp(Q) is a tree, Algorithm 2 solves
Problem (1) in O(n2) time and memory.

Proof. The proof is analogous to that of Theorem 1, and proceeds inductively
using Equation (9) and Lemma 4. For brevity, we omit the specific details. ⊓⊔

3.3 Properties of consistent functions

In this section, we present the proof of Proposition 1. To this goal, we first in-
troduce the fundamental properties of consistent functions and their conjugates.

For a piece-wise quadratic function g withN strongly convex pieces p1, . . . , pN ,
we define its indexing function Ig : IR→ {1, . . . , N} as:

Ig(β) = min

{
k : τk−1 ≤ α⋆ ≤ τk, α

⋆ ∈ argmax
α

{βα− g(α)}
}
, (14)

where {τk}Nk=0 are the breakpoints of g. Intuitively, the indexing function Ig
returns the piece with the minimum index where a line with slope β is tangent
to g. As an example, the indexing function for f depicted in Figure 5 can be
characterized as If (β) = 1 for all β ≤ β1, If (β) = 2 for all β1 < β ≤ β2, and
If (β) = 4 for all β2 < β.

Due to the definition of the indexing function, there exists a solution α⋆ ∈
argmaxα{βα− g(α)} such that τIg(β)−1 ≤ α⋆ ≤ τIg(β). Therefore, we have

g∗(β) = βα⋆ − g(α⋆) = βα⋆ − pIg(β)(α
⋆) = max

α
{βα− pIg(β)(α)} = p∗Ig(β)(β).

(15)
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Let the image of Ig be denoted as Image(Ig) = {k : k = Ig(β) for some β ∈ IR}.
For every k ∈ Image(Ig), its inverse image is defined as I−1

g (j) = {β : Ig(β) = k}.
Revisiting Figure 5, the indexing function of f satisfies Image(If ) = {1, 2, 4} with
inverse images I−1

f (1) = (−∞, β1], I
−1
f (2) = (β1, β2], and I−1

f (4) = (β2,+∞).
Recall the intuition behind Proposition 1: In order to control the number of

pieces of g∗, it suffices to control the number of changes in the indexing function
Ig. This can be achieved by showing that Ig is non-decreasing. Our next lemma
establishes this important property for consistent functions.

Lemma 5. Any consistent function has a non-decreasing indexing function.

To prove the above lemma, we first present the following intermediate result.

Lemma 6. Suppose that g is consistent with pieces p1, . . . , pN and breakpoints
−∞ = τ0 < τ1 < · · · < τN = +∞. For any β ∈ IR and k ∈ {1, . . . , N}, define the
linear function ℓk;β(α) = βα− p∗k(β). Moreover, define α⋆(β) ∈ argmaxα{βα−
g(α)}. Let k∗ be such that τk∗−1 ≤ α⋆(β) ≤ τk∗ . The following statements hold:

1. We have α⋆(β) ̸∈ {τk∗−1, τk∗}.
2. We have ℓk∗;β(α

⋆(β)) = g(α⋆(β)), and ℓk∗;β(α) ≤ g(α) for every α ∈ IR.

Proof. To prove the first statement, suppose, by contradiction, that α⋆(β) = τk
for some k ∈ {k∗−1, k∗}. Note that g(α)−βα = pk(α)−βα for every τk−1 ≤ α ≤
τk and g(α)−βα = pk+1(α)−βα for every τk ≤ α ≤ τk+1. Since α

⋆(β) = τk, we
must have p′k(α

⋆(β)) ≤ 0 and p′k+1(α
⋆(β)) ≥ 0. Since βα− g(α) is a continuous

function of α, we must have pk(α
⋆(β)) = pk+1(α

⋆(β)). We consider three cases:

1. Suppose p′k(α
⋆(β)) = p′k+1(α

⋆(β)) = 0. Since pk and pk+1 are not identical,
we must have p′′k(α

⋆(β)) ̸= p′′k+1(α
⋆(β)). If p′′k(α

⋆(β)) < p′′k+1(α
⋆(β)), then

pk(α
⋆(β) + ϵ) < pk+1(α

⋆(β) + ϵ) for every ϵ > 0, which is a contradiction.
Similarly, if p′′k(α

⋆(β)) > p′′k+1(α
⋆(β)), then pk(α

⋆(β)− ϵ) > pk+1(α
⋆(β)− ϵ)

for every ϵ > 0, which is again a contradiction.
2. Suppose p′k(α

⋆(β)) < 0. Therefore, there exists ϵ̄ > 0 such that, for every
ϵ ∈ (0, ϵ̄], we have

pk(α
⋆(β) + ϵ) < pk(α

⋆(β)) = pk+1(α
⋆(β)) ≤ pk+1(α

⋆(β) + ϵ),

which is a contradiction.
3. Suppose p′k+1(α

⋆(β)) > 0. Therefore, there exists ϵ̄ > 0 such that, for every
ϵ ∈ (0, ϵ̄], we have

pk+1(α
⋆(β)− ϵ) < pk+1(α

⋆(β)) = pk(α
⋆(β)) ≤ pk(α

⋆(β)− ϵ),

which is a contradiction.

To prove the second statement, recall that βα − g(α) = βα − pk∗(α) for ev-
ery τk∗−1 ≤ α ≤ τk∗ . Therefore, since α⋆(β) ∈ argmaxα{βα − g(α)} and
α⋆(β) ∈ (τk∗−1, τk∗), we must have α⋆(β) ∈ argminα∈(τk∗−1,τk∗ ){pk∗(α) − βα}.
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Since pk∗(α)− βα is a strongly convex function of α, this implies that α⋆(β) =
argminα{pk∗(α)− βα} = argmaxα{βα− pk∗(α)}. Therefore,

βα⋆(β)− pk∗(α⋆(β)) = p∗k∗(β)

⇐⇒ βα⋆(β)− p∗k∗(β) = pk∗(α⋆(β))

⇐⇒ ℓk∗;β(α
⋆(β)) = g(α⋆(β)).

Finally, since maxα{βα− g(α)} = maxα{βα− pk∗(α)}, one can write

ℓk∗;β(α) = βα− p∗k∗(β)

= βα−max
ξ
{βξ − pk∗(ξ)}

= βα+min
ξ
{−βξ + pk∗(ξ)}

= βα+min
ξ
{−βξ + g(ξ)}

= min
ξ
{βα− βξ + g(ξ)}

≤ βα− βα+ g(α)

≤ g(α).

This completes the proof. ⊓⊔

Proof of Lemma 5. Suppose that g is consistent with pieces p1, . . . , pN and
breakpoints −∞ = τ0 < τ1 < · · · < τN = +∞. To show Ig(β) is non-decreasing,
it suffices to show that if k < Ig(β) for some β ∈ IR, then k ̸= Ig(β

′), for any
β′ > β. By contradiction, suppose there exist β < β′ such that k < Ig(β) and
k = Ig(β

′). Let l = Ig(β). Due to the definition of the indexing function, there
exist α⋆

l , α
⋆
k ∈ IR such that

α⋆
l ∈ argmax

α
{βα− g(α)}, and τl−1 ≤ α⋆

l ≤ τl,

α⋆
k ∈ argmax

α
{β′α− g(α)}, and τk−1 ≤ α⋆

k ≤ τk.

Due to the first statement of Lemma 6, we must have τl−1 < α⋆
l < τl and

τk−1 < α⋆
k < τk. This implies that

α⋆
k < τk ≤ τl−1 < α⋆

l =⇒ α⋆
k < α⋆

l . (16)

On the other hand, the second statement of Lemma 6 implies that

ℓl;β(α
⋆
l ) = g(α⋆

l ) and ℓl;β(α) ≤ g(α);∀α
ℓk;β′(α⋆

k) = g(α⋆
k) and ℓk;β′(α) ≤ g(α);∀α.

Combining the above two inequalities, we have

ℓl;β(α
⋆
k) ≤ g(α⋆

k) = ℓk;β′(α⋆
k) =⇒ βα⋆

k − p∗l (β) ≤ β′α⋆
k − p∗k(β

′)

ℓk;β′(α⋆
l ) ≤ g(α⋆

l ) = ℓl;β(α
⋆
l ) =⇒ β′α⋆

l − p∗k(β
′) ≤ βα⋆

l − p∗l (β).
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The above two inequalities yield

βα⋆
k − p∗l (β) + β′α⋆

l − p∗k(β
′) ≤ β′α⋆

k − p∗k(β
′) + βα⋆

l − p∗l (β)

⇐⇒ (β′ − β)α⋆
l ≤ (β′ − β)α⋆

k

⇐⇒ α⋆
l ≤ α⋆

k,

which contradicts (16). This completes the proof. ⊓⊔
Our next lemma provides a key property of the conjugate of a piece-wise

quadratic function with a non-decreasing indexing function.

Lemma 7. Suppose that g is a piece-wise quadratic function with N strongly
convex pieces p1, . . . , pN and a non-decreasing indexing function Ig. There exist
an integer N ′ ≤ N , scalars −∞ = τ0 < τ1 < · · · < τN ′ = +∞, and a strictly
increasing function π : {1, . . . , N ′} → {1, . . . , N} such that

g∗(β) = p∗π(k)(β), for τk−1 ≤ β ≤ τk; k = 1, . . . , N ′, (17)

where

1. p∗1, . . . , p
∗
N are quadratic and strongly convex;

2. p∗π(k)(β) ̸= p∗π(k+1)(β) for some β, for k = 1, . . . , N ′ − 1.

Proof. Let j1 < j2 < · · · < jN ′ be the ordered elements of Image(Ig). We have

N ′ ≤ N since Image(Ig) ⊆ {1, . . . , N}. Moreover, we have
⋃N ′

k=1 I
−1
g (jk) = IR.

Since Ig is assumed to be non-decreasing, I−1
g (jk) is a convex set for every

k = 1, . . . , N ′. Therefore, there exist −∞ = τ0 < τ1 ≤ · · · ≤ τN ′−1 < τN ′ = +∞
such that, for every k = 1, . . . , N ′, I−1

g (jk) can be characterized as:

I−1
g (jk) = [τk−1, τk] , (τk−1, τk) , [τk−1, τk), or (τk−1, τk]. (18)

Upon defining π(k) = jk for every 1 ≤ k ≤ N ′, we have

g∗(β) = p∗jk(β) if β ∈ I−1
g (jk)

⇐⇒ g∗(β) = p∗π(k)(β) if β ∈ I−1
g (jk)

⇐⇒ g∗(β) = p∗π(k)(β) if τk−1 ≤ β ≤ τk; k = 1, . . . , N ′,

where the first equality is a direct consequence of (15), the second equality is
due to the definition of the function π, and the third equality is due to (18)
and the fact that g∗ is continuous. This completes the proof of (17). Next,
we proceed to prove the properties delineated in Lemma 7. To prove the first
property, recall that pk is strongly convex and quadratic for every k = 1, . . . , N .
Therefore, p∗k(β) = maxα{βα − pk(α)}} is also strongly convex and quadratic.
Moreover, the second property follows since, if p∗π(k) and p∗π(k+1) are identical

for some 1 ≤ k ≤ N ′, one can remove the (k + 1)-th piece and set τk ← τk+1

and N ′ ← N ′ − 1. This process can be repeated until p∗π(k)(β) and p∗π(k+1)(β)

are not identical for all k = 1, . . . , N ′ − 1. ⊓⊔

We are now ready to present the proof of Proposition 1.
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Proof of Proposition 1. One can write

f∗(β) = max
α
{βα− f(α)}

= max

{
−f(0),max

α̸=0

{
βα− f̃(α)− λ

}}

= max

−f(0),max
α

{
βα− f̃(α)

}
︸ ︷︷ ︸

:=f̃∗(β)

−λ

 .

(19)

Next, note that

f̃∗(β) = max
α

{
βα− f̃(α)

}
= max

α

{
βα− min

1≤k≤N
{pk(α)}

}
= max

α

{
max

1≤k≤N
{βα− pk(α)}

}
= max

1≤k≤N

{
max
α
{βα− pk(α)}

}
= max

1≤k≤N
{p∗k(β)}. (20)

Since each p∗k is strongly convex, f̃∗ is also strongly convex. Therefore, the equa-

tion f̃∗(β)−λ = −f(0) can have at most two solutions. Moreover, f̃∗(0) = −f(0)
which implies f̃∗(0) − λ < −f(0). Hence, f̃∗(β) − λ = −f(0) has exactly two
solutions. Let β1 < β2 be these solutions. Based on (19), f∗ can be characterized
as

f∗(β) =

{
−f(0) β1 ≤ β ≤ β2

f̃∗(β)− λ otherwise.
(21)

Since f̃ is consistent, it must have a non-decreasing indexing function due to
Lemma 5. Combined with Lemma 7, this implies that f̃ has at most N ′ ≤ N
pieces. Therefore, f∗ emerges as a piece-wise quadratic function with at most M
pieces, where M ≤ N ′ +2 ≤ N +2. Let these pieces be denoted as {qk}Mk=1. For
every 1 ≤ k ≤ M , we either have qk(β) = p∗k′(β) − λ for some 1 ≤ k′ ≤ N , or
qk(β) = −f(0). Therefore, q1, . . . , qM are quadratic and convex. Moreover, it is
easy to verify that qk and qk+1 are not identical for all k = 1, . . . ,M−1. Finally,
note that

f̃∗(β) = max
1≤k≤N

{p∗k(β)} ≥ max
1≤k≤N ′

{p∗π(k)(β)} ≥ p∗If̃ (β)
(β) = f̃∗(β),

where the first equality follows from (20). The above inequality implies that
f̃∗(β) = max1≤k≤N ′{p∗π(k)(β)}. Therefore, according to (19), we have

f∗(β) = max{−f(0), f̃∗(β)− λ} = max
1≤k≤M

{qk(β)}.
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This completes the proof. ⊓⊔

3.4 Breakpoint algorithm

Our next goal is to characterize f∗ efficiently. Indeed, the function f∗ can be
expressed as

f∗(β)=max{−f(0), f̃∗(β)− λ} =max

−f(0)︸ ︷︷ ︸
p̃0(β)

, max
1≤k≤N

{p∗k(β)− λ︸ ︷︷ ︸
p̃k(β)

}


= max

0≤k≤N
{p̃k(β)}.

A direct method for characterizing f∗ is to identify the intersections of p̃k and p̃l
for all possible pairs 0 ≤ k < l ≤ N , sort these intersections, and then determine
the minimum piece within every pair of adjacent intersections. This method
correctly characterizes f∗ and operates in O(N2). However, we demonstrate
that this complexity can be improved to O(N). To explain our method, we start
by introducing the class of semi-consistent functions.

Definition 4. A piece-wise quadratic function g with breakpoints −∞ = τ0 <
τ1 < · · · < τN = +∞ and pieces p1, . . . , pN is called semi-consistent if it
satisfies the following properties:

– p1, . . . , pN are strongly convex;

– We have pk(α) ≤ min{pk−1(α), pk+1(α)} for all α ∈ [τk−1, τk] and 2 ≤ k ≤
N − 1.

– For all k ≤ N , the indexing function Igk is non-decreasing, where gk : IR→
IR is defined as:

gk(α) =

{
g(α) α ≤ τk

pk(α) α > τk.
(22)

The first property mirrors that of consistent functions. The second property is a
local variant of the second property of the consistent functions: Within the local
interval bounded by two adjacent breakpoints τk−1 and τk, the function g is
the minimum of the adjacent pieces pk−1, pk, and pk+1. Moreover, the function
gk is obtained by restricting the function g to its first k pieces, with the final
piece extended to +∞. Indeed, gk is piece-wise quadratic with k strongly convex
pieces. However, it may not be consistent. It is also evident that gN = g.

Not every semi-consistent function is consistent. An example is depicted in
Figure 6. However, our next lemma shows that every consistent function is semi-
consistent.

Lemma 8. Any consistent quadratic function is semi-consistent.
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Fig. 6. A semi-consistent function with two pieces. The function is not consistent since
it violates the second property of Definition 3.

Proof. Suppose that g is consistent with N pieces. The first property of semi-
consistent functions is trivially satisfied for g. Since g(α) = min1≤k≤N{pk(α)},
the function g also satisfies the second property. To prove the last property, we
can follow the same steps as the proof of Lemma 5. The first step is to show that
Lemma 6 holds for gk. The second step is to prove the non-decreasing property
of Igk based on the statements of Lemma 6. The details of the proof are omitted
since they are identical to those of Lemma 5. ⊓⊔

Since every consistent function is semi-consistent, to prove Proposition 2,
it suffices to provide an efficient algorithm for obtaining the conjugate of the
functions expressed as g + λ1lα, where g is semi-consistent.

Recall the geometric interpretation of a conjugate function: Given any convex
function pk, the negative of its conjugate −p∗k is the intercept of a tangent to pk
with slope β.

Definition 5. For any 1 ≤ k < l ≤ N , we define a feasible common tangent
skl to pieces l and k as the slope of a line that is tangent to pk and pl at some
points τk−1 ≤ αk ≤ τk and τl−1 ≤ αl ≤ τl, respectively.

Observe that since functions pk and pl are strictly convex, any tangent line is an
underestimator of the function. Moreover, any two different lines in IR2 intersect
in at most one point. If the intersection occurs in interval [τk−1, τk], then one
line is strictly “above” the other in interval [τl−1, τl] and they cannot both be
tangents of pl. Cases where the intersection occurs in a different interval or where
the lines are parallel can be handled identically. We formally prove this result
next.

Lemma 9. For any 1 ≤ k < l ≤ N , the pieces k and l can have at most one
feasible common tangent.

Proof. Since a feasible common tangent skl must satisfy−p∗l (skl) = −p∗k(skl) and
both p∗l and p∗k are quadratic, the pieces pl and pk can have at most two feasible
common tangents. By contradiction, suppose they have exactly two common
tangents, given by ℓ1kl(α) := s1klα + b1kl and ℓ2kl(α) := s2klα + b2kl. Without loss
of generality, suppose s2kl > s1kl. Let α

1
k and α2

k be the points at which the lines
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ℓ1kl(α) and ℓ2kl(α) are tangent to pk, respectively. Define α1
l and α2

l in a similar
fashion. Since pk and pl are strongly convex and s1kl < s2kl, we must have α1

k < α2
k

and α1
l < α2

l . Therefore,

τk−1 ≤ α1
k < α2

k ≤ τk ≤ τl−1 ≤ α1
l < α2

l ≤ τl =⇒ α2
k ≤ α1

l . (23)

On the other hand, due to the strong convexity of pk, we have

ℓ1kl(α
1
k) = pk(α

1
k) and ℓ1kl(α) < pk(α);∀α ̸= α1

k

ℓ2kl(α
2
k) = pk(α

2
k) and ℓ2kl(α) < pk(α);∀α ̸= α2

k.

Combining the above two inequalities, we have ℓ1kl(α
2
k) < ℓ2kl(α

2
k), which implies

that b1kl − b2kl < (s2kl − s1kl)α
2
k. Similarly, one can show that ℓ2kl(α

1
l ) < ℓ1kl(α

1
l ),

which implies that (s2kl − s1kl)α
1
l < b1kl − b2kl. Therefore, we have{

b1kl − b2kl < (s2kl − s1kl)α
2
k

(s2kl − s1kl)α
1
l < b1kl − b2kl

=⇒ α1
l < α2

k.

This contradicts (23), thereby completing the proof. ⊓⊔

Our next algorithm (Algorithm 3) obtains the value of skl.

Algorithm 3 Feasible common tangent: SLOPE(pk, τk−1, τk, pl, τl−1, τl)

Input: {pk, τk−1, τk} and {pl, τl−1, τl}
Output: The slope of the feasible common tangent skl

1: Obtain the conjugate functions p∗k and p∗l
2: Obtain the roots β1

kl and β2
kl of −p∗k(β) = −p∗l (β)

3: Obtain α1
k = argmaxα{β1

klα− pk(α)} and α1
l = argmaxα{β1

klα− pl(α)}
4: Obtain α2

k = argmaxα{β2
klα− pk(α)} and α2

l = argmaxα{β2
klα− pl(α)}

5: if α1
k ∈ [τk−1, τk] and α1

l ∈ [τl−1, τl] then
6: return skl = β1

kl

7: else if α2
k ∈ [τk−1, τk] and α2

l ∈ [τl−1, τl] then
8: return skl = β2

kl

9: else if α1
l /∈ [τl−1, τl] and α2

l /∈ [τl−1, τl] then
10: return skl = +∞
11: else
12: return skl = −∞
13: end if

A few observations are in order regarding Algorithm 3. First, note that the
conjugate functions p∗k and p∗l in Line 1 can be obtained in O(1) time and
memory. Moreover, without loss of generality, we assume that −p∗k(β) = −p∗l (β)
has two roots β1

kl and β2
kl; indeed, the later steps of the algorithm can be modified

accordingly if −p∗k(β) = −p∗l (β) has fewer than two roots. It is also easy to see
that {α1

k, α
1
l , α

2
k, α

2
l } in Lines 3 and 4 can be obtained in O(1) time and memory.
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Finally, the algorithm assigns +∞ or −∞ to skl if a feasible common tangent
does not exist.

We next show that the breakpoints of g∗ coincide with certain feasible com-
mon tangents that satisfy a breakpoint condition.

Definition 6. We say pieces k < l satisfy the breakpoint condition if:

– −∞ < skl < +∞;
– I−g (skl) = limϵ→0+ Ig(skl − ϵ) = Ig(skl) = k;
– I+g (skl) = limϵ→0+ Ig(skl + ϵ) = l.

We refer the reader back to Figure 5 for intuition. Both lines with slopes β1

and β2 are tangent to pieces satisfying the breakpoint condition. Alternatively,
imagine the line tangent to pieces p2 and p3. Such a line would cut into the
epigraph of piece p4. In this scenario, I+g (s23) = 4, violating the last condition.
Intuitively, tangent lines between pieces satisfying the breakpoint condition are
the lines required to describe the convex envelope of the piece-wise quadratic
function g. More formally, as we show next, the slopes of such lines are required
to describe the conjugate function.

Lemma 10. The pieces k < l satisfy the breakpoint condition if and only if their
feasible common tangent skl is a breakpoint for g∗.

Proof. Suppose that the pieces k < l satisfy the breakpoint condition. Therefore,
we have I−g (skl) = Ig(skl) = k, which implies that there exists some ϵ > 0 such
that for all ϵ ∈ [0, ϵ) we have Ig(skl− ϵ) = k. From the definition of the indexing
function, it follows that there exists α⋆

k ∈ argmax{(skl − ϵ)α − g(α)} such that
τk−1 ≤ α⋆

k ≤ τk. Therefore, we have

g∗(skl − ϵ) = (skl − ϵ)α⋆
k − g(α⋆

k)

= (skl − ϵ)α⋆
k − pk(α

⋆
k)

= max
α
{(skl − ϵ)α− pk(α)}

= p∗k(skl − ϵ).

Similarly, since I+g (skl) = l, there exists some ϵ > 0 such that for all ϵ ∈ (0, ϵ) we
have g∗(skl + ϵ) = p∗l (skl + ϵ). The above two equations imply that skl is indeed
a breakpoint of g∗.

Conversely, suppose that a point τ is a breakpoint for g∗. Since τ is a break-
point, we must have I−g (τ) ̸= I+g (τ). This together with the non-decreasing
property of Ig implies that I−g (τ) < I+g (τ). Let k = I−g (τ) and l = I+g (τ) for
some k < l. We proceed to prove that τ is indeed the feasible common tangent
to the pieces k and l. First, it is easy to verify that pk and pl cannot be identical.
Define α⋆

k = argmaxα{τα− pk(α)} and α⋆
l = argmaxα{τα− pl(α)}. Due to the

definition of the indexing function, we have τk−1 ≤ α⋆
k ≤ τk and τl−1 ≤ α⋆

l ≤ τl.
Consider the lines ℓτ,k(α) = τα− p∗k(τ) and ℓτ,l(α) = τα− p∗l (τ). Indeed, these
two lines are tangent to pieces k and l at points α⋆

k and α⋆
l , respectively. More-

over, they coincide since p∗k(τ) = p∗l (τ) due to the continuity of g∗. Therefore, τ
is the feasible common tangent to the pieces k and l. ⊓⊔
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Fig. 7. The first row corresponds to the ADD step of Algorithm 4. The second row
corresponds to the DELETE step, wherein piece p2 is discarded by the algorithm.

According to Lemma 10, it suffices to identify every pair of pieces k < l that
satisfy the breakpoint condition. This can be naturally achieved by verifying the
condition for all

(
n
2

)
pairs of pieces. Our proposed Algorithm 4, which we call

the breakpoint algorithm, achieves this goal in linear time. It keeps track of two
ordered lists Γ and Π. The list Γ collects the set of candidate breakpoints,
whereas the list Π records the pieces that satisfy the breakpoint condition.
In other words, upon termination, the pieces Π(j) and Π(j + 1) satisfy the
breakpoint condition for any j = 1, . . . , |Π| − 1. The initial values of these lists
are set as Γ = [−∞] and Π = [1].

Fig. 8. The auxiliary function g̃ defined by removing piece N−1 from g, and extending
the pieces N − 2 and N to substitute piece N − 1.

At every iteration, the algorithm takes one of the following steps:

– ADD (Line 7 of Algorithm 4): When a common tangent between the
piece j and the highest index i in Π is greater than the largest discovered
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Algorithm 4 Breakpoint algorithm

Input: g + λ1lα, where g is semi-consistent
Output: The conjugate of the input function

1: Γ ← [−∞] ▷ Ordered list of candidate breakpoints of g∗

2: Π ← [1] ▷ Ordered indices satisfying the breakpoint condition
3: j ← 2
4: while j ≤ N do
5: i← end(Π) ▷ Return the last (maximum) element of Π
6: sij ← SLOPE(pi, τi−1, τi, pj , τj−1, τj) ▷ Obtain the feasible common tangent
7: if sij > end(Γ ) then ▷ ADD
8: Γ ← append(Γ, sij) ▷ Append sij to Γ as a new breakpoint
9: Π ← append(Π, j) ▷ Append j to Π
10: j ← j + 1
11: else if sij ≤ end(Γ ) then ▷ DELETE
12: Γ ← delete(Γ, end(Γ )) ▷ Delete the last breakpoint from Γ
13: Π ← delete(Π, end(Π)) ▷ Delete the last index from Π
14: end if
15: end while
16: Γ ← append(Γ,+∞)
17: Define g∗(β) = p∗Π(k)(β), for Γ (k) ≤ β ≤ Γ (k + 1); k = 1, . . . ,M .
18: Find the roots β1 < β2 of −g(0) = g∗(β)− λ
19: return the conjugate of g(α) + λ1lα as{

−g(0) β1 ≤ β ≤ β2

g∗(β)− λ otherwise
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breakpoint in Γ , the algorithm adds the index j and the common tangent sij
to the lists Π and Γ , respectively. This scenario is depicted in the first row
of Figure 7. Note that, at this step, it is possible for the algorithm to add
an infeasible common tangent with sij = +∞ to Γ (see Figure 7, top right
figure). However, both sij and j will be discarded in the DELETE step, as
we explain next.

– DELETE (Line 11 of Algorithm 4): When a common tangent between
the piece j and the piece with the highest index i in Π is smaller than the
largest discovered breakpoint τ in Γ , the algorithm deletes the last elements
of the lists Γ and Π. Intuitively, this condition implies that the last piece of
Π cannot satisfy the breakpoint condition when paired with any other piece.
As another interpretation, this piece does not play a role in characterizing
the convex envelope of g since it lies in the interior of its epigraph. This
scenario is also depicted in the second row of Figure 7.

Our next theorem shows that the breakpoint algorithm returns the conjugate
of any function g(α) + λ1lα, provided that g is semi-consistent.

Theorem 3. Let g be semi-consistent with N pieces. The breakpoint algorithm
(Algorithm 4) correctly computes the conjugate of g+λ1lα for any λ > 0 in O(N)
time and memory.

Before presenting the proof of the above theorem, we show how it can be used
to complete the proof of Proposition 2.

Proof of Proposition 2. According to Lemma 8, f̃ is semi-consistent. Therefore,
the proof readily follows upon choosing g = f̃ in Theorem 3. ⊓⊔

Next, we present the main idea behind the correctness proof of the break-
point algorithm. Our proof is based on induction on the number of pieces in g.
Suppose the breakpoint algorithm returns the conjugate of any semi-consistent
function with at most N − 1 pieces. Our goal is to use this assumption to prove
that the algorithm returns the conjugate of gN with N pieces. Note that, when
running the breakpoint algorithm on gN , the algorithm first processes the first
N − 1 pieces of gN , which are identical to gN−1. Due to Definition 4, gN−1 is
semi-consistent with N − 1. Therefore, relying on our induction hypothesis, the
breakpoint algorithm correctly identifies the breakpoints and pieces of g∗N−1.
Let si,N−1 and N − 1 denote the last breakpoint and piece added to Γ and Π
respectively until the algorithm reaches piece N . Upon processing piece N , two
potential scenarios emerge:

– Case 1: si,N−1 < sN−1,N . In this case, the algorithm “adds” the breakpoint
sN−1,N and the piece N to Γ and Π, then returns these sets as the set of
breakpoints and pieces of g∗N . We prove that these sets coincide with the
true sets of breakpoints and pieces of g∗N .

– Case 2: si,N−1 ≥ sN−1,N . In this scenario, the algorithm “deletes” the break-
point si,N−1 and the piece N − 1 from Γ and Π respectively. Here, we es-
tablish that the piece N − 1 does not contribute to the characterization of
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g∗N . In this scenario, g∗N is the same as the conjugate of an auxiliary func-
tion g̃N−1, obtained by removing piece N − 1 from gN , and subsequently,
extending pieces N − 2 and N to substitute piece N − 1. Figure 8 illustrates
this function. We show that the constructed g̃N−1 is semi-consistent and has
N − 1 pieces. Therefore, by induction hypothesis, the algorithm correctly
recovers its conjugate.

The rest of this section is devoted to formalizing the above intuition.

Proof of Theorem 3. We begin by presenting the proof of correctness, followed
by the proof of its runtime. Suppose that Line 17 correctly recovers g∗. Upon
finding the roots β1 < β2 of −g(0) = g∗(β) − λ, Equation (21) can be invoked
to show that Line 19 returns the conjugate of g + λ1lα. Therefore, to prove the
correctness of the algorithm, it suffices to show that Line 17 correctly recovers
g∗. To this goal, we prove that the ordered lists Γ and Π coincide with the
correct breakpoints and pieces of g∗, respectively. Our proof is by induction
on the number of pieces N of g. Recall that g = gN as defined Definition 4.
To streamline the presentation, we keep the dependency of g on N explicit
throughout the proof.

Base case. Suppose N = 1. Indeed, both gN and g∗N have one piece with no
breakpoints. Since the While loop in Line 4 starts only when g has more than
one piece, the algorithm correctly returns the initial values of Π = [1] and
Γ = [−∞,+∞]. Thus, the base case of the induction hypothesis is true.

Induction step. Suppose that the breakpoint algorithm correctly recovers Γ and
Π for any semi-consistent function gN−1 with at most N − 1 pieces. Our goal is
to prove that the algorithm correctly recovers the correct breakpoints and pieces
for any semi-consistent function gN with N pieces.

We use (Γ ⋆
N , Π⋆

N ) and (ΓN , ΠN ) to denote the true set of breakpoints
and pieces of g∗N , and those returned by the algorithm, respectively. Similarly,
(Γ ⋆

N−1, Π
⋆
N−1) and (ΓN−1, ΠN−1) are the true breakpoints and pieces, and those

returned by the algorithm for g∗N−1, respectively. From our induction hypothesis,
we have Γ ⋆

N−1 = ΓN−1 and Π⋆
N−1 = ΠN−1. When we apply the algorithm to

gN , the algorithm first processes the first N − 1 pieces of gN . Let (Γ̃N−1, Π̃N−1)
denote the set of breakpoints and pieces returned by the algorithm at this point.
For gN−1, the piece N − 1 is defined over the domain [τN−2,∞). Therefore, we
have lim

β→∞
IgN−1

(β) = N − 1. Suppose i is the piece for which the pair i and

N − 1 satisfies the breakpoint condition for gN−1. This implies that

1. I−gN−1
(si,N−1) = IgN−1

(si,N−1) = i,

2. I+gN−1
(si,N−1) = N − 1.

Due to the non-decreasing property of IgN−1
, we have si,N−1 = max{Γ ⋆

N−1}. We
consider two cases:
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Case 1: si,N−1 < sN−1,N . In this case, the algorithm proceeds with the ADD

step and returns ΓN = Γ̃N−1∪{sN−1,N} and ΠN = Π̃N−1∪{N}. We show that
these sets coincide with (Γ ⋆

N , Π⋆
N ).

Claim 1 Γ̃N−1 = Γ ⋆
N−1 and Π̃N−1 = Π⋆

N−1.

To prove this claim, we first observe that the algorithm runs identically over
the first N − 2 pieces of gN−1 and g, since these functions are identical over
(−∞, τN−1]. Therefore, it follows that Γ̃N−1 matches Γ ⋆

N−1 entirely, except for
a potential distinction in their final elements. This distinction occurs only if
si,N−1 = −∞ or si,N−1 = +∞. Since si,N−1 ∈ Γ ⋆

N−1, we have −∞ < si,N−1.
Moreover, since τN = +∞, we have sN−1,N < +∞ according to Algorithm 3.
This implies that −∞ < si,N−1 < sN−1,N < +∞. Therefore, both si,N−1 and

sN−1,N are finite and Γ̃N−1 = Γ ⋆
N−1. The proof of Π̃N−1 = Π⋆

N−1 follows simi-
larly.

Based on the above claim, it suffices to show that Γ ⋆
N = Γ ⋆

N−1 ∪ {sN−1,N} and
Π⋆

N = Π⋆
N−1 ∪ {N}. To this goal, we rely on two crucial claims.

Claim 2 g⋆N−1(β) = max
α≤τN−1

{αβ − gN−1(α)} for every β < sN−1,N .

To prove the above claim, it suffices to show that, for every β < sN−1,N , there
exists some α⋆(β) ∈ {argmaxα{αβ − gN−1(α)}} such that α⋆(β) < τN−1. First
consider the case β ≤ si,N−1. In this case, IgN−1

(β) ≤ i, which in turn implies
α⋆(β) < τi < τN−1. When si,N−1 < β ≤ sN−1,N , from the non-decreasing
property of the indexing function, we have IgN−1

(β) = N −1. Thus, maxα{αβ−
gN−1(α)} = maxα{αβ − pN−1(α)} for every si,N−1 < β ≤ sN−1,N . Since pN−1

is strongly convex, α⋆(β) is an increasing function of β for every si,N−1 < β ≤
sN−1,N . On the other hand, α⋆(sN−1,N ) = argmaxα{αsN−1,N − pN−1(α)} <
τN−1, where the last inequality follows from the fact that sN−1,N is finite and
is the feasible common tangent to pieces N − 1 and N . Therefore, we have
α⋆(β) < τN−1 for every β < sN−1,N .

Claim 3 g∗N−1(β) > αβ − pN (α) for every β < sN−1,N and α > τN−1.

To prove this claim, define the line ℓβ(α) = αβ − g∗N−1(β). It is easy to see that

ℓsN−1,N
(α) > ℓβ(α), for every β < sN−1,N and α > τN−1. (24)

Since IgN−1
(sN−1,N ) = N − 1, it follows that g∗N−1(sN−1,N ) = p∗N−1(sN−1,N ) =

p∗N (sN−1,N ). Thus,

ℓsN−1,N
(α) = sN−1,Nα− g∗N−1(sN−1,N ) = sN−1,Nα− p∗N (sN−1,N ).

On the other hand, due to the property of conjugate functions, for all α ∈ IR,

pN (α) ≥ sN−1,Nα− p∗N (sN−1,N ) = ℓsN−1,N
(α).
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The above inequality together with (24) implies that

pN (α) > ℓβ(α), for every β < sN−1,N and α > τN−1

⇐⇒ pN (α) > βα− g∗N−1(β), for every β < sN−1,N and α > τN−1

⇐⇒ g∗N−1(β) > βα− pN (α), for every β < sN−1,N and α > τN−1,

which completes the proof of this claim.

Equipped with Claims 2 and 3, we are ready to prove Γ ⋆
N = Γ ⋆

N−1 ∪ {sN−1,N}
and Π⋆

N = Π⋆
N−1 ∪ {N}. To this goal, it suffices to show that

g∗N (β) =

{
g∗N−1(β) β < sN−1,N

p∗N (β) β ≥ sN−1,N .

Consider the case β < sN−1,N . From the definition of the conjugate function,
we have

g⋆N (β) = max
α∈IR
{αβ − gN (α)}

= max

{
max

α≤τN−1

{αβ − gN (α)} , max
α>τN−1

{αβ − gN (α)}
}

= max

{
max

α≤τN−1

{αβ − gN−1(α)} , max
α>τN−1

{αβ − pN (α)}
}

= max

{
g∗N−1(β), max

α>τN−1

{αβ − pN (α)}
}

= g∗N−1(β),

where the second to last equality follows from Claim 2 and the last equality
is due to Claim 3. Using the fact that g∗N (β) = g∗N−1(β) for β < sN−1,N , we
obtain IgN (β) = IgN−1

(β) = N−1 for si,N−1 < β < sN−1,N . On the other hand,
limβ→+∞ Ig(β) = N . Therefore, sN−1,N ∈ Γ ⋆

N , which implies g⋆N (β) = p∗N (β)
for β ≥ sN−1,N . This completes the proof of the first case.

Case 2: si,N−1 ≥ sN−1,N . In this case, the algorithm proceeds with the DELETE

step and discards si,N−1 and N−1 from Γ̃N−1 and Π̃N−1, respectively. Our next
claim shows that both si,N−1 and N − 1 are correctly deleted, as piece N − 1
does not belong to Image(IgN ).

Claim 4 N − 1 ̸∈ Image(IgN ).

To prove this claim, suppose, by contradiction, that N − 1 ∈ Image(IgN ). This
implies that there exists a piece k such that both pairs k,N − 1 and N − 1, N
satisfy the breakpoint condition for gN . Therefore, sk,N−1 < sN−1,N ≤ si,N−1.
Due to the non-decreasing property of IgN , we have IgN (β) ≤ N − 1 for every
β ≤ sN−1,N . This implies the existence of α⋆(β) ≤ τN−1 such that α⋆(β) ∈
argmaxα{αβ − gN−1(α)} for every β ≤ sN−1,N . Therefore, we have g∗N−1(β) =
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maxα{αβ − gN−1(α)} = maxα≤τN−1
{αβ − gN−1(α)} for every β ≤ sN−1,N .

Similarly, we have IgN−1
(β) ≤ i for every β ≤ si,N−1, which leads to g∗N (β) =

maxα≤τN−1
{αβ − gN (α)} for every β ≤ si,N−1. Combining these two equalities,

for every β ≤ sN−1,N ≤ si,N−1, we have

g∗N−1(β) = max
α≤τN−1

{αβ − gN−1(α)} = max
α≤τN−1

{αβ − gN (α)} = g∗N (β).

The above equality implies that IgN−1
(β) = IgN (β) = N − 1 for every sk,N−1 <

β ≤ sN−1,N . On the other hand, recall that IgN−1
(β) ≤ i for every β ≤ si,N−1,

which leads to IgN−1
(β) < N − 1 for every sk,N−1 < β ≤ sN−1,N . This leads to

a contradiction, thereby proving the claim.

As the last step of the proof, we consider the following function:

g̃N−1(α) =

{
min{pN−2(α), pN (α)} τN−2 < α < τN−1,

g(α) otherwise.
(25)

The function g̃N−1 is obtained by removing piece N−1 from g, and subsequently,
extending pN−2 and pN to substitute piece N − 1. Our final claim shows that
g̃N−1 and gN have the same conjugates.

Claim 5 g̃∗N−1 = g∗N .

To prove this claim, note that g̃N−1(α) and g(α) are identical except within the
interval [τN−2, τN−1]. Due to the second property of semi-consistent functions
(Definition 4), we have g̃N−1(α) ≥ g(α) within the interval [τN−2, τN−1]. This
implies that

βα− g(α) ≥ βα− g̃N−1(α); ∀α, β ∈ IR

=⇒ max
α
{βα− g(α)} ≥ max

α
{βα− g̃N−1(α)}; ∀β ∈ IR

=⇒ g∗(β) ≥ g̃∗N−1(β); ∀β ∈ IR.

On the other hand, due to Claim 4, we have N − 1 /∈ Image(IgN ). Therefore, for
every β ∈ IR, there exists α⋆(β) /∈ [τk−1, τk] such that α⋆(β) ∈ argmaxα{βα −
g(α)}. This implies that, for every β ∈ IR:

g∗(β) = max
α
{βα− g(α)}

= βα⋆(β)− g(α⋆(β))

= βα⋆(β)− g̃N−1(α
⋆(β))

≤ max
α
{βα− g̃N−1(α)} = g̃∗N−1(β).

Combining the above two inequalities implies that g̃∗N−1(β) = g∗N (β), thereby
proving the claim.
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After discarding piece N − 1, the algorithm operates identically on g̃N−1 and
gN . Indeed, g̃N−1 is semi-consistent since it satisfies the properties outlined in
Definition 4. Given that g̃N−1 contains N−1 pieces, by our induction hypothesis,
the breakpoint algorithm correctly identifies the breakpoints and pieces of g̃∗N−1,
which coincide with those of g∗N as asserted in the above claim. This completes
the correctness proof of the algorithm.

Finally, we analyze the runtime of the algorithm. We consider the operations
within the While loop of Algorithm 4. Every execution of Algorithm 3 can be
completed in O(1). To see this, note that the If conditions in Lines 5, 7, 9, and
11 of Algorithm 3 can be checked in O(1) time. The remaining operations of the
While loop either add or delete an element to a list, each taking O(1) time and
memory. Thus a single round of the While loop can be executed in O(1) time
and memory. Next, we show that the While loop executes at most O(N) rounds.
Once a piece is deleted, it will never be revisited. Since at most N pieces can be
added and at most N pieces can be deleted, the While loop can execute at most
O(N) rounds. Finally, note that, since Π and Γ have O(N) elements, computing
g∗N in Line 17 requires O(N) time and memory. Similarly, it follows that Line 18
can be computed in O(N). Consequently, we conclude that Algorithm 4 operates
in O(N) time and memory. ⊓⊔

4 Practical consideration

The breakpoint algorithm (Algorithm 4) is prone to numerical instabilities for
trees with a large number of nodes. In this section, we explain the root cause of
this numerical issue and describe a correction step that averts this without any
compromises to the performance and accuracy of the algorithm.

Consider an arbitrary pair of nodes u, v where v = child(u) and v is not a
branch. Since fu(α) is consistent, it can be written as

fu(α) = min
1≤k≤Nu

{pu,k(α)}+ λu1lα,

where {pu,k(α)}Nu

k=1 are strongly convex and quadratic. For every k = 1, . . . , Nu,
let pu,k(α) = γu,k,1α

2 + γu,k,2α+ γu,k,3. Lemma 3 and Equation (9) imply that

fv(α) = min
1≤k≤Nv

{pv,k(α)}+ λv1lα,

where

pv,k(α) =
1

2
α2 + cvα− p∗u,k(−Qu,vα) (26)

=

(
1

2
−

Q2
u,v

4γu,k,1

)
︸ ︷︷ ︸

:=γv,k,1

α2 +

(
cv −

γu,k,2Qu,v

2γu,k,1

)
︸ ︷︷ ︸

:=γv,k,2

α+

(
γu,k,3 −

γ2
u,k,2

4γu,k,1

)
︸ ︷︷ ︸

:=γv,k,3

.

(27)
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Suppose, for some arbitrary indices k, l, we obtain γv,k,1, γv,l,1 from γu,k,1, γu,l,1
based on the equation above. Taking ϵ = |γu,k,1 − γu,l,1|, we obtain

|γv,k,1 − γv,l,1| =

∣∣∣∣∣ Q2
u,v

4γu,k,1γu,l,1

∣∣∣∣∣︸ ︷︷ ︸
ρ

·ϵ.

When γu,k,1, γu,l,1 > Qu,v/2, we observe that ρ < 1, resulting in a decrease
in the discrepancy of the quadratic terms. This scenario is likely to occur in
practice, as |Qu,v| < 1 due to the positive definiteness of Q, and the quadratic
coefficients remain close to 1/2 due to (26). The shrinking effect of the update
rule is exacerbated in situations where multiple neighboring nodes satisfy ρ <
1, thereby leading to fast decay in ϵ. As ϵ approaches machine precision, the
breakpoint algorithm would suffer from numerical instabilities.

To address this challenge, we note that, since the slope of the common tan-
gent skl is proportional to ϵ−1, such errors arise only at breakpoints with sig-
nificantly large absolute values. Our subsequent lemma demonstrates that these
breakpoints correspond to suboptimal pieces, and thus can be easily excluded
from consideration.

Lemma 11. Let x⋆ be the optimal solution of Problem (1). We have ∥x⋆∥∞ ≤
∥c∥2

λmin(Q) , where λmin(Q) denotes the smallest eigenvalue of Q.

Proof. Suppose J corresponds to the set of row indices over which x⋆ is non-zero.
We have x⋆ = −Q−1

J,JcJ , which implies

∥x⋆∥∞ ≤ ∥x⋆∥2 =
∥∥(QJ,J)

−1cJ
∥∥
2
≤ ∥(QJ,J)

−1∥2∥c∥2 ≤
∥c∥2

λmin(QJ,J)
.

Since J ⊂ N , we have

λmin(QJ,J) = min
∥x∥2=1

x⊤QJ,Jx = min
∥x∥2=1,
xJ=0

x⊤Qx ≥ min
∥x∥2=1

x⊤Qx ≥ λmin(Q).

This completes the proof. ⊓⊔

According to the above lemma, it suffices to characterize the parametric cost at

any node u within the range
[
− ∥c∥2

λmin(Q) ,
∥c∥2

λmin(Q)

]
. Therefore, the aforementioned

numerical issue can be mitigated by first obtaining ∥c∥2

λmin(Q) and then discarding

the breakpoints falling outside the range
[
− ∥c∥2

λmin(Q) ,
∥c∥2

λmin(Q)

]
.

5 Experiments

In this section, we assess the performance of our algorithm across various syn-
thetic and real-world case studies. All experiments were run on a computer
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with 16 cores of 3.0 GHz Xeon Gold 6154 processors and 8 GB memory per
core. Specifically, we compare the proposed parametric algorithm with Gurobi
v10.0.2. For Gurobi, a time limit of 1 hour was set, and the algorithm was termi-
nated whenever the optimality gap fell below 0.01%. If Gurobi failed to achieve
an optimality gap of 0.01% or less within this time limit, we reported the best
optimality gap attained. We also note that Gurobi, from version 10 onwards,
uses a branch-and-bound method based on a perspective reformulation to solve
Problem (1); these reformulations are known to outperform the classical big-M
reformulations (see, e.g., [46]) and are considered state-of-the-art. The Python
implementation of our algorithm as well as the presented case studies are avail-
able at

https://github.com/aareshfb/Tree-Parametric-Algorithm.git

5.1 Case Study on synthetic dataset

For our first set of experiments, we construct supp(Q) as a randomly generated
connected tree. The nonzero off-diagonal elements are selected from a uniform
distribution within the range [−1, 0]. Each diagonal element Qi,i is set to 1 +∑

j ̸=i |Qi,j |. This ensures that Q is positive definite. Similarly, elements of vector
c were generated from a uniform distribution within the interval (−10, 10). Unless
explicitly stated otherwise, the default regularizing parameter was set to λi = 7.5
for all i. This value approximately corresponds to 50% non-zero elements in the
optimal solution for the selected Q and c.

First, we examine the performance of the parametric algorithm for problems
with varying size n. The results are presented in Table 1.

Table 1. Performance for varying sizes

Metric Method n = 200n = 200n = 200 n = 500n = 500n = 500 n = 1000n = 1000n = 1000 n = 2000n = 2000n = 2000 n = 5000n = 5000n = 5000

Time(s)
Parametric 0.18 0.48 1.01 2.16 5.8
Gurobi 123.93 TL TL TL TL

B&B nodes
Gurobi

1149920 1661958 6186925 2384160 789477
Opt. gap ≤ 0.00% 1.25% 1.48% 2.00% 2.15%

TL: Time Limit (1 hour). The reported results are averaged over 5 trials. “Parametric”
refers to the parametric algorithm (Algorithm 2).

It can be seen that Gurobi is unable to solve instances with sizes exceeding
n = 200 within 1 hour. In contrast, our proposed parametric algorithm can solve
instances with n = 5, 000 in less than 6 seconds, significantly outperforming
Gurobi. To provide further insight into the efficiency of the parametric algo-
rithm, we plot its runtime across a broader range of n in Figure 9. Notably, the
parametric algorithm can solve instances of size n = 50, 000 within 2 minutes.

Moreover, while the theoretical complexity of the parametric algorithm can
be as high as O(n2), in practice, we observe a complexity that is closer to linear
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Fig. 9. The runtime of the parametric algorithm (Algorithm 2) for different values of
n. The reported results are averaged over 5 trials.

O(n1.1156). This improved complexity can be attributed to the fact that, while
the parametric cost at the root node f1(α) may have up to 2n pieces, in practice,
the number of pieces is expected to be significantly smaller. More specifically,
recall that Nu denotes the number of pieces in the parametric cost fu(x). We
have shown that the runtime of Algorithm 2 is O (

∑n
u=1 Nu) = O

(
nN̄
)
, where

N̄ denotes the average number of pieces. While this leads to a quadratic runtime
when N̄ = O(n), it becomes linear if N̄ = O(1).

Figure 10 illustrates the average number of pieces generated by the paramet-
ric algorithm for different values of n. It is evident that as n increases from 1, 000
to 20, 000, the average number of pieces ranges from 20 to 35. This observation
supports our hypothesis that, in practice, the average number of pieces grows
only sublinearly with respect to n.

Next, we fix n = 1, 000 and compare the performance of the parametric
algorithm and Gurobi for different regularization parameters λ. Specifically, we
set λ1 = · · · = λn = λ̄ and vary λ̄. The results are summarized in Table 2. It is
observed that while the performance of the parametric algorithm remains almost
independent of λ̄, the optimality gap obtained by Gurobi remains large, except
for the extreme values of λ̄ that correspond to nearly fully dense or fully sparse
solutions.

Finally, we focus on the special case of path graphs. Specifically, we compare
our parametric algorithm (Algorithm 1) to the direct DP approach proposed
in [36]. As discussed in Section 2, the direct DP approach solves instances with
path structure in O(n2) time complexity. While this runtime matches the theo-
retical complexity of our parametric algorithm, Figure 11 illustrates that their
practical performance differs. In particular, while the direct DP approach out-
performs the parametric algorithm for n ≤ 2, 000, its runtime scales almost
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Fig. 10. The values of N̄ (denoted as “Mean”), maxu{Nu} (denoted as “Max”), and
N1 (denoted as “Root Node”) for different values of n. Note that the maxu{Nu} does
not necessarily coincide with N1. The reported results are averaged over 10 trials.

Table 2. Performance comparison for varying regularization

Metric Method
λ̄ = 0.25λ̄ = 0.25λ̄ = 0.25 λ̄ = 2.5λ̄ = 2.5λ̄ = 2.5 λ̄ = 7.5λ̄ = 7.5λ̄ = 7.5 λ̄ = 12.5λ̄ = 12.5λ̄ = 12.5 λ̄ = 25λ̄ = 25λ̄ = 25 λ̄ = 50λ̄ = 50λ̄ = 50
NZ ≈ 91% NZ ≈ 72% NZ ≈ 50% NZ ≈ 36% NZ ≈ 8% NZ = 0%

Time(s)
Parametric 1.14 1.07 1.01 0.97 0.93 0.95
Gurobi 21.04 TL TL TL TL 3.32

B&B nodes
Gurobi

5746 5667949 6186925 6048614 8477823 1.8
Opt. gap 0.01% 0.17% 1.48% 6.74% 60.05% 0.00%

TL: Time Limit (1 hour), NZ: percentage of non-zero elements in the optimal solution
x⋆. The reported results are averaged over 5 trials.

quadratically with n. On the other hand, the practical performance of the para-
metric algorithm scales almost linearly with n, enabling it to outperform the
direct DP approach for larger instances n > 2, 000.

5.2 Case Study on accelerometer dataset

In this case study, we highlight the performance of the parametric algorithm for
solving the robust inference of GHMM, as detailed in Section 1.1. Specifically, we
focus on the task of recognizing physical activities for a participant using data
collected from a single chest-mounted accelerometer. We consider the dataset
from [11, 10]. To enhance the representation of these activities, [3] proposed using
the mean absolute value of 10 successive signal differences from this dataset. The
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Fig. 11. The runtime of the parametric algorithm (Algorithm 1) and the direct DP
approach of [36] for instances with path structure. The reported results are averaged
over 5 trials.

pre-processed data can be accessed online at https://sites.google.com/usc.
edu/gomez/data.

We utilize the same dataset in our study. The signal comprises 13,800 read-
ings indicating changes in “x acceleration” for a participant. The participant’s
activity sequence is as follows: they were “working at a computer” until times-
tamp 4,415; then engaged in “standing up, walking, and going upstairs” until
timestamp 4,735; followed by “standing” from timestamp 4,735 to 5,854, from
8,072 to 9,044, and again from 9,045 to 9,720. Subsequently, they were “walk-
ing” from timestamp 5,854 to 8,072; involved in “going up or down stairs” from
timestamp 9,044 to 9,435; “walking and talking with someone” from timestamp
9,720 to 10,430; and “talking while standing” from timestamp 10,457 to 13,800
(with the status between timestamps 10,430 and 10,457 being unknown).

This problem can be formulated as an instance of Problem (3), where the
hidden state xt represents the activity level of the participant. Specifically, inter-
vals characterized by minimal or absent physical activity naturally correspond
to time stamps t where xt = 0. Furthermore, we segment the signal into win-
dows of magnitude K and regard each segment t as the observation set for the
hidden state xt. More precisely, we treat y(t−1)K+1, . . . , ytK as the observations
corresponding to the hidden state xt.

Additionally, we assume that a subset of the observations is corrupted with
outlier noise. As discussed in Section 1.1, the inference of a GHMM with out-
liers (referred to as robust inference hereafter) can be addressed by solving Prob-
lem (3). Since this problem has a tree structure, it can be solved via the paramet-
ric algorithm. In this context, the scale of the problems being addressed exceeds
n = 30, 000. At such scales, Gurobi fails to yield a reliable solution. Alterna-
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Fig. 12. Robust and non-robust inference of the hidden signal. In the figure on the
left, the outliers removed from the signal are circled in red. The parameters in this
experiment are set to γt = 400, λk,t = 100, σ2

t = 2, and νt = 1.

tively, in scenarios where the observations are assumed to be free of outliers,
the variables w and z in Problem (3) can be set to zero. This transformation
simplifies the problem into one defined over a path graph, which can be solved
using the parametric algorithm over path graphs (Algorithm 1) or the direct DP
approach proposed in [36].

Figure 12 depicts the robust and non-robust inference of the hidden signal
for K = 10. It is evident that the original signal is corrupted with outlier noise,
with the most significant outlier appearing at timestamp 250. While the robustly
recovered signal successfully filters out the outliers, its non-robust counterpart
fails to remove them. In these experiments, our parametric algorithm solves the
robust inference problem within 46.4 seconds, whereas the non-robust inference
is solved within 1.2 seconds. This disparity in runtimes is not surprising, given
that the robust inference problem is nearly 11 times larger.

Figure 13 depicts the impact of the regularization parameter λk,t on the
recovered signal. A small value of λk,t results in a fully dense w, effectively
treating the entire observations as corrupted by outlier noise. Conversely, a larger
λk,t enforces sparser w, indicating that most observations are assumed to be free
of outlier noise.

Finally, Figure 14 illustrates the impact of varying values of the partition size
K on the recovered signal. Recall that K represents the number of observations
for each hidden state. As a result, a larger K typically improves the smooth-
ness of the recovered signal but could potentially obscure finer changes. This
phenomenon is shown in Figure 14.

Online Setting: Finally, we consider the online setting, where the goal is to infer
the values of the hidden state xt, as the new collected data from the accelerometer
arrives “on-the-go”. More specifically, at each new timestep t = 1, . . . , T , K new
observations are revealed, and the goal is to infer the value of xt, and possibly
update the values of S most recent values xt−1, . . . , xt−S based on the newly
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Fig. 13. The recovered signal for λk,t ∈ {50, 100, 150, 600}. The other parameters are
set to γt = 400, σ2

t = 2, νt = 1, and K = 10.

Fig. 14. The recovered signal for three values of K. The parameters are set to γt =
250, λk,t = 100, σ2

t = 2, and νt = 1.

observed data. Note that new observations at current time t not only help with
the inference of the current hidden state xt, but also can potentially change the
optimal value of the past hidden states xt−1, . . . , x1. Consequently, the optimal
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inference of the hidden state necessitates resolving a sequence of optimization
problems with the new incoming data.

Thanks to our parametric approach, we achieve this goal in milliseconds. To
see this, note that our parametric algorithm performs inference by sequentially
obtaining fx1

, . . . , fxt−1
corresponding to the parametric costs at the hidden

states x1, . . . , xt−1, along with their conjugates (refer to Figure 1 for an illustra-
tion of the associated graph). Therefore, according to the recursive equation (9),
the parametric cost fxt at the new time t can be efficiently characterized merely
based on the conjugate functions f∗

xt−1
(which is already computed and avail-

able) and {f∗
yk,t
}Kk=1, thus circumventing the need to resolve Problem (3) from

scratch. Once the parametric cost fxt is obtained, the hidden states xt, . . . xt−S

can be updated in O(S), according to Algorithm 2. Figure 15 illustrates the
runtime of this online version of our algorithm. At any given time t, the optimal
cost, along with the updated values of xt, . . . , xt−4 are obtained based on K = 10
new observations within at most 45 milliseconds.

Fig. 15. The update time of the 5 most recent hidden states after the arrival of K = 10
observations. The other parameters are set to γt = 250, λk,t = 100, σ2

t = 2, νt = 1.

6 Conclusions

In this paper, we consider mixed-integer quadratic programs with indicators
where the Hessian of the quadratic term, Q, has a tree structure. While for
general Q the problem is NP-hard, we propose a highly efficient algorithm for the
tree-structured Q. Our algorithm has a time and memory complexity of O(n2)
that maintains the same complexity as the simpler path-structured problem
studied earlier. Our computational results show that the practical complexity
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of the algorithm on our test instances is almost linear. Our algorithm can be
leveraged in problems where the Q matrix can be decomposed into trees in a
similar procedure proposed in [36].
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26. Han, S., Gómez, A.: Compact extended formulations for low-rank functions with
indicator variables. arXiv preprint arXiv:2110.14884 (2021)
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A Proof of Lemma 1

Let J be the set of nodes in suppu(Q), excluding u. Let us define pu,s(α):

pu,s(α) = min
x∈IRnu−1,z∈{0,1}nu−1

1

2
α2 + cuα+

(
1

2
x⊤QJ,Jx+ αQ⊤

u,Jx+ c⊤J x+ λ⊤
J z

)

s.t. xi(1− zi) = 0 i = 1, 2 . . . nu − 1

z = s.

It is easy to verify that fu(α) = mins∈{0,1}nu−1{pu,s(α)} + λu1lα. Therefore, it
remains to show that for every s ∈ {0, 1}nu−1, pu,s(α) is strongly convex and
quadratic. To establish this, let Gs denote suppu(Q) with nodes corresponding to
si = 0 removed. Consider {Ggs}

Gs
g=1, the connected components of Gs, where G1s

contains node u. Additionally, define Jg
s as the node set within Ggs . It is evident

that the above optimization decomposes into Gs sub-problems defined over its
connected components, with only one depending on α. In particular, we have

pu,s(α) = pu,s,1(α) +

Gs∑
g=2

pu,s,g,
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where

pu,s,1(α) = min
x

1

2
α2 + cuα+

1

2
x⊤QJ1

s ,J
1
s
x+ αQ⊤

u,J1
s
x+ c⊤J1

s
x+

∑
i∈J1

s

λi


pu,s,g = min

x

1

2
x⊤QJg

s ,J
g
s
x+ c⊤Jg

s
x+

∑
i∈Jg

s

λi

 , g = 2, . . . , Gs.

Using Karush-Kuhn-Tucker (KKT) conditions, one can verify that pu,s,1(α) takes
the following closed-form expression:

pu,s,1(α) =
1

2

(
1−Q⊤

u,J1
s

(
QJ1

s ,J
1
s

)−1
Qu,J1

s

)
α2

+
(
cu −Q⊤

u,J1
s

(
QJ1

s ,J
1
s

)−1
cJ1

s

)
α+

−1

2
c⊤J1

s

(
QJ1

s ,J
1
s

)−1
cJ1

s
+
∑
i∈J1

s

λi

 .

Note that
(
1−Q⊤

u,J1
s

(
QJ1

s ,J
1
s

)−1
Qu,J1

s

)
is the Schur complement ofQJ1

s∪{u},J1
s∪{u},

which, owing to the positive definiteness of Q, is positive definite. Therefore,(
1−Q⊤

u,J1
s

(
QJ1

s ,J
1
s

)−1
Qu,J1

s

)
> 0, implying that pu,s,1(α) is strongly convex.

This completes the proof. ⊓⊔


