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ABSTRACT
The Nelson-Siegel and the Svensson models are two of the most widely used models
for the term structure of interest rates. Even though the models are quite simple
and intuitive, fitting them to market data is numerically challenging and various
difficulties have been reported. In this paper, a novel mathematical analysis of the
fitting problem based on parametric optimisation is carried out. The analysis is
based on the known observation that the fitting problem can be formulated as a
separable nonlinear least-squares problem, in which the linear parameters can be
eliminated. We specifically provide a thorough discussion on the conditioning of
the inner part of the reformulated problem and show that many of the reported
difficulties encountered when solving it are inherent to the problem formulation
itself and cannot be tackled by choosing a particular optimisation algorithm.

Our stability analysis provides novel insights that we then use to show that some
of the ill-conditioning of the problem can be avoided, and that a suitably chosen
penalty approach can be used to take care of the remaining ill-conditioning. As
our numerical results indicate, this approach has indeed the expected impact, while
being fully independent of any choice of a particular optimisation algorithm. We
further establish smoothness and differentiability properties of the reduced objective
function, which for the first time puts global optimisation methods for the reduced
problem on a sound mathematical basis.

KEYWORDS
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1. Introduction

Due to their appealing features, the model of Nelson-Siegel [1] and its extension by
Svensson [2] have become very popular with practitioners in the financial industry to
represent the term structure of interest rates. By means of simple parametric functions
that rely on few parameters only, both models are parsimonious and yet able to capture
the shapes of most of the observed term structures of interest rates in the market. Their
extensive popularity is reflected by the fact that they are widely employed by financial
institutions, e.g. by national banks (see, e.g., [3]). In particular, Svensson’s extension
is used on a daily basis by the European Central Bank, see [4], and the Deutsche
Bundesbank, see [5], to model yield curves constructed from market data. Further
applications can be found in the recent paper [6]. In addition, also quite recently, deep
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learning approaches – specifically autoencoders – have been successfully applied to
yield curve data. Since the Nelson-Siegel and Svensson models represent an approach
strongly related to such kind of dimension reduction techniques, renewed interest in
these models has arisen from a data science perspective, cf. especially [7] and [8].

To apply the Nelson-Siegel and the Svensson models in practice they need to be
made consistent with observed data, i.e. their parameters need to be chosen such that
model rates best match given (market) rates. This optimisation procedure, frequently
called �tting, however, bears several numerical difficulties, as reported, for instance,
in [9], [10], [11], and [12]; see also [6] for further references. Both models are highly
nonlinear and non-convex so that the objective function, usually some kind of root-
or mean-square error, contains multiple local minima. Moreover, it is well-known that
the models suffer from severe multi-collinearity in certain regions of the parameter
space.

To avoid non-convexity, a popular yet straightforward technique that has been
adopted by some authors is to provide predetermined values to parameters that appear
in a nonlinear fashion in the model and to use ordinary linear least-squares methods to
obtain the remaining parameters (see, e.g., [1], [10], [13], [12], and [14]). Some of these
approaches only consider one pre-specified value (where the value is based e. g. on
economic reasoning or hindsight) which, however, limits the models and reduces some
of their flexibility in reproducing different types of curves. Other approaches consider
several potential values for the nonlinear parameter(s) and can typically be either clas-
sified as a grid search method or as a (heuristic) global optimisation method for the
reduced global optimisation problem. However, so far no analysis has been provided
which puts such methods on a sound mathematical basis. In particular, the literature
lacks continuity and/or smoothness results for the reduced objective function.

To avoid multi-collinearity, some authors have suggested to not consider regions of
the nonlinear parameter space which lead to such multi-collinearity (see, for instance,
[15]), while others have proposed to tackle the fitting problem by a suitable choice
of optimisation algorithm (e.g., [6] suggest a genetic algorithm). We will argue that
while the first approach is reasonable, it still bears some difficulties. For the second
approach, we will prove that the issue of multi-collinearity is an inherent aspect of the
problem and cannot be addressed choosing the optimisation algorithm in a particular
way. Note that although this result was already indicated in [15], no formal proofs nor
a mathematical precise analysis were given.

In essence, although the main difficulties in fitting these models have been recognised
in various sources, no fully satisfying analysis nor remedy has been presented in the
literature so far.

In view of these findings, we propose a novel mathematically rigorous analysis of
fitting Nelson-Siegel and Svensson models. Given that both models are linear com-
binations of specific nonlinearly parameterised basis functions, it is well-known that
the problem of matching model rates to given rates can be formulated as a separable
nonlinear least-squares problem. In particular, this allows to express the linear model
parameters as an ordinary linear least-squares solution that depends on the nonlinear
parameters. On substituting the optimal solution into the original objective function,
we arrive at an at most two-dimensional non-convex and potentially non-differentiable
optimisation problem in the nonlinear parameters only. This reduction is the basis
for our analysis and quantification of the ill-conditioning of the problem; an analysis
which has not been carried out before in such a way in the literature. Accordingly,
by means of such a stability analysis, we can exactly identify the regions of the pa-
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rameter space that lead to the ill-conditioning and consequently untrustworthy values.
After demonstrating that some of this ill-conditioning can be avoided by adding more
short and/or long term tenors to the fitting problem, we then argue that the most
reliable and efficient way to address the remaining ill-conditioning is by penalising the
reduced objective function, where the parameters of the penalisation can be adjusted
as to yield sufficient stability in the linear parameters. One of the main findings of our
analysis is that if the optimal solution is obtained in a region with a high condition
number this can be interpreted as an over-specification of the model for the data at
hand. As our subsequent analysis will show, this ill-conditioning is caused in full by
high collinearity of the basis functions. For the first time, this also shows in a rigorous
way that the model parameters cannot be properly identified (due to offsetting effects)
–independent of the optimisation algorithm employed.

A further interesting result is that the reduced objective function is smooth, and
thus Lipschitz continuous, in a large compact set containing the global optimum, which
for the first time puts global optimisation methods for the reduced problem on a sound
mathematical basis.

The remainder of this paper is structured as follows. In Section 2, we briefly review
the modelling framework of the Nelson-Siegel and the Svensson models. In Section 3,
we describe the traditional fitting procedure of these models and show how the (par-
tial) linear structure of the models can be exploited, while in Section 4 we provide a
thorough analysis of the inherent ill-conditioning of the problem and present an ap-
proach to solve the fitting problems by means of penalisation. In Section 5, we support
our theoretical findings with a brief computational study. Finally, Section 6 provides
our conclusions.

2. Model specification

Let us start by mentioning that both the Nelson-Siegel and the Svensson model have
their thorough foundations in interest rate theory, see, for instance, [12], where more
details on the models can be found. For the purpose of this paper it suffices though to
assume that some kind of rates y(�) (e.g., zero rates, swap rates, CDS spreads, etc.)
are given for selected maturities � 2 [0; T ], with fixed horizon date T > 0, which we
want to approximate by either the Nelson-Siegel or the Svensson family of functions.
This rather pragmatic point of view is also employed, e.g. by [8].

2.1. Nelson-Siegel model

In [1] the following model curve is proposed

y�;�(�) = �1 + �2

�1� e��1�

�1�

�
+ �3

�1� e��1�

�1�
� e��1�

�
; (1)

where �1; �2; �3 2 R denote the linear coefficients and �1 � 0 the shape parameter.
Although Nelson and Siegel’s model is quite simple, it can assume a variety of shapes
depending on the four parameters which have a clear interpretation: �1 describes the
long rate, the sum �1 + �2 accounts for the short rate, and �3 and �1 determine the
height and position of the hump of the curve, respectively.
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2.2. Svensson model

To allow for an even greater flexibility in the curves and to improve the fit, [2] proposes
to extend Nelson and Siegel’s model by adding a further term. Svensson’s extension
often provides a better fit to long maturities than the Nelson-Siegel model, see, e.g.,
[16]. The corresponding model curve is given as

y�;�(�) = �1+�2

�1� e��1�

�1�

�
+�3

�1� e��1�

�1�
�e��1�

�
+�4

�1� e��2�

�2�
�e��2�

�
: (2)

with �1 � 0 and �2 � 0. Unlike other authors, we do not impose any restrictions
on the linear parameters �1, �2, �3 and �4 at this point. This is justified by the fact
that for example interest rates may well become negative, as developments in financial
markets have shown, see, e.g., [17].

3. Fitting of model curves

The aim of a fitting procedure is to determine model parameters such that they best
match available data. Fitting can thus be seen as defining an optimisation problem, of
which several different variants exist, and of choosing and executing an optimisation
algorithm. Different variants of fitting differ from each other in the formulation of the
objective function as well as in the choice of the optimisation algorithm used to solve
the problem.

3.1. Traditional approach

3.1.1. General setup

Given the descriptions of the Nelson-Siegel and the Svensson models in (1) and (2),
respectively, the model curves1 can be expressed as

y�;�(�) =

lX
j=1

�j�j(�; �); (3)

where the continuously differentiable basis functions �j have the form

�1(�; �) = 1; �2(�; �) =
1� e��1�

�1�
;

�3(�; �) =
1� e��1�

�1�
� e��1� ; �4(�; �) =

1� e��2�

�2�
� e��2� :

Using (3) and letting 0 < �1 < : : : < �m � T denote some set of predefined maturities
at which given rates ŷ1; : : : ; ŷm 2 R are available, the fitting of the Nelson-Siegel and

1For l = 3, � 2 R+, we obtain the Nelson-Siegel model, whereas for l = 4, � 2 R2
+, we obtain the Svensson

model. To allow for larger values of l, further basis functions would need to be defined. Our subseqent analyis

is specifically tailored for the Nelson-Siegel and Svensson models, but can partially be generalised to larger

models as well.
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the Svensson models to these rates can then be described2 in the least-squares sense
as solving the problem

min
� 2 � ; � 2 Rl

n
F (�; � ) :=




 �( � )� � ŷ




 2

2

o
; (4)

where� 2 Rl and � 2 � are unknown parameters, � � Rk
+ is without loss of generality

a closed set of positivek-dimensional real numbers (see Section 3.2.2 for the relevant
reasoning), �( � ) 2 Rm� l denotes the matrix of basis functions with entriesf �( � )gi;j =
� j (� ; � i ), i = 1 ; : : : ; m, j = 1 ; : : : ; l , and ŷ = ( ŷ1; : : : ; ŷm )> 2 Rm presents the vector
of given rates. We further assume thatm > l + k holds, i.e. the number of maturities
is greater than the dimension of the problem so that (4) de�nes an overdetermined
least-squares problem with more observations than unknowns.

Note that we use throughout the convention

� 2(0; � ) := 1 = lim
� 1 ! 0+

� 2(� ; � ) and

� 3(0; � ) := 0 = lim
� 1 ! 0+

� 3(� ; � );

where both limits are understood in the supremum norm onC([0; T]) (i.e. limits are
uniform in � ).

Further, note that other possibilities for modeling the �tting problem exist as well.
For instance, one could use other functions than the sum-of-squares to measure the
�tting error, such as the 1 -norm, the 1-norm, or any monotone transformation thereof.
While the main idea of our analysis still remains valid for these formulations, our
analysis exploits the special structure of the given optimisation problem. Di�erent
variants will require di�erent de�nitions of a condition number of the inner problem,
which might lead to a much more involved analysis. Let us point out here that (4)
appears to represent the most popular formulation and is also used in other contexts,
e.g., training autoencoders [8].

3.1.2. Review of existing approaches

To deal with the numerical di�culties involved in the �tting, several di�erent ap-
proaches have been presented in the literature which will be reviewed in the following.

In order to avoid solving a non-convex least-squares problem, the idea of splitting the
problem and employing a grid search on the reduced problem was already proposed in
the original paper [1]: consider the shape parameter� 1 only on a �nite grid of di�erent
values in a reasonable interval and estimate for each of these values the remaining
parameter � by solving a linear least-squares problem. The optimal solution among
all sets of parameters was then chosen as the one yielding the highestcoe�cient of
determination R2. The idea of �xing the shape parameter at pre-speci�ed values in
the estimation of the Nelson-Siegel model was adopted by [10], [13], [12], and other
authors, albeit with a di�erent strategy for the choice of � 1. Considering that the shape
parameter determines the position of the hump of the zero rate curve, [10] and [13]

2To take care of potential heteroscedasticity in the data, positive weights may additionally be included in the
objective function F . The latter may then be formulated as F (�; � ) := kW (�( � )� � ŷ)k2

2 , where the elements
of the weight matrix W = diag

�
w1 ; : : : ; w l

�
are typically set equal to the reciprocals of the variances of the

residuals, which may be estimated, for instance, from historical data (e.g., [18]). However, for ease of exposition,
we do not use any weights in our analysis and the numerical calculations.
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�xed the parameter � 1 in the Nelson-Siegel model in such a way that the maximum
of the zero rate curve was attained for di�erent sets of data at a maturity of 5:38
and 2:5 years, respectively. The latter value was also used by [12] for his data set.
While the reason for these particular choices was motivated by historical observations,
[14] �xed the nonlinear parameter in hindsight at a value which provided the lowest
�tting error over the time horizon considered. By setting the nonlinear parameter to
a single pre-speci�ed value, some of the numerical problems can be resolved. However,
a signi�cant amount of 
exibility of the models is lost this way. In particular, no
such strategy guarantees that the �xed parameter is suitable, let alone optimal, for all
individual curves. Moreover, this simple strategy has only been applied to �tting the
Nelson-Siegel model. In the case of the Svensson model, two nonlinear parameters� 1
and � 2 would need to be �xed at adequate values, which is a much more demanding
task. We want to emphasise that the original grid search idea proposed in [1] is at
present merely a heuristic approach, as no mathematical rigorous reasoning has been
given as to why such a strategy should be able to approximate the true global optimum.

If separability is ignored and all parameters are estimated simultaneously, the corre-
sponding optimisation problem (4) is non-convex and may thus have several local min-
ima. Unsurprisingly, using nonlinear optimisation techniques, various authors hence
have noted that the success crucially depends on the choice of the initial values, see,
e.g., [19] for the Nelson-Siegel model as well as [12] and [20] for both models. To miti-
gate the danger of getting stuck in a local optimum, [12] suggested to carefully choose
the initial values by applying the above strategy of �xing the shape parameter. In [20]
it is indicated that it would be necessary to run any local optimisation algorithm from
many di�erent initial values and therefore suggest a multi-start framework in which
they run a local optimiser for (4) from a selected subset of randomly generated points.

The di�culties in �tting are further elevated by the potential multi-collinearity in
the models, as analysed by [12], [15], and [21], for instance. It is pointed out in [12] that
the linear parameter estimates� are sensitive to the choice of the shape parameter�
and that the �tting procedure as given via (4) can result in optimal parameter sets that
lead to a very good �t but include extreme values, especially for the Svensson model3.
Since the degree of multi-collinearity seemed to be in
uenced only by the nonlinear
parameter � (apart from maturities), the most common technique for preventing multi-
collinearity is to restrict its parameter space in an appropriate manner, see [12] and
[15]. Given the economical interpretation of the shape parameter, [12] constrained the
parameter in both models to lie in a small interval that implies that the humps of the
resulting zero rate curves are between one and �ve years of maturity for a data set
with up to ten years of maturity. Similarly, to avoid the case in the Svensson model
where � 1 and � 2 lie too close together, he restricted� 2 so that the second hump
occurs at a maturity which is at least one year shorter than the �rst hump. In contrast
to the above interpretation of the shape parameter, [15] discussed multi-collinearity
in the Nelson-Siegel and the Svensson models (albeit not in a completely rigorous
fashion) and constrained the range of� to those values that yield factor loadings
that are not too highly correlated. If factors become too highly correlated, many
di�erent parameter sets typically have very similar objective function values so that
the factors can no longer be uniquely identi�ed. Nevertheless, their �nal restriction of
the parameter space excludes regions that may contain a potential global minimum
with moderately correlated factor loadings. An approach di�erent from restricting the

3An example was provided by [22] for �tting the Svensson model, albeit with a di�erent objective function.
They reported that extreme and often o�setting optimal values for the linear parameters � 3 and � 4 occur
whenever the corresponding nonlinear parameters � 1 and � 2 are similar to each other.
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parameter space was chosen by [21], who improved the suggested grid search of Nelson-
Siegel by a ridge regression to stabilise the estimated parameters and hence prevent
multi-collinearity. More precisely, for an optimal nonlinear parameter � �

1 causing high
collinearity, they iteratively re-estimated the corresponding linear coe�cients until
the condition number of the modi�ed linear least-squares problem falls below a given
threshold. The approach is extendable to the Svensson model in a straightforward
manner. The main disadvantage of this approach is that the changes in the linear
parameters might result in a signi�cant deterioration of the model �ts.

In what follows, we provide a novel analysis supplementing existing approaches for
�tting both the Nelson-Siegel and the Svensson models. As already mentioned, this
analysis is based on the observation that the corresponding optimisation problem can
be reformulated as a separable nonlinear least-squares problem, which allows to avoid
collinearity issues substantially and which renders the global optimisation problem
computationally tractable as its dimension is reduced signi�cantly. Even though the
special structure of the objective function was already recognised by [23] and [20],
no theoretical justi�cation in the sense of our Theorem 1 below was provided, not to
mention the subsequent implications on the treatment of the ill-conditioning of the
inner problem.

3.2. Dimension reduction in �tting models

3.2.1. Main idea

Since the model ratesy�;� in both the Nelson-Siegel and the Svensson model are ex-
pressed as a linear combination of nonlinear basis functions in which the parameters�
and � occur independently, cf. formula (3), the original minimisation problem (4) evi-
dently presents aseparable nonlinear least-squares problem, see, e.g., [24], Section 9.4.
Hence, for any given� 2 �, some optimal linear parameter � � = � � (� ) will always
exist and can be obtained by solving the standard linear least-squares problem

min
� 2 Rl

F (�; � ); (5)

for �xed � 2 �. Its solution is given by

� � (� ) = �( � )yŷ; (6)

where �( � )y denotes the Moore-Penrose pseudoinverse of �(� ), see, e.g., [24], Sections
1.1.4 and 1.2.5. Note that� � solves (5) if and only if � � satis�es the normal equations
of (5):

�( � )> �( � )� � = �( � )> ŷ:

Accordingly, if the columns of �( � ) are linearly independent, i.e. rank(�( � )) = l ,
the unique least squares solution is given by� � (� ) = (�( � )> �( � )) � 1�( � )> ŷ. If
rank(�( � )) < l , the least squares solution� � (� ) is not unique, and any such solution
has the same residual �(� )� � (� ) � ŷ. In this case, the Moore-Penrose pseudoinverse
assigns the solution with minimum length k� � (� )k2, which is uniquely de�ned.

On substituting the optimal solution into the objective function F , the original
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problem (4) can be decomposed into an outer and inner optimisation problem

min
� 2 �
� 2 Rl

F (�; � ) = min
� 2 �

min
� 2 Rl

F (�; � )
| {z }

=: H (� )

= min
� 2 �

H (� ); (7)

where the objective function H takes the semi-analytic form

H (� ) = F
�
�; � � (� )

�
=




 �( � )�( � )yŷ � ŷ




 2

2; (8)

in which the linear parameter � has been eliminated.
The outer problem (7) is a non-convex optimisation problem in the nonlinear param-

eter � 2 �. For each function evaluation of the objective function H in (8), the inner
problem (5) needs to be solved which represents an unconstrained low-dimensional
linear least-squares problem in the parameter� . Once the optimal nonlinear parame-
ter � � has been obtained by solving the outer problem (7), the unique corresponding
optimal linear parameter � � (� � ) can be derived via equation (6).

3.2.2. Theoretical justi�cation

The justi�cation for employing the proposed technique is given by the following The-
orem 1. For a proof of Theorem 1, see [25], Theorem 2.1. This result establishes a
strong relationship between critical points of the original objective function F and
the new objective function H , as well as between their global minimisers.

Theorem 1. Assume that in the open set
 , the matrix of basis functions �( � ) has
constant rank 0 < q � l .

a) If � � is a critical point, resp. a global minimiser, of H in 
 and

� � = �( � � )yŷ; (9)

then (� � ; � � ) is a critical point, resp. a global minimiser, of F in 
 � Rl and
F (� � ; � � ) = H (� � ).

b) If (� � ; � � ) is a global minimiser of F in 
 � Rl , then � � is a global minimiser of
H (� ) in 
 and H (� � ) = F (� � ; � � ). Furthermore, if there is a unique � � among
the minimising pairs of F , then � � must satisfy (9).

We note that the equivalence between the critical points of both objective functions
relies on the assumption that the rank of the matrix �( � ) is locally constant on an open
set 
, while the constant rank condition is obviously not necessary for the equivalence
of the global minimisers.

Concerning the corresponding Moore-Penrose pseudoinverse �(� )y, in our setup the
constant rank condition further allows to establish continuity and even smoothness of
H on 
, see the subsequent Corollary 3 based on the following Theorem 2. For this
purpose, let D � �( � ) denote the Fr�echet derivative of the matrix �( � ) with respect
to � . For a proof of Theorem 2, let us refer to [25], Theorem 4.3. Note that our
equation (10) equals equation (4.12) in [25].

Theorem 2. Assume that in the open set
 , the matrix of basis functions �( � ) has
constant rank 0 < q � l . Further, let �( � ) be Fr�echet di�erentiable with respect to �
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in 
 . Then, for any � 2 
 , we have that the following identity holds:

D � �( � )y = � �( � )yD � �( � )�( � )y +
�
�( � )> �( � )

� yD � �( � )> �
I � �( � )�( � )y�

+
�
I � �( � )y�( � )

�
D � �( � )> �

�( � )�( � )> � y:
(10)

From the di�erentiability of the Moore-Penrose pseudoinverse on 
, it immediately
follows with (8) and (10) that the objective function H is di�erentiable on 
 with
respect to � as well, so that formulas for its gradient r � H (� ) = ( D � H (� ))> can be
established, see the following Corollary 3. In Corollary 3 we cover the Svensson model;
the Nelson-Siegel model can be easily recovered by setting� 2 = 0, � �

4(� ) = 0 and
neglecting the second column ofD � H (� ).

Corollary 3. Assume that in the open set
 , the matrix of basis functions �( � ) has
constant rank 0 < q � l and that l = 4 . Further, let �( � ) be Fr�echet di�erentiable with
respect to � in 
 . Then, for any � 2 
 , H is di�erentiable and it holds:

D � H (� ) = � 2ŷ> �
I � �( � )�( � )y�� � �

3(� ) ( � � e� � 1 � ); � �
4(� ) ( � � e� � 2 � )

�
; (11)

where "� " denotes the Hadamard product of componentwise vector multiplication.

Proof. Di�erentiability of H has already been noted above. Further, according to [25],
equation (4.7), the derivative of H with respect to � can be written as

D � H (� ) = � 2ŷ> �
I � �( � )�( � )y� D � �( � )�( � )yŷ: (12)

SinceD �( � ) 2 Rk� (m� l ) is a tensor, its �rst and second slice with partial derivatives
with respect to � 1 and � 2 have the matrix forms

�
D � �( � )

�
1 =

@
@�1

�( � ) =
�
0; D � 1 � 2(� ; � ); D � 1 � 2(� ; � ) + � � e� � 1 � ; 0

�
;

and

�
D�( � )

�
2 =

@
@�2

�( � ) =
�
0; 0; 0; D � 2 � 4(� ; � )

�
;

respectively, where

D � 1 � 2(� ; � ) =
@

@�1
� 2(� ; � ) =

e� � 1 �

� 1
�

1 � e� � 1 �

� 2
1�

;

D � 1 � 3(� ; � ) =
@

@�1
� 3(� ; � ) = D � 1 � 2(� ; � ) + � � e� � 1 � ; and

D � 2 � 4(� ; � ) =
@

@�2
� 4(� ; � ) =

e� � 2 �

� 2
�

1 � e� � 2 �

� 2
2�

+ � � e� � 2 �

denote the derivative of the i -th basis function � i (� ; � ) with respect to � k . Since
D � 1 � 2(� ; � ) does not depend on� 2, we can set

h2(� 1) := D � 1 � 2(( � 1; 0); � ):
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As previously noted, for each� 2 
 the inner problem in � possesses at least one
optimal solution � � (� ) with � � (� ) = �( � )yŷ. We can thus rewrite (12) as

D � H (� ) = � 2ŷ> �
I � �( � )�( � )y��� � �

2(� ) + � �
3(� )

�
h2(� 1) + � �

3(� ) ( � � e� � 1 � );

� �
4(� )h2(� 2) + � �

4(� ) ( � � e� � 2 � )
�
:

, Now, h2(� 1; � ) = � � 3(� ; � )=� 1 and h2(� 2; � ) = � � 4(� ; � )=� 2, and from the normal
equations of the inner problem for �xed �

�( � )> �( � )� � (� ) = �( � )> ŷ;

it follows that any column of �( � ) is orthogonal to
�
�( � )�( � )y � I

� > ŷ. Hence,D � H (� )
can be simpli�ed to

D � H (� ) = � 2ŷ> �
I � �( � )�( � )y�� � �

3(� ) ( � � e� � 1 � ); � �
4(� ) ( � � e� � 2 � )

�
:

Note that while equation (12) holds in the general situation, the speci�c form of
r � H (� ) in (11) only holds for the Nelson-Siegel and the Svensson models.

Moreover, since the matrix norms of �( � ) and �( � )y and the Fr�echet derivatives
D �( � ) and D �( � )> are bounded on bounded domains for constant rank, the Fr�echet
derivative in (10) is bounded as well. In particular, the Moore-Penrose pseudoinverse is
locally Lipschitz continuous on 
, as well as the objective function H as a composition
of locally Lipschitz continuous functions. Thus, H is globally Lipschitz continuous on
any compact subset � � 
.

It is a natural next step to investigate for which values of � 2 Rk
+ the matrix

�( � ) might fail to have full rank. We will prove that in the Svensson model a rank
de�ciency may only occur for points which are not global minimisers, while in the
Nelson-Siegel model, rank de�ciency will only happen for a few isolated points in
the general situation; and most importantly, does not happen at all in our speci�c
situation.

Proposition 4. Let m � 3 and � 1; � 2; � 3 2 Q. Then in the Nelson-Siegel model we
have

jf � 2 R+ : rank(�( � )) < 3gj � 4:

Proof. We �rst note that the extreme case � = 0 corresponds to �( � ) having rank
1, as �( � ) only contains columns of 0's or columns of 1's. Therefore, let� > 0 in the
following. To prove the claim it is su�cient to consider the upper 3 � 3 matrix of �( � ),
i.e. ignore further maturities, as the rank of the full matrix is always equal to or larger
than the rank of this submatrix:

A :=

0

@
� 1(� ; � 1) � 2(� ; � 1) � 3(� ; � 1)
� 1(� ; � 2) � 2(� ; � 2) � 3(� ; � 2)
� 1(� ; � 3) � 2(� ; � 3) � 3(� ; � 3)

1

A :

Since � 3(� ; � ) = � 2(� ; � ) � e� �� , we can subtract the second column from the third,
then multiply the third column by -1, swap second and third column, and obtain the
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matrix B with det( B ) = det( A):

B :=

0

B
@

1 e� �� 1 1� e� �� 1

�� 1

1 e� �� 2 1� e� �� 2

�� 2

1 e� �� 3 1� e� �� 3

�� 3

1

C
A :

We can then multiply the last column of B by � and substitute z := e� � (note
0 < z < 1) to obtain the matrix C with det( C) = � det(B ):

C :=

0

@
1 z� 1 1� z� 1

� 1

1 z� 2 1� z� 2

� 2

1 z� 3 1� z� 3

� 3

1

A :

Letting t 2 N be the least common denominator of� 1, � 2 and � 3, hence� i = vi =t for
somevi 2 N, i = 1 ; 2; 3, we can further substitute y = z1=t and obtain

1=t � det(C) =
�

1
v2

�
1
v3

�
yv3 + v2 +

�
1
v3

�
1
v1

�
yv3 + v1 +

�
1
v1

�
1
v2

�
yv2 + v1 +

+
�

1
v1

�
1
v2

�
yv3 +

�
1
v3

�
1
v1

�
yv2 +

�
1
v2

�
1
v3

�
yv1 :

Thus, 1=(t �yv1 )�det(C) yields a polynomial in y with a constant term and �ve monomial
terms. By Descartes' rule of sign, this polynomial can have at most �ve distinct positive
real roots as it has at most �ve sign changes in the coe�cients. Further, since the
product of the �rst and the last coe�cient is positive, the number of roots has to be
even, hence there are at most four di�erent positive real roots. Since we can further
divide the remaining polynomial by the leading factor, which yields a constant term
of 1, we know that there must be at least one positive real root larger than 1 if there
is any positive real root smaller than 1 (as the product of all roots equals 1). Thus,
there are at most three positive real roots in the open interval (0; 1), which proves the
claim.

Remark 1. Since 1=(t � yv1 ) � det(C) has to vanish for y = z = 1, one might be able
to show that the polynomial is, from there on, strictly increasing. This would actually
show that there are no roots besidesz = 0 and z = 1. Unfortunately, we have not
been able to prove this yet. Nevertheless, we have checked a variety of choices for the
maturities � and we have never found an instance where �(� ) becomes rank de�cient
in the Nelson-Siegel model.

Fortunately, for the speci�c choice of maturities which we consider in Section 5, it
is quite easy to prove that �( � ) always has full rank:

Remark 2. For the speci�c choice of maturities as in Section 5, wherem � 3 and
� 1 = 1, � 2 = 2, and � 3 = 3, we have that t = 1 and, most importantly,

det(C) = 1 =6 � (z � 1)4z;

which shows that �( � ) has full rank for all � > 0. Thus, in the Nelson-Siegel model,
we can choose 
 = R+ as minimisation region, where the case� = 0 can be covered
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separately in an easy fashion.

From now on, we make the assumption on the maturities that � = 0 is the only
point of rank de�ciency for �( � ) in the Nelson-Siegel model, i.e. we require that the
maturities � 1; : : : ; � m are such that

in the Nelson-Siegel model holds:f � 2 R+ : rank(�( � )) < 3g = f 0g: (FRNS)

(FRNS) is an assumption, which is satis�ed in our numerical setup according to Re-
mark 2. Further, (FRNS) can be easily checked (e.g. with symbolic computing tool-
boxes) for other maturity choices.

Under assumption (FRNS) let us now consider the Svensson model in more detail.
We �rst consider the case that a related full rank assumption for the Svensson model
holds:

(FRNS) holds and in the Svensson model we have:

8� 1 > 0 9� 2 > 0 : rank(�( � )) = 4 : (FRSv)

Remark 3. For the speci�c choice of maturities as in Section 5, wherem � 4 and
� k = k (k = 1 ; : : : ; 4), we can prove by similar considerations as in the proof of
Proposition 4 that the upper 4 � 4 matrix of �( � 1; � 2) has full rank for all choices of
� 1 > 0 when we set� 2 = ln(4) if � 1 < ln(3) and � 2 = ln(2) otherwise. Alternatively,
this also follows from Remark 4 as an easy consequence. In summary, (FRSv) holds.

Under (FRSv), we can now show that there is at least one global optimiser� �

of H such that �( � � ) has full rank. This statement is made precise in the following
Proposition 5. Proposition 5 allows us to restrict the global minimisation of H to
regions where �( � ) has full rank.

Proposition 5. Let (FRSv) hold. Then

min
� 2 R2

+

H (� ) = min
� 2 R2

+ :rank(�( � ))=4
H (� )

Proof. Let �� be a global minimiser of H on R2
+ with rank(�( �� )) < 4. Then

rank(�( �� )) = 3, as the �rst three columns of �( � ) are independent by assumption
(FRNS). Thus, there exist ĉ1; : : : ; ĉ4 2 R with ĉ4 6= 0 such that

4X

k=1

ĉk � k ( �� ; � ) = 0 ;

or, equivalently, for ck = � ĉk=ĉ4:

� 4( �� ; � ) =
3X

k=1

ck � k ( �� ; � ):
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Using H (�� ) = min � 2 R4 F (��; � ) = F (��; � � ( �� )) for some optimal � � ( �� ) yields

H (�� ) = min
� 2 R4

F (��; � ) = F (��; � � ( �� )) = F (��; � �
1( �� ); : : : ; � �

4( �� )) =

= F (��; � �
1( �� ) � c1� �

4( �� ); : : : ; � �
3( �� ) � c3� �

4( �� ); 0):

This means that �� 2 is such that � 4 is already contained in the linear hull of the �rst
three basis functions. Since now� 4 = 0, we can choose any other valuê� 2 instead of
�� 2 without changing the value of F . We choose�̂ 2 such that �( �� 1; �̂ 2) has full rank
(i.e. rank(�( �� 1; �̂ 2)) = 4), which is possible due to assumption (FRSv) and obtain:

H (�� ) = : : : = F (��; � �
1( �� ) � c1� �

4( �� ); : : : ; � �
3( �� ) � c3� �

4( �� ); 0)

= F (( �� 1; �̂ 2); � �
1( �� ) � c1� �

4( �� ); : : : ; � �
3( �� ) � c3� �

4( �� ); 0)

= min
� 2 R3

F (( �� 1; �̂ 2); � 1; : : : ; � 3; 0) (X)

� min
� 2 R4

F (( �� 1; �̂ 2); � 1; : : : ; � 3; � 4)

= H (( �� 1; �̂ 2)) :

This shows the claim.

Since the set f � 2 R2
+ j rank(�( � ))) = 4 g is open, we choose 
 := f � 2

R2
+ j rank(�( � )) = 4 g for the Svensson model. For an approximate characterisation

of 
 let us refer to Remark 4. Note that Figure 2 indicates that � has full rank in
the Svensson model as long as� 2 L := f (� 1; � 2) 2 R2

+ j � 1 > 0; � 2 > 0; � 1 6= � 2g
with potential exception of the two bent curves visible in Figure 2. This can indeed
be rigorously shown in our setup:

Remark 4. For the speci�c choice of maturities as in Section 5, wherem � 4 and
� k = k (k = 1 ; : : : ; 4), we have that with

B := f (� 1; � 2) 2 R2
+ j � 1 = ln( v(e� � 2 )) � ln(u(e� � 2 ))g;

where u(s) = 1 � s + 2s ln(s) and v(s) = s2 � 4s2 ln(s) � s + 2s ln(s), that

L n B � f � 2 R2
+ j rank(�( � )) = 4 g � L :

In analogy to the proof of Proposition 4, the �rst inclusion (the second is obvious) can
be proved by showing, fora := e� � 2 ,

det

0

B
B
B
@

1 z� 1 1� z� 1

� 1

1� a� 1

� � 1 ln( a) � a� 1

1 z� 2 1� z� 2

� 2

1� a� 2

� � 2 ln( a) � a� 2

1 z� 3 1� z� 3

� 3

1� a� 3

� � 3 ln( a) � a� 3

1 z� 4 1� z� 4

� 4

1� a� 4

� � 4 ln( a) � a� 4

1

C
C
C
A

= �
z
24

(z � 1)4 a � 1
ln(a)

(a � z) (u(a)z + v(a)) :

This shows that the determinant of the above matrix can only vanish for given a if
z = a or if z = � va=ua. Whether � has full rank on B remains open, as we have only
considered the upper 4� 4 block of �.
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Under a slightly stronger assumption than (FRSv), we can show a stronger state-
ment than in Proposition 5. For this purpose, let us introduce the assumption (RNS)
on the maturities � i , i = 1 ; : : : ; m:

90 < � (1)
1 < : : : < � (m)

1 : det
�

� 3(( � (j )
1 ; 0); � k )k;j =1 ;:::;m

�
6= 0 : (RNS)

In other words, we can �nd m di�erent values for � 1 such that the m versions of the
basis function � 3 form a basis of theRm .

Remark 5. Assume (FRNS); then assumption (FRSv) immediately follows from
(RNS): since the m versions of the basis function� 3 (and thus also those of � 4)
form a basis ofRm , we can always pick one of thesem values for � 2 to get a fourth
column of �( � ), which is not contained in the linear hull of the �rst three columns.

Remark 6. For the speci�c choice of maturities as in Section 5, wherem = 15 and
� k = k (k = 1 ; : : : ; 15), we can show numerically that

f � (1)
1 ; : : : ; � (m)

1 g =

= f 0:01; 0:04; 0:09; 0:17; 0:28; 0:42; 0:58; 0:79; 1:05; 1:36; 1:77; 2:31; 3:10; 4:43; 8:47g

yields a set of values which satis�es (RNS).

Similar considerations show that for our numerical tests the basis function� 2 is also
rich enough, i.e. � 2 satis�es (RNS), given

f � (1)
1 ; : : : ; � (m)

1 g =

= f 0:01; 0:02; 0:06; 0:12; 0:20; 0:32; 0:47; 0:65; 0:89; 1:18; 1:56; 2:06; 2:77; 3:99; 7:62g:

We can now strengthen our result above for the Svensson model to the following
Theorem 6. Note that Theorem 6 is not relevant for the Nelson-Siegel model, as for the
Nelson-Siegel model the matrix �( � ) always has full rank under our given assumptions.

Theorem 6. Let � � be the global minimiser ofH (� ) on R2
+ , let H (� � ) > 0 and let

(RNS) hold. Then, the matrix �( � � ) has full rank.

Proof. Let �� be a global minimiser ofH with H (�� ) > 0 and assume �(�� ) does not
have full rank. Then, in complete analogy to the proof of Proposition 5 up to the
equality marked (X), we have:

H (�� ) = min
� 2 R3

F (( �� 1; �� 2); � 1; : : : ; � 3; 0) = F (( �� 1; �� 2); �� 1; : : : ; �� 3; 0) =

= F (( �� 1; �̂ 2); �� 1; : : : ; �� 3; 0):

SinceH (�� ) > 0, the residual ŷ � �( �� ) �� (with �� 4 = 0) does not equal 0. Further, due
to (RNS), we can choose�̂ 2 not only in such a way that �(( �� 1; �̂ 2)) has full rank,
but we can further choose it such that � 4(( �� 1; �̂ 2); � ) is not orthogonal to the residual
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ŷ � �( �� ) �� and hence

H (�� ) = F (( �� 1; �̂ 2); �� 1; : : : ; �� 3; 0) > min
� 4 2 R

F (( �� 1; �̂ 2); �� 1; : : : ; �� 3; � 4) �

� min
� 2 R4

F (( �� 1; �̂ 2); � ) = H (( �� 1; �̂ 2)) :

This shows that �� cannot be a global minimiser, hence the claim follows.

If H (� � ) = 0, not much can be said about the rank of �( � � ). For example, one might
be given data ŷ which is already in the linear hull of the �rst three basis functions.
Then the choice of� 2 does not play a role and one can choose� 2 in a way such that
a rank de�cit of � occurs. In our numerical tests, H (� � ) = 0 has never occurred,
indicating that this is indeed a rare event in practise. Further, Proposition 5 tells us
that there is at least one other global minimiser without a rank de�cit.

While Proposition 5 already allows us to consider only points where � has full
rank, Theorem 6 additionally yields that points � with rank de�cient �( � ) have worse
function values than the global minimiser. Thus, these regions can be avoided by the
minimisation routine, which provides the basis for our penalty approach in the next
section.

Let us �nally remark that establishing global Lipschitz continuity of H on compact
� � 
 provides the main basis for all global optimisation approaches for the reduced
problem; a result which so far has been missing in the corresponding literature.

We are now in a situation where we could apply any reasonable global method to
the optimisation of H . However, instead of more involved strategies, we remain with
the most simple grid search approach introduced by [1] for three reasons: �rst, the
dimension of the global optimisation problem is reduced to one or two and thus grid
search is computationally feasible, second, we are given the natural lower bound of
0 for H and can thus easily judge the quality of potential solutions, and third, this
method is most easily extendable to the ideas presented in the following section. As our
numerical investigations in Section 5 show, this approach already yields encouraging
results.

4. Stability analysis

One of the main issues that arises in the minimisation of the reduced optimisation
problem (7) is the stability of optimal solutions. To assess the quality of optimal
solutions, note that the evaluation of H solely depends on the solution of the inner
problem � � (� ) = �( � )yŷ. Hence, the stability of the inner optimal solution � � of the
separable least-squares problem can essentially be analysed by applying perturbation
theory to linear least-squares problems, see, e.g., [24], Section 1.4. Accordingly, there
are two di�erent scenarios in which optimal solutions can become sensitive with respect
to perturbations of either the data vector ŷ or the matrix �( � ). The �rst scenario
concerns the projection ofŷ onto the span of �( � ) and turns out to be of relevance if
both components are nearly orthogonal to each other. In such case, the projected ^y is
much smaller than ŷ itself so that minor changes in ŷ may a�ect the linear solution
� � (� ) greatly. However, since both the Nelson-Siegel and the Svensson model are able
to �t a variety of di�erent shapes with high accuracy, this scenario never occurs for
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these models and the sensitivity to perturbations in ŷ can be neglected4. The second
issue pertains to the conditioning of the matrix �( � ) and thus is in
uenced solely
by the factor loading structure that is imposed by the models. In this case, optimal
solutions of the linear least-squares system respond strongly to perturbations in �(� )
if the matrix is ill-conditioned, i.e. if some of the columns of �( � ) are almost linearly
dependent. Since this is a more subtle issue, in the remaining part of this section
we provide a thorough analysis of the potential ill-conditioning of �( � ) and how it
can be dealt with. In particular, we use the condition number of the matrix �( � ) to
measure the sensitivity of an optimal solution (� � ; � � (� � ))> , which also corresponds to
the condition of the problem of evaluating H (� ). In this way, we are able to quantify
{and manage{ the ill-conditioning with our enhanced approach, in contrast to previous
approaches.

Let us point out that above considerations are not to be confused with the depen-
dence of the optimal � � on the data ŷ, as this is a di�erent issue. Recall that the main
relationship here is that changes in ^y imply changes in� � , which in turn imply changes
in � � . While above considerations consider the question, how (small) changes in �(� � )
(due to small changes in� � ) impact � � , the general dependence of� � with respect to
ŷ is of di�erent nature. Our penalty approach, which we introduce later, stabilizes the
local behaviour of � � for small changes in� � as it takes care of the condition number
of �( � ). However, no approach whatsoever will be able to prevent large changes in
� � given small changes in ^y due to the inherent non-convex structure of the �tting
problem in � , as the following example shows: Let us take ^y from the subsequent dates
6 January 2009 and 7 January 2009 and look at corresponding objective functionsH
in the Nelson-Siegel model.

(a) Term structures.
(b) Objective functions H and global minima
(red points).

Figure 1.: Term structures and objective functions H with corresponding global min-
ima when the Nelson-Siegel model is �tted to the data on 6 January 2009 and 7
January 2009, respectively.

As we can see in Figure 1, interest rates do not change much from one day to
the other, but the optimal � � moves from one local minimum to the other. Similar
behaviour can be observed in the Svensson model, where this happens more often
due to a larger number of local minima, which all have quite similar objective values
(compare Figure 6 for an illustrative instance). Unfortunately, such a behaviour in �

4 If models are used where perturbations to ^y turn out to be relevant, the following analysis can be extended
by adjusting the condition number to include ^ y, see, e.g., [24], Subsection 1.4.3.
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(and thus in � correspondingly) can never be avoided by any �tting method due to
the inherent structure of the models, unless one gives up on the global optimality of� .
Moreover, Figure 1 again indicates the unwanted property ofunidenti�ability of the
Nelson-Siegel model, i.e. there exists a data vector ^y such that two di�erent � values
yield the same optimal quality of approximation.

4.1. The inherent ill-conditioning of �( � )

Recall that the matrix function �( � ) in the Nelson-Siegel and the Svensson models
can be written as

�( � ) =
�
� 1(� ; � ); : : : ; � l (� ; � )

�
; (13)

with basis functions � j , j = 1 ; : : : ; l . This implies that the degree of ill-conditioning
of �( � ) depends on both the vector of shape parameters� and the vector of pre-
de�ned maturities � , but not on the data ŷ.5 To be able to quantify the degree of
ill-conditioning of the rectangular matrix �( � ) 2 Rm� l , we consider its singular value
decomposition according to [24], Theorem 1.2.1, where

�( � ) = U(� )
�

�( � ) 0
0 0

�
V(� )T ;

for unitary matrices U(� ) 2 Rm� m and V(� ) 2 Rl � l , and the diagonal matrix �( � )
containing the singular values of �( � ). Using this decomposition, the condition number
of the rectangular matrix �( � ) is then de�ned as follows, cf. [24], De�nition 1.4.2.

De�nition 7. The condition number of �( � ) 2 Rm� l is given by

�
�
�( � )

�
=




 �( � )






2




 �( � )y






2 =
� 1(� )
� q(� )

;

where 0< q � l , � 1(� ) � � 2(� ) � : : : � � q(� ) > 0 are the nonzero singular values of
�( � ), and k � k2 denotes the matrix 2-norm.

The condition number describes how solutions of the linear least-squares problems
are a�ected by small perturbations. If the condition number is 'large', i.e. solutions
are a�ected greatly, the problem is said to be ill-conditioned, see, e.g. [26], Chapter 3.
A more accurate interpretation of ill-conditioning is subject to the problem at hand
and depends on the application. For our setup, we will give a suitable idea of a large
condition number in Subsection 4.2.

The e�ect of having obtained an optimal nonlinear solution � � with ill-conditioned
matrix �( � � ) may become especially apparent in that some of the values of the corre-
sponding linear parameter� � (� � ) turn out to be very large (and o�setting), with values
being proportional to the degree of ill-conditioning. This, though, is in contradiction
to the intuitive economic interpretation that all model parameters have.

Figure 2 shows a line plot and a contour plot of the condition number of the matrix
�( � ) as a function of the parameter � for the Nelson-Siegel model and Svensson's
extension, respectively. From the sub�gures, we can observe that the main di�culties

5For the available data described in Subsection 5.1, we have m = 15 and � = (1 ; 2; : : : ; 15)> .
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(a) Nelson-Siegel model (b) Svensson model

Figure 2.: A two-dimensional line plot and a contour plot of the condition number of
the matrix �( � ) as a function of the nonlinear parameter� for the Nelson-Siegel and
the Svensson models, respectively, with maturity vector� = (1 ; 2; : : : ; 15)> .

in the �tting of both models arise when the shape parameter� is either very small or
becomes increasingly large, or, in the case of the Svensson model, when� 1 � � 2. The
severity of the ill-conditioning in the latter case is illustrated by the elevated diagonal
in the contour plot of the condition number, see Sub�gure 2(b). Disproportional large
condition numbers can also be observed beneath and above the diagonal in form of
slightly bent curves for very small and increasingly large values of the parameter� ,
respectively. These curves exactly represent the setB de�ned in Remark 4. Note that
our numerical computation indicate that in both cases the linear dependence of the
columns is only approximate and thus does not lead to a rank-de�cient matrix �( � )
(although the upper 4 � 4 block is rank-de�cient according to Remark 4).

The approximate linear dependence between the columns of the matrix �(� ) can
be mitigated by considering observations with shorter and/or longer maturities, in
addition to the observations already used in the model. As an example, the impact
on the condition number of the matrix �( � ) when including short and long maturities
into the vector of maturities � is depicted in Sub�gures 3(a) and (b), respectively.
Accordingly, the inclusion of short maturities can considerably improve the degree
of ill-conditioning in the region with increasingly large � 's and hence enlarge the
parameter space for which a solution may be acceptably stable. Similarly, the inclusion
of long maturities can improve the degree of ill-conditioning in the region where� is
small.

Let us point out again that if the global optimal solution � � leads to an ill-
conditioned �( � � ), then it can not be guaranteed that the parameters of the model
can be identi�ed with high accuracy |independent of the method used. Hence, ill-
conditioning is an issue with the Nelson-Siegel and the Svensson models themselves,
which can occur for certain type of curves, i.e. certain shape parameters� . Usually,
simply shaped curves (e.g. 
at curves, i.e.� close to 0) lead to ill-conditioned solutions
as in these cases the models are over-speci�ed. Hence, the condition number can act
as an indicator for the over-speci�cation of the model.
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(a) Maturity vector � (1) (b) Maturity vector � (2)

Figure 3.: Contour plots of the condition number of the matrix �( � ) as a function
of the nonlinear parameter � for the Svensson model with di�erent maturity vectors
� (1) = (1 =12; 1=4; 1=2; 1; 2; : : : ; 15)> and � (2) = (1 ; 2; : : : ; 15; 24; 36; 60)> .

4.2. A penalty approach for avoiding ill-conditioned �( � )

The most obvious way of dealing with ill-conditioning in the �tting of the Nelson-
Siegel and the Svensson models is to restrict the parameter space according to the
condition number of the matrix �( � ). However, this approach is rather inconvenient,
as it bears several issues. Whereas the simple relation between condition number and
nonlinear parameter may still allow for an adequate derivation of constraints for the
Nelson-Siegel model, see Sub�gure 2(a), it is a fairly demanding task to constrain the
parameter space for the Svensson model, see Sub�gure 2(b). Due to the irregularly
distributed condition numbers over the parameter space, a suitable restriction only
seems possible if the parameter space is modi�ed accordingly, either through transfor-
mation or decomposition, or both. In any case, though, the derivation of constraints
remains prone to inaccuracies as it presently depends on the visual amenability of the
condition number in one or two dimensions. It thus also lacks theoretical foundation.
Finally, the approach is somewhat in
exible since minor changes in the models, or
even the use of other models that share the same separable structure, require the
constraints to be readjusted. Because of these reasons, we follow a di�erent approach
that deals with the ill-conditioning of the matrix �( � ) in a more general way, still
ensuring the separability of the problem. The approach relies on a penalisation of the
objective function if the condition number of �( � ) exceeds a maximum allowed level
and is described hereinafter.

To penalise large condition numbers in the objective functionH of the reduced
optimisation problem, we consider the function

H pen(� ) =



 �( � )�( � )yŷ � ŷ




 2

2 + �
�
�

�
�( � )

�
� � max

� + ; (14)

where � > 0 denotes the weight of the penalisation,� max the maximum condition
number whose exceedance is penalised, and [x ]+ = max f x; 0g.

Adding a penalty term to the objective function avoids optimal solutions being sit-
uated in regions with relatively high condition numbers. Because of the direct relation
between the nonlinear parameter� and the condition number � (�( � )) in the objective
function H pen, the impact of the condition number can be controlled more e�ectively
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