
Maximizing a Monotone Submodular Function Under an
Unknown Knapsack Capacity

Sven de Vries, Sabine Münch, Stephen Raach
Trier University, 54286 Trier, Germany

{devries / muench / raach}@uni-trier.de

Consider the problem of maximizing a nondecreasing submodular function
defined on a set of weighted items under an unknown knapsack capacity.
Assume items are packed sequentially into the knapsack, and the knapsack
capacity is accessed through an oracle that answers whether an item fits into
the currently packed knapsack. If an item is tried to be added and fits, it
is packed irrevocably; if the addition exceeds the knapsack capacity, it is re-
moved from consideration. We consider nonadaptive packing according to a
predetermined sequence, denoted universal policy. We present an algorithm
to compute universal policies that perform for any unknown but fixed capac-
ity (which is assumed to be greater or equal to the heaviest item), at least
as good as the classic algorithm due to Wolsey, which packs the knapsack
according to steepest ascent and outputs the better of the currently packed
knapsack and the first item that exceeds the knapsack capacity, applied to
the same capacity.

As a byproduct, we obtain an adaptive algorithm for the problem of maxi-
mizing a monotone-increasing submodular function and a universal policy for
maximizing a modular function, respectively, under an unknown knapsack
capacity. Our algorithms perform at least as well as the best known algo-
rithms for the respective problem but are far more intuitive and allow for
simpler proofs of correctness than the ones provided in the literature. Fur-
thermore, submodular instances exist where our adaptive algorithm performs
strictly better than the best known adaptive algorithm from the literature.

Keywords : Combinatorial optimization, submodular maximization, knapsack, un-
known capacity, nonadaptive.

1. Introduction.

Optimization problems involving submodular objective functions are a central issue in
combinatorial optimization. The importance lies in their natural appearance across

various applications and their relevance to classical optimization problems, e.g., graph
cuts [see e.g., 7], set cover problems [see e.g., 6], and facility location problems [see e.g.,
3] and [see e.g., 1] .

Definition 1. In the following, let (I,≺) be a strictly totally ordered finite set of car-
dinality n ∈ N, and f : 2I → R≥0 a normalized (f(∅) = 0), monotone-increasing
(f(X) ≤ f(Y) for any X, Y ⊆ I with X ⊆ Y) and submodular (f(X) + f(Y) ≥
f(X ∪ Y) + f(X ∩ Y) for X, Y ⊆ I) function. For ease of notation, let f(i) := f({i})
for i ∈ I. Let every item i ∈ I be associated with a weight w(i) ∈ R≥0. We denote
w(T) := ∑

i∈T w(i) for the weight of a set T ∈ 2I .

Consider the classic problem of maximizing a submodular function under a knapsack
constraint (SMKC), thus,

max{f(X) :
∑
i∈X

w(i) ≤ B, X ⊆ I}.

Even though this problem is known to be an NP-hard problem, a polynomial time ap-
proximation algorithm exists due to Sviridenko [13], combining partial enumeration with
discrete steepest ascent. This algorithm yields an approximation factor of 1− 1

e ≈ 0.63,
where the approximation factor is the worst-case ratio between the objective value of
the solution obtained by the algorithm and the objective value of the optimal solution.
Furthermore, Wolsey [14] showed that the more simple algorithm of taking the better of
the discrete steepest ascent solution and the first item exceeding the current, by discrete
steepest ascent packed knapsack, has an approximation factor of at least 1−e−β ≈ 0.357,
where β is the unique solution of ex = 2− x, x ∈ R.

Definition 2. In the following, let β denote the solution of ex = 2 − x, x ∈ R and
ω := 1− e−β.

Both approximation results Sviridenko [13] and Wolsey [14] require complete knowl-
edge of the instance. However, in several applications, there might be uncertainty about
the knapsack capacity, the item weights, or the submodular function.

Consider the situation in which the government seeks to provide mobile internet cov-
erage and has tasked a company to construct transmission towers. There is a set of
possible locations I to build towers, each associated with construction costs w(i) ≥ 0.
The value of a set of transmission towers T ⊆ I, i.e., their coverage of the region with
mobile internet, can be measured by a submodular function f : 2I → R≥0. The project
manager determines the order in which these transmission towers will be constructed
and delegates the construction process in that order to the construction team. The gov-
ernment desires a high level of mobile internet coverage, reflected by the performance
of a set T , with a large f(T). However, the government does not disclose the exact
budget B for the project to the project manager as the construction begins before the

2

financing is finalized. At some point, the budget will run out, and the government will
inquire about the results. The project manager then presents the set of completed trans-
mission towers and evaluates their region coverage with mobile internet. Consequently,
the project manager’s objective is to organize the construction of transmission towers so
that, for any budget B, the set T of built towers delivers good coverage f(T), in com-
parison to the optimal selection of towers if the budget were known beforehand. Thus,
in this application, the knapsack capacity B is an unknown parameter.

An instance of the submodular maximization problem under an unknown knapsack
capacity (denoted in the following by SMUC) is a tuple (I, f, w) with I being a set of
items i with weights w(i) ≥ 0, and with f being a monotone-increasing submodular
set function, defined on I. Thus, any instance of SMUC is independent of a knapsack
capacity B.

Definition 3. Let I a set of items i with weights w(i), then any knapsack capacity
B ≥ maxi∈I w(i) is called reasonable.

There are two possible approaches to SMUC: maximizing the submodular function
nonadaptively or adaptively. In the nonadaptive approach an instance of SMUC is given
and the items shall be ordered.

Definition 4. Given a finite set of items I, any permutation N = (N1, N2, . . . , Nn)
∈ In with Ni ̸= Nj for 1 ≤ i < j ≤ n is called a universal policy.

After ordering the items, a knapsack capacity is revealed, and items are added one by
one to the knapsack according to the universal policy. If the addition of an item exceeds
the knapsack capacity, there are two ways to proceed:

• In packing without discarding, packing the knapsack is stopped, and the current
solution is returned.

• In packing with discarding, the item that exceeds the knapsack capacity is dis-
carded. Then, packing continues with the next item in the universal policy until
all items are packed or discarded.

In contrast, in the adaptive approach, items are packed one after another, and the choice
of which item to pack next may depend on the observations made while deciding on the
previous items.

Nonadaptive maximization of a submodular function due to an unknown knapsack
capacity is related to the following leader-follower problem: The leader decides on a
universal policy aiming to maximize the ratio between the value of the set of items packed
into the knapsack according to the policy and the value of an optimally packed knapsack.
This ratio is contingent upon the knapsack capacity, determined by the follower aiming to
minimize the ratio while knowing the universal policy chosen by the leader. The optimal

3

solution to this leader-follower problem returns an optimal universal policy. However,
even knowing an optimal solution to the leader-follower problem does not indicate how
well the optimal policy performs compared to optimal packing with knowledge of the
knapsack’s capacity.

1.1. Our Result.

We provide results for nonadaptive and adaptive maximizing a submodular function
under an unknown knapsack capacity. Our main contribution is an algorithm that
computes for any instance of SMUC a universal policy such that packing for any fixed
reasonable knapsack capacity according to that policy yields a set of items that is at least
as valuable as the output of Wolsey’s algorithm [14], for the same (known) knapsack
capacity.

Therefore, in terms of the aforementioned leader-follower problem, the present paper
not only finds an approximately optimal solution to the leader-follower problem, but
also demonstrates that packing according to the approximately optimal solution of the
leader-follower problem constantly approximates the optimal packing for any knapsack
capacity.

As a byproduct of our findings, we obtain an adaptive algorithm for SMUC that
performs for any arbitrary unknown knapsack capacity at least as well as Wolsey’s al-
gorithm [14] does with knowledge about the capacity. Thus, the presented adaptive
algorithm performs at least as well as the algorithm proposed by Klimm and Knaack [9]
that matches the same approximation factor of 0.357. For some instances of SMUC, the
items packed by our adaptive algorithm are even more valuable than those packed by
the adaptive algorithm due to Klimm and Knaack [9].

Regarding nonadaptive maximization of a modular function, we show that one can
pack an arbitrary unknown but fixed knapsack nonadaptively at least as well as Wolsey’s
algorithm [14] does for the same known knapsack capacity. Thereby, we give a more
straightforward proof for the 1

2 -approximation factor by Disser et al. [4].

1.2. Related Work.

Submodular maximization with various additional constraints is a central topic in com-
binatorial optimization. Nemhauser et al. [12] initiated research on this subject and
considered the problem of maximizing a monotone-increasing submodular function un-
der a knapsack constraint with unit weights. For this problem, Nemhauser et al. [12]
showed that a greedy algorithm achieves an approximation factor of (1− 1

e) ≈ 0.63. Fur-
thermore, Feige [6] established that even for the maximum coverage problem with unit
weights under a knapsack constraint, which is a special case of maximizing a monotone-
increasing submodular function under a knapsack constraint, no better approximation
factor is possible in polynomial time, unless P = NP .

4

For the problem of maximizing a monotone-increasing submodular function under a
knapsack constraint with arbitrary nonnegative weights, Wolsey [14] presented a special
version of a steepest ascent algorithm with an approximation factor of ω, and Sviri-
denko [13] showed that combining a partial enumeration procedure with steepest ascent
achieves the best possible approximation factor of 1− 1

e .
Navarra and Pinotti [11] and Disser et al. [4] considered maximization of a modular

function under an unknown knapsack capacity nonadaptively. They both present an al-
gorithm that computes for any instance a universal policy such that the knapsack packed
without discarding, respectively, with discarding, approximates the optimal solution by
a factor of at least 1

2 , where Navarra and Pinotti [11] assume a reasonable knapsack
capacity.

Disser et al. [5] consider the more general problem of nonadaptively maximizing
a fractionally subadditive function under an unknown knapsack capacity. However,
their policy fails to achieve a constant robustness factor but relies on the greatest item
value. Nonadaptive maximization of a strict superset of submodular functions under an
unknown cardinality constraint is considered by Bernstein et al. [2].

Kawase et al. [8] considered adaptively maximizing a monotone submodular function
under an unknown knapsack capacity. They demonstrated that an adaptive packing
algorithm can approximate the value of the optimal packing by a factor of at least
2(1−1/e)

21 > 0.06. As mentioned, this result was improved by Klimm and Knaack [9],
achieving ω.

1.3. Outline.

In Section 2, we review Wolsey’s algorithm [14] for SMKC. In Section 3, we nonadap-
tively approach SMUC without discarding under the assumption of a reasonable knap-
sack capacity. In Section 4, we consider SMUC nonadaptively and adaptively, without
the reasonable knapsack capacity assumption. In Section 5, we nonadaptively approach
the special case of maximizing a modular function under an unknown arbitrary knapsack
capacity.

2. Maximization of a Submodular Function with a Known
Knapsack Constraint.

We start by recapitulating Wolsey’s algorithm [14] for SMKC.

5

Algorithm 1:
Input: Set of items I, each i ∈ I associated with weight w(i) ≥ 0, submodular

function f , knapsack capacity B.
Output: Subset of I.

1 I ← I \ {i ∈ I : w(i) > B}
2 R← ∅
3 while I \R ̸= ∅ do
4 i∗ ∈ arg maxi∈I\R

{
f(R∪{i})−f(R)

w(i)

}
5 if w(R ∪ {i∗}) ≤ B then
6 R← R ∪ {i∗}

7 else
8 break

9 return arg max{f(R), f(i∗)}
Algorithm 1 starts by deleting all items with a weight greater than the knapsack

capacity from I, since these items can never be part of a feasible solution of SMKC.
Algorithm 1 then initializes R = ∅ and chooses in every iteration some item i∗ from the
set of the remaining items I \ R that maximizes the relative increase f(R∪{i})−f(R)

w(i) of
the objective function. If w(R∪{i∗}) ≤ B, thus, if item i∗ fits into the currently packed
knapsack, item i∗ is added to the set R. If item i∗ does not fit into the currently packed
knapsack, the while loop in Line 3 breaks. If all items fit into the knapsack, Algorithm 1
returns the entire set in Line 9. Otherwise, Algorithm 1 compares the present solution R

with the first item i∗, which did not fit into the currently packed knapsack, and returns
the better of R and i∗. Informally, the basic idea of returning the better of R and i∗ is
to avoid getting stuck in the first local optimum.

Definition 5. Let (I, f, w) an instance of SMUC and B a knapsack capacity, then
denote the objective function value of the output of Algorithm 1 as Φ(I, f, w, B). The
approximation factor of Algorithm 1 is defined as

min
(I,f,w) is an instance of SMUC,

B≥0

Φ(I, f, w, B)
f(OptB)

,

where OptB denotes the set of items included in an optimal solution of the submodular
maximization problem with knapsack capacity B.

Thus, the approximation factor of Algorithm 1 is the worst-case ratio between the
objective value of the output of Algorithm 1 and the optimal solution over all instances
of SMUC and all knapsack capacities.

Proposition 1. [14] Algorithm 1 has an approximation factor of at least ω.

6

The proof of Proposition 1 requires the following Proposition, which will also be used
later in our proof of Theorem 2.

Proposition 2. [14, Theorem 2] Let (I, f, w) an instance of SMUC, let B a knapsack
capacity, and RB be the set constructed in the while loop in Line 3 of Algorithm 1
applied to the instance (I, f, w) with the knapsack capacity B. If w(RB) = B, then

f(RB)
f(OptD) ≥ 1− e− B

D for any capacity D ≥ B.

Wolsey [14] showed that the approximation factor of Algorithm 1 is at least ω. For
completeness, we demonstrate that no better bound is possible.

Theorem 1. Algorithm 1 cannot generally provide a better approximation than ω.

Proof. Let n ∈ N , and (I, f, w) an instance of SMUC with I = {a1, a2, . . . , a⌈βn⌉−1, a⌈βn⌉,

x} 1, w(ai) = 1
n for all i ∈ {1, 2, . . . , ⌈βn⌉ − 1}, w(a⌈βn⌉) = 1 − β + 2

n , and w(x) = 1,
f : 2I → R≥0, f(T) 7→ min {∑t∈T v(t), 1} with v(ai) = 1

n

(
1− 1

n

)i−1
for all i ∈ {1, 2, . . . ,

⌈βn⌉− 1}, v(a⌈βn⌉) = (1− β + 2
n)

(
1− 1

n

)⌈βn⌉−1
, and v(x) = 1. Let B = 1 the knapsack

capacity. It holds

f(a1)− f(∅)
w(a1) = 1 = f(x)− f(∅)

w(x) >
f(ai)− f(∅)

w(ai)
for all i ∈ {2, . . . , ⌈βn⌉} and

f
(⋃i

j=1{aj}
)
− f

(⋃i−1
j=1{aj}

)
w(ai)

= f(ai)
w(ai)

=
(

1− 1
n

)i−1
= 1− 1

n

i−2∑
k=0

(
1− 1

n

)k

=
f

(⋃i−1
j=1{aj}∪{x}

)
− f

(⋃i−1
j=1{aj}

)
w(x) ≥

(
1− 1

n

)k

=
f

(⋃i−1
j=1{aj}∪{ak}

)
− f

(⋃i−1
j=1{aj}

)
w(ak)

for all i ∈ {2, . . . , ⌈βn⌉} and k > i.

Therefore, Algorithm 1 chooses during the first ⌈βn⌉ − 1 iterations of the while loop
in Line 3 the items a1, . . . , a⌈βn⌉−1. In the next iteration of the while loop Algorithm 1
chooses item a⌈βn⌉. Then, it holds ∑⌈βn⌉

j=1 w(aj) ≥ β − 1
n + 1− β + 2

n ≥ 1 and the while
loop ends in Line 8. Therefore, Algorithm 1 outputs arg max{f(⋃⌈βn⌉−1

j=1 {aj}), f(a⌈βn⌉)}.
However, the optimal solution to the instance (I, f, w) with knapsack capacity B = 1 is

{x} with f(x) = 1. It holds limn→∞
Φ(I,f,w,B)

f(x) = limn→∞
max{f(

⋃⌈βn⌉−1
j=1 {aj}),f(a⌈βn⌉)}

f(x) =
max{1−e−β ,1−e−β}

1 = ω and the claim follows.

It follows directly by Proposition 1 and Theorem 1.

Corollary 1. Algorithm 1 has an approximation factor of ω.
1where β was defined as the solution of ex = 2 − x, x ∈ R.

7

3. Maximization of a Submodular Function under an Unknown
Knapsack Capacity Nonadaptively.

This section considers the nonadaptive approach to SMUC, assuming reasonable knap-
sack capacities. Our goal is to develop an algorithm that determines for any instance
of SMUC a universal policy such that, for any reasonable knapsack capacity, packing
without discarding according to the universal policy is at least as good as the result of
Algorithm 1. We formally define:

Definition 6. Given an instance (I, f, w) of SMUC, a universal policy N and a knapsack
capacity B, the packed set (packed without discarding) K(N, B) is defined as

K(N, B) :=
{

Nj : j ≤ k, k = max
{

l : 1 ≤ l ≤ n,
l∑

i=1
w(Ni) ≤ B

}}
,

The value function gN of the universal policy N assigns to any knapsack capacity
B the value of the corresponding packed set K(N, B), and is denoted by

gN : R+ → R+, gN (B) := f(K(N, B)).

The robustness factor of a universal policy N is defined as

min
B≥maxi∈I w(i)

gN (B)
f(OptB)

.

A universal policy N is called better or equal than Algorithm 1 if gN (B) ≥ Φ(I, f, w, B)
for any B ≥ maxi∈I w(i).

Clearly, given an instance of SMUC, any universal policy better or equal than Algo-
rithm 1 has a robustness factor of at least ω, by Proposition 1.

Notice that a reasonable knapsack capacity is necessary to provide a constant robust-
ness factor for packing without discarding by any universal policy at all:

Example 1. [11] Let I = {a, b}, with w(a) = 1 and w(b) = 1 + ε, ε ≥ 0, and f : 2I →
R≥0 given by f(∅) = 0, f(a) = 1, f(b) = f({a, b}) = M for M ≥ 1. We demonstrate
that for this instance of SMUC no universal policy can achieve a constant robustness
factor as M →∞.

Let N = (b, a). Then, for B = 1 it holds gN (B) = 0, since w(b) > 1. However the
optimal solution to max{f(X) : ∑

i∈X w(i) ≤ 1, X ⊆ I} is OptB = {a}, and therefore
gN (B)

f(OptB) = 0
1 = 0.

Let N̄ = (a, b). Then, for B̄ = 1 + ε it holds gN̄ (B̄) = 1, since w(a) < 1 + ε and
w(a) + w(b) > 1 + ε. However, the optimal solution to max{f(X) : ∑

i∈X w(i) ≤ 1 + ε,

X ⊆ I} is OptB̄ = {b}, and therefore gN̄ (B̄)
f(OptB̄)

= 1
M and it holds limM→∞

gN̄ (B̄)
f(OptB̄)

= 0.

8

However, under the reasonable knapsack capacity assumption, which rules out B <

1 + ε, in Example 1 it holds for the policy for N = (b, a) that

min
B≥maxi∈I w(i)

gN (B)
f(OptB)

= 1,

since gN (B) = f({b}) = f(OptB) for 1 + ε ≤ B < 2 + ε, and gN (B) = f({a, b}) =
f(OptB) for B ≥ 2 + ε.

3.1. From Modular Maximization to Submodular Maximization.

It is a natural idea to try to adapt existing results for maximization of a modular (i.e. lin-
ear) function under an unknown knapsack capacity (denoted in the following by MMUC)
to SMUC. Thus, before we consider SMUC with a general monotone-increasing submod-
ular function, we revisit the special case of a modular function. For MMUC, assuming
a reasonable knapsack capacity and packing without discarding, Navarra and Pinotti
[11] presented an algorithm, described below, which returns a universal policy with a
robustness factor of at least 1

2 .
Algorithm 2:
Input: Set of items I, each i ∈ I associated with weight w(i), and value f(i).
Output: Universal policy N .

1 N ← (N1, N2, . . . , N|I|) Items ordered non-increasingly by f(i)
w(i) .

2 k ← 1
3 while

∑k
j=1 w(Nj) ≤ maxi∈I w(i) and k ≤ |I| do

4 k ← k + 1
5 if f(Nk) >

∑k−1
j=1 f(Nj) then

6 N ← (Nk, N1, N2, . . . , Nk−1, Nk+1, . . . , N|I|)
7 return N

Before generalizing Algorithm 2 to arbitrary submodular objective functions, we briefly
describe it. In Algorithm 2, the initial order N is given by sorting the items according to
their ratio f(i)/w(i). Then, Algorithm 2 identifies the first item Nk in the initial ratio-
order N for which the set {N1, . . . , Nk} is heavier than the heaviest item. If the objective
value of Nk is better than the sum of the values of the previous items N1, . . . , Nk−1, the
order N is updated by moving Nk to the front. Subsequently, the updated order is
returned. Notice that the final order is generated by updating the initial order at most
once.

Definition 7. Let (I, f, w) an instance of SMUC. We call the tuple S = (S1, . . . , Sn) ∈
In steepest ascent ordered, if

Sj ∈ arg max
{

f({S1, . . . , Sj−1, x})− f({S1, . . . , Sj−1})
w(x) : x∈I \ {S1, . . . , Sj−1}

}
for all

9

1 ≤ j ≤ n and Sj ≺ Sk for all Sk ∈ arg max
{

f({S1, . . . , Sj−1, x})− f({S1, . . . , Sj−1})
w(x) :

x∈I \ {S1, . . . , Sj−1}
}

.

Notice that the condition Sj ≺ Sk for all Sk ∈ arg max
{

f({S1,...,Sj−1,x})−f({S1,...,Sj−1})
w(x) :

x ∈ I \ {S1, . . . , Sj−1}
}

serves only as a tie-breaking rule in order to make the steepest
ascent order unique. Although Algorithm 2 intended for MMUC, a slightly modified
version can be applied to SMUC. First, we replace the sorting according to the ratio
f(i)/w(i) in Line 1 by

1’ N ← (N1, . . . , N|I|) steepest ascent ordered.

Observe that for modular objective functions both sortings coincide. Second, the
condition f(Nk) >

∑k−1
j=1 f(Nj) in Line 5, which determines whether to move Nk to the

first position of N or not, is replaced by the condition

5’ if f(Nk) > f({N1, . . . , Nk−1}) then

Again, for modular objective functions, these conditions coincide.
The following example presents an instance of SMUC for which the modified Algo-

rithm 2 returns a universal policy that is not better or equal to Algorithm 1, even though
the value function provides an approximation to the value of an optimal solution of at
least ω.

Example 2. Let I = {a, b, c} be a set of items with weights w(a) = 1, w(b) = 1.2
and w(c) = 2.1, and f : 2I → R≥0, T 7→ min{∑t∈T v(t), 2}, with v(a) = 1, v(b) = 0.6,
and v(c) = 2. The modified Algorithm 2 starts with the steepest ascent order N =
S = (a, b, c). Since w({a, b}) = 2.2 > 2.1 = maxi∈I w(i) the while loop in the modified
Algorithm 2 ends with k = 2 and because of f(Nk) = f(b) = 1 = f(a) the unchanged
order N is returned. Let B = 3 be the capacity of the knapsack. Then, gN (3) = 1.6, since
w({a, b}) = 2.2 < 3 and w({a, b, c}) = 4.3 > 3. In contrast, Algorithm 1 returns the
single item c in Line 9, since f(c) = 2 > f({a, b}) = 1.6, which is an optimal solution.
Therefore f(Opt3) = Φ(I, f, w, 3) > gN (3) ≥ ωf(Opt3).

Although the universal policy returned by the modified Algorithm 2 does not compare
favorably to Algorithm 1, it achieves the same approximation factor.

Theorem 2. Let (I, f, w) an instance of SMUC, then any universal policy returned by
the modified Algorithm 2 has a robustness factor of at least ω.

The proof of Theorem 2 is deferred to the Appendix.

10

3.2. Matching the Approximation Factor of Algorithm 1 Nonadaptively.

Recall that we aim for every instance of SMUC to construct a universal policy better
or equal to Algorithm 1. As a simple consequence of Example 2, any universal policy
that wants to imitate Algorithm 1 has to treat a single item i∗ returned by Algorithm 1,
especially since it might be necessary to place i∗ at the beginning of the universal policy.

Definition 8. Let (I, f, w) be an instance of SMUC and S = (i1, . . . , i|I|) the steepest
ascent order of I. For 2 ≤ j ≤ |I| call ij a swap item if f(ij) > f({i1, . . . , ij−1}).

We modify the steepest ascent order by identifying the swap items and moving them
to the front of the universal policy. This is formalized in the following algorithm.
Algorithm 3:
Input: An instance (I, f, w) of SMUC.
Output: Universal policy N .

1 Determine the steepest ascent order S

2 T ← {i ∈ I : i is a swap item}
3 N ← S

4 for j = 2, . . . , n do
5 if Nj ∈ T then
6 N ← (Nj , N1, . . . , Nj−1, Nj+1, . . . , Nn)

7 return N

Algorithm 3 starts by ordering the items of I according to the steepest ascent order
S and determining the set T of all swap items. Then, each iteration of the for loop
in Line 4 checks whether Nj is a swap item. If Nj is a swap item, the current order
N is updated by placing Nj in front of all other items. Otherwise, the current order
remains the same. Note that whenever item Nj is identified as a swap item in Line 5
of Algorithm 3 and moved to the front of N , any item Nm with m > j remains in its
position in the updated order N in Line 6 and the relative position for any pair of items
(ik, il) with 1 ≤ k < l < j remains constant.

Theorem 3. Let (I, f, w) an instance of SMUC, then, any universal policy N , returned
by Algorithm 3, yields gN (B) ≥ Φ(I, f, w, B) for any knapsack capacity B ≥ maxi∈I w(i).

The proof of Theorem 3 uses the following observation, which follows directly by the
Lines 5 and 6 of Algorithm 3.

Lemma 1. Let (I, f, w) an instance of SMUC and N the universal policy returned by
Algorithm 3. If Nk is a swap item (in the steepest ascent order S), then every Nj with
j < k is a swap item (in S), and it holds f(Nj) > f(Nk).

Now, we prove Theorem 3.

11

Proof of Theorem 3. Let N be the universal policy returned by Algorithm 3, S the
steepest ascent order in Line 1 of Algorithm 3, and B ≥ maxi∈I w(i). Assume without
loss of generality that Algorithm 1 inspects the items in Line 4 according to S. In order
to compare gN (B) with the objective value of the output of Algorithm 1, we distinguish
two cases.

Case 1: Algorithm 1 outputs in Line 9 the single item i∗ with i∗ = Sk, k > 1. Then,
when the while loop in Line 3 of Algorithm 1 ends, it holds R = {S1, . . . , Sk−1} and
f(Sk) > f(R). It follows directly gN (B) ≥ f(N1) ≥ f(Sk) = Φ(I, f, w, B), where the
second inequality follows by Lemma 1.

Case 2: Algorithm 1 returns the set R = {S1, . . . , Sk−1} with 2 ≤ k ≤ n. Clearly,
Sk is not a swap item, since otherwise Algorithm 1 would have returned Sk. If there
exists no swap item Sj with j > k, then, {S1, . . . , Sk−1} = {N1, . . . , Nk−1} and hence
gN (B) = f(R) = Φ(I, f, w, B). If on the other hand there exists a swap item Sj with
j > k, then, f(Sj) > f({S1, . . . , Sj−1}) ≥ f({S1, . . . , Sk−1}) = f(R) and as before
follows gN (B) ≥ f(N1) ≥ f(Sj) ≥ f(R) = Φ(I, f, w, B).

It follows directly by Theorem 3 and Proposition 1 that the universal policy returned
by Algorithm 3 has a robustness factor of at least ω.

3.2.1. Simplifying Algorithm 3.

Recall that the universal policy computed by Algorithm 3 is better or equal than Al-
gorithm 1, in contrast to the universal policy computed by the modified Algorithm 2.
However, in contrast to the modified Algorithm 2, it might be necessary to swap arbitrary
many items in Line 6 of Algorithm 3. Now, we simplify Algorithm 3 to Algorithm 4,
described below, by starting with the steepest ascent order and swapping only the swap
item with maximum objective value. Clearly, according to the notion of swap items, the
maximum-value swap item is precisely the swap item located at the position with the
highest index in the steepest ascent order among all swap items.
Algorithm 4:
Input: An instance (I, f, w) of SMUC.
Output: Universal policy N .

1 Determine the steepest ascent order S

2 N ← S

3 j ← n

4 while Nj is not a swap item and j ̸= 1 do
5 j ← j − 1
6 if j ̸= 1 then
7 N ← (Nj , N1, . . . , Nj−1, Nj+1, . . . , Nn)
8 return N

12

For any instance of SMUC, Algorithm 4 outputs a universal policy better or equal
than Algorithm 1.

Theorem 4. Let (I, f, w) an instance of SMUC and B ≥ maxi∈I w(i). Then, gN (B) ≥
Φ(I, f, w, B) for the universal policy N returned by Algorithm 4.

The proof of Theorem 4 is deferred to the Appendix.

4. Maximizing a Submodular Function under an Unknown
Knapsack Capacity without Assuming a Reasonable
Knapsack Capacity.

This section considers SMUC without assuming a reasonable knapsack capacity non-
adaptively and adaptively.

4.1. Nonadaptively Maximizing a Submodular Function under an Unknown
Knapsack Capacity.

Recall that, by Example 1, the assumption of a reasonable knapsack capacity is necessary
for guaranteeing a constant robustness factor by any universal policy if the knapsack is
packed without discarding. Therefore, the nonadaptive approach to SMUC with an
arbitrary unknown knapsack capacity might yield an arbitrarily bad solution if packing
the knapsack is stopped as soon as the first item does not fit into the knapsack. In
order to circumvent the inapproximability in this setting, we permit discarding during
the packing.

Definition 9. Let (I, f, w) an instance of SMUC and N a universal policy of I. The
exhausted packed set E(N, B) packed with discarding according to the order N , given
a knapsack capacity B, is the unique set U ⊆ I with

(i)
∑

i∈U w(i) ≤ B,

(ii)
∑

i∈U∩{Nk : k<j} w(i) + w(Nj) > B for all Nj ∈ I \ U .

The exhausting value function of N assigns to any knapsack capacity B the function
value of the corresponding exhausted packed set E(N, B) and is denoted by

hN : R+ → R+, hN (B) := f(E(N, B)).

A universal policy is called better or equal than Algorithm 1 if the exhausted value
function has, for any capacity B, a value hN (B) ≥ Φ(I, f, w, B).

Our goal would be to construct for each instance of SMUC a universal policy better or
equal than Algorithm 1. However, the following example shows that this is impossible.

13

Example 3. Let I = {a, b, c} a set of items with weights w(a) = 2.9, w(b) = 2 and
w(c) = 1. Let v(a) = 3, v(b) = 2, and v(c) = 1. Let f : 2I → R≥0 be defined by
f(T) = ∑

t∈T v(t) − v(b) for all T ∈ 2I with {a, b} ⊆ T and f(T) = ∑
t∈T v(t) for all

T ∈ 2I with {a, b} ⊈ T .
Let B = 2. Then, Algorithm 1 first removes item a, because w(a) > 2, and then

returns item b because w({b, c}) = 3 > 2 and f(b) > f(c). Therefore, in every universal
policy that imitates Algorithm 1 item b must be ordered earlier than item c.

Let B̄ = 5. Then, Algorithm 1 outputs {a, c} with f({a, c}) = 4. We show that for
any universal policy N in which item b appears earlier than item c, it necessarily holds
hN (5) ≤ 3. To see this, observe that w({a, b, c}) > 5 and therefore either hN (5) =
f({a, b}) = 3 or hN (5) = f({b, c}) = 3. Then, it holds Φ(I, f, w, 5) = f({a, c}) = 4 >

hN (5) for any universal policy in which b is ordered earlier than c.

Notice that the order in which Algorithm 1 considers the items depends on their
relative increase and therefore depends on items already excluded at the beginning.

4.2. Adaptively Maximizing a Submodular Function under an Unknown
Knapsack Capacity.

Example 3 shows an instance of SMUC and knapsack capacities that do not permit a
nonadaptive approximation by ω. To avoid this impossibility, we now consider adaptive
algorithms. In this setting, we present a new adaptive algorithm that performs for any
knapsack capacity at least as well as Algorithm 1, and therefore at least as well as the
algorithm proposed by Klimm and Knaack [9], with matching worst-case approximation
guarantees. However, our adaptive algorithm is far more intuitive and allows for a
far simpler proof, following almost directly by Algorithm 4. Furthermore, there exist
instances where our algorithm strictly outperforms the algorithm of Klimm and Knaack
[9].

Theorem 5. There exists an adaptive algorithm that, for any instance of SMUC and
any fixed but unknown knapsack capacity, performs at least as well as Algorithm 1 for
the same knapsack capacity, known in advance.

To prove Theorem 5, we require a simple observation directly following the notion of
the universal policy returned by Algorithm 4.

Lemma 2. Let (I, f, w) an instance of SMUC, S the steepest ascent order, N the
universal policy returned by Algorithm 4 applied to (I, f, w) and N1 = Sj. Then, it holds
w(Si) < w(N1) for 1 ≤ i < j.

Now, we prove Theorem 5.

14

Proof of Theorem 5. Let (I, f, w) be an instance of SMUC. For any fixed knapsack
capacity B let IB := {i ∈ I : w(i) ≤ B} and let SB denote the steepest ascent order
of (IB, f |IB , w|IB) and NB the output of Algorithm 4 applied to (IB, f |IB , w|IB). We
gradually develop an adaptive algorithm that satisfies the claim. To this end, define
A := {i ∈ I : there exists B such that i = NB

1 } and let the adaptive algorithm try to
add the items of A in non-increasing weight order into the knapsack, until the first item
fits into the knapsack.

Let B be an arbitrary but fixed knapsack capacity. It follows directly by the notion
of A that the first item packed into the knapsack by the adaptive algorithm is the item
NB

1 . Furthermore, let x ∈ A ∪ {∅} represent the item that was tried to pack into the
knapsack directly before NB

1 and I<w(x) := {i ∈ I : w(i) < w(x)}, with I<w(∅) := I.
Then, for S<w(x) being the steepest ascent order of (I<w(x), f |I<w(x) , w|I<w(x)) it holds
SB

i = S
<w(x)
i for 1 ≤ i ≤ j with SB

j = NB
1 , by Lemma 2, implying {S<w(x)

1 . . . , S
<w(x)
j } =

{NB
1 , . . . , NB

j }. Thus, let the adaptive algorithm continuing packing the items S
<w(x)
1 , . . . ,

S
<w(x)
j−1 . If it holds B ≥ w({NB

1 , . . . , NB
j }), let the adaptive algorithm continue packing

the item that maximizes the relative increase, while any item that does not fit into the
knapsack gets discarded, and packing continues until every item either gets packed or
discarded. Then, this adaptive algorithm exactly packs according to NB; thus, it follows
directly by Theorem 4 that it packs a value of at least Φ(I, f, w, B).

Due to the extensive nature of the adaptive algorithm in Klimm and Knaack [9],
we refrain from presenting it here but only provide a simple example to illustrate the
superiority of our algorithm. For more in-depth information about their algorithm, we
refer to Klimm and Knaack [9].

Example 4. Let ({a, b, c, d}, f, w) be an instance of SMUC with f(T) := |T | for all
T ⊆ {a, b, c} and f(T) = 5 for all T ⊇ {d}, and w(a) = w(b) = w(c) = 1, and w(d) = 6.

a b c

d

Figure 1: Graphical representation of the function f

As shown in Figure 1, the function f assigns to each set of items the number of dots
covered by the corresponding rectangles and, therefore, is a maximum coverage function.

For the knapsack capacity B = 6, the adaptive algorithm described in the proof of
Theorem 5 as well as Algorithm 1 pack the set {d}, for a value of 5. However, in
contrast, for this particular instance, the adaptive algorithm of Klimm and Knaack [9]
packs according to steepest ascent, thus, the set {a, b, c} for a value of 3.

15

5. Nonadaptively Maximizing a Modular Function Under an
Arbitrary Unknown Knapsack Capacity.

In this section, we revise MMUC with an arbitrary unknown knapsack capacity non-
adaptively with discarding. We present an algorithm that computes a universal policy
for every instance of MMUC better or equal to Algorithm 1. It is well-known that for
every instance of MMUC Algorithm 1 approximates the optimal solution by a factor of
at least 1

2 .

Lemma 3. [10, Proposition 17.6.] Let (I, f, w) an instance of MMUC, then it holds,
for any B ≥ 0, that Φ(I, f, w, B) ≥ 1

2 · f(OptB).

It follows by Lemma 3 that a universal policy better or equal than Algorithm 1 has a
robustness factor of at least 1

2 . Thus, in this setting, we match the result of Disser et al.
[4]. However, we will present an algorithm that is more intuitive than theirs and allows
for an uncomplicated and straightforward proof of correctness.

Algorithm 4 is not suitable for generating a universal policy better or equal than
Algorithm 1 because if Algorithm 1 outputs for some fixed knapsack capacity a single
item and the first item in the universal policy generated by Algorithm 4 is a swap item
heavier than the fixed knapsack capacity, the exhausting value function may yield a
smaller value than the function value of the single item. Another obvious idea to obtain
for any instance of MMUC a universal policy better or equal than Algorithm 1 would
be to apply Algorithm 3. However the following example illustrates that this is futile.

Example 5. Let I = {a, b, c} be a set of items with weights w(a) = 5, w(b) = 1, and
w(c) = 7, and let f : 2I → R≥0 be a modular function defined by f(∅) = 0, f(a) = 5,
f(b) = 2, and f(c) = 8. The steepest ascent order of I is S = (b, c, a). Since f(c) = 8 >

2 = f(b), item c is a swap item and since f(a) = 5 < 10 = f(c, b), item a is not a swap
item, and therefore Algorithm 3 returns the universal policy N = (c, b, a).

Let B = 5. It holds hN (5) = f(b) = 2 < 5 = f(a) = Φ(I, f, w, 5).

Example 5 demonstrates that there exist instances of MMUC such that the universal
policy returned by Algorithm 3 is not better or equal than Algorithm 1. Therefore,
moving only the swap items to the front may not generally be sufficient to obtain a
universal policy better or equal to Algorithm 1. We generalize the notion of swap items.

Definition 10. Let (I, f, w) be an instance of SMUC and N = (i1, . . . , i|I|) an arbitrary
order of I. For 2 ≤ j ≤ |I| we call ij a generalized swap item in N , if there exist
k ∈ {1, . . . , j − 1} with f(ij) > f({ik, . . . , ij−1}).

Now, we modify Algorithm 3 by starting with the steepest ascent order S and moving
any generalized swap item Nj to the position k < j, where {Nk, . . . , Nj−1} is the largest
set directly in front of Nj with a function value smaller than the function value of Nj .

16

Algorithm 5:
Input: An instance (I, f, w) of MMUC.
Output: Universal policy N .

1 Determine the steepest ascent order S

2 N ← S

3 for j = 2, . . . , n do
4 if Nj is a generalized swap item in N then
5 k ← min{l : l ∈ {1, . . . , j − 1}, f({Nl, . . . , Nj−1}) < f(Nj)}
6 N ← (N1, . . . , Nk−1, Nj , Nk, . . . , Nj−1, Nj+1, . . . , Nn)

7 return N

We demonstrate that for any instance of MMUC Algorithm 5 computes a universal
policy better or equal than Algorithm 1.

Theorem 6. Let (I, f, w) an instance of MMUC and N the universal policy returned
by Algorithm 5, then hN (B) ≥ Φ(I, f, w, B) for any knapsack capacity B.

In order to prove Theorem 6, we need a simple observation regarding the restriction
of universal policies to the items smaller than some fixed knapsack capacity.

Definition 11. Let I a set of items, N a universal policy of I, and T ⊆ I. The
restriction of N to T is the universal policy N |T = (Nk1 , . . . , Nkm) with m ≤ n, and
1 ≤ ki < kj ≤ n for all 1 ≤ i < j ≤ m, and Nki

∈ T for all 1 ≤ i ≤ m.

The restriction of a universal policy, obtained by Algorithm 5 for some instance of
MMUC, to the set of items with weight smaller than a fixed knapsack capacity equals
the universal policy obtained by Algorithm 5 for the same instance but with all items
heavier than the knapsack capacity removed before applying Algorithm 5.

Lemma 4. Let (I, f, w) an instance of MMUC and N the universal policy returned by
Algorithm 5 applied to the instance (I, f, w). Let B ≥ 0 a knapsack capacity and NB

the universal policy returned by Algorithm 5 applied to the instance ({i ∈ I : w(i) ≤
B}, f |{i∈I : w(i)≤B}, w|{i∈I : w(i)≤B}). Then, N |{i∈I : w(i)≤B} = NB.

The proof of Lemma 4 is deferred to the Appendix.
Now, we prove Theorem 6.

Proof of Theorem 6. Let N the universal policy returned by Algorithm 5 for the instance
(I, f, w). We distinguish two cases.

Case 1: Assume B ≥ maxi∈I w(i). Let S the steepest ascent order in Line 1 of
Algorithm 5 and assume without loss of generality that Algorithm 1 inspects the items
according to S. If Algorithm 1 outputs the single item Sj with j > 1, then Sj is a

17

swap item, thus a generalized swap item. Therefore, it follows directly by Lemma 1 that
hN (B) ≥ f(N1) ≥ f(Sj) = Φ(I, f, w, B).

Now, assume that Algorithm 1 outputs the packed set R = {S1, . . . , Sj−1} with 2 ≤
j ≤ n. Observe that for any order N̄ and any generalized swap item N̄m with f(N̄m) >

f({N̄k, . . . , N̄m−1}) and k < m it holds f({N̄1, . . . , N̄k−1}∪{N̄m}) = f({N̄1, . . . , N̄k−1}+
f(N̄m) > f({N̄1, . . . , N̄k−1} + ({N̄k, . . . , N̄m−1}) = f({N̄1, . . . , N̄m−1}). However, this
directly implies hN (B) ≥ hS(B) ≥ f(R) = Φ(I, f, w, B).

Case 2: Assume B < maxi∈I w(i). Let NB the universal policy returned by Al-
gorithm 5 for the instance ({i ∈ I : w(i) ≤ B}, f |{i∈I : w(i)≤B}, w|{i∈I : w(i)≤B}). It
holds N |{i∈I : w(i)≤B} = NB by Lemma 4. Therefore, hN |{i∈I : w(i)≤B}(B) = hNB (B) ≥
Φ(I, f, w, B), in which the last inequality follows by Case 1.

6. Conclusion.

In this paper, we considered the problem of maximizing a monotone-increasing submod-
ular function under an unknown knapsack capacity nonadaptively and adaptively. We
presented an algorithm that for any instance of SMUC returns a universal policy better
or equal than Algorithm 1 (due to Wolsey [14]) for any reasonable knapsack capacity.
Thus, we demonstrated that the optimal solution of maximizing a monotone-increasing
submodular function under an unknown reasonable knapsack capacity can be approxi-
mated nonadaptively and without discarding items by a least 0.357.

Omitting the reasonable knapsack capacity assumption, we presented an adaptive al-
gorithm that performs, for any capacity, at least as well as Algorithm 1; thus, it has
been demonstrated that the optimal solution of maximizing a monotone-increasing sub-
modular function under an unknown arbitrary knapsack capacity can be approximated
adaptively by at least 0.357.

For the special case that the submodular function is modular, an algorithm that
generates a universal policy for every instance of SMUC better or equal to Algorithm 1
has been presented. Therefore, the optimal solution for maximizing a modular function
under an unknown arbitrary knapsack capacity can be approximated adaptively by at
least 0.5.

It remains an interesting open question whether there is a constant factor approx-
imation for arbitrary monotone-increasing, submodular functions under an unknown
arbitrary knapsack capacity. As a first step, it seems worthwhile to investigate special
subsets of submodular functions, e.g., weighted matroid or coverage functions.

18

A. Appendix.

A.1. Proof of Theorem 2.

Proof. Let N the universal policy returned by the modified Algorithm 2, S the steepest
ascent order in the modified Algorithm 2 and B ≥ maxi∈I w(i). Assume without loss of
generality that Algorithm 1 inspects the items in Line 4 according to the steepest ascent
order S. Let RB = {S1, . . . , Sk−1} with 2 ≤ k ≤ n be the set constructed in the while
loop in Line 3 of Algorithm 1.

Case 1: Algorithm 1 outputs the set RB. Then, gN (B) = f({S1, . . . , Sk−1}) =
f(RB) ≥ ωf(OptB), where the last inequality follows by Proposition 1.

Case 2: Algorithm 1 outputs the single item Sk with k > 1 and w(RB) ≤ maxi∈I w(i).
When the while loop in Line 3 of Algorithm 1 ends, it holds ∑k

j=1 w(Sj) > B ≥∑k−1
j=1 w(Sj) = w(RB). Combined with w(RB) ≤ maxi∈I w(i) follows that the while

loop of the modified Algorithm 2 ends with the item Sk. Since Algorithm 1 outputs Sk,
it holds f(Sk) > f({S1, . . . , Sk−1}) and the modified Algorithm 2 returns the univer-
sal policy N = (Sk, S1, . . . , Sk−1, Sk+1, . . . , S|I|). Because w(Sk) ≤ B, it follows directly
gN (B) ≥ f(Sk) ≥ ωf(OptB).

Case 3: Algorithm 1 outputs the single item Sk with k > 1 and w(RB) > maxi∈I w(i).
Then, the while loop of the modified Algorithm 2 breaks with some item Sm with m <

k. Whether it holds f(Sm) > f({S1, . . . , Sm−1}) or not, the modified Algorithm 2
either outputs N = (Sm, S1, . . . , Sm−1, Sm+1, . . . , Sk−1, Sk, . . . , S|I|) or N = S. In either
case, it holds gN (B) = f({Sm, S1, . . . , Sm−1, Sm+1, . . . , Sk−1}) = f(RB) and w(Sk) ≤
maxi∈I w(i) < w(RB), which implies 2 · w(RB) > w(RB) + w(Sk) > B.

Applying Algorithm 1 to the instance (I, f, w) and the capacity D = w(RB), Algo-
rithm 1 constructs the packed set RB and it holds w(RB) = D. It follows by Proposi-
tion 2 that

gN (B) = f
(
RB

)
≥

(
1− e− D

B

)
f

(
OptB

)
≥

1− e
−

w(RB)
2w(RB)

 f
(
OptB

)
=

(
1− e− 1

2
)

f(OptB) ≥ ωf
(
OptB

)
.

A.2. Proof of Theorem 4

Proof. Let N be the universal policy returned by Algorithm 4, S the steepest ascent
order in Line 1 of Algorithm 4, and B ≥ maxi∈I w(i). Assume without loss of generality
that Algorithm 1 inspects the items in Line 4 according to S. To prove the claim, we
compare gN (B) with Φ(I, f, w, B). If Algorithm 1 outputs in Line 9 the single item i∗

with i∗ = Sk, k > 1, then it follows gN (B) ≥ f(N1) ≥ f(Sk) = Φ(I, f, w, B) completely
analogous to Case 1 in the proof of Theorem 3.

19

Thus, assume that Algorithm 1 outputs R = {S1, . . . , Sk−1} with 2 ≤ k ≤ n. Clearly,
Sk is not a swap item, since otherwise Algorithm 1 would have output Sk, and therefore
holds N1 ̸= Sk. Assume that N1 = S1. This implies the absence of swap items and
therefore N = S and gN (B) = f(R) = Φ(I, f, w, B).

Now, assume that N1 = Sj with j > k. Then, Sj is a swap item and by the notion
of swap items f(Sj) > f({S1, . . . , Sj−1}) ≥ f(R). It follows immediately that gN (B) ≥
f(N1) ≥ f(R) = Φ(I, f, w, B).

Last, assume that N1 = Sj with j < k. Then, Algorithm 4 outputs the order N =
(Sj , S1, . . . , Sj−1, Sj+1, . . . , Sk−1, Sk, . . . , S|I|). Thus, {S1, . . . , Sk} = {N1, . . . , Nk} and
gN (B) = f(R) = Φ(I, f, w, B).

A.3. Proof of Lemma 4.

Proof. Let S the steepest ascent order of I and Sl ∈ arg maxi∈I w(i), and S̄ the steepest
ascent order of I \ Sl. Notice that Sr+1 = S̄r for r ≥ l. Furthermore, let Zk denote the
order in Line 6 in the k-th iteration of the for loop in Line 3 of Algorithm 5 applied
to (I, f, w) and Z̄k the order in Line 6 in the k-th iteration of the for loop in Line 3 of
Algorithm 5 applied to (I \ Sj , f |I\Sj

, w|I\Sj
).

Notice that for any j < l it holds Zj
k = Z̄j

k for k < l and Zj
k+1 = Z̄j

k for k ≥ l. Moreover,
f(Sl+1) > f({Z l

k, . . . , Z l
l}) for k ≤ l is true if and only if f(S̄l) > f({Z̄ l−1

k−1, . . . , Z̄ l−1
l−1}).

It holds f(Sl) > f(Sk) for any k > l, because of the modularity of f and w(Sk) ≤
maxi∈I w(i). Let Z l

t = Sl. Then, in the above equivalence, k > t must hold. For any
m ≥ l, it follows directly that f(Sm+1) > f({Zm

k , . . . , Zm
m}) for t < k ≤ m if and only if

f(S̄m) > f({Z̄m−1
k−1 , . . . , Z̄m−1

m−1}).
Therefore, for any j ≥ l it holds Zj

k+1 = Z̄j
k for k ≥ t and Zj

k = Z̄j
k for k < t. However,

this directly implies that the order Zn returned by Algorithm 5 applied to (I, f, w) with
Sj removed equals the order Z̄n returned by Algorithm 5 applied to (I\Sj , f |I\Sj

, w|I\Sj
).

Now, the claim follows by induction.

References

[1] Alexander A Ageev and Maxim I Sviridenko. An 0.828-approximation algorithm
for the uncapacitated facility location problem. Discrete Applied Mathematics, 93
(2-3):149–156, 1999.

[2] Aaron Bernstein, Yann Disser, Martin Groß, and Sandra Himburg. General bounds
for incremental maximization. Mathematical Programming, 191(2):953–979, 2022.

[3] Gerard Cornuejols, Marshall L Fisher, and George L Nemhauser. Location of bank
accounts to optimize float: An analytic study of exact and approximate algorithms.
Management science, 23(8):789–810, 1977.

20

[4] Yann Disser, Max Klimm, Nicole Megow, and Sebastian Stiller. Packing a knapsack
of unknown capacity. SIAM Journal on Discrete Mathematics, 31(3):1477–1497,
2017.

[5] Yann Disser, Max Klimm, Annette Lutz, and David Weckbecker. Fractionally sub-
additive maximization under an incremental knapsack constraint with applications
to incremental flows. SIAM Journal on Discrete Mathematics, 38(1):764–789, 2024.

[6] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM
(JACM), 45(4):634–652, 1998.

[7] Michel X Goemans and David P Williamson. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming. Jour-
nal of the ACM (JACM), 42(6):1115–1145, 1995.

[8] Yasushi Kawase, Hanna Sumita, and Takuro Fukunaga. Submodular maximization
with uncertain knapsack capacity. SIAM Journal on Discrete Mathematics, 33(3):
1121–1145, 2019.

[9] Max Klimm and Martin Knaack. Maximizing a submodular function with
bounded curvature under an unknown knapsack constraint. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[10] Bernhard Korte and Jens Vygen. Combinatorial optimization: theory and algo-
rithms. Springer, 5 edition, 2012.

[11] Alfredo Navarra and Cristina M. Pinotti. Online knapsack of unknown capacity:
How to optimize energy consumption in smartphones. Theoretical Computer Sci-
ence, 697:98–109, 2017.

[12] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of
approximations for maximizing submodular set functions-i. Mathematical Program-
ming, 14:265–294, 1978.

[13] Maxim Sviridenko. A note on maximizing a submodular set function subject to a
knapsack constraint. Operations Research Letters, 32(1):41–43, 2004.

[14] Laurence A. Wolsey. Maximising real-valued submodular functions: Primal and
dual heuristics for location problems. Mathematics of Operations Research, 7(3):
410–425, 1982.

21

	Introduction.
	Our Result.
	Related Work.
	Outline.

	Maximization of a Submodular Function with a Known Knapsack Constraint.
	Maximization of a Submodular Function under an Unknown Knapsack Capacity Nonadaptively.
	From Modular Maximization to Submodular Maximization.
	Matching the Approximation Factor of Algorithm 1 Nonadaptively.
	Simplifying Algorithm 3.

	Maximizing a Submodular Function under an Unknown Knapsack Capacity without Assuming a Reasonable Knapsack Capacity.
	Nonadaptively Maximizing a Submodular Function under an Unknown Knapsack Capacity.
	Adaptively Maximizing a Submodular Function under an Unknown Knapsack Capacity.

	Nonadaptively Maximizing a Modular Function Under an Arbitrary Unknown Knapsack Capacity.
	Conclusion.
	Appendix.
	Proof of Theorem 2.
	Proof of Theorem 4
	Proof of Lemma 4.

