
Maximizing a Monotone Submodular Function Under an
Unknown Knapsack Capacity

Sabine Münch, Stephen Raach, Sven de Vries
Trier University, 54286 Trier, Germany

{muench / raach / devries}@uni-trier.de

Consider the problem of maximizing a monotone-increasing submodular
function defined on a set of weighted items under an unknown knapsack
capacity. Assume that items are packed sequentially into the knapsack and
that the capacity of the knapsack is accessed through an oracle that answers
whether an item fits into the currently packed knapsack. If an item is tried
to be added and fits, it is packed irrevocably; if the addition exceeds the
capacity of the knapsack, it is removed from consideration.

We focus on non-adaptive packing according to a predetermined sequence,
called universal policy, and present the first algorithm to compute universal
policies that perform for any unknown but fixed knapsack capacity (which
is assumed to be greater or equal to the heaviest item), at least as good
as the classic algorithm due to Wolsey, which packs the knapsack according
to steepest ascent and outputs the better of the currently packed knapsack
and the first item that exceeds the knapsack capacity, applied to the same
capacity.

As a byproduct, we obtain an adaptive algorithm for maximizing a monotone-
increasing submodular function, and a universal policy for maximizing a
modular function under an unknown arbitrary knapsack capacity that are
much simpler than those presented in previous literature while providing the
same approximation guarantees.

Keywords : Combinatorial optimization, submodular maximization, knapsack, un-
known capacity, non-adaptive.

1. Introduction.

Optimization problems involving submodular objective functions are a central issue in
combinatorial optimization. The importance lies in their natural appearance across
various applications and their relevance to classical optimization problems, e.g., graph

cuts [see e.g., 7], set cover problems [see e.g., 6], and facility location problems [see e.g.,
3, 1].

Definition 1. In the following, let I be a finite set of cardinality n ∈ N, and f :
2I → R≥0 a normalized (f(∅) = 0), monotone-increasing (f(X) ≤ f(Y) for any
X ⊆ Y ⊆ I) and submodular (f(X) + f(Y) ≥ f(X ∪ Y) + f(X ∩ Y) for X, Y ⊆ I)
function. Let f({i}) > 0 for i ∈ I and, for ease of notation, define f(i) := f({i}) for
i ∈ I. We call any i ∈ I an item and assume every item to be associated with a weight
wi ∈ R≥0. For the weight of a set X ⊆ I, we write w(X) := ∑

i∈X wi.

Consider the classic problem of maximizing a submodular function under a knapsack
constraint (SMKC), given by,

max{f(X) : w(X) ≤ B, X ⊆ I}.

Notice that, by the assumption f(i) > 0 for all i ∈ I, this optimum is automatically
greater than zero for all B with B ≥ mini∈I wi.

Even though this problem is known to be NP-hard, a polynomial-time approximation
algorithm exists, as shown by Sviridenko [13], which combines partial enumeration with
discrete steepest ascent. This algorithm has an approximation factor of 1− 1

e ≈ 0.63,
where the approximation factor is the worst-case ratio between the objective value of the
algorithm’s solution and that of an optimal solution. This approximation factor is the
best possible achievable in polynomial time, unless P = NP , as demonstrated by Feige
[6].

Definition 2. Let β ≈ 0.4428 denote the unique real solution of ex = 2− x, and denote
ω := 1− e−β.

Furthermore, Wolsey [14] showed that the more simple algorithm of taking the better
of the discrete steepest ascent solution and the first item exceeding the current, by
discrete steepest ascent packed knapsack, has an approximation factor of at least ω.

Both approximation results, Sviridenko [13] and Wolsey [14], require complete knowl-
edge of the instance. However, in several applications, there might be uncertainty about
the knapsack capacity, the item weights, or the submodular function.

An instance of the submodular maximization problem under an unknown knapsack
capacity (denoted in the following by SMUC) is a tuple (I, f, w), where I is a set of
items with weights wi ≥ 0 for i ∈ I, and f is a monotone-increasing submodular set
function defined on I. By definition, any instance of SMUC is independent of a specific
knapsack capacity B.

We focus on knapsack capacities that are large enough to allow any single item to fit.

Definition 3. Given an instance (I, f, w) of SMUC, any knapsack capacity B ≥ maxi∈I wi

is called reasonable for (I, f, w).

2

There are two possible approaches to SMUC: maximizing the submodular function
either non-adaptively or adaptively.

In the non-adaptive approach, an instance of SMUC is given, and the items have to
be pre-ordered. After ordering the items, the knapsack’s capacity is revealed, and the
items are added one by one according to the order.

Definition 4. Given I, the set of all permutations of I will be denoted by Π(I) and any
permutation N = (N1, N2, . . . , Nn) ∈ Π(I) will also be called universal policy.

If the addition of an item exceeds the knapsack capacity, there are two ways to proceed:

• In packing without discarding, packing the knapsack is stopped, and the current
solution is returned.

• In packing with discarding, the item that exceeds the knapsack capacity is dis-
carded. Then, packing continues with the next item in the universal policy until
all items are packed or discarded.

In contrast, in the adaptive approach, items are packed one after another, and the
choice of which item to pack next may depend on the observations made while deciding
on the previous items (and thereby discarding may implicitly happen).

Non-adaptive maximization of a submodular function due to an unknown knapsack
capacity is related to the following leader-follower problem: The leader decides on a
universal policy aiming to maximize the ratio between the value of the set of items packed
into the knapsack according to the policy and the value of an optimally packed knapsack.
This ratio is contingent upon the knapsack capacity, determined by the follower aiming
to minimize the ratio while knowing the universal policy chosen by the leader. The
optimal solution to this leader-follower problem returns an optimal universal policy.

However, even knowing an optimal solution to the leader-follower problem does not
indicate how well the optimal policy performs compared to optimal packing with knowl-
edge of the knapsack’s capacity.

1.1. Results.

Our main contribution is for non-adaptive packing without discarding. We provide the
first algorithm that computes for any instance of SMUC a universal policy such that
packing without discarding according to that policy yields, for any fixed reasonable
knapsack capacity, a set of items that is at least as valuable as the output of Wolsey’s
algorithm [14], for the same (known) knapsack capacity.

Therefore, in terms of the aforementioned leader-follower problem, the present paper
finds an approximately optimal solution and demonstrates that packing according to it
approximates the optimal packing for any knapsack capacity by a factor of at least ω.

3

As a consequence of our result, we obtain an adaptive algorithm (adaptivity natu-
rally allows for discarding) for SMUC that packs for any arbitrary (even unreasonable)
unknown knapsack capacity a set whose value approximates the value of an optimal so-
lution by at least ω. Thus, we provide a simpler adaptive algorithm than those presented
in the literature while matching the best-known approximation guarantee. Furthermore,
we present a curvature dependent bound using a curvature dependent bound for a greedy
algorithm by Klimm and Knaack [9].

As another corollary of our main result we show that for non-adaptive maximization
of a modular function with discarding, one can pack an arbitrary unknown but fixed
knapsack at least as well as Wolsey’s algorithm [14] does for the same known knapsack
capacity. Thereby, we give a simpler proof of the best possible 1

2 -approximation by Disser
et al. [4]. For a summary of our results, see Table 1 below.

1.2. Further related work.

Submodular maximization with various additional constraints is a central topic in com-
binatorial optimization. Nemhauser et al. [12] initiated research on this subject and
considered the problem of maximizing a monotone-increasing submodular function un-
der a knapsack constraint with unit weights. For this problem, Nemhauser et al. [12]
showed that a greedy algorithm achieves an approximation factor of 1− 1

e ≈ 0.63. Fur-
thermore, Feige [6] established that even for the maximum coverage problem with unit
weights under a knapsack constraint, which is a special case of maximizing a monotone-
increasing submodular function under a knapsack constraint, no better approximation
factor is possible in polynomial time, unless P = NP .

For the problem of maximizing a monotone-increasing submodular function under a
knapsack constraint with arbitrary non-negative weights, Wolsey [14] introduced a vari-
ation of the steepest ascent algorithm with an approximation factor of ω. Later, Sviri-
denko [13] demonstrated that combining a partial enumeration procedure with steepest
ascent achieves the best possible approximation factor of 1− 1

e .
Navarra and Pinotti [11] and Disser et al. [4] considered maximization of a modular

function under an unknown knapsack capacity (MMUC) non-adaptively. Each of them
proposed an algorithm that computes a universal policy for any instance of MMUC.
Assuming a reasonable knapsack capacity, the knapsack packed without discarding ac-
cording to the universal policy, returned by the algorithm of Navarra and Pinotti [11],
approximates the optimal solution by a factor of at least 1

2 . For arbitrary knapsack
capacities, packing with discarding according to the universal policy returned by the
algorithm of Disser et al. [4], achieves the same approximation guarantee.

For the problem of maximizing a submodular function under an unknown arbitrary
knapsack capacity, Kawase et al. [8] presented a randomized universal policy such that
the expected value of the knapsack packed non-adaptively with discarding, according to

4

that policy, approximates the optimal solution by at least 1
2(1− 1

4√e
) ≈ 0.11.

Disser et al. [5] consider the more general problem of maximizing a fractionally subad-
ditive function under an unknown knapsack capacity by non-adaptively packing without
discarding. However, their policy fails to achieve a constant robustness factor; instead,
it relies on the ratio between the value of the least and the most valuable item. Non-
adaptive maximization of a strict superset of submodular functions under an unknown
cardinality constraint without discarding items is considered by Bernstein et al. [2].

Kawase et al. [8] considered adaptively maximizing a monotone submodular function
under an unknown knapsack capacity. They demonstrated that an adaptive packing
algorithm can approximate the value of the optimal packing by a factor of at least
2(1−1/e)

21 > 0.06. Klimm and Knaack [9] improved this to ω.

non-adaptive packing adaptive packingwithout discarding with discarding

MMUC

reasonable
knapsack Navarra and Pinotti [11]: 1

2

arbitrary
knapsack

Disser et al. [4]: 1
2

This work (Thm. 5): 1
2

SMUC

reasonable
knapsack This work (Thm. 3, 2): ω

arbitrary
knapsack

Klimm and Knaack [9]: ω

This work (Cor. 3): ω

Table 1: Summary of approximation guarantees for MMUC and SMUC achieved by this
and previous work.

1.3. Outline.

In Section 2, we review Wolsey’s algorithm [14] for SMKC. Next, in Section 3, we present
our main result, an ω-approximation algorithm for non-adaptively packing SMUC with-
out discarding items assuming a reasonable knapsack capacity. Section 4 presents an
easy consequence of the main result for adaptive packing for SMUC, without the rea-
sonable knapsack capacity assumption. In Section 5, we address non-adaptive packing
with discarding for the special case of maximizing a modular function under an unknown
arbitrary knapsack capacity. In the Appendix, we give the omitted proofs.

2. Maximization of a submodular function with a known
knapsack constraint.

We start by recapitulating Wolsey’s algorithm [14] for SMKC. To convert Wolsey’s algo-
rithm into a deterministic algorithm, we fix an arbitrary tie-breaking rule for comparing
items by their relative increase by usually choosing a permutation.

5

Algorithm 1:
Input: Set of items I, weights wi ≥ 0 for i ∈ I, submodular function f , knapsack

capacity B.
Output: Approximately optimal solution to SMKC.

1 I ← I \ {i ∈ I : wi > B}
2 R← ∅
3 while I \R ̸= ∅ do
4 Choose i∗ ∈ arg maxi∈I\R

{
f(R∪{i})−f(R)

wi

}
with tie-breaking according to a

fixed rule
5 if w(R ∪ {i∗}) ≤ B then R← R ∪ {i∗}
6 else break
7 return arg max{f(R), f(i∗)}

Algorithm 1 starts by deleting all items with a weight greater than the knapsack
capacity from I since these items can never be part of a feasible solution of SMKC.
Then it initializes R = ∅ and chooses in every iteration some item i∗ from the set of the
remaining items I \R that maximizes the relative increase f(R∪{i})−f(R)

wi
of the objective

function. If w(R ∪ {i∗}) ≤ B, i.e., if item i∗ fits into the currently packed knapsack,
item i∗ is added to the set R. If item i∗ does not fit into the currently packed knapsack,
the while loop in Line 3 is left. If all items fit into the knapsack, Algorithm 1 returns
the entire set in Line 7. Otherwise, Algorithm 1 compares the present solution R with
the first item i∗, which did not fit into the currently packed knapsack, and returns the
better of R and i∗. Informally, the basic idea of returning the better of R and i∗ is to
avoid getting stuck in the first local optimum.

Definition 5. For an instance (I, f, w) of SMUC and a knapsack capacity B, denote
the objective function value of the output of Algorithm 1 as Φ(I, f, w, B). Let OptB

denote some arbitrary optimal solution, and thus f(OptB) is the value of an optimal
solution of the submodular maximization problem with knapsack capacity B.

The approximation factor of Algorithm 1 is defined as

inf
(I,f,w) is SMUC instance

with f(OptB)̸=0

Φ(I, f, w, B)
f(OptB)

.

Thus, the approximation factor of Algorithm 1 is the worst-case ratio between the
objective value of the output of Algorithm 1 and the optimal solution over all instances
of SMUC and all knapsack capacities, provided that the value of an optimal solution is
greater than 0.

Proposition 1. [14] Algorithm 1 has an approximation factor of at least ω.

Wolsey [14] showed that the approximation factor of Algorithm 1 is at least ω. For
completeness, we demonstrate that no better bound is possible.

6

Theorem 1. Algorithm 1 cannot provide a better approximation than ω in general.

Proof. For n ∈ N, n ≥ 2
β , let (I, f, w) be an instance of SMUC given by I = {a0, a1, a2,

. . . , a⌈βn⌉−1, a⌈βn⌉}, wa0 = 1, wai = 1
n for all i ∈ {1, 2, . . . , ⌈βn⌉ − 1} and wa⌈βn⌉ = 1 −

β + 2
n , and f : 2I → R≥0 defined by

f(ai) :=

1 : if i = 0
1
n : if i ∈ {1, . . . , ⌈βn⌉ − 1}(
1− β + 2

n

) (
1− 1

n

)⌈βn⌉−1
: if i = ⌈βn⌉

f(A) := 1
n

|A|∑
i=1

(
1− 1

n

)i−1
for A ⊆ {a1, . . . , a⌈βn⌉−1},

f(A ∪ {a⌈βn⌉}) := f(A) + f(a⌈βn⌉) for A ⊆ {a1, . . . , a⌈βn⌉−1}, and
f(X) := 1 for X ⊆ I, a0 ∈ X.

It is straightforward to check that f is submodular.
For 1 ≤ j ≤ ⌈βn⌉ we have

f ({a1, . . . , aj−1} ∪ {a0})− f ({a1, . . . , aj−1})
wa0

= 1− 1
n

j−1∑
i=1

(
1− 1

n

)i−1 (1)= 1− 1
n

1− (1− 1
n)j−1

1− (1− 1
n)

=
(

1− 1
n

)j−1
=

1
n

∑j
i=1(1− 1

n)i−1 − 1
n

∑j−1
i=1 (1− 1

n)i−1

1
n

= f ({a1, . . . , aj})− f ({a1, . . . , aj−1})
waj

≥
f

(
{a1, . . . , a⌈βn⌉}

)
− f

(
{a1, . . . , a⌈βn⌉−1}

)
wa⌈βn⌉

,

where (1) follows by the geometric sum, and the last inequality holds as an equality
when j = ⌈βn⌉. Assume that Algorithm 1 breaks ties in Line 4 by favoring ai over ai+1
for 1 ≤ i < ⌈βn⌉ − 1, and any item aj ∈ {a1, . . . , a⌈βn⌉} over the item a0.

Let B = 1 be the knapsack capacity. Then, Algorithm 1 constructs in the while
loop in Line 3 the set ⋃⌈βn⌉−1

i=1 {ai} and returns arg max{f
(⋃⌈βn⌉−1

i=1 {ai}
)

, f(a⌈βn⌉)},
since w({a1, . . . , a⌈βn⌉−1}) = (⌈βn⌉ − 1) 1

n < βn
n = β < B and w({a1, . . . , a⌈βn⌉}) =

(⌈βn⌉ − 1) 1
n + 1− β + 2

n ≥ β − 1
n + 1− β + 2

n > B.
In the limit n→∞ we have

lim
n→∞

f
(
{a1, . . . , a⌈βn⌉−1}

)
= lim

n→∞
1
n

⌈βn⌉−1∑
i=1

(
1− 1

n

)i−1
= lim

n→∞
1−

(
1− 1

n

)⌈βn⌉−1

7

= lim
n→∞

1−
((

1− 1
n

)n)β

= 1− e−β = ω = 1− e−β

(2)= 1− 1
2− β

= 1− β

2− β

(3)= (1− β)e−β = lim
n→∞

(1− β)
(

1− 1
n

)βn

= lim
n→∞

(
1− β + 2

n

) (
1− 1

n

)⌈βn⌉−1
= lim

n→∞
f(a⌈βn⌉)

where (2) and (3) follow by Definition 2.
However, the optimal solution is {a0} with f(a0) = 1 and the claim follows by

limn→∞
Φ(I,f,w,B)

f(a0) = limn→∞
max{f({a1,...,a⌈βn⌉−1}),f(a⌈βn⌉)}

f(a0) = ω.

It follows directly by Proposition 1 and Theorem 1.

Corollary 1. Algorithm 1 has an approximation factor of exactly ω.

3. Non-adaptive maximization of a submodular function under
an unknown knapsack capacity.

In this section our main result for the non-adaptive approach to SMUC, assuming rea-
sonable knapsack capacities is presented. Our goal is to develop an algorithm that
determines for any instance of SMUC a universal policy such that, for any reasonable
knapsack capacity, packing without discarding according to the universal policy is at
least as good as the result of Wolsey’s Algorithm 1. We formally define:

Definition 6. Given an instance (I, f, w) of SMUC and a universal policy N . We define
the packed without discarding set K(N, B) for all reasonable knapsack capacities B

by:

K(N, B) :=
{

Nj : j ≤ k, k = max
{

l : 1 ≤ l ≤ n,
l∑

i=1
wNi ≤ B

}}
,

The value function gN of the universal policy N assigns to any knapsack capacity
B the value of the corresponding packed set K(N, B), and is denoted by

gN : R+ → R+, gN (B) := f(K(N, B)).

The robustness factor of a universal policy N for an instance (I, f, w) is defined as

inf
B : B≥maxi∈I wi

f(OptB) ̸=0

gN (B)
f(OptB)

.

A universal policy N is called better or equal than Algorithm 1 if gN (B) ≥ Φ(I, f, w, B)
for any B ≥ maxi∈I wi.

8

Given an instance of SMUC, any universal policy better or equal than Algorithm 1
has a robustness factor of at least ω, by Proposition 1.

Notice that the assumption of a reasonable knapsack capacity is necessary to achieve
a constant robustness factor for packing without discarding by any universal policy at
all:

Example 1. [11] Let I = {a, b}, with wa = 1 and wb = 1 + ε, ε ≥ 0, and f : 2I → R≥0
given by f(∅) = 0, f(a) = 1, f(b) = f({a, b}) = M for M ≥ 1. We demonstrate that no
universal policy for this instance of SMUC can achieve a constant robustness factor as
M →∞.

If N = (b, a) then for B = 1, we have gN (B) = 0 since wb > 1. However, the optimal
solution to max{f(X) : w(X) ≤ 1, X ⊆ I} is {a}, and therefore gN (B)

f(OptB) = 0
1 = 0.

If on the other hand N̄ = (a, b) then for B̄ = 1+ε we have gN̄ (B̄) = 1, since wa < 1+ε

and wa + wb > 1 + ε. However, the optimal solution to max{f(X) : w(X) ≤ 1 + ε, X ⊆ I}
is {b}, and therefore gN̄ (B̄)

f(OptB̄)
= 1

M and we have limM→∞
gN̄ (B̄)

f(OptB̄)
= 0.

In contrast to the inapproximability shown in Example 1, we have, for the same
instance, any reasonable knapsack capacity B, and the universal policy N = (b, a), that

min
B≥1+ε

gN (B)
f(OptB)

= 1,

since gN (B) = f({b}) = f(OptB) for 1 + ε ≤ B < 2 + ε, and gN (B) = f({a, b}) =
f(OptB) for B ≥ 2 + ε.

3.1. From modular maximization to submodular maximization.

It is a natural idea to try to adapt existing results for maximization of a modular (i.e. lin-
ear) function under an unknown knapsack capacity (denoted in the following by MMUC)
to SMUC. Thus, before we consider SMUC with a general monotone-increasing submod-
ular function, we revisit the special case of a modular function. For MMUC, assuming
a reasonable knapsack capacity and packing without discarding, Navarra and Pinotti
[11] presented an algorithm, described below, which returns a universal policy with a
robustness factor of at least 1

2 .

9

Algorithm 2:
Input: An instance of MMUC.
Output: Universal policy N .

1 N ← (N1, N2, . . . , Nn) Items ordered non-increasingly by f(i)
wi

.
2 k ← 1
3 while

∑k
j=1 wNj ≤ maxi∈I wi and k ≤ n do

4 k ← k + 1
5 if f(Nk) >

∑k−1
j=1 f(Nj) then N ← (Nk, N1, N2, . . . , Nk−1, Nk+1, . . . , Nn)

6 return N

We briefly describe it before generalizing Algorithm 2 to arbitrary submodular ob-
jective functions. In Algorithm 2, the initial policy N is given by sorting the items
according to their ratio f(i)/wi. Then, Algorithm 2 identifies the first item Nk in the
initial ratio-order N for which the set {N1, . . . , Nk} is heavier than the heaviest item.
If the objective value of Nk is better than the sum of the values of the previous items
N1, . . . , Nk−1, the policy N is updated by moving Nk to the front and the updated policy
is returned. Notice that the final policy is generated by updating the initial policy at
most once.

Definition 7. Let (I, f, w) be an instance of SMUC. We call S = (S1, . . . , Sn) ∈ Π(I)
the steepest ascent policy if

Sj ∈ arg max
{

f({S1, . . . , Sj−1, x})− f({S1, . . . , Sj−1})
wx

: x ∈ I \ {S1, . . . , Sj−1}
}

for all 1 ≤ j ≤ n and ties (for the choice of Sj) are resolved using the same tie-breaking
rule as in Algorithm 1.

Notice that the steepest ascent policy of an instance coincides with the order in which
Algorithm 1 inspects the items since we used the same tie-breaking rule.

Although Algorithm 2 is intended for MMUC, a slightly modified version can be
applied to SMUC. We change Lines 1 and 5 in the following way:

1’ N ← (N1, . . . , Nn) Items in steepest ascent policy
5’ if f(Nk) > f({N1, . . . , Nk−1}) then
For modular objective functions, the modifications of Algorithm 2 correspond to the
original algorithm, and therefore neither the course nor the result of the computation is
changed in this case.

Unfortunately, the universal policy returned by the modified Algorithm 2 does not
always compare favorably to Algorithm 1, since there are instances where this policy is
worse than Algorithm 1, as the following example demonstrates.

10

Example 2. Let I = {a, b, c} with weights wa = 1, wb = 1.2 and wc = 2.1, and
f : 2I → R≥0, T 7→ min{∑t∈T v(t), 2}, with v(a) = 1, v(b) = 0.6, and v(c) = 2. The
modified Algorithm 2 starts with the steepest ascent policy N = (a, b, c). Since w({a, b}) =
2.2 > 2.1 = maxi∈I wi the while loop in the modified Algorithm 2 ends with k = 2 and
because of f(Nk) = f(b) = 0.6 < 1 = f(a) the unchanged policy N is returned. Let
B = 3 be the capacity of the knapsack. Then, gN (3) = 1.6, since w({a, b}) = 2.2 < 3
and w({a, b, c}) = 4.3 > 3. In contrast, Algorithm 1 returns the single item c in Line 7,
since f(c) = 2 > f({a, b}) = 1.6. Therefore Φ(I, f, w, 3) > gN (3).

3.2. Matching the approximation factor of Algorithm 1 non-adaptively.

As a simple consequence of Example 2, any universal policy that wants to imitate Al-
gorithm 1 has to treat any single item i∗ that could be returned by Algorithm 1 with
special care since it might be necessary to place i∗ at the front of the universal policy.

Definition 8. Let (I, f, w) be an instance of SMUC and let S = (S1, . . . , Sn) be the
steepest ascent policy of I. For 2 ≤ j ≤ n, call Sj a swap item in S if f(Sj) >

f({S1, . . . , Sj−1}).

We modify the steepest ascent policy by identifying the swap items and moving them
to the front of the universal policy. This is formalized in the following algorithm.
Algorithm 3:
Input: An instance (I, f, w) of SMUC.
Output: Universal policy N .

1 Determine the steepest ascent policy S

2 T ← {i ∈ I : i is a swap item in S}
3 N ← S

4 for j = 2, . . . , n do
5 if Nj ∈ T then N ← (Nj , N1, . . . , Nj−1, Nj+1, . . . , Nn)
6 return N

Algorithm 3 starts by ordering the items of I according to the steepest ascent policy
S and determining the set T of all swap items. Then, each iteration of the for loop
in Line 4 checks whether Nj is a swap item. If Nj is a swap item, the current policy
N is updated by moving Nj to the front. Otherwise, the current policy remains the
same. Note that whenever item Nj is identified as a swap item in Line 5 of Algorithm 3
and moved to the front of N , any item Nm with m > j remains in its position in the
updated policy N in Line 5 and the relative ordering of any pair of items (Nk, Nl) with
1 ≤ k < l < j remains unchanged.

Theorem 2. Let (I, f, w) be an instance of SMUC. Then, for any universal policy
N returned by Algorithm 3, we have gN (B) ≥ Φ(I, f, w, B) for any knapsack capacity
B ≥ maxi∈I wi.

11

The proof of Theorem 2 uses the following observation, which follows directly by Line 5
of Algorithm 3.

Lemma 1. Let (I, f, w) be an instance of SMUC, S the steepest ascent policy, and N

the universal policy returned by Algorithm 3. If Nk is a swap item in S, then every Nj

with j < k is a swap item in S, and we have f(Nj) > f(Nk).

Now, we prove Theorem 2.

Proof of Theorem 2. Let N be the universal policy returned by Algorithm 3, S the
steepest ascent policy, and B ≥ maxi∈I wi. In order to compare gN (B) with the objective
value of the output of Algorithm 1, we distinguish two cases.

Case 1: Algorithm 1 outputs in Line 7 the single item i∗ with i∗ = Sk, k > 1. Then,
when the while loop in Line 3 of Algorithm 1 ends, we have R = {S1, . . . , Sk−1}
and f(Sk) > f(R). It follows directly gN (B) ≥ f(N1) ≥ f(Sk) = Φ(I, f, w, B),
where the second inequality follows by Lemma 1.

Case 2: Algorithm 1 returns the set R = {S1, . . . , Sk−1} with 2 ≤ k ≤ n. Clearly, Sk is
not a swap item, since otherwise Algorithm 1 would have returned Sk.

If there exists no swap item Sj with j > k, then, {S1, . . . , Sk−1} = {N1, . . . , Nk−1}
and hence gN (B) = f(R) = Φ(I, f, w, B).

If there exists a swap item Sj with j > k, then, f(Sj) > f({S1, . . . , Sj−1}) ≥
f({S1, . . . , Sk−1}) = f(R) and and it follows gN (B) ≥ f(N1) ≥ f(Sj) ≥ f(R) =
Φ(I, f, w, B), analogously to Case 1.

It follows directly by Theorem 2 and Proposition 1 that the universal policy returned
by Algorithm 3 has a robustness factor of at least ω.

3.2.1. Simplifying Algorithm 3.

Recall that the universal policy computed by Algorithm 3 is better or equal than Al-
gorithm 1, in contrast to the universal policy computed by the modified Algorithm 2.
However, in contrast to the modified Algorithm 2, it might be necessary to swap up to n

items in Line 5 of Algorithm 3. Now, we simplify Algorithm 3 to Algorithm 4, described
below, by starting with the steepest ascent policy and swapping only the swap item with
maximum objective value. According to the notion of swap items, the maximum-value
swap item is precisely the swap item located at the position with the highest index in
the steepest ascent policy among all swap items.

12

Algorithm 4:
Input: An instance (I, f, w) of SMUC.
Output: Universal policy N .

1 Determine the steepest ascent policy S

2 N ← S

3 for j = n down to 2 do
4 if Nj is a swap item then
5 N ← (Nj , N1, . . . , Nj−1, Nj+1, . . . , Nn)
6 break

7 return N

Definition 9. For any instance (I, f, w) of SMUC, we call the universal policy returned
by Algorithm 4 the improved steepest ascent policy of (I, f, w).

For any instance of SMUC, the improved steepest ascent policy is better or equal to
Algorithm 1.
Theorem 3. Let (I, f, w) be an instance of SMUC, let N be the improved steepest ascent,
and B ≥ maxi∈I wi. Then, gN (B) ≥ Φ(I, f, w, B).

We briefly point out that the improved steepest ascent policy has a better robustness
factor than ω if the curvature of the submodular function f is strictly less than 1.
Definition 10. Let (I, f, w) be an instance of SMUC. The curvature of f is defined
as

c = 1−min
i∈I

f(I)− f(I \ {i})
f(i) .

Corollary 2. Let (I, f, w) be an instance of SMUC, c be the curvature of f , N be the
improved steepest ascent policy and B be a reasonable knapsack capacity. Then,

gN (B) ≥ 1− x

2− (2− c)xf(OptB),

where x is the unique solution of 1− e−cz = c 1−z
2−(2−c)z , z ∈ [0, 1].

Corollary 2 is a direct consequence of Corollary 4, which is stated below in Section 4,
where we discuss in detail approximation results depending on the curvature of the
submodular function.

4. Adaptively maximizing a submodular function under an
unknown, possibly unreasonable, knapsack capacity.

It is unknown to us whether, for any instance of SMUC, a universal policy exists that ap-
proximates the optimal packing for any unreasonable knapsack capacity by any constant
factor, or even by ω.

13

In contrast, Kawase et al. [8] demonstrated that, for every instance of SMUC and any
unknown but fixed knapsack capacity, an optimal solution can be constantly approxi-
mated by packing adaptively. Klimm and Knaack [9] improved the constant approxi-
mation factor to ω, which is currently the best known.

We use the non-adaptive packing results of Section 3 to give a quite simple adaptive
algorithm, that matches the approximation guarantee ω for adaptive packing under
arbitrary knapsack capacities. Our adaptive algorithm is more intuitive and allows for
a simpler proof, than the one by Klimm and Knaack [9]. Furthermore, our proof follows
directly by a generalization of Theorem 3 to slightly weaker conditions on the knapsack
capacity.

Definition 11. Let (I, f, w) be an instance of SMUC. We define IB := {i ∈ I : wi ≤ B}
and I<B := {i ∈ I : wi < B} for B > 0. Further, we define the restriction of (I, f, w) to
a set T ⊆ I as (I, f, w)T := (T, f |2T , w|T).

Algorithm 5:
Input: An instance (I, f, w) of SMUC.
Output: Approximately optimal solution.

1 Let N be the improved steepest ascent policy of (I, f, w)
2 while N1 does not fit into the knapsack do
3 (I, f, w)← (I, f, k)|

I
<wN1

4 Let N be the improved steepest ascent policy of (I, f, w)
5 A← items packed according to N without discarding
6 return A

Basically, while the first item of the improved steepest ascent policy does not fit
into the knapsack, Algorithm 5 discards it and all others of at least the same weight,
recomputes the policy and repeats discarding again until the first item does fit. Then it
packs according to N without discarding.

To prove the approximation guarantee of Algorithm 5, we generalize Theorem 3, by
demonstrating that for each instance of SMUC and any knapsack capacity packing with-
out discarding according to the improved steepest ascent policy approximates the optimal
solution by at least ω if the first item of the improved steepest ascent policy fits into the
knapsack.

Theorem 4. Let (I, f, w) be an instance of SMUC and B be a knapsack capacity with
B ≥ wN1, in which N denotes the improved steepest ascent policy. Then, gN (B) ≥
ωf(OptB).

Proof. Let Nj , j ∈ {2, . . . , n} be the first item that does not fit into the knapsack with
capacity B, by packing according to N . Choose ε > 0 such that B′ := w({N1, . . . , Nj})−
ε ≥ B and wNj ≤ B′. Hence w({N1, . . . , Nj−1}) ≤ B′.

14

Let S be the steepest ascent policy of (I, f, w), and let SB′ be the steepest ascent
policy of (I, f, w)|IB′ , and choose k ∈ {1, . . . , n} so that SB′

k is the first item that
does not fit into the knapsack of capacity B′ when packing according to SB′ . Since
(S1, . . . , Sk) = (SB′

1 , . . . , SB′
k), Algorithm 1 applied to (I, f, w) and the knapsack capacity

B′ either returns the single item Sk or the set {S1, . . . , Sk−1}. Choose m so that Sm = N1.

If m ≤ k: Since N1 has to be by Lemma 1 the by weight heaviest swap item among
{S1, . . . , Sk}, we directly obtain that N1 = Sk if Algorithm 1, applied to
(I, f, w) and the knapsack capacity B′, returns Sk with f(Sk) > f({S1, . . . , Sk−1}),
and that {S1, . . . , Sk−1} = {N1, . . . , Nk−1} otherwise.

If m > k: Then N1 is a swap item in S and f(N1) ≥ f({S1, . . . , Sm−1}) ≥ f{(S1, . . . , Sk}) =
f({SB′

1 , . . . , SB′
k }).

In either case, we have

gN (B) ≥ Φ(IB′
, f |2IB′ , w|IB′ , B′) ≥ ωf(OptB′) ≥ ωf(OptB), (1)

where the second last inequality is due to Proposition 1.

It follows directly by Theorem 4:

Corollary 3. For every instance of SMUC and any knapsack capacity B, we have

f(A) ≥ ωf(OptB),

for the set A returned by Algorithm 5.

4.1. Curvature depending performance of Algorithm 5.

We briefly discuss the performance of Algorithm 5 in dependence on the curvature of
the submodular function.

Klimm and Knaack [9] presented for their adaptive algorithm an approximation re-
sult depending on the curvature of the objective function of the given instance. Their
adaptive algorithm is based on an alternative greedy algorithm, in the following called
AGREEDY. Klimm and Knaack [9] showed that Algorithm 1 is always at least as good
as AGREEDY [9, Proposition 2], and that AGREEDY approximates the optimal solu-
tion for every instance of SMUC and any knapsack capacity by at least 1−x

2−(2−c)x , where
c is the curvature of the objective function, and x is the unique solution of the equation
1− e−cz = c 1−z

2−(2−c)z , z ∈ [0, 1] [9, Theorem 5 and the subsequent paragraph].
These results directly imply:

15

Proposition 2. Let (I, f, w) be an instance of SMUC, c be the curvature of f and x be
the unique solution of 1− e−cz = c 1−z

2−(2−c)z , z ∈ [0, 1]. Then,

Φ(I, f, w, B) ≥ 1− x

2− (2− c)xf(OptB),

for any knapsack capacity B.

By Proposition 2, we can replace ω in inequality (1) by 1−x
2−(2−c)x , where c is the

curvature of the objective function and x is the unique solution of the equation 1−e−cz =
c 1−z

2−(2−c)z , z ∈ [0, 1]. Hence, Theorem 4 generalizes to:

Corollary 4. Let (I, f, w) be an instance of SMUC, c be the curvature of f and x be
the unique solution of the equation 1 − e−cz = c 1−z

2−(2−c)z , z ∈ [0, 1]. Further, let B be
a knapsack capacity with B ≥ wN1, in which N denotes the improved steepest ascent
policy. Then,

gN (B) ≥ 1− x

2− (2− c)xf(OptB).

It follows directly by Corollary 4:

Corollary 5. Let (I, f, w) be an instance of SMUC, c be the curvature of f , B be an
arbitrary knapsack capacity and A be the set returned by Algorithm 5. Then,

f(A) ≥ 1− x

2− (2− c)xf(OptB),

where x is the unique solution of 1− e−cz = c 1−z
2−(2−c)z , z ∈ [0, 1].

Thus, the approximation guarantee of our Algorithm 5 matches that of the adaptive
algorithm in Theorem 9 by Klimm and Knaack [9].

For completeness, we remark that both adaptive algorithms, Algorithm 5 and the
one by Klimm and Knaack [9], inherit their approximation guarantee depending on the
curvature from the underlying Algorithm 1 and AGREEDY, respectively.

5. Non-adaptively maximizing a modular function under an
arbitrary unknown knapsack capacity.

In this section, we revise non-adaptive packing with discarding for MMUC with an
arbitrary unknown knapsack capacity.

Definition 12. Let (I, f, w) be an instance of SMUC and N be a universal policy of I.
The exhaustively packed set E(N, B) packed with discarding according to the policy
N , given a knapsack capacity B, is the unique set U ⊆ I with

16

(i)
∑

i∈U wi ≤ B,

(ii)
∑

i∈U∩{Nk : k<j} wi + wNj > B for all Nj ∈ I \ U .

The exhausting value function of N assigns to any knapsack capacity B the function
value of the corresponding exhaustively packed set E(N, B) and is denoted by

hN : R+ → R+, hN (B) := f(E(N, B)).

A universal policy is called better or equal than Algorithm 1 if the exhausted value
function has, for any capacity B, a value hN (B) ≥ Φ(I, f, w, B).

We present an algorithm that computes a universal policy for every instance of MMUC
better or equal to Algorithm 1.

It is well-known that for every instance of MMUC Algorithm 1 approximates the
optimal solution by a factor of at least 1

2 .

Lemma 2. [10, Proposition 17.6.] Let (I, f, w) be an instance of MMUC, then it holds,
for any B ≥ 0, that Φ(I, f, w, B) ≥ 1

2f(OptB).

It follows by Lemma 2 that a universal policy better or equal than Algorithm 1 has a
robustness factor of at least 1

2 . Thus, in this setting, we match the result of Disser et al.
[4]. However, we will present an algorithm that is more intuitive than theirs and allows
for an uncomplicated and straightforward proof of correctness.

The following example illustrates that the improved steepest ascent policy and the
universal policy returned by Algorithm 3 are not suitable for non-adaptive packing with
discarding for MMUC with an arbitrary knapsack capacity, as they can perform arbi-
trarily poorly.

Example 3. Let I = {a, b, c} with weights wa = M
2 , wb = 1 and wc = M , where

M > 1. Further, let f : 2I → R≥0 be a modular function defined by f(∅) = 0, f(a) = M
2 ,

f(b) = 2, and f(c) = M +1. The steepest ascent policy of I is S = (b, c, a). Since f(c) =
M + 1 > 2 = f(b), item c is a swap item and since f(a) = M

2 < M + 3 = f(c, b), item a

is not a swap item, and therefore Algorithm 3 returns the universal policy N = (c, b, a),
which also corresponds to the improved steepest ascent policy.

Let B := M
2 . Then we have

lim
M→∞

hN (B)
f(OptB)

= lim
M→∞

f(b)
f(a) = lim

M→∞

2
M
2

= 0.

To obtain a universal policy better or equal to Algorithm 1, we first generalize the
notion of swap items.

Definition 13. Let (I, f, w) be an instance of MMUC and N = (N1, . . . , Nn) be an
arbitrary policy of I. For 2 ≤ j ≤ n we call Nj a generalized swap item in N , if
there exist k ∈ {1, . . . , j − 1} with f(Nj) > f({Nk, . . . , Nj−1}).

17

Notice, that whenever Nj is a generalized swap item, simply k = j − 1 would do.
But, to make it useful we will choose the smallest possible k next. Now, we modify
Algorithm 3 by starting with the steepest ascent policy S and moving any generalized
swap item Nj to the smallest position k < j, so that {Nk, . . . , Nj−1} is the largest set
directly in front of Nj with a function value smaller than the function value of Nj .
Algorithm 6:
Input: An instance (I, f, w) of MMUC.
Output: Universal policy N .

1 Determine the steepest ascent policy S

2 N (1) ← S

3 for j = 2, . . . , n do
4 if N

(j−1)
j is a generalized swap item in N (j−1) then

5 k ← min{l ∈ {1, . . . , j − 1} : f({N (j−1)
l , . . . , N

(j−1)
j−1 }) < f(N (j−1)

j)}
6 N (j) =(

N
(j−1)
1 , . . . , N

(j−1)
k−1 , N

(j−1)
j , N

(j−1)
k , . . . , N

(j−1)
j−1 , N

(j−1)
j+1 , . . . , N

(j−1)
n

)
7 return N = N (n)

We demonstrate that for any instance of MMUC Algorithm 6 computes a universal
policy better or equal than Algorithm 1.

Theorem 5. Let (I, f, w) be an instance of MMUC and N be the universal policy re-
turned by Algorithm 6, then hN (B) ≥ Φ(I, f, w, B) for any knapsack capacity B.

To prove Theorem 5, we need a simple observation regarding the restriction of universal
policies.

Definition 14. Let I be a set of items, N be a universal policy of I, and T ⊆ I. The
restriction of N to T is the universal policy N |T = (Nk1 , . . . , Nkm) with |T | = m ≤ n,
and 1 ≤ ki < kj ≤ n for all 1 ≤ i < j ≤ m, and Nki

∈ T for all 1 ≤ i ≤ m.

Notice that any generalized swap item never crosses a heavier item, and we trivially
have that the steepest ascent policy I restricted to items lighter than any knapsack
capacity B equals the steepest ascent policy regarding the instance that consists of all
items lighter than B. Combining these two observations, we obtain the following.

Lemma 3. Let (I, f, w) be an instance of MMUC, and N be the universal policy returned
by Algorithm 6 applied to the instance (I, f, w). Let B ≥ 0 be a knapsack capacity and
NB be the universal policy returned by Algorithm 6 applied to the instance (I, f, w)|IB .
Then, N |IB = NB.

Now, we prove Theorem 5.

Proof of Theorem 5. We distinguish two cases.

18

If B ≥ maxi∈I wi: Let S be the steepest ascent policy of (I, f, w). If Algorithm 1 outputs
the single item Sj with j > 1, then Sj is a swap item, thus a generalized swap
item. Hence, in the j-th iteration of the for loop in Algorithm 6, Sj is moved to
the front of N , and any item ordered to the front of N in a later iteration must
be a swap item with a greater objective value than Sj . Therefore, it follows
directly that hN (B) ≥ f(N1) ≥ f(Sj) = Φ(I, f, w, B).

Now, assume that Algorithm 1 outputs R = {S1, . . . , Sj−1} with 2 ≤ j ≤ n.

Define q : {S2, . . . , Sn} → 2I , Si 7→ {x ∈ {S1, . . . , Si−1} : Si is ordered somewhere
before x in N (i)}. Thus, for any Si, 2 ≤ i ≤ n, the set q(Si) denotes the items
which Si crosses in the i− 1-th iteration of the for loop in Algorithm 6.

We have f(i) ≥ f(q(i)) for every i ∈ {S2, . . . , Sn}, by the notion of generalized
swap items. This holds even in the case that i is not a generalized swap item,
as this implies q(i) = ∅.

Notice that the relative order of any pair of items Sh, Si with 1 ≤ h < i ≤ n

remains the same in all policies N (k) with i ≤ k ≤ n. Therefore, for any
1 ≤ h < n with Sh ∈ R\E(N, B), there has to exists i > h with Si ∈ E(N, B)\R
and Si = Nk and Sh = Nl with k < l (otherwise Sh could be packed by packing
according to N). This implies Sh ∈ q(Si).

It is straightforward to see that the claim follows now immediately by the mod-
ularity of f : For any h with Sh ∈ R \ E(N, B) define l(Sh) as an arbitrary
Si ∈ E(N, B) \R with i > h, Si = Nk and Sh = Nl with k < l. Then, we have

f(R \ E(N, B) =
∑

x∈R\E(N,B)
f(x) ≤

∑
y∈

⋃
x∈R\E(N,B) l(x)

f(y) ≤
∑

y∈E(N,B)\R

f(y)

= f(E(N, B) \R),

thus ∑
x∈R f(x) ≤ ∑

x∈E(N,B) f(x), and therefore Φ(I, f, w, B) = ∑
x∈R f(x) ≤∑

y∈E(N,B) f(y) = hN (B).

If B < maxi∈I wi: Let NB be the universal policy returned by Algorithm 6 for the in-
stance (I, f, w)|IB . By Lemma 3, we have N |IB = NB. Therefore, hN |

IB (B) =
hNB (B) ≥ Φ(I, f, w, B), in which the last inequality follows from the previous
case.

6. Conclusion.

In this paper, we considered the problem of maximizing a monotone-increasing submod-
ular function under an unknown knapsack capacity non-adaptively and adaptively. We

19

presented the first algorithm that returns for any instance of SMUC a universal pol-
icy better or equal than Algorithm 1 (due to Wolsey [14]) for any reasonable knapsack
capacity. Thus, we demonstrated that the optimal solution of maximizing a monotone-
increasing submodular function under an unknown reasonable knapsack capacity can be
approximated non-adaptively and without discarding items by a least 0.357.

We show that without the reasonable knapsack capacity assumption, the optimal
solution of maximizing a monotone-increasing submodular function under an unknown
arbitrary knapsack capacity can be approximated adaptively by at least 0.357.

For the special case that the submodular function is modular, an algorithm that
generates a universal policy for every instance of MMUC better or equal to Algorithm 1
has been presented. Therefore, the optimal solution for maximizing a modular function
under an unknown arbitrary knapsack capacity can be approximated non-adaptively
with discarding by at least 0.5.

It remains an interesting open question whether non-adaptive packing with discarding
can achieve a constant factor approximation for arbitrary monotone-increasing submod-
ular functions under an unknown arbitrary knapsack capacity. As a first step, it seems
worthwhile to investigate special subsets of submodular functions, e.g., weighted matroid
or coverage functions.

A. Appendix.

A.1. Proof of Theorem 3

Proof. Let S be the steepest ascent policy and B ≥ maxi∈I wi. To prove the claim, we
compare gN (B) with Φ(I, f, w, B). If Algorithm 1 outputs in Line 7 the single item i∗

with i∗ = Sk, k > 1, then it follows gN (B) ≥ f(N1) ≥ f(Sk) = Φ(I, f, w, B) completely
analogous to Case 1 in the proof of Theorem 2.

Thus, assume that Algorithm 1 outputs R = {S1, . . . , Sk−1} with 2 ≤ k ≤ n. Clearly,
Sk is not a swap item, since otherwise Algorithm 1 would have returned Sk, and therefore
we have N1 ̸= Sk. Assume that N1 = S1. This implies the absence of swap items and
therefore N = S and gN (B) = f(R) = Φ(I, f, w, B).

Now, assume that N1 = Sj , j > k. Then, Sj is a swap item, and by the notion of swap
items f(Sj) > f({S1, . . . , Sj−1}) ≥ f(R). It follows immediately that gN (B) ≥ f(N1) ≥
f(R) = Φ(I, f, w, B).

Last, assume that N1 = Sj , j < k. Then, Algorithm 4 outputs the policy N =
(Sj , S1, . . . , Sj−1, Sj+1, . . . , Sk−1, Sk, . . . , S|I|). Thus, {S1, . . . , Sk} = {N1, . . . , Nk} and
gN (B) = f(R) = Φ(I, f, w, B).

20

A.2. Proof of Lemma 3.

Proof. Let S be the steepest ascent policy of (I, f, w), Sl ∈ arg maxi∈I wi, and S̄ the
steepest ascent policy of (I, f, w)|I\{Sl}. Notice that Sr+1 = S̄r for r ≥ l. Furthermore,
let Zj denote the policy in Line 6 in the j-th iteration of the for loop in Line 3 of
Algorithm 6 applied to (I, f, w) and Z̄j the policy in Line 6 in the j-th iteration of the
for loop in Line 3 of Algorithm 6 applied to (I, f, w)|I\{Sl}.

Notice that for any j < l it holds Zj
k = Z̄j

k for k < l and Zj
k+1 = Z̄j

k for k ≥ l.
Let Z l

t = Sl. Since f(Sl) > f(Sj+1) for any j ≥ l, by the modularity of f and
wSj ≤ maxi∈I wi, the inequality f(Sj+1) ≥ f({Zj

i . . . , Zj
j }) is not true for any i ≤ t.

Moreover, for any j ≥ l the inequality f(Sj+1) > f({Zj
i , . . . , Zj

j }) for t < i ≤ j is true if
and only if f(S̄j) > f({Z̄j−1

i−1 , . . . , Z̄j−1
j−1}).

Therefore, for any j ≥ l we have Zj
k+1 = Z̄j

k for k ≥ t and Zj
k = Z̄j

k for k < t. This
directly implies that the policy Zn returned by Algorithm 6 applied to (I, f, w) with Sl

removed equals the policy Z̄n returned by Algorithm 6 applied to (I, f, w)|I\{Sl}. Now,
the claim follows by induction.

Acknowledgements.

The authors thank the DFG for their support within RTG 2126 “Algorithmic Optimiza-
tion”. Martin Knaack announced to us a proof for Theorem 1 at OR2023 that we have
not seen yet, hence we provide our own.

References

[1] Alexander A Ageev and Maxim I Sviridenko. An 0.828-approximation algorithm
for the uncapacitated facility location problem. Discrete Applied Mathematics, 93
(2-3):149–156, 1999.

[2] Aaron Bernstein, Yann Disser, Martin Groß, and Sandra Himburg. General bounds
for incremental maximization. Mathematical Programming, 191(2):953–979, 2022.

[3] Gerard Cornuejols, Marshall L Fisher, and George L Nemhauser. Location of bank
accounts to optimize float: An analytic study of exact and approximate algorithms.
Management science, 23(8):789–810, 1977.

[4] Yann Disser, Max Klimm, Nicole Megow, and Sebastian Stiller. Packing a knapsack
of unknown capacity. SIAM Journal on Discrete Mathematics, 31(3):1477–1497,
2017.

21

[5] Yann Disser, Max Klimm, Annette Lutz, and David Weckbecker. Fractionally sub-
additive maximization under an incremental knapsack constraint with applications
to incremental flows. SIAM Journal on Discrete Mathematics, 38(1):764–789, 2024.

[6] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM
(JACM), 45(4):634–652, 1998.

[7] Michel X Goemans and David P Williamson. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming. Jour-
nal of the ACM (JACM), 42(6):1115–1145, 1995.

[8] Yasushi Kawase, Hanna Sumita, and Takuro Fukunaga. Submodular maximization
with uncertain knapsack capacity. SIAM Journal on Discrete Mathematics, 33(3):
1121–1145, 2019.

[9] Max Klimm and Martin Knaack. Maximizing a submodular function with
bounded curvature under an unknown knapsack constraint. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[10] Bernhard Korte and Jens Vygen. Combinatorial optimization: theory and algo-
rithms. Springer, 5 edition, 2012.

[11] Alfredo Navarra and Cristina M. Pinotti. Online knapsack of unknown capacity:
How to optimize energy consumption in smartphones. Theoretical Computer Sci-
ence, 697:98–109, 2017.

[12] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of
approximations for maximizing submodular set functions-i. Mathematical Program-
ming, 14:265–294, 1978.

[13] Maxim Sviridenko. A note on maximizing a submodular set function subject to a
knapsack constraint. Operations Research Letters, 32(1):41–43, 2004.

[14] Laurence A. Wolsey. Maximising real-valued submodular functions: Primal and
dual heuristics for location problems. Mathematics of Operations Research, 7(3):
410–425, 1982.

22

	Introduction.
	Results.
	Further related work.
	Outline.

	Maximization of a submodular function with a known knapsack constraint.
	Non-adaptive maximization of a submodular function under an unknown knapsack capacity.
	From modular maximization to submodular maximization.
	Matching the approximation factor of Algorithm 1 non-adaptively.
	Simplifying Algorithm 3.

	Adaptively maximizing a submodular function under an unknown, possibly unreasonable, knapsack capacity.
	Curvature depending performance of Algorithm 5.

	Non-adaptively maximizing a modular function under an arbitrary unknown knapsack capacity.
	Conclusion.
	Appendix.
	Proof of Theorem 3
	Proof of Lemma 3.

