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Abstract. Due to their nested structure, bilevel problems are intrinsically
hard to solve—even if all variables are continuous and all parameters of the
problem are exactly known. In this paper, we study mixed-integer linear
bilevel problems with lower-level objective uncertainty, which we address using
the notion of Γ-robustness. To tackle the Γ-robust counterpart of the bilevel
problem, we present heuristic methods that are based on the solution of a
linear number of problems of the nominal type. Moreover, quality guarantees
for heuristically obtained solutions as well as sufficient ex-post conditions for
global optimality of the outcomes are provided. In an extensive computational
study on 2240 instances, we assess the performance of our heuristics and
compare them to alternative methods—both heuristic and exact—from the
literature. We observe that the optimality gap is closed for a significant portion
of the considered instances and that our methods often practically outperform
alternative approaches in terms of the solution quality. Moreover, for the
special case of Γ-robust interdiction problems, we report considerable speed-
up factors when compared to recently published problem-tailored and exact
solution approaches while also solving more instances to global optimality.

1. Introduction

Bilevel optimization is a rather young but very active field of research, having
its game-theoretic roots dating back to the seminal publications of von Stackelberg
(1932, 1954). Over the last years and decades, bilevel problems have gained increasing
attention due to their ability to model hierarchical decision making processes. For an
overview of the many applications of bilevel optimization, we refer to the annotated
bibliography by Dempe (2020) as well as to the recent surveys by Kleinert et al.
(2021) and by Beck et al. (2023b). The latter focuses on bilevel problems under
uncertainty, which is also at the core of this paper.

Due to their hierarchical structure, bilevel problems are intrinsically hard to solve—
even if all objective functions and constraints are linear, all variables are continuous,
and all parameters of the problem are exactly known (Hansen et al. 1992). However,
the situation becomes more challenging if, e.g., (i) discrete variables are introduced
and (ii) problems under uncertainty are considered. In mathematical optimization,
there are two main approaches to deal with uncertainties: stochastic optimization
(Birge and Louveaux 2011; Kall and Wallace 1994) and robust optimization (Ben-Tal
and Nemirovski 1998; Ben-Tal et al. 2009; Bertsimas et al. 2011; Soyster 1973).
While, in the context of bilevel optimization, stochastic approaches to deal with
uncertainties are more thoroughly studied, robust bilevel optimization is still in its
infancy; see, e.g., Beck et al. (2022, 2023b) for more detailed discussions.

The contributions of this paper are the following. We consider mixed-integer
linear bilevel problems with a binary lower-level problem that is affected by objective
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uncertainty. To deal with this kind of uncertainty, we pursue a Γ-robust approach
(Bertsimas and Sim 2003; Sim 2004) in which the follower only hedges against a
subset of the uncertain parameters that adversely influence the solution to the
problem. In particular, we exploit the main result by Bertsimas and Sim (2003) and
Sim (2004) for Γ-robust single-level problems—namely that the Γ-robust counterpart
of a binary problem can be solved by solving a finite number of deterministic binary
problems that is linear in the problem data. Exact approaches for Γ-robust min-max
problems have been presented in our previous work (Beck et al. 2023a). Moreover, the
heuristics proposed in DeNegre (2011) and Fischetti et al. (2018) can be applied to
specific classes of Γ-robust interdiction problems after some modifications. However,
we are not aware of any general-purpose methods in the literature that can tackle
mixed-integer linear bilevel problems with a Γ-robust follower. Due to the overall
hardness of the considered problems, which are Σ2

p-hard in general (see Jeroslow
(1985) for the first results on multilevel problems in the context of the polynomial
hierarchy and Grüne and Wulf (2024) for very recent developments in this area), we
thus study primal heuristics for these problems. We present such heuristics that have
the following special properties: They (i) do not require problem-specific tailoring
as they rely on solving a linear number of bilevel problems of the nominal type, they
(ii) allow to use state-of-the-art as well as off-the-shelf solvers for the solution of
these problems, they (iii) provide dual bounds from which ex-post quality guarantees
can be derived, and they (iv) support a parallelization of the solution of the nominal
problems. The latter aspects can make a huge difference when considering Γ-robust
bilevel problems computationally. First, in our numerical study, we observe that our
heuristics frequently outperform alternative approaches adapted from the literature
in terms of the solution quality. In particular, our methods solve a considerable
number of instances to global optimality. Second, for the special case of Γ-robust
interdiction problems, we can find significant speed-up factors if our method is
used. Finally, let us comment on another design principle of our heuristics. As
mentioned above, the bilevel problems considered in this paper are Σ2

p-hard in
general. Usually, if one designs primal heuristics for hard problems, one aims to
devise methods that produce primal feasible points quickly, i.e., one aims to resort to
solving problems that are formally easier than the original problem. From a formal
complexity-theoretical point of view, this is not the case for our heuristics since we
iteratively solve mixed-integer bilevel problems of the nominal type. Although we
suspect that the latter are on the same level of the polynomial hierarchy, they are
easier to solve in a practical sense as they are of the nominal (and not of the robust)
type anymore. In particular, this allows to exploit the sub-problems’ structure and
existing solution approaches for these sub-problems.

The remainder of this paper is organized as follows. In Section 2, we describe the
overall problem statement and present the main result by Bertsimas and Sim (2003)
and Sim (2004), which we apply to the Γ-robust lower-level problem. In Section 3,
we focus on the special case of Γ-robust mixed-integer linear min-max problems
for which we present a heuristic that is based on solving a linear number of bilevel
problems of the nominal type. The latter is extended to the general Γ-robust bilevel
setting in Section 4. In Section 5, we perform an extensive computational study to
assess the performance of the heuristic methods presented in this paper. Finally, we
derive conclusions in Section 6.
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2. Problem Statement

In this paper, we consider mixed-integer linear bilevel problems of the form

min
x,y

c⊤x+ d⊤y

s.t. x ∈ X,

y ∈ argmax
y′

{
f⊤y′ : y′ ∈ Y (x)

}
,

(BMIP)

where Y (x) ⊆ {0, 1}ny and X := {x ∈ RnC × ZnD : Ax ≥ a} with nx = nC + nD,
c ∈ Rnx , d, f ∈ Rny , A ∈ Rm×nx , and a ∈ Rm. We refer to the first two lines
of (BMIP) as the upper-level (or the leader’s) problem. The last constraint in (BMIP)
is the so-called lower-level (or follower’s) problem. The variables x and y are the
leader’s and the follower’s variables, respectively. Here, we consider the optimistic
approach to bilevel optimization; see, e.g., Dempe (2002). This means that, whenever
the set of optimal solutions to the lower-level problem is not a singleton, the follower
decides such as to favor the leader w.r.t. her1 objective function value. This is
expressed in (BMIP) by optimizing not only over the leader’s variables x but also
over the follower’s variables y. Throughout this paper, the following will be a
standing assumption.

Assumption 1. (i) The shared constraint set {(x, y) : x ∈ X, y ∈ Y (x)} is non-
empty and compact.
(ii) All linking variables, i.e., all variables of the leader that appear in the

lower-level constraints, are bounded integers.

Assumption 1 is necessary to ensure that (BMIP) has a solution; see, e.g.,
Section 5.1 in Kleinert et al. (2021) and the references therein for a detailed
discussion. For x ∈ X, we further define the lower-level optimal-value function

Φ(x) = max
y

{
f⊤y : y ∈ Y (x)

}
(1)

to re-write (BMIP) as the single-level problem

min
x,y

c⊤x+ d⊤y

s.t. x ∈ X, y ∈ Y (x),

f⊤y ≥ Φ(x).

In this paper, we are interested in bilevel problems of the above form, which
are, however, affected by lower-level data uncertainty. We focus on uncertainties in
the lower-level objective function coefficients, i.e., for all i ∈ [ny] := {1, . . . , ny}, we
consider the coefficients f̄i with f̄i ∈ [fi −∆fi, fi] instead of fi. Here, we denote fi
as the nominal value of the ith lower-level objective function coefficient and ∆fi as
its maximum deviation from the nominal value. For a discussion of the case with a
certain objective function and uncertainties in a single packing-type constraint in
the lower level, we refer to Beck et al. (2023a).

To deal with lower-level data uncertainty, we pursue a Γ-robust approach (Bert-
simas and Sim 2003, 2004) in which the follower hedges against at most Γ ∈ [ny]
deviations in his objective function coefficients. This leads us to considering the
bilevel problem

min
x,y

c⊤x+ d⊤y

s.t. x ∈ X, y ∈ SΓ(x),
(Rob-BMIP)

1Throughout this paper, we use “her” for the leader and “his” for the follower.
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where SΓ(x) is the set of optimal solutions to the x-parameterized Γ-robust lower-
level problem

max
y

f⊤y − max
{S⊆[ny ] : |S|≤Γ}

∑
i∈S

∆fiyi s.t. y ∈ Y (x).

For a feasible upper-level decision x ∈ X, we define the optimal-value function of
the Γ-robust lower level as

Φrob(x) = max
y∈Y (x)

{
f⊤y − max

{S⊆[ny ] : |S|≤Γ}

∑
i∈S

∆fiyi

}
(2)

such that the Γ-robust counterpart (Rob-BMIP) of the bilevel problem can be
written as

min
x,y

c⊤x+ d⊤y

s.t. x ∈ X, y ∈ Y (x),

f⊤y − max
{S⊆[ny ] : |S|≤Γ}

∑
i∈S

∆fiyi ≥ Φrob(x).

For the validity of the techniques we present in this paper, we further impose the
following assumption throughout the remainder of the paper.

Assumption 2. (i) The deviations are non-negative, i.e., ∆fi ≥ 0 for all i ∈ [ny].
(ii) The indices are ordered such that the deviations are given in non-increasing

order, i.e., ∆fi ≥ ∆fi+1 for all i ∈ [ny] with ∆fny+1 = 0.

Note that Assumption 2 is w.l.o.g. but necessary to exploit Theorem 3 in Bertsimas
and Sim (2003), which is what we do in the next lemma.

Lemma 1. Let x ∈ X be a feasible upper-level decision. Then, solving the Γ-robust
counterpart (2) of the lower-level problem is equivalent to solving ny + 1 problems
of the nominal type, i.e.,

Φrob(x) = max
ℓ∈[ny+1]

{Φℓ(x)}

holds, where for all ℓ ∈ [ny + 1], we have

Φℓ(x) = −Γ∆fℓ + max
y∈Y (x)

{
f̃(ℓ)⊤y

}
(3)

with

f̃(ℓ)i =

{
fi − (∆fi −∆fℓ), 1 ≤ i ≤ ℓ,

fi, ℓ+ 1 ≤ i ≤ ny.

Lemma 1 can be shown in analogy to the proof of Theorem 3 in Bertsimas and
Sim (2003). In Miranda et al. (2013), the authors present an improvement of the
Bertsimas–Sim result by reducing the number of problems of the nominal type to
be solved to ny − Γ + 2. Further reductions have been established in Theorem 1 in
the paper by Lee and Kwon (2014) by showing that it suffices to solve

Φrob(x) = max
ℓ∈L
{Φℓ(x)} , (4)

with
L = {Γ + 1,Γ + 3,Γ + 5, . . . ,Γ + γ, ny + 1} (5)

and γ being the largest odd integer such that Γ + γ < ny + 1 holds. Hence, only
⌈(ny − Γ)/2⌉+ 1 problems of the nominal type need to be considered. We will hold
on to the result of Theorem 1 by Lee and Kwon (2014) throughout this paper. As
we will show in Proposition 3, we can further assume, w.l.o.g., that the index set L
is given such that the deviations (∆fℓ)ℓ∈L are pairwise distinct.
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Table 1. Central Notation.

Φ : X → R Optimal-value function of the nominal lower level; see (1)
Φrob : X → R Optimal-value function of the Γ-robust lower level; see (2)
Φℓ : X → R Optimal-value function of the ℓth lower-level sub-problem; see (3)

vrob ∈ R Optimal objective value of the Γ-robust min-max problem;
see (Rob-Min-Max)

vℓ ∈ R Optimal objective value of the ℓth deterministic min-max sub-
problem; see (ℓ-Min-Max)

3. Mixed-Integer Linear Min-Max Problems

In this section, we focus on mixed-integer linear min-max problems as a special
case of (BMIP). To this end, we set d = f , i.e., in its deterministic form, we consider
the bilevel problem

min
x

c⊤x+ f⊤y

s.t. x ∈ X,

y ∈ argmax
y′

{
f⊤y′ : y′ ∈ Y (x)

}
.

(Min-Max)

Here, we do not need to distinguish between an optimistic and a pessimistic fol-
lower since the follower’s response always yields the worst-possible outcome for the
leader. Using the lower-level optimal-value function (1), we obtain a single-level
reformulation of (Min-Max) that is given by

min
x∈X

{
c⊤x+Φ(x)

}
.

The Γ-robust counterpart of the problem in which the follower hedges against at
most Γ deviations in his uncertain objective function coefficients is obtained by
replacing Φ(x) with Φrob(x) as stated in (1) and (4), i.e.,

vrob := min
x∈X

{
c⊤x+Φrob(x)

}
= min

x∈X

{
c⊤x+max

ℓ∈L
{Φℓ(x)}

}
. (Rob-Min-Max)

In Section 3.1, we present a heuristic for (Rob-Min-Max) that follows the ideas
of the main result by Bertsimas and Sim (2003) and Sim (2004). We provide quality
guarantees for heuristically obtained solutions in Section 3.2. In Sections 3.3–3.5,
we discuss algorithmic refinements and sufficient conditions for the exactness of
our method (parallelization, reducing the number of sub-problems to be solved,
and special techniques for interdiction problems). For the ease of presentation, a
summary of the central notation used in this section can be found in Table 1.

3.1. A Heuristic in the Spirit of Bertsimas and Sim. To the best of our know-
ledge, there are currently no methods in the literature that can tackle (Rob-Min-Max)
directly except for the problem-tailored exact approaches discussed in Beck et al.
(2023a). The heuristic we present in this section does not require problem-specific
tailoring so that any off-the-shelf solver for the nominal problem can be used within
our framework. As a motivation for our method, we start with the following.

Proposition 1. For all ℓ ∈ L, let

vℓ := min
x∈X

{
c⊤x+Φℓ(x)

}
. (ℓ-Min-Max)

Then, vrob ≥ vℓ holds, i.e., vℓ is a valid lower bound for the optimal objective function
value of (Rob-Min-Max). In particular, vrob ≥ max{vℓ′ : ℓ′ ∈ L}.
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Proof. Let x∗ be an optimal solution to (Rob-Min-Max), which exists by Assump-
tion 1. Further, let ℓ ∈ L be given arbitrarily. Then, we obtain

vrob = c⊤x∗ +Φrob(x
∗) = c⊤x∗ +max

k∈L
{Φk(x

∗)} ≥ c⊤x∗ +Φℓ(x
∗) ≥ vℓ.

Here, the first equality follows from the optimality of x∗ for (Rob-Min-Max). Due
to Assumption 2, we can apply Lemma 1 to obtain the second equality. The last
inequality follows from x∗ ∈ X, i.e., the feasibility of x∗ for (ℓ-Min-Max). Finally,
vrob ≥ vℓ for all ℓ ∈ L is equivalent to vrob ≥ max{vℓ′ : ℓ′ ∈ L}. □

In Proposition 1, we state that a valid lower bound for the optimal objective
function value of (Rob-Min-Max) can be obtained by solving appropriately chosen
deterministic min-max problems. In particular, we show the minimax inequality

min
x∈X

{
max
ℓ∈L

{
c⊤x+Φℓ(x)

}}
≥ max

ℓ∈L

{
min
x∈X

{
c⊤x+Φℓ(x)

}}
;

see, e.g., Section 3.4 in Bertsekas (2009) for further discussion of minimax theory.
Our heuristic method for (Rob-Min-Max) is motivated by Proposition 1 and is
formally stated in Algorithm 1.

Algorithm 1 A Heuristic for Γ-Robust Mixed-Integer Linear Min-Max Problems

Input: An instance of (Rob-Min-Max), an exact solution method for (Min-Max)
and (2), an index set L as in (5)

Output: A feasible leader’s decision x∗, a lower bound L, and an upper bound U
for (Rob-Min-Max)

1: Set x∗ ← None, L← −∞, and U ←∞.
2: for all ℓ ∈ L do
3: Compute a solution xℓ to the deterministic min-max problem

vℓ ← min
x∈X

{
c⊤x+Φℓ(x)

}
. (ℓ-Min-Max)

4: Set L← max {L, vℓ}.
5: if U ≤ L then
6: return x∗, L, U
7: Solve the xℓ-parameterized Γ-robust lower-level problem to obtain Φrob(x

ℓ).
8: if c⊤xℓ +Φrob(x

ℓ) < U then
9: Set x∗ ← xℓ and U ← c⊤x∗ +Φrob(x

∗).
10: if U ≤ L then
11: return x∗, L, U
12: return x∗, L, U

In Algorithm 1, we solve up to |L| deterministic bilevel problems, which yields a
valid lower bound for (Rob-Min-Max). Hence, our method relates to the main result
by Bertsimas and Sim (2003) and Sim (2004) in the sense that we solve a linear
number of problems of the nominal type, i.e., deterministic min-max problems. To be
more specific, the number of min-max problems to be solved is linear in the number
of uncertain parameters in the lower level. In addition, we exploit the solutions to
the sub-problems (ℓ-Min-Max) to obtain a feasible point for (Rob-Min-Max). For
each leader’s solution xℓ, ℓ ∈ L, we evaluate the objective function of the Γ-robust
follower by solving the xℓ-parameterized Γ-robust counterpart of the lower-level
problem. The latter yields a valid upper bound. Among the considered solutions,
we then take the best w.r.t. the upper-level objective function value.

Note that any solver for deterministic mixed-integer linear min-max problems
can be used for the solution of the problems considered in Line 3. Valid options
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include, but are not limited to, the MibS solver (Tahernejad et al. 2020) or the
general branch-and-cut solver presented in Fischetti et al. (2017). Nevertheless,
our approach differs from the Bertsimas–Sim result since, in addition to solving
problems of the nominal type, we further solve the Γ-robust counterpart of the lower
level in Line 7 of Algorithm 1. The latter can be tackled in two ways:

(i) We solve the problem as a mixed-integer linear problem; see, e.g., in Lemma 1
in Beck et al. (2023a).

(ii) We exploit Lemma 1 of this paper such that the problem can be solved by
solving |L| lower-level sub-problems of the nominal type.

Let us emphasize that, regardless of the choice between (i) or (ii), any method
for Γ-robust single-level problems can be used in Line 7 of Algorithm 1.

Theorem 1. Algorithm 1 is correct, i.e., it returns a feasible leader’s decision x∗

as well as valid lower and upper bounds L and U for (Rob-Min-Max).

Proof. Since ℓ ∈ L does not affect the upper-level constraints, any x∗ ∈ X that is
computed by Algorithm 1 is feasible for (Rob-Min-Max). Moreover, c⊤x+Φrob(x) ≥
vrob holds for all x ∈ X. By the updating rule in Line 9 of the algorithm, U is a valid
upper bound for the optimal objective function value of (Rob-Min-Max). Finally,
the validity of L as a lower bound follows from Proposition 1 and Line 4. □

By Assumption 1, an optimal solution to (ℓ-Min-Max) exists for all ℓ ∈ L. Hence,
Line 3 of Algorithm 1 is well-defined. Moreover, we emphasize that also Line 7
of Algorithm 1 is well-defined since, due to xℓ being a solution to (ℓ-Min-Max), it
holds Y (xℓ) ̸= ∅.

Remark 1. If Assumption 1 were not satisfied, the infeasibility or unboundedness
of (Rob-Min-Max) could be identified in Line 3 of Algorithm 1 as well. The reasons
are the following. If a sub-problem (ℓ-Min-Max) were unbounded, Proposition 1
would imply that the overall problem (Rob-Min-Max) is unbounded. Moreover,
since ℓ ∈ L affects neither the upper- nor the lower-level constraints, the infeasibility
of a sub-problem (ℓ-Min-Max) would imply the infeasibility of (Rob-Min-Max).

3.2. Quality Guarantees. We now provide quality guarantees for a leader’s deci-
sion x∗ that is computed by Algorithm 1.

Remark 2. If Algorithm 1 terminates with (x∗, L, U) in Line 6 or 11, U − L = 0
holds and x∗ is an optimal solution to (Rob-Min-Max).

By construction, if Algorithm 1 does not terminate in Line 6 or 11 with an optimal
solution, it returns the best-known leader’s decision x∗ with a positive optimality
gap. However, the latter does not necessarily imply that none of the |L| bilevel
sub-problems produces a solution that is optimal for (Rob-Min-Max). The reasons
are two-fold. On the one hand, this may be due to the multiplicity of solutions
to the deterministic min-max problems (ℓ-Min-Max). On the other hand, we em-
phasize that the sub-problems (ℓ-Min-Max) are only relaxations of (Rob-Min-Max).
Nevertheless, if Algorithm 1 does not terminate with a provably optimal solution,
its output (x∗, L, U) can still be valuable for the exact branch-and-cut approach
presented in Beck et al. (2023a). More specifically, the leader’s decision x∗ could,
in principle, be used to warmstart the method, whereas L and U could provide
bounding information to reduce the search space in the branch-and-cut method.

Next, we determine an upper bound for the optimality gap in the case in which
Algorithm 1 terminates in Line 12. To this end, we start with the following technical
lemmas. Note that all the proofs omitted here can be found in Appendix A.
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Lemma 2. For arbitrarily given x ∈ X and y ∈ Y (x), it holds

f⊤y − max
{S⊆[ny ] : |S|≤Γ}

∑
i∈S

∆fiyi = max
ℓ∈L

{
−Γ∆fℓ + f̃(ℓ)⊤y

}
.

Lemma 3. Let ℓ, k ∈ L with ℓ ≤ k be given arbitrarily. Then, f̃(ℓ) ≥ f̃(k) holds.

To conclude this section, we now provide an upper bound for the optimality gap
of a point x∗ that is computed by Algorithm 1.

Proposition 2. Let (x∗, L, U) be the output of Algorithm 1. Then, it holds

U − L ≤ (2Γ + 1)∆fΓ+1 +

ny∑
i=Γ+2

∆fi.

While we acknowledge that the bound provided in Proposition 2 seems rather
loose, it is important to note that no structural assumptions have been made
regarding the lower-level feasible set Y (x) ⊆ {0, 1}ny , x ∈ X. Tighter bounds may
be obtained using specific knowledge of the application problem at hand.

3.3. Parallelization. We emphasize that the sub-problems (ℓ-Min-Max) that are
solved in Line 3 of Algorithm 1 are independent. This means that, if the necessary
capacities are available, they can be solved in parallel. Hence, instead of alternating
between solving deterministic min-max problems and robustified lower-level problems
as it is done in Algorithm 1, it may be beneficial to first solve all min-max problems
(in parallel) and, afterward, perform the necessary computations to obtain a valid
and ideally tight upper bound. The latter leads to a modification of Algorithm 1,
which is summarized in Algorithm 2.

Algorithm 2 A Modification of Algorithm 1

Input: An instance of (Rob-Min-Max), an exact solution method for (Min-Max)
and (2), an index set L as in (5)

Output: A feasible leader’s decision x∗, a lower bound L, and an upper bound U
for (Rob-Min-Max)

1: Set x∗ ← None, L← −∞, and U ←∞.
2: for all ℓ ∈ L do
3: Compute a solution xℓ to the deterministic min-max problem

vℓ ← min
x∈X

{
c⊤x+Φℓ(x)

}
. (ℓ-Min-Max)

4: Sort the indices such that vℓ1 ≤ vℓ2 ≤ · · · ≤ vℓ|L| holds and set L← vℓ|L| .
5: Set i← 1.
6: while i ≤ |L| and L < U do
7: Solve the xℓi -parameterized Γ-robust lower-level problem to obtain Φrob(x

ℓi).
8: if c⊤xℓi +Φrob(x

ℓi) < U then
9: Set x∗ ← xℓi and U ← c⊤x∗ +Φrob(x

∗).
10: Set i← i+ 1.
11: return x∗, L, U

From what we have shown so far, it is evident that Algorithm 2 is correct. In
Line 4 of Algorithm 2, we sort the indices so that the optimal objective function
values of the sub-problems (ℓ-Min-Max) are given in non-decreasing order. While
the latter is not necessary for the correctness of the method, we expect that it
helps closing the optimality gap more quickly. Let us further emphasize that, if the
necessary capacities are available, Lines 2 and 3 of the algorithm can be parallelized.
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In addition, if we exploit the result from Lemma 1 to solve the Γ-robust counterpart
of the lower level, we can further make use of parallelization in Line 7 of Algorithm 2.
The reason is that the lower-level sub-problems

Φℓ(x
ℓi) = −Γ∆fℓ + max

y∈Y (xℓi )

{
f̃(ℓ)⊤y

}
, ℓ ∈ L,

are independent for fixed xℓi ∈ X and can, thus, be solved in parallel as well. Let
us mention, however, that other parallelization schemes than the one outlined above
may be possible as well.

3.4. Reduction of Sub-Problems to Be Solved. By construction, Algorithms 1
and 2 terminate after solving (at most) |L| deterministic min-max problems and Γ-
robust counterparts of the lower level, respectively. In particular, if Lemma 1 is
exploited, this means that at most |L|2 lower-level problems of the nominal type
are solved. Thus, it is evident that Algorithms 1 and 2 require a significant amount
of resources—especially for large index sets L. In what follows, we aim to reduce
the computational burden by decreasing the number of sub-problems to be solved.

Proposition 3. Let ℓ, k ∈ L with ℓ < k and ∆fℓ = ∆fk be given arbitrarily. Then,
the following holds:

(i) For all x ∈ X and ℓ ≤ i ≤ k, we have Φℓ(x) = Φi(x).
(ii) For all ℓ ≤ i ≤ k, an optimal solution xℓ to (ℓ-Min-Max) is also an optimal

solution to the ith deterministic min-max problem

min
x∈X

{
c⊤x+Φi(x)

}
and vice versa.

Proof. For all ℓ ≤ i ≤ k, we obtain ∆fℓ = ∆fi from Assumption 2 and, thus,
f̃(ℓ) = f̃(i) holds due to Lemma 1. Hence, for all x ∈ X and all ℓ ≤ i ≤ k, we have

Φℓ(x) = −Γ∆fℓ + max
y∈Y (x)

{
f̃(ℓ)⊤y

}
= −Γ∆fi + max

y∈Y (x)

{
f̃(i)⊤y

}
= Φi(x).

This proves (i). In particular, we obtain

vℓ = min
x∈X

{
c⊤x+Φℓ(x)

}
= min

x∈X

{
c⊤x+Φi(x)

}
= vi

for all ℓ ≤ i ≤ k. Thus, and since ℓ does not affect the upper-level constraints, an
optimal solution xℓ to (ℓ-Min-Max) is also an optimal solution to the ith deterministic
min-max problem, ℓ ≤ i ≤ k, and vice versa. □

By Proposition 3, it suffices to only consider the sub-problems (ℓ-Min-Max) for
which the associated deviations are pairwise distinct.

Remark 3. For an arbitrarily given ℓ ∈ L, we already know Φℓ(x
ℓ) from the

solution of (ℓ-Min-Max) in Algorithm 1 or 2. Hence, when exploiting Lemma 1
to determine Φrob(x

ℓ), it suffices to solve |L| − 1 deterministic lower-level sub-
problems. Consequently, the overall number of lower-level sub-problems to be solved
in Algorithms 1 and 2 can be reduced to at most |L| (|L| − 1).

We conclude this section with a sufficient ex-post condition under
which (Rob-Min-Max) can be solved by only solving problems of the nominal type.

Theorem 2. Let (xℓ)ℓ∈L be a family of solutions to the deterministic min-max
problems (ℓ-Min-Max) and let (vℓ)ℓ∈L be the vector of the associated objective
function values. Further, let k = argmaxℓ∈L{vℓ}. If xk = xℓ holds for all ℓ ∈ L, xk

is an optimal solution to (Rob-Min-Max) and vrob = vk holds.
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Table 2. Summary of algorithmic refinements for Algorithms 1 and 2.

Algorithm 1 Algorithm 2

Reduction of sub-problems to be solved according to
✓ ✓Remark 3, Proposition 3, and Theorems 2 and 3

Possibility to parallelize the solution of . . .
min-max problems (ℓ-Min-Max) X ✓
lower-level sub-problems (using Lemma 1) ✓ ✓

Possibility to terminate early without . . .
solving all min-max problems (ℓ-Min-Max) ✓ X
solving additional lower-level problems X ✓

Proof. Suppose that xk = xℓ holds for all ℓ ∈ L. Then, we have Φℓ(x
ℓ) = Φℓ(x

k)
and, thus,

c⊤xk +Φk(x
k) = vk ≥ vℓ = c⊤xℓ +Φℓ(x

ℓ) = c⊤xk +Φℓ(x
k)

holds for all ℓ ∈ L. The latter is equivalent to Φk(x
k) ≥ Φℓ(x

k) for all ℓ ∈ L, i.e.,
Φk(x

k) = Φrob(x
k) holds due to Lemma 1. Hence, we obtain

vk = c⊤xk +Φk(x
k) = c⊤xk +Φrob(x

k) ≥ vrob.

Here, the last inequality follows from xk ∈ X, i.e., the feasibility of xk for Prob-
lem (Rob-Min-Max). In addition, we obtain vrob ≥ vk from Proposition 1. To sum
up, we have vrob = vk, which concludes the proof. □

Theorem 2 indicates that there may be situations in which the Bertsimas–Sim
result extends to the min-max setting. However, the result does not carry over
completely as the requirements of Theorem 2 can only be checked ex post, i.e.,
after solving the deterministic min-max problems. Moreover, we emphasize that the
requirements of Theorem 2 are rather strong. Nevertheless, the result of Theorem 2
has the following implications for the presented heuristics:

(i) If the solutions (xℓ)ℓ∈L obtained in Line 3 of Algorithm 2 are the same, the
algorithm can terminate early with an optimal solution to (Rob-Min-Max).
No additional lower-level problems need to be solved, i.e., Lines 4–11 of
Algorithm 2 can be omitted. Verifying the requirements of Theorem 2 is
simple and only requires one additional line of pseudo-code.

(ii) As per the algorithm’s design, exploiting Theorem 2 in Algorithm 1 is not
as straightforward as in Algorithm 2. The Γ-robust counterpart of the lower
level is solved at least once, namely in the first iteration of the for-loop.
Afterward, Line 7 only needs to be executed if the current fixed leader’s
decision xℓ differs from those obtained in the algorithm so far.

A summary of all algorithmic refinements discussed in this section is given in Table 2.

3.5. Tailored Techniques for Interdiction Problems. Let us emphasize that,
up to now, we have not made any structural assumptions about the lower-level
feasible set Y (x), x ∈ X, except for the follower’s variables being binary. However,
further results on the reduction of sub-problems can be obtained by exploiting the
specific properties of the application problem at hand. An important problem class
that is covered by the min-max setting considered in this section is interdiction
(Beck et al. 2023a; Brown et al. 2006; Cormican et al. 1998; DeNegre 2011; Fischetti
et al. 2019; Furini et al. 2021; Israeli and Wood 2002; Wood 2011).

Assumption 3. (i) All linking variables are binary.
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(ii) For all x ∈ X, the lower-level feasible set is of the form

Y (x) := Y ∩ {y : yi ≤ 1− xi, i ∈ I ⊆ [ny]}
with Y ⊆ {0, 1}ny being independent from the leader’s variables.

(iii) There are no terms depending on the leader’s variables in the upper-level
objective, i.e., c = 0.

Under Assumption 3, Problem (Min-Max) is an interdiction problem.

Proposition 4. Suppose that Assumption 3 holds and let xℓ be an optimal solution
to (ℓ-Min-Max) for an arbitrarily given ℓ ∈ L. If there exists x ∈ X with x ≥ xℓ,
then x is an optimal solution to (ℓ-Min-Max) as well.

Proposition 4 states that any feasible leader’s decision x ∈ X dominating an
optimal solution to (ℓ-Min-Max) is an optimal solution to the problem as well.

Theorem 3. Suppose that Assumption 3 holds. Let (xℓ)ℓ∈L be a family of solu-
tions to the deterministic min-max problems (ℓ-Min-Max) and let (vℓ)ℓ∈L be the
vector of the associated objective function values. Further, let k = argmaxℓ∈L{vℓ}.
If there exists x ∈ X with x ≥ xℓ for all ℓ ∈ L, then x is an optimal solution
to (Rob-Min-Max) and vrob = vk holds.

Proof. Let x ∈ X be such that x ≥ xℓ holds for all ℓ ∈ L. Then, x solves all
deterministic min-max problems (ℓ-Min-Max) due to Proposition 4. Finally, the
claim follows from applying Theorem 2. □

Theorem 3 extends the result of Theorem 2 such that, under Assumption 3, no
additional lower-level problems need to be solved to obtain Φrob(x).

4. General Mixed-Integer Linear Bilevel Problems

We now return to the more general setting of Γ-robust mixed-integer linear bilevel
problems as stated in (Rob-BMIP). Here, the objective function coefficients for
the follower’s variables y may differ in the upper- and the lower-level problem, i.e.,
d = f does not need to hold anymore. In what follows, we illustrate that this setting
is considerably more challenging than its min-max counterpart. Nevertheless, we
present a heuristic for (Rob-BMIP) that builds on the ideas of Section 3. We formally
state the method in Section 4.1 and provide quality guarantees for heuristically
obtained solutions in Section 4.2. In Section 4.3, we discuss algorithmic refinements.

4.1. A Heuristic for General Γ-Robust Bilevel Problems. In this section, we,
again, build on a lower bounding scheme that follows the ideas of the Bertsimas–Sim
result. For this purpose, we start with the following technical observation.

Lemma 4. Let (x∗, y∗) be an optimal solution to (Rob-BMIP). Then, there exists
an index ℓ ∈ L such that

f⊤y∗ − max
{S⊆[ny ] : |S|≤Γ}

∑
i∈S

∆fiy
∗
i = Φℓ(x

∗) = −Γ∆fℓ + f̃(ℓ)⊤y∗

holds.

Lemma 4 can be used to provide a lower bound for the optimal objective function
value of (Rob-BMIP), which is what we do in the following.
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Proposition 5. There exists an index ℓ ∈ L such that the optimal objective function
value of the bilevel problem

min
x,y

c⊤x+ d⊤y

s.t. x ∈ X,

y ∈ argmax
y′∈Y (x)

{
−Γ∆fℓ + f̃(ℓ)⊤y′

} (ℓ-BMIP)

yields a valid lower bound for the optimal objective function value of (Rob-BMIP).

Proof. Let (x∗, y∗) denote an optimal solution to (Rob-BMIP), which exists by
Assumption 1. Due to Lemma 4, there is an index ℓ ∈ L such that

f⊤y∗ − max
{S⊆[ny ] : |S|≤Γ}

∑
i∈S

∆fiy
∗
i = Φℓ(x

∗) = −Γ∆fℓ + f̃(ℓ)⊤y∗

holds. Hence, and since x∗ ∈ X as well as y∗ ∈ Y (x∗) hold by assumption, (x∗, y∗)
is feasible for (ℓ-BMIP). Consequently, we obtain c⊤x∗ + d⊤y∗ ≥ c⊤xℓ + d⊤yℓ

with (xℓ, yℓ) being an optimal solution to (ℓ-BMIP). This concludes the proof. □

Let us point out that Proposition 5 only yields an ex-post result since it requires
the knowledge of an optimal solution to (Rob-BMIP) in advance. Nevertheless, it
can be exploited to obtain an overall valid lower bound for (Rob-BMIP).

Corollary 1. For all ℓ ∈ L, let (xℓ, yℓ) be an optimal solution to (ℓ-BMIP). Then,

min
ℓ∈L

{
c⊤xℓ + d⊤yℓ

}
is a valid lower bound for the optimal objective function value of (Rob-BMIP).

Corollary 1 motivates our heuristic for (Rob-BMIP). Before we discuss the
method in detail, let us briefly comment on two main reasons why the setting
considered in this section is more challenging than the one of Section 3:

(i) Obtaining a valid lower bound for (Rob-BMIP) is significantly more in-
volved than in the min-max setting; cf. Proposition 1 and Corollary 1. In
particular, Corollary 1 implies that the set of deterministic bilevel sub-
problems (ℓ-BMIP) needs to be considered holistically, i.e., an iterative
refinement of the lower bound for (Rob-BMIP) such as in Line 4 of Algo-
rithm 1 in the min-max setting can, in general, not be obtained.

(ii) In Section 3, we solve the Γ-robust counterpart of the lower level to obtain a
valid upper bound, while the feasibility of a sub-problem’s solution xℓ, ℓ ∈ L,
for (Rob-Min-Max) is already guaranteed. A solution (xℓ, yℓ) to (ℓ-BMIP),
however, may not be feasible for the Γ-robust bilevel problem (Rob-BMIP).
Hence, we need to perform a correction step to restore feasibility. The latter
may involve further challenges, which we address in detail in Section 4.3.

The heuristic for (Rob-BMIP) is formally stated in Algorithm 3. We start by
solving |L| bilevel problems of the nominal type to obtain a valid lower bound;
see Lines 2 and 3. By Part (i) of Proposition 3, we can assume, w.l.o.g., that the
index set L is given such that the deviations (∆fℓ)ℓ∈L are pairwise distinct. As in
Algorithm 2, we sort the indices so that the optimal objective function values of the
deterministic bilevel problems are given in non-decreasing order to potentially close
the optimality gap more quickly; see Line 4. Note that the solutions (xℓ, yℓ)ℓ∈L may
not be feasible for (Rob-BMIP). It may even be the case that none of the solutions
to the deterministic bilevel problems (ℓ-BMIP) is feasible for (Rob-BMIP).2 To

2An instance showing this behavior can be found at https://github.com/YasmineBeck/
gamma-robust-bilevel-heuristics/tree/main/counterexample.

https://github.com/YasmineBeck/gamma-robust-bilevel-heuristics/tree/main/counterexample
https://github.com/YasmineBeck/gamma-robust-bilevel-heuristics/tree/main/counterexample
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Algorithm 3 A Heuristic for Γ-Robust Mixed-Integer Linear Bilevel Problems

Input: An instance of (Rob-BMIP), an exact solution method for (BMIP) and (2),
an index set L as in (5)

Output: A feasible pair (x∗, y∗), a lower bound L, and an upper bound U
for (Rob-BMIP)

1: Set (x∗, y∗)← (None, None), L← −∞, and U ←∞.
2: for all ℓ ∈ L do
3: Compute a solution (xℓ, yℓ) to the bilevel problem

min
x,y

c⊤x+ d⊤y

s.t. x ∈ X,

y ∈ argmax
y′∈Y (x)

{
−Γ∆fℓ + f̃(ℓ)⊤y′

}
.

(ℓ-BMIP)

4: Sort the indices such that

c⊤xℓ1 + d⊤yℓ1 ≤ c⊤xℓ2 + d⊤yℓ2 ≤ · · · ≤ c⊤xℓ|L| + d⊤yℓ|L|

holds and set L← c⊤xℓ1 + d⊤yℓ1 .
5: Set i← 1.
6: while i ≤ |L| and L < U do
7: Solve the xℓi -parameterized Γ-robust lower-level problem to obtain Φrob(x

ℓi)
and let ŷ denote its optimal solution.

8: if c⊤xℓi + d⊤ŷ < U then
9: Set (x∗, y∗)← (xℓi , ŷ) and U ← c⊤x∗ + d⊤y∗.

10: Set i← i+ 1.
11: return (x∗, y∗), L, U

obtain a feasible point, we thus perform a correction step that involves solving
the Γ-robust counterpart of the lower level; see Lines 7–9. We emphasize that any
suitable solver can be used for the solution of the sub-problems (ℓ-BMIP) such
as, e.g., the MibS solver (Tahernejad et al. 2020) or the general branch-and-cut
solver presented in Fischetti et al. (2017). Since the sub-problems (ℓ-BMIP) are
independent, they can be solved in parallel if the necessary capacities are available.

Theorem 4. Algorithm 3 is correct, i.e., it returns a feasible pair (x∗, y∗) as well
as valid lower and upper bounds L and U for (Rob-BMIP).

Proof. Let (xℓ, yℓ)ℓ∈L be the family of solutions to the deterministic bilevel problems
solved in Line 3 of Algorithm 3. Note that any pair (xℓi , ŷ), i ∈ {1, . . . , |L|}, obtained
from Line 7 of the algorithm satisfies xℓi ∈ X, ŷ ∈ Y (xℓi), and

f⊤ŷ − max
{S⊆[ny ] : |S|≤Γ}

∑
i∈S

∆fiŷi = Φrob(x
ℓi),

i.e., (xℓi , ŷ) is feasible for (Rob-BMIP). Consequently, c⊤xℓi + d⊤ŷ is a valid upper
bound for the optimal objective function value of (Rob-BMIP). Let ((x∗, y∗), L, U)
be the output of Algorithm 3. Then, by our previous considerations, (x∗, y∗) is
feasible for (Rob-BMIP) and U := c⊤x∗ + d⊤y∗ is a valid upper bound. Finally, the
validity of L as a lower bound follows from Corollary 1. □

4.2. Quality Guarantees. We now provide quality guarantees for heuristically
obtained solutions to (Rob-BMIP).

Proposition 6. Let (xℓ, yℓ)ℓ∈L be the family of solutions to the bilevel problems
solved in Line 3 of Algorithm 3. Further, let ((x∗, y∗), L, U) be the output of
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Algorithm 3 and suppose that c⊤x∗ + d⊤y∗ ≤ c⊤xℓ + d⊤yℓ holds for all ℓ ∈ L. Then,
U − L = 0 holds and (x∗, y∗) is an optimal solution to (Rob-BMIP).

Proof. Due to Theorem 4, (x∗, y∗) is feasible for (Rob-BMIP) and L ≤ U holds. By
assumption, we further have c⊤x∗ + d⊤y∗ ≤ c⊤xℓ + d⊤yℓ for all ℓ ∈ L, which is
equivalent to

U = c⊤x∗ + d⊤y∗ ≤ min
ℓ∈L

{
c⊤xℓ + d⊤yℓ

}
= L.

Here, the equalities follow from Lines 9 and 4 of Algorithm 3, respectively. To sum
up, we have U − L = 0, which concludes the proof. □

Next, we provide a sufficient ex-post condition under which (Rob-BMIP) can be
solved by only solving bilevel problems of the nominal type.

Theorem 5. Let (xℓ, yℓ)ℓ∈L be the family of solutions to the bilevel problems solved
in Line 3 of Algorithm 3. If there exists an index k ∈ L with xk = xℓ, d⊤yk ≤ d⊤yℓ

and f̃(ℓ)⊤yk ≥ f̃(ℓ)⊤yℓ for all ℓ ∈ L, (xk, yk) is an optimal solution to (Rob-BMIP).

Proof. Suppose that there exists an index k ∈ L such that the requirements are
satisfied, i.e., we have xk ∈ X, yk ∈ Y (xℓ), as well as

Φℓ(x
k) = Φℓ(x

ℓ) = −Γ∆fℓ + f̃(ℓ)⊤yℓ ≤ −Γ∆fℓ + f̃(ℓ)⊤yk

for all ℓ ∈ L. The latter implies

Φrob(x
k) = max

ℓ∈L

{
Φℓ(x

k)
}
= max

ℓ∈L

{
−Γ∆fℓ + f̃(ℓ)⊤yk

}
.

Thus, by Lemma 1, yk solves the xk-parameterized Γ-robust counterpart (2) of the
lower level. In particular, the optimality of yk is proven without solving additional
lower-level problems. To sum up, (xk, yk) is feasible for (Rob-BMIP) and we
have c⊤xk + d⊤yk ≤ c⊤xℓ + d⊤yℓ for all ℓ ∈ L. Hence, using the same arguments
as in the proof of Proposition 6, the optimality gap is closed. □

We now provide an upper bound for the optimality gap for the case in which
Algorithm 3 does not terminate with an optimal solution.

Proposition 7. Let ((x∗, y∗), L, U) be the output of Algorithm 3. Then, it holds

U − L ≤ ∥d∥1.

Let us emphasize that the bound for the optimality gap given in Proposition 7
only depends on the upper-level objective function coefficients d for the follower’s
variables. Hence, as the influence of the follower on the leader’s objective function
value decreases, i.e., by diminishing ∥d∥1, the optimality gap of the pair (x∗, y∗)
decreases as well. Note, however, that d = 0 would imply that the upper level is
completely decoupled from the lower level.

4.3. Algorithmic Refinements. To conclude this section, we discuss further
techniques that can be incorporated in Line 7 of Algorithm 3 to obtain refined
upper bounds for (Rob-BMIP). For the ease of presentation, we focus on the case in
which the Γ-robust counterpart of the lower level is solved by exploiting the result
of Lemma 1. The case in which the problem is solved as a mixed-integer linear
problem as in Lemma 1 of Beck et al. (2023a) can be treated similarly.

In Algorithm 4, we provide a detailed description of the steps involved to solve
the Γ-robust counterpart of the lower level, i.e., Algorithm 4 may be used to replace
Line 7 of Algorithm 3. Here, we include a so-called refinement step in which we solve
further binary problems in addition to the lower-level sub-problems of the nominal
type. The reasons are the following. In this paper, we consider the optimistic
approach to bilevel optimization. Hence, whenever the set of optimal solutions to
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the Γ-robust lower level is not a singleton, a follower’s response that favors the leader
is chosen. When solving the lower-level sub-problems in Line 3 of Algorithm 4,
no information about the upper-level objective is used. This means that, if these
sub-problems do not have a unique solution, the cooperative nature of the follower
may not be taken into account. Line 4 of Algorithm 4 is intended to remedy this
situation so that we obtain a pair (x̂, ŷ) that is more likely to correspond to an
optimal solution to (Rob-BMIP). It would also be sufficient to consider

k ← argmax
ℓ∈L

{Φℓ(x̂)}

instead of the selection rule presented in Lines 5 and 6 of Algorithm 4 to obtain a
feasible pair (x̂, ŷ) for (Rob-BMIP). Then, however, the upper-level objective and,
thus, the cooperative nature of the follower would not be taken into account again.
In particular, the latter may lead to ambiguities if the choice of k ∈ L is not unique.

Algorithm 4 Correct-and-Refine

Input: A family of solutions (xℓ, yℓ)ℓ∈L to the deterministic bilevel sub-
problems (ℓ-BMIP), an index set L as in (5), an index ℓi ∈ L

Output: A solution ŷ to the xℓi-parameterized Γ-robust lower level (2)
1: Set x̂← xℓi .
2: for ℓ ∈ L \ {ℓi} with xℓ ̸= x̂ do
3: Correction step: Solve the x̂-parameterized ℓth lower-level sub-problem

Φℓ(x̂) = −Γ∆fℓ + max
y∈Y (x̂)

{
f̃(ℓ)⊤y

}
.

4: Refinement step: Compute a solution ŷℓ to the problem

min
y∈Y (x̂)

d⊤y s.t. − Γ∆fℓ + f̃(ℓ)⊤y ≥ Φℓ(x̂)

and set yℓ ← ŷℓ.
5: Set Φrob(x̂)← maxℓ∈L {Φℓ(x̂)} and determine C := {ℓ ∈ L : Φℓ(x̂) = Φrob(x̂)}.
6: Set k ← argminℓ∈C

{
c⊤x̂+ d⊤yℓ

}
and ŷ ← yk.

7: return ŷ

Proposition 8. Let (xℓ, yℓ)ℓ∈L be a given family of solutions to the deterministic
bilevel sub-problems (ℓ-BMIP). Further, let ℓi ∈ L, i ∈ {1, . . . , |L|}, be given
arbitrarily. Then, Algorithm 4 is correct, i.e., it returns an optimal solution to
the xℓi-parameterized Γ-robust counterpart (2) of the lower-level problem.

Proof. For notational convenience, we set x̂ = xℓi . By Remark 3, it suffices to solve

Φℓ(x̂) = −Γ∆fℓ + max
y∈Y (x̂)

{
f̃(ℓ)⊤y

}
for all ℓ ∈ L \ {ℓi} (6)

to determine Φrob(x̂). We now show that Lines 3 and 4 of Algorithm 4 only need
to be executed if x̂ ̸= xℓ holds for some ℓ ∈ L \ {ℓi}. To this end, suppose that
there exists an index ℓ ∈ L \ {ℓi} with x̂ = xℓ and let it be given arbitrarily.
Then, yℓ solves the ℓth x̂-parameterized lower-level sub-problem in (6) as well.
Moreover, (x̂, yℓ) = (xℓ, yℓ) solves (ℓ-BMIP) by assumption, i.e., yℓ also solves the
corresponding x̂-parameterized binary problem considered in Line 4 of Algorithm 4.
Hence, there is no need to solve the problems in Lines 3 and 4 to obtain Φrob(x̂).
Overall, (x̂, ŷ) obtained from Algorithm 4 thus satisfies x̂ ∈ X, ŷ ∈ Y (x̂), and

f⊤ŷ − max
{S⊆[ny ] : |S|≤Γ}

∑
i∈S

∆fiŷi = Φrob(x̂),

i.e., (x̂, ŷ) is feasible for (Rob-BMIP). □
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5. Computational Results

In this section, we computationally assess the performance of the heuristics
presented in this paper by comparing them with exact methods as well as alternative
heuristics adapted from the related literature. Before we discuss the numerical
results for each method in detail, we briefly describe the generation of the test
instances as well as the computational setup in Sections 5.1 and 5.2, respectively.
In Section 5.3, we focus on the min-max setting considered in Section 3. Afterward,
in Section 5.4, we discuss general Γ-robust mixed-integer linear bilevel problems;
cf. Section 4.

The evaluations of the proposed heuristic methods rely on (i) the running times,
(ii) the number of instances solved to global optimality, as well as on (iii) optimality
gaps. Moreover, as it is mentioned in Sections 3 and 4, the proposed methods can
be partially parallelized. To assess the potential of parallelization, we further use
so-called idealized parallel runtimes. The latter reflect the overall runtime of a
method provided that there are sufficient capacities available to solve all arising
sub-problems in parallel. For each instance, we compute the idealized parallel
runtime after solving all sub-problems sequentially by taking the maximum of all
runtimes for the sub-problems. Hence, if an instance could not be tackled within a
reasonable amount of time in the sequential setting, we consider it as unsolved in
the idealized parallel setting as well.

5.1. Generation of Knapsack Test Instances. For our computational study,
we consider modifications of the deterministic knapsack interdiction problem that
has been considered in Caprara et al. (2016). The deterministic problem is formally
stated as

min
x∈{0,1}n

f⊤y

s.t. v⊤x ≤ B,

y ∈ argmax
y′∈{0,1}n

{
f⊤y′ : w⊤y′ ≤ C, y′i ≤ 1− xi, i ∈ [n]

}
,

in which all parameters are assumed to be non-negative integers, i.e., B,C ∈ Z≥0, and
f, v, w ∈ Zn

≥0. For each instance size n ∈ {35, 40, 45, 50, 55, . . . , 100}, 10 instances
have been generated according to Martello et al. (1999). A detailed description of
the generation of the deterministic test instances can also be found in Section 4.1 of
Beck et al. (2023a). To account for a Γ-robust follower, we adapt the deterministic
instances in the following way. The parameter Γ is set to either 10% or 50% of
the instance size n. In the case of a fractional value for Γ, the closest integer is
considered. For the deviations in the objective function coefficients, we include four
different settings. To this end, we choose δ ∈ {0.1, 0.25} and generate the deviations
as follows:

(i) Integer deviations: The deviations ∆fi take uniformly distributed integer
values from the interval [0, ⌈δfi⌉].

(ii) Continuous deviations: We generate a continuous and uniformly distributed
value αi from the interval [0, δ) and set ∆fi = αifi.

In summary, we consider 80 instances per size such that our overall test set con-
tains 1120 robustified knapsack interdiction instances. The latter are used to
compare the approaches in the min-max setting discussed in Section 5.3.

For the more general bilevel setting evaluated in Section 5.4, we do the following.
We re-consider the previously generated 1120 robustified knapsack interdiction
instances, maintaining the uncertainty parameterization as well as the structure
of the lower-level problem. An instance of the general form (Rob-BMIP) is then
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obtained by replacing upper-level objective function coefficients for the leader’s and
the follower’s variables. These coefficients take uniformly distributed integer values
from the interval [0, 100]. Hence, we also consider 1120 robustified instances in the
more general setting.

5.2. Computational Setup. All tests have been realized on an Intel XEON
SP 6126 at 2.6GHz (with up to 16 cores) and 32GB RAM. The approaches consid-
ered in our computational study use Gurobi 11.0.0 to solve all arising optimization
problems. For the solution of each instance, we set a time limit of 1 h. We now
comment on the implementation for each setting.

5.2.1. Mixed-Integer Linear Min-Max Problems. In Algorithms 1 and 2, a linear
number of min-max problems of the nominal type is solved. In particular, any
solver for mixed-integer linear min-max problems can be used for the solution of
these problems. To assess the performance of our heuristics on instances of the Γ-
robust knapsack interdiction problem, we consider the following two choices for the
black-box solver.

First, we consider the problem-tailored branch-and-cut method presented in
Fischetti et al. (2019) for the solution of the deterministic problems. In this method,
the authors exploit so-called interdiction cuts to separate bilevel infeasible points.

Second, we consider the bkpsolver (Weninger and Fukasawa 2023) for the solu-
tion of the deterministic knapsack interdiction problems. The method is based
on a branch-and-bound framework that incorporates ideas from dynamic pro-
gramming to obtain strong lower bounds and is publicly available at https:
//github.com/nwoeanhinnogaehr/bkpsolver. We emphasize that the bkpsolver
requires the parameters of the considered deterministic problems to satisfy the
following properties:

(i) the leader’s (the follower’s) item weights do not exceed the leader’s (the
follower’s) budget,

(ii) all parameters of the problem are integer,
(iii) all parameters of the problem are non-negative.

While (i) is satisfied for all of our considered instances by construction, (ii) and (iii)
may be violated in some cases. For continuous deviations ∆f , the modified objective
function coefficients f̃(ℓ), ℓ ∈ L, may be continuous as well. In this case, we scale
the data accordingly. Moreover, the modified objective function coefficients f̃(ℓ),
ℓ ∈ L, may be negative for certain items in some sub-problems. To ensure the
applicability of the bkpsolver within our framework, we have thus incorporated a
presolve step into Algorithms 1 and 2 that is based on the following. If f̃(ℓ)i < 0
holds for some i ∈ [n] and ℓ ∈ L, the ith item will not be chosen by the follower; see,
e.g., Pisinger and Toth (1998). Thus, the leader does not need to spend interdiction
resources on the ith item and xi = yi = 0 can be fixed for this sub-problem.

Due to their similarity and for the ease of presentation, we only discuss the results
for one variant of our heuristic. Preliminary computational results revealed that
Algorithm 2 seems to have an advantage over Algorithm 1, which is why we will
focus on the following two variants.
H-BKP: Algorithm 2 in which we incorporate the bkpsolver (Weninger and Fukasawa

2023) for the solution of the deterministic interdiction problems.
H-IC: Algorithm 2 in which we incorporate the branch-and-cut approach proposed

by Fischetti et al. (2019) for the solution of the deterministic interdiction problems.
To assess the performance of our methods, we compare H-BKP and H-IC with

the following two benchmark approaches from the literature.

https://github.com/nwoeanhinnogaehr/bkpsolver
https://github.com/nwoeanhinnogaehr/bkpsolver


18 Y. BECK, I. LJUBIĆ, AND M. SCHMIDT

H-GI: The “Greedy Interdiction” heuristic proposed by DeNegre (2011). The method
generates a feasible leader’s decision x in a greedy-like fashion and, afterward, a
valid upper bound is computed by solving the x-parameterized lower-level problem.
The original method has been proposed for deterministic interdiction problems.
Hence, we have adapted the method to account for a Γ-robust follower. Moreover,
since the original method does not provide dual information, we further solve
the so-called high-point relaxation (HPR; see, e.g., Definition 1.9 in Schmidt and
Beck (2023)) of the problem to obtain a valid lower bound.

E-MF: The exact single-leader multi-follower approach presented in our previ-
ous work in Beck et al. (2023a). The method relies on a branch-and-cut
framework in which interdiction cuts tailored to the Γ-robust setting are
added. The code is publicly available at https://github.com/YasmineBeck/
gamma-robust-knapsack-interdiction-solver. In Beck et al. (2023a), various
cut separation strategies are studied. In our computational study, we consider
the setting in which a single most-violated cut is added at each node of the
branch-and-cut search tree. To generate these cuts, all lower-level sub-problems
need to be solved, which can be done in parallel if the necessary capacities are
available. We account for this feature by considering idealized parallel runtimes
for E-MF in our evaluations.
Algorithms 1 and 2 as well as the re-implementation of the “Greedy Interdiction”

heuristic (DeNegre 2011) are implemented in Python 3.7.11. Moreover, since the
original branch-and-cut method proposed in Fischetti et al. (2019) uses CPLEX 12.7
to solve all arising optimization problems, we have also re-implemented this method
using Python 3.7.11 and Gurobi to have a fair comparison between the considered
approaches. Our re-implementation exploits Gurobi’s lazy constraint callbacks to
add interdiction cuts, which requires to set the parameter LazyConstraints to 1.
All other parameters have been left at their default settings. For the solution of
the Γ-robust counterpart of the lower level, we exploit the result of Lemma 1 so that
we solve a linear number of lower-level sub-problems of the nominal type.3 If the
necessary capacities are available, the independence of these sub-problems allows
for a parallelization of their solution. Hence, we also consider idealized parallel
runtimes for H-BKP, H-IC, and H-GI.

5.2.2. General Mixed-Integer Linear Bilevel Problems. We now briefly describe the
implementation of the heuristic for general Γ-robust mixed-integer linear bilevel
problems presented in Algorithms 3 and 4. Again, any solver for deterministic
mixed-integer linear bilevel problems can be used for the solution of the problems of
the nominal type in Line 3 of Algorithm 3. In our computational study, we consider
the following.
H: Algorithm 3 in which we incorporate a problem-tailored branch-and-cut approach

for the solution of the deterministic bilevel problems. The method is based on
H-IC, which we have adapted accordingly to account for the more general setting.
As elaborated in Section 4, our heuristic can be partially parallelized. In what
follows, we thus abbreviate the heuristic in the sequential and the idealized parallel
setting by H-seq and H-ideal, respectively.

Preliminary computational tests revealed that our problem-tailored branch-and-
cut approach outperforms general-purpose solvers, which is why we refrain from
using solvers such as, e.g., the MibS solver (Tahernejad et al. 2020) or the general

3The code for the methods presented in this paper, along with the nominal instance data
used for our computational study, is publicly available at https://github.com/YasmineBeck/
gamma-robust-bilevel-heuristics.

https://github.com/YasmineBeck/gamma-robust-knapsack-interdiction-solver
https://github.com/YasmineBeck/gamma-robust-knapsack-interdiction-solver
https://github.com/YasmineBeck/gamma-robust-bilevel-heuristics
https://github.com/YasmineBeck/gamma-robust-bilevel-heuristics
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branch-and-cut solver presented in Fischetti et al. (2017) for the solution of the
deterministic bilevel problems within our framework.

To the best of our knowledge, there is no other method in the literature that can
tackle general mixed-integer linear bilevel problems with a Γ-robust treatment of
lower-level objective uncertainty directly, neither globally nor heuristically. Nev-
ertheless, the heuristics that have been proposed in Fischetti et al. (2018) can be
applied to our considered instances by reformulating (Rob-BMIP) as a “generalized
interdiction problem”. The latter can be done using the ideas of Section 2.1 in Beck
et al. (2023a); see Appendix B for the details. To assess the performance of H, we
thus consider the following three benchmark approaches.
H-OS: The ONE-SHOT heuristic presented in Fischetti et al. (2018). The method

builds on solving a single-level mixed-integer linear problem, which is obtained from
the generalized interdiction problem by relaxing the integrality of the follower’s
variables and by exploiting strong duality. The original method computes a
bilevel-feasible point and an upper bound for the optimal objective function value
of (Rob-BMIP), but no lower bound is provided. To have at least some basis for
evaluating the quality of the obtained solutions, we thus compute a valid lower
bound by solving the HPR of the original bilevel problem.

H-IT: The ITERATE heuristic presented in Fischetti et al. (2018). The method
iteratively adds no-good cuts to the single-level mixed-integer problem considered
for ONE-SHOT and terminates with a bilevel-feasible pair and a valid upper
bound once the time limit is reached. As before, we solve the HPR of the original
bilevel problem to obtain a valid lower bound.

E: An exact branch-and-cut approach tailored to the mixed-integer linear reformu-
lation of the considered generalized knapsack interdiction instances. The method
is outlined in Appendix B.
E and the branch-and-cut method used within H are implemented in Python 3.7.11

and we use Gurobi’s lazy constraint callbacks to add cuts by setting the parameter
LazyConstraints to 1. All remaining parameters have been left at their default
settings. Since the code for the heuristics presented in Fischetti et al. (2018) is
not publicly available, we have re-implemented ONE-SHOT and ITERATE using
Python 3.7.11 and Gurobi.4 Finally, we point out that no parallelization can be
exploited for H-OS, H-IT, or E, which is why we do not distinguish between a
sequential and an idealized parallel setting for these approaches.

5.3. Evaluation of the Heuristic for Min-Max Problems. We now evaluate
the heuristic for Γ-robust min-max problems. To this end, we apply the methods
H-BKP, H-IC, H-GI, and E-MF to the Γ-robust knapsack interdiction problem, which
is a special case of a Γ-robust min-max problem. Before we discuss the performance
of the considered methods in detail, let us briefly highlight the main differences
between them. Note that E-MF is an exact solution method that solves a single
problem of the form given in (Rob-Min-Max), whereas H-BKP, H-IC, and H-GI are
heuristic approaches for this problem. The considered heuristics have in common
that they all solve the Γ-robust counterpart of the lower level for a fixed leader’s
decision. However, they differ in the sense that H-BKP and H-IC additionally solve
a linear number of bilevel problems of the nominal type. Tables 3–5 as well as
Figures 1–4 provide a comprehensive summary of the numerical results for the
overall 1120 considered instances for all four approaches. In the following, we discuss
the settings with integer and continuous deviations separately.

4The code for the methods presented in this paper, along with the nominal instance data
used for our computational study, is publicly available at https://github.com/YasmineBeck/
gamma-robust-bilevel-heuristics.

https://github.com/YasmineBeck/gamma-robust-bilevel-heuristics
https://github.com/YasmineBeck/gamma-robust-bilevel-heuristics
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Table 3. The number of instances (out of the 560 considered
instances in the min-max setting with integer and continuous de-
viations, respectively) for which our presolve techniques (see Sec-
tion 5.2.1) have been applied.

presolved

∆f sub-problems variables

integer 560 500
continuous 440 520

Table 4. Statistics for the number of eliminated sub-problems and
the number of fixed variables due to presolve (both in %) for the
min-max setting with integer and continuous deviations.

∆f presolved min 1st quartile median 3rd quartile max

integer sub-problems 40.91 63.84 73.21 80.00 88.00
variables 0.00 3.48 5.00 6.04 8.00

continuous sub-problems 0.00 3.13 8.89 21.08 44.00
variables 0.00 3.48 5.00 6.67 9.09

5.3.1. Instances with Integer Deviations. We focus on the 560 Γ-robust knapsack
interdiction instances for which the deviations take uniformly distributed integer
values; cf. Section 5.1. In Table 3, we show the number of instances for which (i) the
result of Proposition 3 has been applied and (ii) variables have been fixed due to
negative modified profits; cf. the presolve techniques discussed in Section 5.2.1. As
per the generation of our instances, there are multiple items that have the same
deviation across all instances. By Proposition 3, the number of sub-problems to
be solved can thus be reduced. Moreover, it can be seen that at least one variable
is fixed in at least one sub-problem for a significant portion of our instances (500
out of 560 instances). In Table 4, we summarize the statistics for the number of
sub-problems and variables that can be eliminated due to our presolve techniques
proposed in Section 5.2.1. It can be seen that at least 40.91% and up to 88% of
the sub-problems can be eliminated, which significantly reduces the computational
burden of the heuristic presented in this paper. In addition, a maximum of 8% of the
number of variables is fixed due to negative modified profits f̃(ℓ), ℓ ∈ L. According
to preliminary computational results, presolving variables affects the performance
of H-IC only slightly. We emphasize, however, that the latter is necessary to
apply H-BKP.

In Table 5, we summarize the number of instances for which (i) a feasible point
with finite gap is found (“feasible”), (ii) global optimality is proven either by a closed
gap or using one of the sufficient optimality conditions presented in Theorems 2
and 3 (“optimal”), (iii) a sufficient optimality condition is satisfied (“Thm. 2” or
“Thm. 3”), and (iv) the computed solution has a finite but non-zero gap (“open gap”).
For those instances with an open gap, we further provide the average gap (“average
gap”). In addition, we show box-plots of the optimality gaps and the running times
for all four considered approaches in Figures 1 and 4, respectively. In Figure 2,
we further show box-plots of the ex-post optimality gaps for H-BKP, H-IC, and
H-GI. The ex-post optimality gaps are derived by comparing the heuristic solutions
with the exact solution obtained from E-MF. Moreover, we provide box-plots of the
percentages of solved sub-problems (out of the total number of sub-problems to be
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Table 5. The number of instances for which a feasible point with
finite gap is found (“feasible”; out of the 560 considered instances
in the min-max setting with integer and continuous deviations,
respectively) for the approaches H-BKP, H-IC, H-GI, and E-MF.
Additionally, the number of instances solved to global optimality
(“optimal”), along with the number of instances satisfying a sufficient
optimality condition (Thm. 2 or Thm. 3), is shown. For those
instances with finite but non-zero gap (“open gap”), also the average
gap (“average gap”; in %) is shown.

∆f feasible optimal Thm. 2 Thm. 3 open gap average gap

integer H-BKP 560 555 340 340 5 0.12
H-IC 517 513 277 315 4 0.14
H-GI 560 4 – – 556 100.00
E-MF 560 526 – – 34 6.08

continuous H-BKP 560 554 359 359 6 0.08
H-IC 481 476 266 309 5 0.10
H-GI 560 4 – – 556 100.00
E-MF 560 524 – – 36 7.03

solved) for H-BKP and H-IC in Figure 3. We now assess the performance of the four
considered approaches.

We start with a comparison of H-IC and E-MF. Based on Table 5, it can be seen
that a feasible point with finite gap is obtained using E-MF for all 560 considered
instances. In particular, E-MF solves 526 of the 560 instances (93.93%) to global
optimality. Again, we emphasize that E-MF is an exact approach, which solves a
single problem of the form given in (Rob-Min-Max) using branch-and-cut. Hence,
optimality of a solution obtained from E-MF is proven by a closed gap. The sufficient
conditions in Theorems 2 and 3 are only applicable to the heuristic approaches H-BKP
and H-IC. H-IC finds a feasible point with finite gap for 517 of the 560 considered
instances, while proving global optimality for 513 of them (91.61%). Table 5
shows that the optimality of solutions obtained from H-IC is proven using the
result of Theorem 2 for 277 of the 513 instances (54.00%). Note that Theorem 2
is a special case of Theorem 3 so that, overall, 315 instances (61.40%) satisfy
the requirements of Theorem 3. Hence, the majority of the considered instances
satisfies one of the sufficient conditions so that H-IC computes a globally optimal
solution to (Rob-Min-Max) by only solving bilevel problems of the nominal type.
For the remaining instances solved to global optimality by H-IC, a closed gap is
obtained after solving additional lower-level problems. For those 4 instances for
which H-IC has found a feasible but not provably optimal point with finite gap
(“open gap”), the method still provides favorable results in terms of the solution
quality. In Figure 1 (left), we show box-plots for the optimality gaps obtained
from the four considered methods. The largest finite optimality gap we report for
H-IC is 0.18%, while, for E-MF, the outliers for the optimality gaps are widely
scattered with the largest gap observed being 10.98%. It is worth mentioning,
however, that global optimality of the primal solutions found by H-IC has been
verified ex post for all instances solved by E-MF; see Figure 2 (left). Nevertheless,
we acknowledge that the computational burden of H-IC remains a drawback of our
method. The latter is particularly reflected by the 43 instances for which H-IC could
not compute a finite gap within the time limit of 1 h, as indicated by the labeled
node in Figure 1 (left). An infinite gap occurs if the solution of the linear number of
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bilevel sub-problems exceeds the time limit, preventing the upper bound from being
updated. In Figure 3 (left), we show box-plots of the percentages of sub-problems
solved within the time limit (out of the total number of sub-problems to be solved)
to provide further insight into the time consumption of H-IC. When evaluating
the instances that each method can handle, H-IC seems to perform slightly better
than E-MF both w.r.t. sequential and idealized parallel runtimes. The latter can be
seen from the box-plots shown in Figure 4 (top). Here, we observe smaller median
running times for H-IC compared to E-MF, along with a reduction of the overall
variability of runtimes. The latter indicates that H-IC tends to have a slightly more
consistent performance than E-MF. Nevertheless, despite its fairly promising results
in terms of performance and solution quality, it is worth mentioning again that E-MF
is an exact approach while H-IC is a heuristic. E-MF may thus still be considered as
the overall better method.

However, the situation changes significantly if we use the bkpsolver for the solution
of the deterministic bilevel problems. Figure 4 (top) clearly illustrates the benefits
of using the heuristic. In the sequential as well as in the idealized parallel setting,
H-BKP significantly outperforms H-IC and E-MF. We further observe that, compared
to E-MF, the sequential runtime of H-BKP is more than a factor of 15 smaller in the
median. The same qualitative behavior can be observed for the idealized parallel
setting. In terms of the solution quality, we note that more instances satisfy the
sufficient conditions for optimality in Theorems 2 and 3 when using H-BKP instead
of H-IC. Moreover, H-BKP solves 33 instances that have not been solved by E-MF,
resulting in 99.11% of the 560 considered instances being solved to global optimality.
For the remaining 5 instances for which H-BKP has found a feasible point with finite
but non-zero gap, we report a gap of at most 0.18%; cf. Figure 1 (left). Comparing
to the results obtained from E-MF, however, we could verify ex post that H-BKP
indeed solves all 560 considered instances to global optimality; cf. Figure 2 (left).

Finally, let us comment on the performance of H-GI (DeNegre 2011). Figure 4 (top)
clearly shows that H-GI dominates all other approaches both w.r.t. sequential and
idealized parallel runtimes. The latter is not surprising given that H-GI only considers
single-level problems, whereas the remaining approaches (additionally) tackle bilevel
problems that are harder to solve in general. Despite its favorable results in terms
of runtimes, however, the quality of the solutions obtained from H-GI is rather poor.
The latter can be seen from the results depicted in Table 5 as well as Figures 1
and 2 (left). In this context, we mention that the 4 instances that have been solved
to global optimality by H-GI are trivial in the sense that the leader can interdict all
items for the follower. In this case, the lower bound obtained from solving the HPR
of the problem is tight. In general, however, it is well-known that lower bounds
obtained from solving the HPR are very loose in an interdiction setting.

5.3.2. Instances with Continuous Deviations. We now focus on the 560 Γ-robust
knapsack interdiction instances for which the deviations take continuous and uni-
formly distributed values; cf. (ii) in Section 5.1. The main observations discussed
in the previous section become even more pronounced in this setting. We empha-
size that, just due to the generation of the deviations, the result of Proposition 3
cannot be exploited as often as in the setting with integer deviations; see Tables 3
and 4. Consequently, more deterministic bilevel problems need to be solved within
the heuristic framework presented in this paper. The latter results in an overall
increased computational burden for H-BKP and H-IC as it can be inferred from
the box-plots shown in Figure 3 (right) and Figure 4 (bottom). Nevertheless, due
to its overall small runtime required for solving bilevel problems, the latter affects
the performance of H-BKP only slightly. Again, we observe significant speed-up
factors when comparing the runtimes of H-BKP to those of the exact approach



HEURISTICS FOR Γ-ROBUST MIXED-INTEGER LINEAR BILEVEL PROBLEMS 23

∞ (43)

100 (556)

H-BKP H-IC H-GI E-MF
0
2
4
6
8

10

(43)

(4)

∞ (79)

100 (556)

H-BKP H-IC H-GI E-MF
0
2
4
6
8

10

(79)

(4)

Figure 1. Box-plots of the optimality gaps (in %) for the ap-
proaches H-BKP, H-IC, H-GI, and E-MF in the min-max setting with
integer (left) and continuous deviations (right).
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Figure 2. Box-plots of the ex-post optimality gaps (in %) for
the approaches H-BKP, H-IC, and H-GI for the 526 instances with
integer deviations (left) and the 524 instances with continuous
deviations (right) that have been solved to global optimality by
E-MF. Values above 100% are shown on a log-scaled y-axis.
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Figure 3. Box-plots of the percentages of solved sub-problems
(out of the total number of sub-problems to be solved) for the
approaches H-BKP and H-IC in the min-max setting with integer
deviations (left) and continuous deviations (right).
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Figure 4. Box-plots of the sequential (left) and the idealized
parallel runtimes (right) for the approaches H-BKP, H-IC, H-GI,
and E-MF in the min-max setting with integer deviations (top) and
continuous deviations (bottom). Sequential and idealized parallel
runtimes (in s) are depicted on a log-scaled y-axis.

E-MF. Moreover, H-BKP optimally solves 35 instances that have not been solved
to global optimality by E-MF. Overall, H-BKP proves global optimality for 98.93%
of the 560 instances; cf. Table 5. For those instances that have not been solved by
H-BKP, we report a gap of at most 0.18%. Nevertheless, global optimality can be
verified ex post for all considered instances by comparing with the results obtained
from E-MF; cf. Figure 2 (right).

The increased number of deterministic bilevel problems to solve significantly
affects the performance of H-IC. The latter is particularly reflected by the number of
instances for which a feasible point with finite optimality gap is found (560 instances
for E-MF vs. 481 for H-IC); see Table 5. Hence, the solution of |L| bilevel problems
(as it is done by H-IC) seems to be computationally more expensive in general than
solving |L| lower-level, i.e., single-level, problems at each node of the branch-and-cut
search tree as it is done by E-MF. Nevertheless, based on the instances that each
method can handle, it is worth mentioning that both H-IC and E-MF exhibit similar
median running times, which can be seen from the box-plots depicted in Figure 4
(bottom). Moreover, H-IC again seems to perform slightly more consistently than
E-MF due to its overall smaller variability in running times.

For H-GI, we observe the same qualitative behavior as in the setting with integer
deviations. Again, H-GI outperforms all other considered approaches in terms of
running times but the solution quality is rather poor; see Figures 1 and 2 (right) as
well as Figure 4 (bottom).
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To conclude, the heuristic presented in this paper frequently proves optimality
on the considered benchmark instances and, in particular, outperforms the “Greedy
Interdiction” heuristic (DeNegre 2011) in terms of solution quality. However, the
solution of the deterministic bilevel problems remains a bottleneck of our method
and, thus, the algorithmic choice for solving these problems is crucial. When efficient
black-box methods such as the bkpsolver (Weninger and Fukasawa 2023) are available
to tackle the deterministic bilevel problems, our heuristic further outperforms the
exact branch-and-cut method proposed in Beck et al. (2023a) both in terms of
runtimes and solution quality.

5.4. Evaluation of the Heuristic for General Bilevel Problems. We now
evaluate the performance of the heuristic for general Γ-robust bilevel problems.
Before we start, let us mention that the structure of the lower-level problem from
the min-max setting is preserved by the construction of our instances; see Section 5.1.
Hence, the results for the reduction of sub-problems applied to the min-max setting
summarized in Tables 3 and 4 are exactly the same in the more general setting. In
particular, this means that a considerable number of deterministic bilevel problems
can be eliminated in the setting with integer deviations, which significantly reduces
the computational burden of our method.

In Table 6, we show the number of instances for which (i) a feasible point with
finite gap is found (“feasible”), (ii) global optimality is proven either by a closed
gap or using the sufficient optimality condition in Theorem 5 (“optimal”), (iii) the
sufficient optimality condition is satisfied (“Thm. 5”), and (iv) the computed solution
has a finite but non-zero gap (“open gap”). For those instances with an open gap,
we further provide the average gap (“average gap”). In Figures 6 and 7, we show
box-plots of the running times and the optimality gaps for all four considered
approaches, respectively. In addition, we provide box-plots of the percentages of
solved sub-problems (out of the total number of sub-problems to be solved) within H
as well as box-plots of the ex-post optimality gaps for H, H-OS, and H-IT in Figures 5
and 8, respectively. As before, the ex-post optimality gaps are derived by comparing
the heuristic solutions with the solution obtained from the exact branch-and-cut
method. We now assess the performance of the four considered approaches.

While a feasible point with finite gap has been found by H-OS and H-IT for
all considered instances, H could not compute a finite gap within the time limit
of 1 h for around 55.54% and 61.25% of the considered instances in the setting with
integer and continuous deviations, respectively; see Table 6. As before, we obtain an
infinite gap in the case in which the solution of the deterministic bilevel problems
exceeds the time limit so that the upper bound, initially being set to infinity, is not
updated. To provide further insight into the time consumption of H, we additionally
show box-plots of the percentages of sub-problems solved within the time limit (out
of the total number of sub-problems to be solved) in Figure 5. Overall, the previous
observations underline that the computational burden of our heuristic is quite large
in the more general bilevel setting.

Despite this drawback, however, the heuristic presented in this paper still offers
the advantage to parallelize the solution process of the deterministic bilevel problems
and, if necessary, the solution of the additional lower-level problems. In Figure 6,
we show box-plots for the running times for the instances that each method can
handle, i.e., they find a feasible point with finite gap. Comparing the box-plots of
H-seq and H-ideal clearly illustrates the potential of parallelization. Moreover, on the
instances that the methods can tackle, H performs significantly better than E and
H-IT both w.r.t. sequential and idealized parallel runtimes. It is important to note,
however, that H-IT only terminates when reaching the time limit of 1 h, which is
due to the method’s design. Figure 6 further shows that H-OS performs significantly
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Table 6. The number of instances for which a feasible point with
finite gap is found (“feasible”; out of the 560 considered instances in
the general bilevel setting with integer and continuous deviations,
respectively) for the approaches H, H-OS, H-IT, and E. Additionally,
the number of instances solved to global optimality (“optimal”),
along with the number of instances satisfying the sufficient optimal-
ity condition in Thm. 5, is shown. For those instances with finite
but non-zero gap (“open gap”), also the average gap (“average gap”;
in %) is shown.

∆f feasible optimal Thm. 5 open gap average gap

integer H 249 186 70 63 1.94
H-OS 560 0 – 560 100.00
H-IT 560 0 – 560 100.00
E 480 236 – 244 23.05

continuous H 217 172 58 45 2.10
H-OS 560 0 – 560 100.00
H-IT 560 0 – 560 100.00
E 474 230 – 244 22.01

integer continuous

0

20

40

60

80

100

(11)
(13)

Figure 5. Box-plots of the percentages of solved sub-problems
(out of the total number of sub-problems to be solved) for H in the
general bilevel setting with integer and continuous deviations.

better than all other approaches in terms of running times. Nevertheless, its outliers
are widely scattered. Hence, the heuristic presented in this paper seems to have a
slightly more consistent performance.

Let us now comment on the quality of obtained solutions. Table 6 shows that
H solves 33.21% of the instances to global optimality in the setting with integer
deviations. Here, optimality is proven using the sufficient condition in Theorem 5
for 70 of the 186 solved instances (37.63%). In particular, this means that optimality
is guaranteed by only solving bilevel problems of the nominal type. For the majority
of the instances solved to global optimality, however, this is not the case so that
additional lower-level problems need to be considered; cf. Proposition 6. For the set-
ting with continuous deviations, we obtain similar results. Among the 172 instances
that H solves to global optimality, 58 instances (33.72%) satisfy the requirements
of Theorem 5, whereas Proposition 6 is used to prove optimality for the remaining
ones. For those instances for which H provides a feasible but not provably optimal
solution, we still observe favorable results in terms of solution quality. Based on
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Figure 6. Box-plots of the runtimes for the approaches in the
general bilevel setting with integer (top) and continuous deviations
(bottom). Runtimes (in s) are depicted on a log-scaled y-axis.

Figure 7, it can be seen that we obtain a gap of at most 8.85% and 11.35% using H
in the setting with integer and continuous deviations, respectively. The largest gaps
we observe for E are 57.63% and 58.10% in the setting with integer and continuous
deviations, respectively. However, the gaps obtained by H-OS and H-IT are quite
poor. The latter is due to the, in general, rather weak lower bound that can be
obtained from solving the HPR of the original bilevel problem. To further assess
the solution quality, Figure 8 thus also shows box-plots of the ex-post optimality
gaps, which can be obtained by comparing with the exact solution computed by E.
The advantage of H-OS and H-IT is their ability to find a feasible point with finite
gap for all instances, whereas this is not the case for H. Whenever H finds a feasible
point with finite gap, however, its solution quality is slightly better than that of
H-IT and significantly better than that of H-OS. Nevertheless, H-OS and H-IT still
provide promising results in terms of solution quality.

To sum up, we observe that the heuristic presented in this paper is faster than
the exact branch-and-cut approach on those instances for which it finds a feasible
point with finite gap. Nevertheless, reflected by the large portion of instances for
which the heuristic cannot compute a finite gap, we acknowledge the significant
computational burden of our method for the setting of general mixed-integer linear
bilevel problems. In this context, the heuristic approaches H-OS and H-IT seem to
provide a reasonable trade-off between time consumption and solution quality.

Overall, we see two significant differences between the min-max and the general
bilevel setting. First, our ex-post optimality criteria are stronger in the min-max
setting (cf. Tables 5 and 6). This mainly influences the number of instances for
which we can decide ex post that we have indeed computed an optimal solution.
Second, our methods in both settings heavily rely on the respective solvers for the
corresponding deterministic setting. While the bkpsolver by Weninger and Fukasawa
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Figure 7. Box-plots of the optimality gaps (in %) for the ap-
proaches in the general bilevel setting with integer (top) and con-
tinuous deviations (bottom).
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Figure 8. Box-plots of the ex-post optimality gaps (in %) for the
approaches H, H-OS, and H-IT for the 236 instances with integer
(left) and the 230 instances with continuous deviations (right) that
have been solved to global optimality by E.

(2023) significantly speeds up our methods for the min-max setting, any future
advancements in the field of general mixed-integer linear bilevel problems may be
beneficial for our heuristic for the more general setting as well.
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6. Conclusion

In this paper, we consider mixed-integer linear bilevel problems with a follower
facing uncertainties regarding his objective function coefficients. To deal with this
kind of uncertainty, we pursue a Γ-robust approach in which the follower hedges
against a subset of the uncertain parameters that adversely influence the solution
to the problem. More specifically, we exploit the main result by Bertsimas and
Sim (2003) and Sim (2004) for Γ-robust single-level optimization—namely that the
Γ-robust counterpart of a binary problem can be solved by solving a linear number
of binary problems of the nominal type. We present heuristic methods for Γ-robust
bilevel problems in the spirit of the Bertsimas–Sim result, wherein a linear number
of bilevel problems of the nominal type is solved. Moreover, quality guarantees for
heuristically obtained solutions as well as sufficient ex-post conditions for global
optimality are provided. To assess the performance of our approaches, we conduct
an extensive computational study on a total number of 2240 instances, compris-
ing 1120 instances of the Γ-robust knapsack interdiction problem and 1120 more
general Γ-robust bilevel instances. We observe that our heuristics often practically
outperform alternative approaches adapted from the literature, including both
heuristic and exact methods, in terms of the solution quality. In particular, the
optimality gap is closed for a substantial part of the considered instances using
the heuristics presented in this paper. A bottleneck of our methods, however, is
the solution of the deterministic bilevel problems. Thus, the algorithmic choice for
solving these problems is crucial. When efficient black-box methods are available to
tackle the deterministic bilevel problems, our heuristic can outperform generic exact
branch-and-cut methods. In particular, for Γ-robust knapsack interdiction prob-
lems, we report significant speed-up factors when compared to recently published
problem-tailored and exact solution approaches. Nevertheless, more general Γ-robust
bilevel problems remain challenging so that any algorithmic advances for general
mixed-integer linear bilevel problems may be beneficial for the methods presented
in this paper.
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Appendix A. Omitted Proofs

Proof of Lemma 2. Along the lines of the proof of Theorem 3 by Bertsimas and
Sim (2003), we obtain

max
{S⊆[ny ] : |S|≤Γ}

∑
i∈S

∆fiyi = min
ℓ∈{1,...,ny+1}

{
Γ∆fℓ +

ℓ∑
i=1

(∆fi −∆fℓ)yi

}
.

The latter yields

f⊤y − max
{S⊆[ny ] : |S|≤Γ}

∑
i∈S

∆fiyi

= f⊤y − min
ℓ∈{1,...,ny+1}

{
Γ∆fℓ +

ℓ∑
i=1

(∆fi −∆fℓ)yi

}

= f⊤y + max
ℓ∈{1,...,ny+1}

{
−Γ∆fℓ −

ℓ∑
i=1

(∆fi −∆fℓ)yi

}
= max

ℓ∈{1,...,ny+1}

{
−Γ∆fℓ + f̃(ℓ)⊤y

}
,

where the last equality follows from the definition of the robustified lower-level
objective function coefficients in Lemma 1. The remainder of the proof now follows
the one of Lemma 1 by Lee and Kwon (2014). To this end, we define

φℓ(y) := −Γ∆fℓ + f̃(ℓ)⊤y, ℓ ∈ {1, . . . , ny + 1} .
Using this definition, we obtain

φℓ+1(y)− φℓ(y) = (∆fℓ −∆fℓ+1)

(
Γ−

ℓ∑
i=1

yi

)
, ℓ ∈ {1, . . . , ny} , (7)

as well as

φℓ(y)− φℓ−1(y) = (∆fℓ−1 −∆fℓ)

(
Γ−

ℓ−1∑
i=1

yi

)
, ℓ ∈ {2, . . . , ny + 1} . (8)

In what follows, let ℓ ∈ {2, . . . , ny} be given arbitrarily. We distinguish two
cases. First, suppose that

∑ℓ
i=1 yi ≤ Γ holds. Hence, due to y ≥ 0, we further

have
∑ℓ−1

i=1 yi ≤ Γ. From (7) and (8), we thus obtain

φℓ−1(y) ≤ φℓ(y) ≤ φℓ+1(y).

Second, let us assume that
∑ℓ

i=1 yi > Γ holds, i.e.,
∑ℓ

i=1 yi ≥ Γ + 1 due to the
integrality of y and Γ. In particular, we have

∑ℓ−1
i=1 yi ≥ Γ. Thus, again by (7)

and (8), we obtain
φℓ−1(y) ≥ φℓ(y) ≥ φℓ+1(y).

Let us finally note that, since y is binary,
∑ℓ

i=1 yi ≤ Γ holds for all ℓ ∈ {1, . . . ,Γ}.
By our previous observations, we thus have φℓ(y) ≤ φΓ+1(y) for all ℓ ∈ {1, . . . ,Γ}.
This concludes the proof. □

https://doi.org/10.1002/9780470400531.eorms0932


REFERENCES 33

Proof of Lemma 3. By Assumption 2, we have ∆fℓ ≥ ∆fℓ+1 ≥ · · · ≥ ∆fk. Hence,
we obtain

f̃(ℓ)i =


fi −∆fi +∆fℓ ≥ fi −∆fi +∆fk = f̃(k)i, 1 ≤ i ≤ ℓ,

fi ≥ fi −∆fi +∆fk = f̃(k)i, ℓ+ 1 ≤ i ≤ k,

fi = f̃(k)i, k + 1 ≤ i ≤ ny,

which concludes the proof. □

Proof of Proposition 2. Due to Assumption 2 and Remark 2, it suffices to consider
the case in which Algorithm 1 terminates in Line 12. To this end, let (xℓ)ℓ∈L be
the family of solutions to the min-max problems solved in Line 3 of the algorithm.
Further, choose ℓ∗ ∈ L so that L = c⊤xℓ∗ + Φℓ∗(x

ℓ∗) holds. From Line 9, we
thus obtain U ≤ c⊤xℓ∗ +Φrob(x

ℓ∗). Let y∗ ∈ Y (xℓ∗) be an optimal solution to
the xℓ∗ -parameterized Γ-robust counterpart of the lower level. By Lemma 2, we get

Φrob(x
ℓ∗) = f⊤y∗ − max

{S⊆[ny ] : |S|≤Γ}

∑
i∈S

∆fiy
∗
i = max

ℓ∈L

{
−Γ∆fℓ + f̃(ℓ)⊤y∗

}
.

In addition, y∗ is feasible for the ℓ∗-th lower-level sub-problem, i.e., we have

−Γ∆fℓ∗ + f̃(ℓ∗)⊤y∗ ≤ Φℓ∗(x
ℓ∗).

Thus, taking all previous observations into account, we obtain

U − L ≤ c⊤xℓ∗ +Φrob(x
ℓ∗)− (c⊤xℓ∗ +Φℓ∗(x

ℓ∗))

= Φrob(x
ℓ∗)− Φℓ∗(x

ℓ∗)

= max
ℓ∈L

{
−Γ∆fℓ + f̃(ℓ)⊤y∗

}
− Φℓ∗(x

ℓ∗)

≤ max
ℓ∈L

{
Γ(∆fℓ∗ −∆fℓ) + (f̃(ℓ)− f̃(ℓ∗))⊤y∗

}
≤ max

ℓ∈L

{
|Γ(∆fℓ∗ −∆fℓ)|+

∣∣∣(f̃(ℓ)− f̃(ℓ∗))⊤y∗
∣∣∣} .

For all ℓ ∈ L, Assumption 2 as well as ℓ∗ ∈ L yield

Γ |∆fℓ∗ −∆fℓ| =

{
Γ(∆fℓ∗ −∆fℓ), if ℓ∗ ≤ ℓ

Γ(∆fℓ −∆fℓ∗), if ℓ∗ ≥ ℓ

}
≤ Γ(∆fΓ+1 −∆fny+1) = Γ∆fΓ+1.

Moreover, we obtain∣∣∣(f̃(ℓ)− f̃(ℓ∗))⊤y∗
∣∣∣ ≤ ∥f̃(ℓ)− f̃(ℓ∗)∥1∥y∗∥∞ ≤ ∥f̃(ℓ)− f̃(ℓ∗)∥1

=

Γ+1∑
i=1

∣∣∣f̃(ℓ)i − f̃(ℓ∗)i

∣∣∣+ ny∑
i=Γ+2

∣∣∣f̃(ℓ)i − f̃(ℓ∗)i

∣∣∣
≤ (Γ + 1)∆fΓ+1 +

ny∑
i=Γ+2

∆fi.

Here, the first inequality follows from Hölder’s inequality, whereas the second one
follows from y∗ ∈ {0, 1}ny . The last inequality is due to the following. First, for
all ℓ ∈ L and i ∈ [ny], Lemma 3 yields∣∣∣f̃(ℓ)i − f̃(ℓ∗)i

∣∣∣ = {f̃(ℓ)i − f̃(ℓ∗)i, if ℓ ≤ ℓ∗

f̃(ℓ∗)i − f̃(ℓ)i, if ℓ ≥ ℓ∗

}
≤ f̃(Γ + 1)i − f̃(ny + 1)i.

Second and lastly, Assumption 2 and Lemma 1 yield

f̃(Γ + 1)i − f̃(ny + 1)i =

{
∆fΓ+1, 1 ≤ i ≤ Γ + 1,

∆fi, Γ + 1 ≤ i ≤ ny.
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To sum up,

|Γ(∆fℓ∗ −∆fℓ)|+
∣∣∣(f̃(ℓ)− f̃(ℓ∗))⊤y∗

∣∣∣ ≤ Γ∆fΓ+1 + (Γ + 1)∆fΓ+1 +

ny∑
i=Γ+2

∆fi

holds for all ℓ ∈ L. Note that the right-hand side of the last inequality does not
depend on the sub-problem index ℓ ∈ L. This concludes the proof.

Proof of Proposition 4. Let x ∈ X be such that x ≥ xℓ holds. Evidently, the
claim is true for x = xℓ. Hence, we assume x ̸= xℓ, i.e., there exists at least one
index i ∈ [nx] with xi > xℓ

i . We define Xℓ
> := {i ∈ [nx] : xi > xℓ

i}, i.e., Xℓ
> ̸= ∅.

Let y be an optimal solution to the x-parameterized ℓth lower-level sub-problem

Φℓ(x) = −Γ∆fℓ + max
y′∈Y (x)

{
f̃(ℓ)⊤y′

}
.

Clearly, y ∈ Y ⊆ {0, 1}ny holds due to Part (ii) of Assumption 3. Moreover, we
have y ∈ Y (xℓ) due to the following. First, suppose Xℓ

> ∩ I = ∅. This means that
the indices i ∈ [nx] with xi > xℓ

i correspond to non-linking variables. Hence, we
have yi ≤ 1− xi = 1− xℓ

i for all i ∈ I. Second, we assume that Xℓ
> ∩ I ̸= ∅ holds.

From Part (i) of Assumption 3, we then have 1 = xi > xℓ
i = 0 for all i ∈ Xℓ

> ∩ I.
Thus, we obtain

yi ≤ 1− xi =

{
0 < 1 = 1− xℓ

i , i ∈ Xℓ
> ∩ I,

1− xℓ
i , i ∈ I \Xℓ

>.

Taking all previous considerations and Part (iii) of Assumption 3 into account yields

c⊤x+Φℓ(x) = Φℓ(x) = −Γ∆fℓ +

ny∑
i=1

f̃(ℓ)iyi ≤ Φℓ(x
ℓ) = c⊤xℓ +Φℓ(x

ℓ),

i.e., x solves (ℓ-Min-Max) as well.

Proof of Lemma 4. By Lemma 1, we have

f⊤y∗ − max
{S⊆[ny ] : |S|≤Γ}

∑
i∈S

∆fiy
∗
i = Φrob(x

∗) = max
k∈L
{Φk(x

∗)} .

Let ℓ1, ℓ2 ∈ L be chosen such that

ℓ1 = argmax
k∈L

{Φk(x
∗)} and ℓ2 = argmax

k∈L

{
−Γ∆fk + f̃(k)⊤y∗

}
(9)

hold. Further, let yℓi denote an optimal solution to the x∗-parameterized ℓi-th
lower-level sub-problem with i ∈ {1, 2}, i.e., yℓi solves

Φℓi(x
∗) = −Γ∆fℓi + max

y∈Y (x∗)

{
f̃(ℓi)

⊤y
}
.

Using (9), we thus obtain

−Γ∆fℓ2 + f̃(ℓ2)
⊤yℓ2 ≤ −Γ∆fℓ1 + f̃(ℓ1)

⊤yℓ1

= Φℓ1(x
∗)

= f⊤y∗ − max
{S⊆[ny ] : |S|≤Γ}

∑
i∈S

∆fiy
∗
i .

Moreover, we have

f⊤y∗ − max
{S⊆[ny ] : |S|≤Γ}

∑
i∈S

∆fiy
∗
i = −Γ∆fℓ2 + f̃(ℓ2)

⊤y∗ ≤ −Γ∆fℓ2 + f̃(ℓ2)
⊤yℓ2 .
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Here, the equality follows from Lemma 2, whereas the inequality follows from the
optimality of yℓ2 for the x∗-parameterized ℓ2th lower-level sub-problem. The last
two displayed formulas yield

−Γ∆fℓ1 + f̃(ℓ1)
⊤yℓ1 = −Γ∆fℓ2 + f̃(ℓ2)

⊤y∗ = −Γ∆fℓ2 + f̃(ℓ2)
⊤yℓ2 .

This implies that, in (9), we could have chosen

argmax
k∈L

{Φk(x
∗)} = ℓ2 = argmax

k∈L

{
−Γ∆fk + f̃(k)⊤y∗

}
,

which concludes the proof.

Proof of Proposition 7. Let (xℓ, yℓ)ℓ∈L be the family of solutions to the
bilevel problems solved in Line 3 of Algorithm 3. Further, choose k ∈ L so
that L = c⊤xk + d⊤yk holds. According to the updating rule in Line 9 of Algo-
rithm 3, we have U ≤ c⊤xk + d⊤ŷ with ŷ being an optimal solution to the Γ-robust
counterpart of the xk-parameterized lower level. Due to Hölder’s inequality as well
as ŷi − yki ∈ {−1, 0, 1} for all i ∈ [ny], we thus obtain

U − L ≤ c⊤xk + d⊤ŷ − (c⊤xk + d⊤yk)

= d⊤(ŷ − yk)

≤
∣∣d⊤(ŷ − yk)

∣∣
≤ ∥d∥1∥ŷ − yk∥∞ ≤ ∥d∥1,

which concludes the proof.

Appendix B. An Exact Branch-and-Cut Approach for Generalized
Γ-Robust Knapsack Interdiction Problems

We consider a generalization of the knapsack interdiction problem studied in
Caprara et al. (2016). The deterministic problem reads

min
x∈{0,1}n,y

c⊤x+ d⊤y

s.t. v⊤x ≤ B,

y ∈ argmax
y′∈{0,1}n

{
f⊤y′ : w⊤y′ ≤ C, y′i ≤ 1− xi, i ∈ [n]

}
with B,C ∈ Z≥0, and c, d, f, v, w ∈ Zn

≥0. For a given x ∈ X, the Γ-robust counter-
part of the lower-level problem, in which the follower hedges against his uncertain
objective function coefficients, is given by

max
y∈{0,1}n

f⊤y − max
{S⊆[n] : |S|≤Γ}

∑
i∈S

∆fiyi s.t. w⊤y ≤ C, yi ≤ 1− xi, i ∈ [n].

Along the lines of the proof of Theorem 3 by Bertsimas and Sim (2003), the latter
can be re-written as

max
y,z,θ

f⊤y − Γθ −
n∑

i=1

zi

s.t. w⊤y ≤ C,

yi ≤ 1− xi, i ∈ [n],

zi + θ ≥ ∆fiyi, i ∈ [n],

y ∈ {0, 1}n , z ∈ Rn
≥0, θ ∈ R≥0;

(10)
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cf. Lemma 1 in Beck et al. (2023a). The Γ-robust counterpart of the overall
generalized knapsack interdiction problem thus reads

min
x∈{0,1}n,y,z,θ

c⊤x+ d⊤y s.t. v⊤x ≤ B, (y, z, θ) ∈ S(x), (11)

where S(x) denotes the set of optimal solutions to the x-parameterized mixed-integer
linear problem (10). Problem (11) is a standard mixed-integer linear bilevel problem.
Using the lower-level optimal-value function, Problem (11) can be stated as the
single-level problem

min
x,y,z,θ

c⊤x+ d⊤y

s.t. v⊤x ≤ B, w⊤y ≤ C,

yi ≤ 1− xi, i ∈ [n],

zi + θ ≥ ∆fiyi, i ∈ [n],

f⊤y − Γθ −
n∑

i=1

zi ≥ Φrob(x),

x, y ∈ {0, 1}n , z ∈ Rn
≥0, θ ∈ R≥0.

(12)

Here, Φrob(x) is used to denote the optimal-value function associated with Prob-
lem (10). We can solve Problem (12) using a branch-and-cut framework. At node j
of the branch-and-cut tree, we consider the problem

min
x,y,z,θ

c⊤x+ d⊤y

s.t. v⊤x ≤ B, w⊤y ≤ C,

yi ≤ 1− xi, i ∈ [n],

zi + θ ≥ ∆fiyi, i ∈ [n],

(x, y, z, θ) ∈ Ωj ⊆ [0, 1]n × [0, 1]n × Rn
≥0 × R≥0,

(Pj)

where the set Ωj contains all valid inequalities that have been added previously to cut
off integer-infeasible or bilevel-infeasible points as well as all branching decisions. If
Problem (Pj) is infeasible for node j or if the objective function value corresponding
to an optimal solution (xj , yj , zj , θj) exceeds the current upper bound, we can
fathom the node. Otherwise, we check for integer and bilevel feasibility. To separate
a fractional solution, we can either branch or exploit standard cutting planes from
mixed-integer linear optimization, e.g., as elaborated in Cornuéjols (2008). To check
for bilevel feasibility, we compute the optimal objective function value of the xj-
parameterized Γ-robust counterpart of the lower-level problem. Using Proposition 6
in Beck et al. (2023a), this can be done by solving the mixed-integer linear problem

max
y,z,θ

n∑
i=1

fiyi(1− xj
i )− Γθ −

n∑
i=1

zi

s.t. w⊤y ≤ C,

yi ≤ 1− xj
i , i ∈ [n],

zi + θ ≥ ∆fiyi, i ∈ [n],

y ∈ {0, 1}n , z ∈ Rn
≥0, θ ∈ R≥0.

(13)
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Let (ŷ, ẑ, θ̂) denote an optimal solution to (13) and let Φ̂ denote the corresponding
objective function value. If Φ̂ < Φrob(x

j) holds, the point (xj , yj , zj , θj) is bilevel-
infeasible. To separate bilevel-infeasible points, we generate a cut of the form

n∑
i=1

fiyi − Γθ −
n∑

i=1

zi ≥
n∑

i=1

fiŷi(1− xi)− Γθ̂ −
n∑

i=1

ẑi

and add it to the description of the set Ωj .
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