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Abstract

The Multi-Vehicle Covering Tour Problem (m-CTP) involves a graph in which
the set of vertices is partitioned into a depot and three distinct subsets repre-
senting customers, mandatory facilities, and optional facilities. Each customer is
linked to a specific subset of optional facilities that define its coverage set. The
goal is to determine a set of routes with minimal cost that satisfy the following
constraints: each route begins and ends at the depot; every mandatory facility is
visited exactly once on a single route; each route visits not more than p facilities
and have a maximum cost of q; for each customer, at least one optional facility
from its coverage set must be visited by one of the routes. In this paper, we present
the following contributions for the m-CTP: an exact branch-cut-and-price algo-
rithm; a new family of capacity-like cuts; and a new set of benchmark instances.
We report several experiments that prove the effectiveness of the proposed algo-
rithm and cuts. The results show that the proposed algorithm outperforms the
best exact method from the literature and that the proposed cuts further improve
its performance by one order of magnitude. The proposed algorithm and cuts
allow us to effectively solve 287 out of 288 literature instances.
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1 Introduction

In many variations of the Vehicle Routing Problem (VRP), customers are serviced
directly by vehicles that move to their locations to meet their demands. However, in
certain real-world scenarios, it may be necessary that vehicles avoid direct customer
visits and, instead, service demands from nearby facilities. For instance, in the event of
a disaster in a specific region, essential supplies like food, medical items, and humani-
tarian aid must be delivered. Such deliveries are usually made to specialized facilities
like schools, hospitals, etc., located close to the affected residents. Another example is
the distribution of vaccines, where they are transported to dedicated centers, hospitals,
etc., in proximity to those in need of vaccinations. This context gives rise to the focal
point of this research, known as the Multi-Vehicle Covering Tour Problem (m-CTP).

The m-CTP was proposed by [1] and it is formally defined as follows. Let G =
(V,E) be a complete undirected graph. The node set is V = {0}∪M∪O∪C, where {0}
represents the depot, M = {1, ...,m} represents the set of mandatory facilities, O =
{m+1, ...m+o} represents the set of optional facilities and C = {m+o+1, ...,m+o+c}
represents the set of customers. Each edge e ∈ E is associated with a travel cost ce.
Each customer j ∈ C is associated with a coverage set ϕ(j) ⊆ O. The goal of the m-
CTP is to design a set of finite routes with minimal total traveled cost satisfying the
following constraints: each route must start and end at the depot; each mandatory
facility i ∈ M is visited exactly once across all the routes; for each customer j ∈ C,
there is at least one optional facility i ∈ ϕ(j) that is visited by one of the routes; Each
route visits at most p facilities; the maximum cost of each route is q. For the particular
cases of the m-CTP with q = +∞ or p = +∞, we refer them to respectively m-CTP-
p and m-CTP-q. Throughout this paper, we may use the term m-CTP to denote the
problem instances where both types of constraints are present, which should be clear
from the context.

In order to illustrate the m-CTP, we present a toy instance with M = {1}, O =
{2, 3, 4}, C = {5, 6}, p = 2, q = +∞, ϕ(5) = {3, 4} and ϕ(6) = {2}. We omit the
travel costs. Figure 1 shows an example of a feasible solution for the proposed instance,
where the nodes marked in yellow, red, green, and blue represent respectively the
depot, the mandatory facility, the optional facilities, and the customers. Around each
customer, we delineate a dashed red circumference. The optional facilities within the
circumference represent the customer’s coverage set.

This paper presents the following contributions for the m-CTP:

• A new branch-cut-and-price (BCP) model;
• A family of capacity-like cuts that can be added to the proposed BCP algorithm on
demand;

• A new set of benchmark instances with up to 393 facilities;

To demonstrate the effectiveness of our proposed algorithm and cuts, we conducted
computational experiments divided into two parts. Firstly, we applied our proposed
algorithm (with and without the proposed cuts) to literature benchmark instances that
are generated based on the classical Traveling Salesman Problem (TSP). We achieved
optimal solutions for thesem-CTP instances, which, to the best of our knowledge, have
not been achieved before. Subsequently, we compared our approach with the best exact
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Fig. 1: Example of a m-CTP instance and a possible feasible solution.

method from the m-CTP-p literature, a branch-price algorithm, which was proposed
by [2]. Even without the proposed cuts, our algorithm consistently outperformed the
previous method. With the cuts, the observed performance was improved by one order
of magnitude. Finally, we tested our BCP algorithm on a new set of instances with up
to 393 facilities. The results for these instances showed that they are more challenging,
and therefore serve well as a benchmark for future algorithms.

This paper is organized as follows: In Section 2, we present a literature review of
the m-CTP. In Section 3, we present the proposed BCP algorithm for the m-CTP.
In Section 4, we present a new family of capacity-like cuts for the problem, and show
how to separate them. In Section 5, we present several computational experiments.
Finally, In Section 6, we summarize our conclusions.

2 Literature Review

The m-CTP was proposed by [1]. The authors developed three heuristics for the prob-
lem that were tested on randomly generated and real data. [3] proposed the first exact
approach for the m-CTP, that is a branch-and-price (BP) algorithm, in which the
pricing subproblem reduced to the Elementary Shortest Path Problem with Resource
Constraints (ESPPRC), [4], and solved by a dynamic programming algorithm. The
authors also proposed a column generation heuristic based on a set partitioning for-
mulation. [5] proposed another BP algorithm based on a set partitioning formulation,
in which the subproblem encountered during the column generation is a variant of the
profitable tour problem. The authors reduced this subproblem to a ring-star problem
and solved it using a branch-and-cut algorithm. They also proposed a set of m-CTP-p
and m-CTP-q instances based on classical TSP ones. Although the proposed algo-
rithm allows the inclusion of both the constraints on the number of visited facilities
and the route cost, no instance with both constraints were used in that paper.

Some researchers considered specifically the m-CTP-p. For this problem, [6] pro-
posed an exact formulation, valid inequalities, and two metaheuristics. The authors
solved the formulation through a branch-and-cut algorithm. The metaheuristic pro-
posed by those authors is a two-phase hybrid algorithm, where the first phase aims to
select facilities to cover all customers, which can be seen as a Set Covering Problem.
In the second phase, the metaheuristic solves a Capacitated Vehicle Routing Problem
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(CVRP) instance with unit demand considering only the facilities selected in the first
phase. [7] proposed a Variable Neighborhood Search heuristic to solve the m-CTP-
p. The heuristic proposed by these authors outperforms the one proposed by [6] in
time and solution quality. Recently, [2] proposed a BP algorithm based on set parti-
tioning formulation for the m-CTP-p, in which each pricing subproblem is formulated
as an ESPPRC. As the ESPPRC can be time-consuming to solve, they also applied
ng-route relaxation, stabilization techniques, and a heuristic to solve the pricing sub-
problem. The authors presented computational experiments that show that their exact
algorithm outperforms the exact one proposed by [6].

Some researchers consider variants of the m-CTP. In this context, [8] introduced
the Multi-Depot Covering Tour Vehicle Routing Problem (MDCTVRP). In this prob-
lem, a customer’s demand can be fulfilled either by directly visiting the customer or
by visiting a nearby facility. The authors proposed two Mixed Integer Linear Pro-
gramming (MIP) formulations, and a hybrid metaheuristic approach that combines
GRASP, Iterated Local Search, and Simulated Annealing algorithms. [9] introduced
the Multi-Vehicle Cumulative Covering Tour Problem (m-CCTP) whose main differ-
ence from m-CTP is that in m-CCTP objective is to minimize the sum of arrival
times (latency) at each visited facility. The authors proposed a MIP formulation and
a GRASP algorithm for the problem. [10] introduced another variant of the m-CTP
named Multi-Vehicle Multi-Covering Tour Problem, where each customer must be
covered several times instead of a single one. The authors developed a branch-and-
cut and a genetic algorithm for that variant. [11] also introduced a variant of the
m-CTP, the Multi-Vehicle Probabilistic Problem, where each customer has a proba-
bility of being covered by a given facility. The objective function is then to maximize
the expected customer demand covered. For this variant, the authors developed a
branch-and-cut algorithm and a local search heuristic based on Variable Neighborhood
Search. Finally, [12] presented a m-CTP variant for surveillance that involves multi-
ple vehicles, designed to monitor targets (referred to as mandatory passive nodes) for
a specified duration. These vehicles move between waypoints (referred to as optional
active nodes), and they have the flexibility to adjust their speed to extend the time
spent covering a particular node, ensuring it remains within the coverage range. While
the primary objective is to cover all passive nodes, the optimization goal is to maxi-
mize the coverage time for nodes that hold greater importance, rather than minimizing
the total tour length. To tackle this problem, the authors employ a branch-and-price
algorithm that takes into account speed adjustments. Additionally, they introduce a
heuristic construction strategy to address the challenge effectively.

3 Proposed BCP model

In this section, we present a new BCP model for the m-CTP. A BCP model is com-
posed of a MIP formulation where the variables are called original variables, and a
subproblem that defines an additional set of variables (or columns), each one asso-
ciated to a subproblem solution. The original variables in the MIP formulation are
then required to be a linear combination of the columns, further strengthening the
linear relaxation of the MIP formulation. In the case of the m-CTP, the subproblem
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is a Resource Constrained Shortest Path Problem (RCSPP), and each original vari-
able counts the number of times that an edge of G is traversed by a solution. In order
to define the RCSP subproblem, we show how to translate G into a directed graph
G′ that is used as an input to the RCSP solver. We call it the path generator graph.
To employ advanced techniques that improve the BCP performance, we also define
packing-sets, which are subsets of vertices of G′ that can be used at most once in a
complete solution.

The remainder of this section is organized as follows. Sections 3.1 and 3.2 present
respectively the path generator graph and the MIP formulation that compose the
proposed BCP model. Finally, in Section 3.3, we define the packing-sets that are
allows activating state-of-the-art BCP elements such as ng-path relaxation [13], limited
memory Chvátal-Gomory Rank-1 Cuts, [14] and path enumeration, [15].

3.1 Path generator graph

Let G′ = (V ′, A′) be a directed graph such that, V ′ = {v0, v1, . . . , v|M |+|O|} and A′ =
{(vi, vj), (vj , vi)|i, j ∈ V ′, i < j}. Let ρ be a path starting and ending at node v0 such
that this node is not visited in the middle of the path. The path ρ is associated with
two non-negative numbers S1

ρ and S2
ρ that represent the accumulated consumption of

two resources. S1
ρ and S2

ρ are calculated in the following way. When ρ starts, S1
ρ = S2

ρ

= 0. Whenever an arc (vi, vj) ∈ A′ is traversed, the values of S1
ρ and S2

ρ are increased
according to the following equations:

S1
ρ =

{
S1
ρ + 0.5 if i = 0 or j = 0

S1
ρ + 1.0 otherwise.

S2
ρ =

{
S2
ρ + c(i,j) if i < j

S2
ρ + c(j,i) otherwise.

.

We define the increase of S1
ρ at both the incoming and outgoing arcs of v0 as 0.5 to

make G′ symmetrical with respect to forward and backward traversals. This feature
is explored by BCP specialized solvers to enhance their performances.

We say that the path ρ is resource-constrained if S1
ρ ≤ p and S2

ρ ≤ q. Figure 1
illustrates the path generator graph for the proposed toy example where we marked
in yellow, green, and red the depot, and the optional and mandatory facilities, respec-
tively. On each arc, we denote by s1 and s2 the increase in the value of respectively
S1
ρ and S2

ρ .
Since p = 2 and q = +∞, the following paths are resource-constrained on the graph

from Figure 1: ρ1 = (v0, v1, v0), ρ2 = (v0, v2, v0), ρ3 = (v0, v3, v0), ρ4 = (v0, v4, v0),
ρ5 = (v0, v1, v2, v0), ρ6 = (v0, v2, v1, v0). ρ7 = (v0, v1, v3, v0), ρ8 = (v0, v3, v1, v0),
ρ9 = (v0, v1, v4, v0), ρ10 = (v0, v4, v1, v0), ρ11 = (v0, v2, v3, v0), ρ12 = (v0, v3, v2, v0),
ρ13 = (v0, v2, v4, v0), ρ14 = (v0, v4, v2, v0), ρ15 = (v0, v3, v4, v0), ρ16 = (v0, v4, v3, v0).
To facilitate the subproblem resolution, we do not require that the generated paths
are elementary in our model. Although such paths are avoided when state-of-the-
art elements are activated, such as ng-route, the MIP formulation is responsible for
ensuring that any solution that satisfies all constraints corresponds to a valid m-CTP
solution.
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Fig. 2: Path generator graph for the proposed toy example.

3.2 MIP formulation

In this section, we introduce a MIP formulation that considers path variables over G′

defined in Section 3.1. The idea behind the proposed formulation is that each route
that visits at most p facilities and with a total cost less or equal to q is associated
with a path variable on G′. Specifically, the formulation uses an integer variable xe,
for each e ∈ E′′, where E′′ = {e = (i, j) ∈ E|i, j ∈ {0} ∪ M ∪ O}. Each variable
xe indicates how many times the edge e is used in the solution. Let P be the set
of resource-constrained paths over the graph G′. For each ρ ∈ P , the formulation
considers an integer variable λρ to indicate the number of times that the path ρ is used
at the solution. Besides the variables, the formulation uses the following sets: the set
δ(S) = {(i, j) ∈ E′′|(i ∈ S∧ j /∈ S)∨ (i /∈ S∧ j ∈ S)}, for a given S ⊆ {0}∪M ∪O; the
constant ha

ρ indicates the number of times that an arc a ∈ A′ is used in the path ρ ∈ P ;
the set M(e) = {(vi, vj), (vj , vi)}, for each e = (i, j) ∈ E′′. The formulation follows.

Min
∑
e∈E′′

cexe (1a)

s.t.
∑

e∈δ({i})

xe = 2, i ∈ M ; (1b)

∑
e∈δ({i})

xe ≤ 2, i ∈ O; (1c)

∑
e∈δ(ϕ(j))

xe ≥ 2, j ∈ C; (1d)
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xe =
∑
ρ∈P

∑
a∈M(e)

ha
ρλρ, e ∈ E′′; (1e)

1 ≤
∑
ρ∈P

λρ ≤ |M |+ |O|; (1f)

xe ∈ Z, ∀e ∈ E′′; (1g)

λρ ≥ 0, ρ ∈ P (1h)

The objective function (1a) minimizes the total cost of the routes. Constraints
(1b) guarantee that each mandatory node is visited exactly once. Constraints (1c)
guarantee that each optional node is visited at most once. Constraints (1d) ensure
that there is at least one visited node in ϕ(j), for each customer j ∈ C. Constraints
(1e) ensure the relation between the λ and x variables. For a given e = (i, j) ∈ E′′,
the value of xe is given by the number of times that the arcs in M(e) are traversed
considering all the paths of the optimal solution. Constraints (1f) guarantee that the
solution has at least 1 path and at most |M | + |O| paths. Constraints (1g) and (1h)
ensure the domain of the variables.

Since we allow non-elementary paths as RCSPP solutions, it’s possible to find an
integer solution for the x variables, but a fractional solution for the λ variables where
the degree of an optional facility i ∈ O is equal to 1, i.e., there exists e∗ ∈ δ(i) such
that

∑
e∈δ(i) xe = xe∗ = 1. To avoid having to branch on λ variables, we insert the

following constraint on demand, by inspection: xe∗ ≤
∑

e∈δ(i)\{e∗} xe.

3.3 Packing Sets

In this section, we define packing-sets that can be explored by BCP solvers to activate
advanced features. Let SV ⊂ 2V

′\{v0} be a collection of mutually disjoint subsets of
V ′ \ {v0}. We say that the sets in SV are packing-sets if there is at least one optimal
solution to formulation (1), satisfying the following constraints:

∑
ρ∈P

(∑
v∈S

hρ
v

)
λρ ≤ 1, S ∈ SV , (2)

where, hρ
v indicates how many times the node v appears in the path ρ. In other

words, for each packing set S ∈ SV , at most one node in this set can be traversed by
a path and it can occur at most once. In our model, we define a different packing set
{vi} for each i ∈ M ∪ O once each facility is visited at most once. For details about
how state-of-the-art BCP elements that can be activated based on provided packing
sets, we refer to [16].

4 A new family of cuts for the m-CTP

In this section, we introduce a set of valid inequalities for the m-CTP. These inequal-
ities can be seen as a generalization of the following constraints proposed by [17] for
a version of the m-CTP that considers just a single route:
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∑
e∈δ(S)

xe ≥ 2, ∀S ⊆ M ∪O: S ∩M ̸= ∅ or ϕ(j) ⊆ S, for some j ∈ C (3)

Constraints (3) ensure that a given set S ⊆ M ∪O must be visited by at least one
vehicle (that enters and leaves S) when there is a mandatory facility in S, or when
all facilities of the coverage set of a given customer are in S. Note that, if we have
S = ϕ(j), j ∈ C, we get the Constraints (1d).

The proposed set of valid inequalities aims to identify cases where the number of
vehicles that must visit a given subset S of facilities is greater than one. For that, we
rely on the limit p on the number of facilities that can be visited by each vehicle. If
one can prove that at least α facilities of S must be visited in any feasible solution,
then the number of vehicles that enter (and leave) S must be at least ⌈α/p⌉. In the
proposed inequalities, α is computed as the number of mandatory facilities in S plus
the optimal objective value to a linear relaxation of a Set Covering Problem with a
modified objective function that minimizes the number of optional facilities of S that
are visited. This approach leads to the following inequality:

∑
e∈δ(S)

xe ≥ 2K(S), ∀S ⊆ M ∪O, (4)

where

K(S) =


|S ∩M |+ min

ξ∈R|O|
+

 ∑
i∈S∩O

ξi |
∑

i:i∈ϕ(j)

ξi ≥ 1,∀j ∈ C


 /p

 .

From now on, we will refer to inequality (4) as a Covering-Capacity Cut (CCC). To
illustrate the inequality, consider an m-CTP instance with p = 2. For this instance, we
take S = {i1, i2, i3}, where i1 ∈ M , i2, i3 ∈ O and there are two customers j1, j2 ∈ C
such that ϕ(j1) = {i2} and ϕ(j2) = {i3}. The Figure 3 illustrates the instance and the
set S.

For the proposed example, we have K(S) =

⌈
1 + 2

2

⌉
= 2. In other words, for

any feasible solution, at least two vehicles are necessary to visit the set S. It happens
because the mandatory facility must be visited due to the problem definition and the
two optional facilities i2 and i3 also must be visited to cover respectively customers
j1 and j2.

The Proposition 1 proves that CCC are valid for the m-CTP.
Proposition 1. The CCC are valid for the m-CTP.

Proof. Let S ⊆ M ∪ O. First, we prove that at least |S ∩ M | + z∗ facil-
ities in S must to be visited in any feasible m-CTP solution, where z∗ =
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Fig. 3: An Illustration for the proposed cuts.

min
ξ∈R|O|

+

{ ∑
i∈S∩O

ξi |
∑

i:i∈ϕ(j)

ξi ≥ 1,∀j ∈ C

}
. In fact, by the m-CTP definition, all

|S ∩M | mandatory facilities in S must be visited. Regarding the optional facilities in
S, z∗ represents a lower bound for the minimum number of visited optional facilities
in S in any feasible solution. Thus, no m-CTP solution can visit less than |S∩M |+z∗

facilities in S. Now, let x be a feasible solution to (1). Since no route can visit more
than p facilities, the total number of times that the solution traverses an edge from
δ(S) must be at least 2⌈(|S ∩M |+ z∗)/p⌉. Hence, (4) must be satisfied by x.

4.1 The separation algorithm

The strategy adopted here to find violated CCC is to solve one separation problem for
each fixed value of K(S) by modeling it as a MIP. Namely, we seek the set S ⊆ M ∪O
that minimizes the left-hand side of (4) such that K(S) ≥ k, for k = 1, ..., kmax,
where kmax = K(M ∪O). Note that K(M ∪O) is the value of K(S) when S contains
all mandatory and optional nodes, thus representing the maximum value that it can
assume. Let x̄ be a relaxed solution for Formulation (1) and k be an integer number
such that 1 ≤ k ≤ kmax. We start with a bi-level formulation that uses two types of
first-level binary variables. For each i ∈ M∪O, we define a binary variable zi indicating
if i ∈ S (zi = 1) or not (zi = 0), and, for each e ∈ E′′, we define a binary variable
re indicating if e ∈ δ(S) (re = 1) or not (re = 0). The second-level variables are the
continuous variables introduced in the definition of K(S). The formulation follows.

Min
∑
e∈E′′

x̄ere (5a)

s.t. re ≥ zi − zj , e = (i, j) ∈ E′′ (5b)
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re ≥ zj − zi, e = (i, j) ∈ E′′ (5c)

z0 = 0 (5d)∑
i∈M

zi + min
z′∈R|O|

+

∑
i∈O

ziξi |
∑

i∈ϕ(j)

ξi ≥ 1,∀j ∈ C

 ≥ (k − 1)p+ ϵ (5e)

re ∈ {0, 1}, e ∈ E′′ (5f)

zi ∈ {0, 1}, i ∈ M ∪O, (5g)

where ϵ is a small number that is still sufficiently large to ensure that the left-hand
side of (5e) is strictly greater than (k − 1)p despite numerical errors.

The objective function (5a) aims to minimize the left-hand side of 4. Constraints
(5b) and (5c) ensures the relation between variables r and z. Constraint (5d) ensures
that the depot is not in S. Constraint (5e) guarantees that K(S) ≥ k. To see this,
note that it ensures that∑

i∈M

zi + min
z′∈R|O|

+

∑
i∈O

ziξi |
∑

i∈ϕ(j)

ξi ≥ 1,∀j ∈ C


 /p > (k − 1). (6)

Thus, rounding up the left-hand side of (6) results in at least k.
Since (5) cannot be optimized in its present form, we obtain a formulation equiv-

alent to (5) by replacing the optimization problem that appears in Constraint (5e)
with its dual. For that, for each j ∈ C, let yj be the dual variable associated with the
constraint

∑
i∈ϕ(j) z

′
i ≥ 1. The formulation follows.

Min (5a) (7a)

s.t. (5b), (5c), (5d), (5f), (5g) (7b)

∑
i∈M

zi +



Max
∑
j∈C

yj

s.t.
∑

j∈C|i∈ϕ(j)

yj ≤ zi, i ∈ O

yj ≥ 0, j ∈ C


≥ (k − 1)p+ ϵ, (7c)

which is equivalent to:

Min (5a) (8a)

s.t. (5b), (5c), (5d), (5f), (5g) (8b)∑
i∈M

zi +
∑
j∈C

yj ≥ (k − 1)p+ ϵ (8c)

∑
j∈σ(i)

yj ≤ zi, i ∈ O (8d)
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yj ≥ 0 j ∈ C. (8e)

In the proposed BCP algorithm, we use the MIP formulation (8) to find violated
CCC, for k = 1, . . . , kmax.

5 Computational Results

In this section, we present the results of our model on three sets of instances. The first
and second ones are the same used by [2] and [10] for the m-CTP-p and the m-CTP,
respectively. The third set of instances is proposed in this paper, based on the set of
CVRP instances proposed by [18], and having up to 393 facilities. All the instances
used in the reported experiments are available at https://github.com/brunomattos1/
m-ctp instances.

The model is solved using the VRPSolver framework, which was developed by
[16] aiming to facilitate the implementation of efficient BCP algorithms for vehicle
routing problems and other related problems. We opted for the VRPSolver framework
to implement the BCP algorithm due to its state-of-the-art features, such as a bi-
directional labeling algorithm [19] within the concept of buckets, proposed by [20],
to solve the pricing subproblem, ng-route relaxation [13], limited memory Chvátal-
Gomory Rank-1 Cuts, [14], route enumeration, [15], strong branching, [21], automatic
dual stabilization technique, [22]. And also because its proven success in various VRP
and Scheduling variants, as demonstrated in [23], [24], [25], [26] and [16].

All tests were performed on an Intel(R) Core(TM) i7-10700 CPU@ 2.90GHz. The
operational system used was Ubuntu and the algorithm were implemented in Julia
using the VRPSolver framework v0.4.1a (https://vrpsolver.math.u-bordeaux.fr/).
CPLEX 12.10 was used to solve LP and MIP formulations. The tables presented in
this paper contain only average statistics. Detailed data for each tested instance are
provided in an online supplementary material.

5.1 Results for [2] and [10]

Table 1 presents performance indicators of our method over literature instances, and
a comparison between the two versions of the proposed BCP algorithm (with and
without CCC) and the best exact literature method for the m-CTP-p proposed by
[2]. For m-CTP and m-CTP-p instances, our method uses as initial upper bounds,
solution values found by the heuristics proposed by [10] and [7], respectively. Regard-
ing the comparison between our algorithm and the one proposed by [2], we highlight
two points. First, each reported runtime for the latter by the literature was divided
by 1.5. This factor is the ratio between the scores of the processor used by us and
by the literature obtained at www.cpubenchmark.net, for a single thread. The sec-
ond point is that the literature considered a time limit of 7200s. For this reason, we
set a time limit of 4800s (7200/1.5) for experiments over m-CTP-p instances. For the
remaining instances, we set a time limit of 7200s. For each problem (m-CTP or m-
CTP-p), we indicate the category of the instances (Column Category) and the number
of instances in the corresponding category (Column #Inst.). Besides, for each com-
pared methodologies, we present the number of proven optimal solutions within the
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time limit (Column #Opt) and the average total consumed time in seconds (Column
T(s)).

Proposed BCP

[2] Without CCC With CCC

Problem Category #Inst #Opt T(s) #Opt T(s) #Opt T(s)
m-CTP-p |V ′| = 100, |M | = 0 32 32 4.2 32 1.7 32 1.9
m-CTP-p |V ′| = 100, |M | > 0 32 31 ≥ 151.3 32 55.1 32 2.1
m-CTP-p |V ′| = 200 32 27 ≥ 966.3 32 132.5 32 6.1
m-CTP |V ′| = 100, |M | = 0 64 - - 64 3.8 64 14.0
m-CTP |V ′| = 100, |M | > 0 64 - - 64 1.7 64 2.0
m-CTP |V ′| = 200 64 - - 63 206.1 63 128.1

Table 1: Results over literature instances

Table 1 shows that our new BCP algorithm (without or with cuts CCC) outper-
formed the one proposed by [2] in all categories, in time and number of optimally solved
instances. It optimally solved all m-CTP-p instances even when the CCC are not
used. The following five m-CTP-p instances are optimally solved for the first time in
this paper: A2-20-100-100-6, A2-20-100-100-8, B2-1-100-100-8, B2-20-100-100-6, and
B2-20-100-100-8 with optimal solution costs equal to respectively 20966, 18415, 13137,
25960, and 22082. When the CCC are separated, our algorithm further improves its
performance by more than one order of magnitude.

Regarding m-CTP instances, the two versions of our algorithm optimally solved
195 out of 196 instances. Note that the improvement obtained for these instances with
the cuts only occurred for the largest-instances category.

Table 2 shows the gap reduction caused by the use of different types of cuts for large
literature instances (|V | = 200). For each instance, that table presents the percent-
age relative difference between the best known solution and the lower bound obtained
by pure column generation at the root node (Column CG Gap), the percentage gap
reduction obtained when only the literature cuts (3) are applied to the column-
generation relaxation (Column Cuts Lit.), the percentage gap reduction obtained when
the CCC are applied to the column-generation relaxation with literature cuts (Col-
umn Cuts CCC), and the percentage gap reduction obtained when the limited memory
Chvátal-Gomory Rank-1 cuts provide by the VRPSolver framework are applied to the
column-generation relaxation with both the literature and the proposed cuts (Column
Cuts R1C ).

Table 2 shows the substantial reduction of the remaining root gap obtained with the
CCC. The average reduction is higher for m-CTP-p instances. This fact was already
expected since the K(S) calculus does not consider the maximum cost of a route q
that is constrained in m-CTP instances. Despite this, the smallest average root gap
reduction was 42.88%.
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Table 2: Gap reduction comparison.
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5.2 Results on the new proposed instances

We introduce a new set of m-CTP-p instances, which is derived from CVRP instances
belonging to the set X proposed by [18]. Each CVRP instance within this set is labeled
as X − n − k, with n signifying the number of nodes and k representing the number
of vehicles. Given a CVRP instance, we generate an m-CTP-p instance as follows.
The first node of the CVRP instance serves as the depot, while the subsequent |M |
nodes denote mandatory facilities. The remaining n − |M | − 1 nodes, represent both
optional facilities and customers. To achieve this representation, we create a duplicate
node for each node of this type. The original node represents an optional facility, while
its duplicate is a customer. The construction of coverage sets ϕ considers that each
facility i covers every customer j if c(i,j) ≤ 1000√

n
in the original CVRP instance. The

parameter p is defined as p = ⌈n
k ⌉. For each one of the 58 CVRP instances within the

set X with 101 ≤ n ≤ 393, we generate two m-CTP-p instances by setting |M | = 0
and |M | = ⌈0.2n− 1⌉.

To compute the initial upper bounds for the proposed instances, we used a simple
and effective heuristic for m-CTP-p available at https://github.com/brunomattos1/
m-ctp heuristic. Roughly speaking, it generates random subsets of optional facilities
that cover all customers and iterates perturbing and evaluating them in the same
fashion as [27]. In each subset evaluation, it finds a set of routes visiting them and
the mandatory facilities using the heuristic proposed by [28], which is configured to
generate only 3 tentative individuals (solutions) and return the best of them. For each
instance, we let the heuristic run for 3 minutes.

Table 3 presents average results obtained by the application of the proposed BCP
model with CCC to the new set of instances. These instances are categorized into six
groups based on two criteria: the value of |M ∪ O| (ranging from 100 to 200, 200 to
300, and 300 to 400) and the value of |M | (|M | = 0 or |M | > 0). Table 3 employs the
following columns to present statistical information for each group. Column #Inst.
denotes the count of instances within the group. Column #Opt. represents the num-
ber of instances in the group that were optimally solved within a time limit of 18000
seconds. Column #Nodes. indicates the average total number of the tree nodes consid-
ering only instances that were optimally solved. Column #Gap0. presents the average
relative percentage difference between the optimal cost and the lower bound at the
root node. This statistic is also limited to instances that were optimally solved. Finally,
Column #T(s). displays the average total computational time for instances that were
optimally solved.

The results present in Table 3 indicate that the proposed instances are considerably
more challenging than those found in the existing literature. Regarding instances with
|M | = 0, the algorithm successfully solved only 16 out of 21 of the smallest instances,
with average nodes of 66, average Gap0 of 1.15%, and average total execution time of
2350.49s. Besides, for instances with 200 ≤ |M ∪O| < 300, the algorithm was able to
optimally solve only 5 out of 22 instances. Finally, our algorithm did not optimally
solve any instance with 300 ≤ |M ∪O|.

For instances with |M | > 0, the algorithm exhibited a similar performance pro-
file, leading us to conclude that the presence of mandatory facilities does not pose
a significant challenge. For the smallest group of instances, the algorithm optimally
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solved 15 out of 21 instances, achieving an average node count of 26.06, an average
Gap0 of 0.60%, and an average execution time of 2953.39 seconds. For instances with
200 ≤ |M ∪ O| < 300, the algorithm managed to optimally solve only 3 out of 22
instances. Furthermore, none of the largest instances were optimally solved.

The Figure 4 shows the optimal solution for the instance X-n101-k25-p5, with
M = ∅, where the nodes marked in red represent the optional facilities that are
visited by some vehicle. Around each one of these nodes i, we delineate a dashed red
circumference. Each node j within the circumference is such that i ∈ ϕ(j).
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Fig. 4: Solution of the instance X-n101-k25-p5.

Note that the customers 5, 7, 27, 38, 45, 70 and 75 are only covered by the facility
that is placed at the same place that them. Therefore, they must be visited.
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6 Conclusion

In this paper, we addressed the m-CTP, which is a variant of the Vehicle Routing
Problems where facilities are visited by the routes to cover customers from a given
network. In this problem, the routes are limited by the number of facilities visited
and the total cost. For that problem, we devised a BCP model coded within the
VRPSolver framework, presented an effective new family of cuts that explores two
main structures of the problem, the covering problem and the capacity of the vehicles.
We also proposed a set of large instances.

To prove the effectiveness of the proposed method and the proposed cuts, we con-
ducted several computational experiments that are divided into two parts. In the first
one, we applied the two versions of the proposed model (with and without proposed
cuts) to 288 literature benchmark instances. The results showed that our method opti-
mally solved all but one instance. Besides, we compared our algorithm to the best
literature one that is specialized for the problem variant where the routes are limited
only on the number of visited facilities. This comparison showed that our approach
outperformed the literature one even when we did not consider the proposed cuts.
In the second part of the experiments, we applied our approach to the newly pro-
posed instances and concluded that they are considerably more challenging than the
literature ones, being suitable for future research developments.

For future research, we intend to adapt the proposed cuts to other VRPs whose
routes are also limited on the number of visited nodes.
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