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Received: date / Accepted: date

Abstract Gradient computation of multivariate distribution functions calls
for considerable effort. A standard procedure is component-wise computation,
hence coordinate descent is an attractive choice. This paper deals with con-
strained convex problems. We apply random coordinate descent in an approxi-
mation scheme that is an inexact cutting-plane method from a dual viewpoint.
We show that a cutting-plane scheme will converge unless the information
added by new cuts persistently deteriorates to zero. Our cuts are dual images
of test points, each generated by a single step of random coordinate descent,
and we can prove almost sure convergence. We present a computational study
comparing gradient descent and coordinate descent applied in the approxi-
mation scheme. We found that even an unsophisticated implementation of
coordinate descent progresses faster in the initial iterations.

Keywords Stochastic programming, probability maximization, approxima-
tion schemes, coordinate-descent methods, cutting-plane methods

1 Introduction

Let us consider a probability maximization problem of the form

max P(Tx ≥ ζ) subject to Ax ≤ b, (1)

where ζ is a random vector having a nondegenerate normal distribution. Let
F (z) denote the distribution function. Introducing the probabilistic function
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φ(z) = − logF (z), the problem is transformed into a convex minimization
form, due to the logconcavity of the normal distribution.

To solve this problem, we apply a scheme analogous to the inner approxima-
tion approach widely used to handle probabilistic constraints. This approach
was initiated by Prékopa [16]. The idea is to approximate a level set of the prob-
abilistic function. Main contributions are Prékopa, Vizvári and Badics [18],
Dentcheva, Prékopa and Ruszczyński [4], Dentcheva, Lai and Ruszczyński [2],
Dentcheva and Martinez [3], Van Ackooij, Berge, de Oliveira and Sagastizábal
[21]. Looking at the proposed methods in chronological order, an increasing
level of complexity is noticeable.

The probability maximization scheme proposed in our former paper [7] ap-
proximates the epigraph of the probabilistic function, instead of a level set. As
new test points are generated by unconstrained optimization, the procedure
is simple, easy to implement, and remarkably well tolerates noise in gradient
computation. An efficient version was developed in [6], where improving test
points are generated by randomized gradient descent, starting from an appro-
priate convex combination of existing test points. — There is an analogy with
averaging in stochastic gradient methods. (The scheme can be extended to
handle probabilistic constraints; a Newton-type approach was proposed in the
latter paper.)

In the present paper, we modify this probability maximization scheme to
generate new test points by random coordinate descent, using the ideas of Nes-
terov [13]. In order to prove the convergence of the modified scheme, we extend
the convergence proof of [5] that we formerly worked out for a deterministic
gradient descent scheme.

The test point-generation scheme is an inexact cutting-plane method from
a dual viewpoint. The advantages of the dual viewpoint are that it presents a
clear visual image, and we can apply classic results on convex functions. Figure
1 depicts the dual objective function and its current cutting-plane model.
In the next iteration, we construct an approximate linear support function

Fig. 1 The graph of the dual objective function and its current cutting-plane model.

at the minimizer of the model function. The new cut intersects the line of
the dotted interval. The information content of the new cut is measured by
the ratio between the lengths of the dotted sections below and above the
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intersection. We are going to show that, unless the information content of
the cuts persistently deteriorates to zero, the scheme will converge. In case
the new test points (i.e., cuts) are generated by just a single step of random
coordinate descent, there will almost surely exist a sequence of cuts each having
an information content above a threshold.

In section 2 of this paper, we discuss the solution scheme in an idealized
setting. In section 3, we adapt this scheme to probability maximization. Specif-
ically, we show that Lipschitz constants for the axis-directional derivatives of
the normal distribution function are easily computed. A computational study
is presented in section 4.

2 Problem, Model and Solution Scheme in an Idealized Setting

We consider a problem of the form

min ϕ(z) subject to z = Tx, Ax ≤ b, (2)

where ϕ : IRn → IR is a continuously differentiable convex function. The
vectors are x ∈ IRm, b ∈ IRr, and the matrices T and A are of sizes n×m and
r × m, respectively. We assume that the feasible domain of (2) is nonempty
and bounded, hence the problem has an optimal solution. — We are going to
attribute further useful properties to ϕ(.).

Introducing the multiplier vectors −u ∈ IRn and −y ∈ IRr
+ to the respec-

tive constraints, the Lagrangian dual of (2) can be written as

−min
{
ϕ⋆(u)− yT b

}
subject to (y,u) ∈ D, (3)

with an appropriate closed convex polyhedron D ⊂ IRr+n. Let us introduce
the function

ν(u) = inf
(y,u)∈D

−yT b (u ∈ IRn). (4)

We assume that ν(.) < ∞. Moreover, we assume that the convex conjugate
function ϕ⋆(.) is finite valued. Problem (3) can then be written in uncon-
strained form:

−min {ϕ⋆(u) + ν(u)} . (5)

(Note that ν(.) > −∞ due to convex duality.)

2.1 Polyhedral Models

Suppose we have evaluated the function ϕ(z) at points zi (i = 0, 1, . . . , k). An
inner approximation of ϕ(.) is

ϕk(z) = min

k∑
i=0

λiϕ(zi) such that λi ≥ 0,
∑

λi = 1,

k∑
i=0

λizi = z.

(6)
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A polyhedral model of problem (2) is

min ϕk(z) subject to z = Tx, Ax ≤ b. (7)

We assume that the convex hull of the test points z0, . . . ,zk is wide enough
to produce a finite minimum.

The convex conjugate of ϕk(z) is

ϕ⋆
k(u) = max

0≤i≤k

{
uTzi − ϕ(zi)

}
, (8)

and the following problem is a polyhedral model of problem (3):

−min
{
ϕ⋆
k(u)− yT b

}
subject to (y,u) ∈ D. (9)

Let (λ0, . . . , λk, x ) and (u, y ) denote respective optimal solutions of the
problems (7) and (9) – both existing due to our assumption concerning the
feasibility of (7). Let moreover

z =

k∑
i=0

λizi. (10)

Complementarity between the optimal solutions of the primal-dual pair of
linear programming problems (7) and (9) results in

Observation 2.1 We have ϕk(z)+ϕ⋆
k (u) = uTz (hence u is a subgradient

of ϕk(z) at z).

Details of linear programming formulations and corresponding observations
with sketches of proofs can be found in [6].

2.2 Solution Scheme

Assume that the initial model (6) is based on K + 1 test points, z0, . . . ,zK .
From a primal viewpoint, the solution scheme is a column-generation method
that iteratively constructs new test points zK+1, zK+2, . . . in the primal model
function (6).

Here we are going to use the dual viewpoint, considering the scheme as a
cutting-plane method that approximates ϕ⋆(.) with an iteratively improving
sequence of functions ϕ⋆

k(.) (k = K,K + 1, . . .).
The unconstrained dual problem (5) can be solved by minimizing d(u) :=

ϕ⋆(u) + ν(u). The dual model problem (9) can be solved by minimizing
dk(u) := ϕ⋆

k(u) + ν(u).
An approximate support function to d(u) at u is constructed in the form

ℓ(u) := ℓ‵(u) + ℓ‵‵(u) (u ∈ IRn), (11)

where the right-hand-side functions are separate support functions to ϕ⋆(u)
and ν(u), respectively.
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As for ν(u), we can construct an exact support function ℓ‵‵(u) by solving
a linear programming problem.

An approximate support function to ϕ⋆(u) at u is constructed in the form

ℓ‵(u) := uTz‵ − ϕ(z‵) (u ∈ IRn), (12)

with an appropriate vector z‵. (Note that ℓ‵(.) ≤ ϕ⋆(.) by the above definition.)
An exact support function could be obtained by setting z‵ to be the exact
maximizer of uTz − ϕ(z). — Instead, we are going to perform approximate
minimization of the negative function

f(z) := ϕ(z)− uTz (z ∈ IRn), (13)

taking a single step of random coordinate descent. We apply a special form
of the framework of Nesterov [13]: the domain space is decomposed to one-
dimensional subspaces and Euclidean norms are used throughout. See also
section 8.6 in Luenberger and Ye [12]; and Wright [22], Bottou, Curtis and
Nocedal [1] for discussions on coordinate descent.

Assumption 2.2 The directional derivatives of ϕ(z), taken along the coordi-
nate axes, are Lipschitz continuous.

I.e., for any i ∈ {1, . . . , n} there exists a constants Li > 0 such that∣∣ eTi ∇ϕ(z + tei)− eTi ∇ϕ(z)
∣∣ ≤ Li|t| (14)

holds for any z ∈ IRn and t ∈ IR.

Assumption 2.3 The function ϕ(z) is strongly convex with the parameter
α > 0.

Assumptions 2.2 and 2.3 are obviously inherited to the current objective
function f(z). In order to construct an approximate support function in the
form (12), we are going to perform a single coordinate-descent step starting
from z. Let g := ∇f (z) denote the (unknown) gradient.

We randomly select a coordinate axis and will estimate the corresponding
directional derivative of the objective function. Formally, e will denote the
randomly selected axis. This is a random vector taking values from among the
unit vectors {e1, . . . , en}, according to uniform distribution. The correspond-
ing directional derivative is q := eTg. As q is a randomly selected component
of the n-dimensional vector g, it follows that the event

q2 ≥ 1

n
∥g∥2 (15)

occurs with a probability at least 1
n .

Let L denote the Lipschitz constant along the selected axis, and let

z‵ := z − 1

L
q e. (16)
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Theorem 2.4 Assume that the directional derivative along the selected axis
has at least average magnitude, i.e., (15) holds. Then we have

f
(
z‵
)
−F ≤

(
1− α

nLmax

)
(f (z) −F) , (17)

where F = minz f(z) and Lmax = maxi Li.

This is a special and slightly modified form of theorem 2 of [13]. We omit the
proof, as Nesterov’s line of proof is directly applicable. Simple proofs can also
be found in [12], [22], [1]. The referenced works also contain related results
about deterministic methods. — In contrast to those of the referenced results
that involve random methods, here we deal with function values instead of
expectations, as this fits the present cutting-plane scheme. (Hence we need
the assumption on the selected axis.)

Corollary 2.5 Assume that the directional derivative along the selected axis
has at least average magnitude, i.e., (15) holds. Then the new linear support
function adds significant information to the model, specifically,

ℓ(u) ≥ θd(u) + (1− θ)dk(u) (18)

holds with the constant θ = α
nLmax

.

Proof. It is enough to show that

ℓ‵(u) ≥ θϕ⋆(u) + (1− θ)ϕ⋆
k(u) (19)

holds with ℓ‵(u) constructed in the form (12), with z‵ defined in (16).
(19) is in turn obtained by substituting f(z) = ϕ(z)−uTz and F = −ϕ⋆(u)

in (17), and applying the equality of Observation 2.1. ⊓⊔

2.3 Convergence

Keeping the notation ϕk(z) and dk(u) for the current polyhedral model func-
tions, let zk+1 and uk+1 (instead of just z and u) denote the optimal solutions
of the current model problems. – The next test point in the primal scheme,
that is the next cut in the dual scheme, is constructed by performing a single
coordinate-descent step, along a randomly selected axis ek+1.

Assumption 2.6 We assume that all the dual iterates uk are contained in a
convex compact set Ou ⊂ IRn.

(In order to see that this assumption is not overly demanding, imagine that
the optimal solutions zk of the primal model problems are all contained in a
compact set, and take Observation 2.1 into account.)

From a dual point of view, we perform a cutting-plane procedure to solve
the convex problem

min d(u) such that u ∈ Ou, (20)
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where the domain is compact. (We put the problem in technically constrained
form in order to simplify the convergence proof.) The model function is dk(u).
In the next iterate uk+1, an approximate support function ℓl+1(u) is generated.
This scheme converges unless the information contributed by the successive
cuts persistently deteriorates to nil:

Theorem 2.7 When solving (20) with an approximate cutting-plane method,
assume that there exists an infinite sequence (ki) of strictly increasing natural
numbers such that

ℓl+1(ul+1) ≥ θd(ul+1) + (1− θ)dl(ul+1) (l = ki, i = 1, 2, . . .) (21)

holds with some constant θ ∈ (0, 1]. Then the method generates a sequence of
models and iterates satisfying

lim
k→∞

Dk = D, (22)

where Dk and D are the minima of dk(u) and d(u), respectively.

The proof can be found in appendix A. – We mention that limi→∞ d(uki+1) =
D also holds, but in the present dual-type application, convergence of the
minima is sufficient.

Corollary 2.8 Let us select the axes independently in the course of the column
generation process. Then

lim
k→∞

zk = z⋆ almost surely,

where z⋆ denotes the z-part of the optimal solution of the convex problem (2).

Proof. From the independent selection of the axes, it follows that, with prob-
ability 1, there exists a sequence k1, k2, . . . of natural numbers such that
K ≤ k1 < k2 < . . ., and

q2l+1 ≥ 1

n
∥gl+1∥2 holds for l = ki, i = 1, 2, . . . . (23)

If such a sequence (ki) indeed exists then, by corollary 2.5, (21) holds with
θ = α

nLmax
. This makes theorem 2.7 applicable.

In our solution scheme, ϕ(z⋆) = −D is the common optimum of the convex
problem (2) and the convex dual problem (5). Moreover ϕk(zk+1) = −Dk is
the common optimum of the polyhedral model problems. Hence Dk → D
translates to

ϕk(zk+1) → ϕ(z⋆). (24)

Taking into account that ϕk(zk+1) ≥ ϕ(zk+1) ≥ ϕ(z⋆) holds for every k, we
get ϕ(zk+1) → ϕ(z⋆). Strict convexity of ϕ(z) then yields zk → z⋆. ⊓⊔
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3 Adapting the Approach to Probability Maximization

Let F (z1, . . . , zn) denote the joint distribution function of the random variables
ζ1, . . . , ζn. Assumed that the distribution function is differentiable, its axis-
directional derivatives can be computed as

∂F (z1, . . . , zn)

∂zi
= F (z1, . . . , zi−1, zi+1, . . . , zn | zi) hi(zi) (i = 1, . . . , n),

(25)
where F (z1, . . . , zi−1, zi+1, . . . , zn | zi) is the conditional distribution function
of the random variables ζ1, . . . , ζi−1, ζi+1, . . . , ζn given that ζi = zi, and hi(z)
is the probability density function of the random variable ζi – see, e.g., section
6.6.4 in Prékopa [17].

In solving probabilistic problems, a standard procedure is component-wise
computation of the gradient, based on (25). In the case of high dimensions,
gradient computation (or estimation) requires a major effort, therefore coor-
dinate descent is an attractive choice. – We mention that another means of
alleviating the difficulty of gradient computation in the case of normal distri-
bution was proposed by Hantoute, Henrion and Pérez-Aros [9].

We assume that the feasible domain of the probability maximization prob-
lem (1) is contained in a bounded (closed) box X ⊂ IRm. Exploiting the
monotonicity of the objective function, problem (1) can be written as

min φ(z) subject to z ≤ Tx, Ax ≤ b, x ∈ X . (26)

We assume that a feasible starting point ž is known such that F (ž) ≫ 0.
A further speciality of the normal distribution function is the existence of a

bounded (closed) box Z outside which the probability weight can be ignored.
We are going to include z ∈ Z among the constraints of the probability max-
imization problem. This allows the regularization of the objective function, in
the form of

ϕ(z) = − logF (z) +
ρ

2
∥z∥2 (27)

with some ρ > 0. In what follows, we assume that ρ is small enough, and
the regularizing term makes no significant variation in the objective value of
z ∈ Z. We are going to solve the approximating problem

min ϕ(z) subject to z ∈ Z, z ≤ Tx, Ax ≤ b, x ∈ X . (28)

(Details on the quality of this approximation can be found in [6], section 5.1.)
By splitting the variables z, we can fit problem (28) to the template of

(2). Relaxing every constraint except z ∈ Z and x ∈ X , we then obtain a
Lagrangian dual problem that can be transformed to the unconstrained form
of (5). — A detailed description can be found in [5]. If the boxes Z and X are
origin-centered, then the polyhedral function ν(.) can be formulated using L1

norms, showing that ν(.) < ∞.
Polyhedral models can be constructed in the manner described in section

2.1, and observation 2.1 is inherited to the present models.
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3.1 Justification of the Assumptions of Section 2

Convexity of the function φ(z) = − logF (z) follows from the theory of log-
concave measures developed by Prékopa [14], [15]. The regularizing term in
(27) ensures that the objective function is strongly convex with a parameter
at least ρ. This justifies assumption 2.3. (Moreover, it ensures that the convex
conjugate of the regularized objective function is finite valued.)

Let us include a feasible solution ž having p̌ = F (ž) ≫ 0 among the
initial test points of the polyhedral model (6). Then the level set L(p̌) = { z ∈
IRn |F (z) ≥ p̌ } will contain every optimal solution z of any model problem.
Assumption 2.6 is justified by the following

Observation 3.1 The polyhedral models can be initialized in such a manner
that

– there exists a compact set Oz that contains every optimal solution z of any
model problem ;

– there exists a finite upper bound Γu such that ∥u∥ ≤ Γu holds for every
subgradient u of any model function ϕk(z) on Oz .

The objects Oz and Γu are determined by the initialization of the polyhedral
models.

Details of such initialization of the models can be found in [5] (section 4.)
As for assumption 2.2, we are going to show that new iterates can be kept

in a region where the directional derivatives of the regularized objective (27)
are Lipschitz continuous. But first, let us examine the directional derivatives
of the nondegenerate normal distribution function we work with.

Theorem 3.2 Let C ∈ IRn×n denote the covariance matrix of our nondegen-
erate normal distribution. The corresponding distribution function F (z) has
the following properties.

(i) Bounded axis-directional derivatives: for i = 1, . . . , n, we have

eTi ∇F (z) ≤ Mi (z ∈ IRn) with Mi =
1

σi

√
2π

, (29)

where σi > 0 denotes the standard deviation of ζi, the ith component of the
random vector.

(ii) Lipschitz-continuous axis-directional derivatives: for i = 1, . . . , n, we have∣∣ eTi ∇F (z + tei)− eTi ∇F (z)
∣∣ ≤ Li|t| (z ∈ IRn, t ∈ IR)

with Li =
1√
2eπ

|C−i|
|C| ,

(30)

where |C| denotes the determinant of the covariance matrix, and C−i de-
notes the covariance matrix of the random vector (ζ1, . . . , ζi−1, ζi+1, . . . , ζn).
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The proof of the above theorem and of the following corollary can be found in
appendix B.

Corollary 3.3 Given p > 0, the function φ(z) = − logF (z) has Lipschitz-
continuous axis-directional derivatives on the level set

L(p) = { z ∈ IRn |F (z) ≥ p }.

Namely, Li(p) :=
Li

p +
M2

i

p2 (i = 1, . . . , n) are appropriate Lipschitz-constants.

Remark 3.4 The directional derivatives of the regularized objective (27) in-
herit Lipschitz continuity on the level sets L(p), with ρ added to the constants.

As we have included a feasible solution ž having p̌ = F (ž) ≫ 0 among the
initial test points, the level set L(p̌) will contain an optimal solution z of the
current primal model problem. We find a new test point z‵ by performing a
coordinate-descent step starting from z. If we should know that, e.g., z‵ ∈
L(0.1) would hold, then (by corollary 3.3 and remark 3.4) we could set the
Lipschitz constant Li(0.1) + ρ when moving along the selected axis i.

A theoretically convergent version can be worked out by taking a tentative
step:

z‵ = z − 1

Li(p̌) + ρ

[
eTi ∇ϕ(z)

]
ei.

We evaluate p‵ = F (z‵), and, in case p‵ < 0.1, we set the actual test point to
be

z − 1

Li(p‵) + ρ

[
eTi ∇ϕ(z)

]
ei.

Theoretical convergence proof of this scheme can be based on observation 3.1.

4 Computational Study

Our approximation scheme was implemented in MATLAB using the IBM
ILOG CPLEX optimization toolbox. Multivariate normal distribution func-
tion values and axis-directional derivatives were computed by the QSIMVNV
Matlab function implemented by Genz [8].

Our solver is based on the implementation used in our former paper [6].
The difference is in the manner of finding new test points in the approxima-
tion scheme, i.e., in the method of finding an approximate minimizer to the
objective function (13) of the actual column-generation subproblem. In the
former paper, we applied gradient descent (GD). Gradients were estimated
component-wise, and a single approximate line search was performed in each
iteration. In the present project, we apply coordinate descent (CD), performing
a single step along a randomly selected axis.

In axis selection, we implemented the method proposed by Wright [22],
where the axis selection is done by sampling without replacement. The pro-
cedure is divided into ’epochs’ of n consecutive iterations. At the start of
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each epoch, a random permutation of {1, 2, . . . n} is generated, and the axes
are selected according to this permutation. Wright mentions that this kind
of randomization proved in several contexts to be superior to the sampling-
with-replacement scheme. Computational experiments are reported in Liu et
al. [11].

We compared the GD and CD solution approaches on a test problem that
originates from Dentcheva et al. [2] and Henrion [10]. This is a cash match-
ing problem where random liabilities are modelled with a fifteen-variate nor-
mal distribution. The problem was originally formulated as cost minimization
under a probabilistic constraint. We transformed the problem to probability
maximization under a cost constraint and formulated three instances with
different right-hand sides of this constraint. The respective optima of these
problem instances are 0.8, 0.9 and 0.99.

For each problem instance, we found starting feasible solutions ž having
F (ž) > 0.3. In our test runs, the regularization parameter ρ of (27) was set to
0. We found that our way of computing the coordinate descent step length is
rather conservative. Hence, in the present project, we experimented with step
lengths that were multiples of the step lengths calculated from our present
Lipschitz constants, and decided to work with multiples of 12. — We think
it possible to calculate Lipschitz constants tighter than those in theorem 3.2,
though it will require more intricate formulas. Moreover, our objective function
has a special characteristic: the directional derivatives tend to diminish in the
course of the solution process, as we move into level sets L(p) belonging to
higher and higher values of probability p. (We conjecture that the same holds
for the second directional derivatives.) We may need to calculate different
Lipschitz constants for different regions.

In our test runs, most of the computational effort was devoted to estimat-
ing distribution function values and gradient components or axis-directional
derivatives. We found that a single GD iteration demands as much compu-
tational effort as 10 CD iterations. Though we solved problems with n = 15
dimensional random vectors, computing function values was necessary in both
approaches. (To be precise, a GD iteration in our implementation includes a
single approximate line search that generally requires several function value
computations.) — We expect the ratio of GD : CD iteration effort will ap-
proach n for high dimensions.

For each problem instance, we performed 10 runs with both solution ap-
proaches. In figures 2, 3 and 4, blue lines show the progress of the GD ap-
proaches, and orange lines show the progress of the CD approaches. Each
interval on the horizontal axes of the diagrams represents 1 iteration in the
case of the GD runs, and 10 iterations in the case of the CD runs. (We depict
8 iterations for every GD run, and 80 iterations for every CD run.) — Differ-
ences in starting objective values belonging to the different instances are due
to differences in the right-hand sides of the cost constraints. (Our initialization
procedure is constraint-dependent.)
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The figures show that, in the initial iterations, CD (orange lines) progresses
faster. For the GD approach (blue lines), it takes 2-8 iterations to overcome
CD.

Fig. 2 Progress of the GD and CD approaches on the test instance having an optimum of
0.8

Fig. 3 Progress of the GD and CD approaches on the test instance having an optimum of
0.9

5 Conclusions

We compared a gradient descent and a coordinate descent approach in an
approximation scheme for the solution of probability maximization problems.
We conclude that even an unsophisticated implementation of the coordinate
descent can be useful in finding good starting solutions.
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Fig. 4 Progress of the GD and CD approaches on the test instance having an optimum of
0.99

Potential improvements on our coordinate descent implementation include
calculating tighter Lipschitz constants for the directional derivatives of the
distribution function (possibly different constants for different regions of the
domain.)

We mention potential applications for the model and the solution method
presented in this paper:

In electricity networks, load levels must remain within safe limits. It is
especially important if renewable sources and battery storage systems are used,
and smart grid technology enables demand-side management.

The composition of cattle feed was one of the earliest examples of proba-
bilistic models. (Nutrient contents of the different components may vary, and
the aim is to provide a mixture containing the required nutrients.)

In urban traffic networks, signal timing can be used to avoid congestion.
We can find an appropriate signal timing strategy that keeps the probability
of congestion low.

A Convergence of the Inexact Cutting-Plane Method

The following proof is a generalized version of the proof of theorem 9 in [5]. In the present
primal scheme, improving test points are found by random coordinate descent, hence we
must allow for shallow cuts in the dual.

The proof applies some of the ideas from the convergence proof of the exact cutting-
plane method in Ruszczyński [20], theorem 7.7. In order to handle inexactness, we need a
well-known theorem from convex analysis.

Proof of theorem 2.7 As the sequence of the model functions is monotone increasing,

d∞(u) = lim
k→∞

dk(u) (u ∈ IRn)

exists and is finite. d∞(u) is a convex function and the sequence of the model functions
converges uniformly on the compact domain Ou — see, e.g., theorem 10.8 in Rockafellar



14 Edit Csizmás et al.

[19]. Let D∞ = min d∞(u). By definition, we have

dk(uk+1) = Dk ≤ D∞ ≤ d∞(uk+1) (i = 1, 2, . . .). (31)

From the uniform convergence directly follows

lim
k→∞

Dk = D∞ and lim
k→∞

d∞(uk+1) = D∞. (32)

In order to show that D∞ = D, let us consider a subsequence of the sequence (ki) whose
existence has been assumed in the theorem. Specifically, let l = kij , j = 1, 2, . . . be such
that (ul+1) is convergent; and let ũ denote the limit vector. (A convergent subsequence
certainly exists due to the compactness of the domain Ou.) From the continuity of d(u), it
follows that

d(ul+1) → d(ũ) as l = kij , j → ∞. (33)

The function d∞(.) tops any support function constructed in the process. Combining this
with the assumption (21) in the theorem, we get

d∞(ul+1) ≥ ℓl+1(ul+1) ≥ θ d(ul+1) + (1− θ) dl(ul+1) (l = kij , j = 1, 2, . . .).y y y
D∞ d(ũ) D∞

(34)
The arrows represent convergence as j → ∞. These are direct consequences of (32) and (33)
— note that dl(ul+1) = Dl. Taking into account θ > 0, we obtain D∞ ≥ d(ũ).

But d(ũ) ≥ D ≥ D∞ by definition. It follows that D∞ = D, completing the proof. ⊓⊔

B Axis-Directional Derivatives of the Normal Distribution
Function

Let h(z) denote the probability density function of our n-variate normal distribution.
In the proof of theorem 3.2, we are going to consider directional derivatives along the nth

axis only, i.e., assume i = n, for the sake of the simplicity of the formulas. The directional
derivatives will be taken at z = (z1, . . . , zn) ∈ IRn. We’ll first need

Lemma B.1 The nth axis-directional derivative of F (z) at z is

eTn∇F (z) =

∫
Z

′

h(z1, . . . , zn−1, zn) d(z1, . . . , zn−1), (35)

where

Z
′
=

{
(z1, . . . , zn−1) ∈ IRn−1

∣∣∣∣ zi ≤ zi (i = 1, . . . , n− 1)

}
.

Proof. By definition,

eTn∇F (z) = lim
t→0

F (z + ten)− F (z)

t
, (36)

where the numerator is computed by integrating the density function h(z) over the set

Z
′× [zn, zn+ t] ⊂ IRn. (We consider t > 0 for the sake of simplicity. The discussion is easily

extended to negative values.)

Let Z denote a bounded (measurable) subset of Z
′
. We are going to show that

lim
t→0

1

t

∫
Z×[zn,zn+t]

h(z) dz =

∫
Z

h(z1, . . . , zn−1, zn) d(z1, . . . , zn−1). (37)



Applying Random Coordinate Descent in a Probability Maximization Scheme 15

Concerning function values on the domain of the left-hand integral, we have∣∣∣h(z1, . . . , zn−1, zn)− h(z1, . . . , zn−1, zn + s)
∣∣∣ ≤ t max

z∈IRn

∣∣∣en∇h(z)
∣∣∣

for any (z1, . . . , zn−1) ∈ Z and s ∈ [0, t], due to the mean-value theorem. (The maximum
on the right-hand side is clearly finite.)

It follows that, when computing approximating sums of the left-hand integral in (37) for
a given t, it is sufficient to consider only ’cylindric’ partitions of the domain Z× [zn, zn+ t],
i.e., partitions whose subsets are obtained in the form Z × [zn, zn + t] with some Z ⊂ Z.

The equality (37) can then be extended from the bounded subset Z to Z
′
. Combining

this with (36), we get (35). ⊓⊔

Remark B.2 Some well-known formulas for marginal and conditional density functions

are easily verified with the help of the above lemma. E.g., substituting IRn−1 for Z
′
, it shows

that the probability density function of the nth component of the random vector is

hn(zn) =

∫
IRn−1

h(z1, . . . , zn−1, zn) d (z1, . . . , zn−1) (zn ∈ IR).

Moreover, given zn ∈ IR, the function (z1, . . . , zn−1) 7→ 1
hn(zn)

h(z1, . . . , zn−1, zn) is the

density function belonging to the conditional distribution function F (z1, . . . , zn−1 | zn).

Proof of theorem 3.2
(i). By lemma B.1, we get

eTn∇F (z) ≤
∫

IRn−1

h(z1, . . . , zn−1, zn) d (z1, . . . , zn−1). (38)

The right-hand expression is hn(zn), where hn(.) is the probability density function of the
nth component of the random vector. Let σ2

n > 0 denote the variance. The value of the
density function is maximized in the expectation, hence the maximum is 1

σn
√
2π

.

(ii). Applying lemma B.1, the difference
∣∣ eTn∇F (z + ten)− eTn∇F (z)

∣∣ is bounded by∫
IRn−1

∣∣∣∣h(z1, . . . , zn−1, zn + t)− h(z1, . . . , zn−1, zn)

∣∣∣∣ d (z1, . . . , zn−1). (39)

Due to the mean-value theorem, an upper bound on the integrand is

|t| max
zn∈IR

∣∣∣∣ eTn ∇h(z1, . . . , zn−1, zn)

∣∣∣∣, (40)

for any (z1, . . . , zn−1) ∈ IRn−1.
We start with computing the maximum in (40). As this maximum is considered over

IR, and the integration domain in (39) is IRn−1, we may assume that the expectation
vector of our normal distribution is 0. As for the covariance matrix, let us compute its
Cholesky decomposition in the form C = AAT where A ∈ IRn×n is a lower triangular
matrix. Considering inverses, we get C−1 = LTL, where L = A−1, a lower triangular
matrix. Applying these in the formula of the normal density function, we get

∇h(z) = −
|L|

(2π)n/2
exp

(
−
1

2
∥Lz∥2

)
LTLz (z ∈ IRn). (41)

Let us partition z ∈ IRn in the form zT =
(
z′T , zn

)
, where z′ ∈ IRn−1. Let us partition

the lower triangular matrix accordingly:

L =

 L′ 0

l′T ln,n

 ; hence Lz =

 L′z′

l′T z′ + ln,nzn

 , (42)
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where L′ ∈ IR(n−1)×(n−1), l′,0 ∈ IRn−1 and ln,n ∈ IR, ln,n > 0.

We have ∥Lz∥2 = ∥L′z′∥2+
(
l′T z′ + ln,nzn

)2
. Moreover, the nth component of LTLz is

ln,n
(
l′T z′ + ln,nzn

)
. Using these, the absolute value of the nth component of the gradient

(41) is

|L| ln,n

(2π)n/2
exp

(
−
1

2
∥L′z′∥2

)
exp

(
−
1

2

(
l′T z′ + ln,nzn

)2
) ∣∣∣l′T z′ + ln,nzn

∣∣∣ .︸ ︷︷ ︸ (43)

zn occurs in the underbraced part only. Let us introduce the notation λ :=
∣∣l′T z′ + ln,nzn

∣∣.
For λ > 0, let us consider the logarithm of the underbraced expression as a function of
λ. This is − 1

2
λ2 + ln(λ), a differentiable concave function whose derivative disappears at

λ = 1. Therefore the maximum of the underbraced expression, as a function of zn, is
1√
e
.

The corresponding maximum of (43) is

B(z′) :=
1
√
e

1

(2π)n/2
|L| ln,n exp

(
−
1

2
∥L′z′∥2

)
.

Summing up, B(z′) is the maximum that appears in (40). Hence the integral (39) is bounded
by

|t|
∫

IRn−1

B(z′) dz′ = t
1
√
e

1

(2π)1/2
|L|
|L′|

ln,n

∫
IRn−1

|L′|
(2π)(n−1)/2

exp

(
−
1

2
∥L′z′∥2

)
dz′.

(44)
The latter integrand is an (n − 1)-variate normal density function, hence the integral is 1.
It follows that

1
√
2eπ

|L|
|L′|

ln,n

is an appropriate Lipschitz constant in (ii) of the theorem. In order to bring it to a more
convenient form, note that L was constructed as the inverse of the lower triangular matrix
A, which in turn was obtained by the Cholesky factorization of the covariance matrix, i.e.,
C = AAT . Let C′ denote the upper-left (n−1)× (n−1) submatrix of C, i.e., the covariance
matrix of the first (n − 1) components of the random vector. Similarly, let A′ denote the
upper-left (n− 1)× (n− 1) submatrix of A. We have C′ = A′A′T and L′ = A′−1. Hence

ln,n =
|L|
|L′|

=
|A′|
|A|

and
|A′|2

|A|2
=

|C′|
|C|

,

completing the proof. ⊓⊔

Proof of corollary 3.3
Let z, z + tei ∈ L(p). As φ(z) = − logF (z), we have∣∣ eTi ∇φ(z + tei)− eTi ∇φ(z)

∣∣ =
∣∣∣ 1
F (z+tei)

eTi ∇F (z + tei)− 1
F (z)

eTi ∇F (z)
∣∣∣

≤ 1
F (z+tei)

∣∣ eTi ∇F (z + tei)− eTi ∇F (z)
∣∣ +

∣∣∣ 1
F (z+tei)

− 1
F (z)

∣∣∣ ∣∣eTi ∇F (z)
∣∣

≤ 1
p
Lit +

|F (z+tei)−F (z)|
p2

Mi,

(45)

where the last inequality is a direct consequence of theorem 3.2, (ii) and (i). Another
consequence of (i), by the mean-value theorem, is

|F (z + tei)− F (z) | ≤ Mit. (46)

The proof is completed by substituting this into the right-hand expression of (45). ⊓⊔
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