
Solving the three-dimensional open-dimension rectangular packing problem:
a constraint programming model

Mateus Martina,∗, Thiago Alves de Queirozb, Reinaldo Morabitoc

aDepartamento de Engenharia de Produção, Universidade Federal Fluminense, Rua Domingos Silvério 135, 25650-050,
Petrópolis-RJ, Brazil

bInstituto de Matemática e Tecnologia, Universidade Federal de Catalão, Av. Dr. Lamartine P. Avelar 1120, 75704-020,
Catalão-GO, Brazil

cDepartamento de Engenharia de Produção, Universidade Federal de São Carlos, Via Washington Luiz km 235, 13565-905,
São Carlos-SP, Brazil

Abstract

In this paper, we address the three-dimensional open-dimension rectangular packing problem (3D-ODRPP).
This problem addresses a set of rectangular boxes of given dimensions and a rectangular container of open
dimensions. The objective is to pack all boxes orthogonally into the container while minimizing the container
volume. Real-world applications of the 3D-ODRPP arise in production systems with operations of shipping
or moving. The literature has presented mainly mixed-integer programming (MIP) formulations and their
linearization techniques for the problem allied with general-purpose optimization solvers. To model and solve
the 3D-ODRPP, we propose a constraint programming model based on a position-free modeling approach
with logic operators. We ran computational experiments to assess the performance of the proposed model
compared to the benchmark MIP models from instances of the literature. The results show our approach
is competitive in different sets of problem instances in terms of reaching optimality as well as providing
satisfactory feasible solutions quickly.

Keywords: Cutting and Packing, Three-dimensional rectangular packing, Open-dimension problems,
Constraint Programming

1. Introduction

The three-dimensional open-dimension rectangular packing problem (3D-ODRPP) addresses a set I =
{1, . . . , n} of rectangular boxes of fixed dimensions and a single rectangular container of open dimensions.
Each box i ∈ I has a length li, width wi, and height hi, while the variables X, Y , and Z represent
the container’s dimensions along the Cartesian axes, i.e., the x-axis, y-axis, and z-axis, respectively. The
objective is to pack all the boxes into the container while minimizing the volume XY Z of the container.
The boxes may be freely rotated by 90 degrees if their walls are parallel to the container walls. Real-
world applications of the problem are related to the design of shipping containers of minimal volume, which
is common in the manufacturing, shipping, and warehouse industries (Junqueira & Morabito, 2017). For
instance, Tsai et al. (2015) presented practical packing scenarios of electronic equipment for transportation to
customers or vendors. According to the typology of Wäscher et al. (2007) for cutting and packing problems,
the 3D-ODRPP can be categorized as an Open-Dimension Problem with the two geometric conditions, that
is, no overlap between any pair of boxes (non-overlapping) and the boxes must be contained within the
container (containment).

∗Corresponding author.
Email addresses: mpmartin@id.uff.br (Mateus Martin), taq@ufcat.edu.br (Thiago Alves de Queiroz),

morabito@dep.ufscar.br (Reinaldo Morabito)

Preprint submitted to Computers & Operations Research October 2, 2023



Table 1 presents an illustrative problem instance of the 3D-ODRPP with n = 4 boxes. A solution
for this problem instance is shown in Fig. 1. Notice that the 3D-ODRPP arises in a planning phase that
usually neglects practical requirements for packing problems such as stability and cargo weight. However,
if necessary, during the execution phase of packing the boxes into the container, one can use tools such as
bubble wrap or polystyrene to guarantee cargo conservation.

Table 1: Illustrative example for the 3D-ODRPP with n = 4
boxes.

Data
Items

1 2 3 4

li 30 24 6 20
wi 12 15 10 8
hi 10 10 20 10

L

H

W

x

yz

Figure 1: A solution for the example presented in Table 1
with L = l1 = 30, W = w2 = 15, and H = h1 + h3 = 30.

The literature of the 3D-ODRPP is relatively recent and small. The problem has been mainly modeled
by mixed-integer programming (MIP) formulations and solved by their corresponding approximated or
equivalent linear versions, all solved with general-purpose optimization solvers. There are two main types
of MIP modeling approaches: the position-free and grid-position approaches. Tsai et al. (2015) seem to
be the first to propose a position-free model for the 3D-ODRPP, considering the formulation proposed in
Chen et al. (1995) for the container loading problem. They approximated the nonlinear objective function
(i.e., XY Z) using logarithmic functions and piecewise linear techniques. From that, Lin et al. (2017) and
Huang & Hwang (2018) derived improved position-free models by reducing the number of redundant binary
variables and/or enhancing the linearization technique. For instance, Huang & Hwang (2018) proposed a
linear equivalent set of expressions to the nonlinear objective function based on an improved special ordered
set of type 1 (SOS1) formulation. As far as the grid-position approach is concerned, Junqueira & Morabito
(2017) proposed a model for the 3D-ODRPP, considering the formulation proposed in Beasley (1985) for
a two-dimensional cutting problem. They also extended this formulation to address stability requirements.
This model considers the boxes to be aggregated into box types when they share identical sizes.

For recent approaches focusing on related problems and/or heuristic approaches for the 3D-ODRPP, the
reader is referred to the works of Mundim et al. (2017), who tackled a two-dimensional problem, aiming
to minimize the total area when packing irregularly shaped items; Truong et al. (2020a), who studied
the three-dimensional problem, presenting a mixed integer programming model that adopts the full base
support constraint to guarantee vertical stability; Truong et al. (2020b), who extended the model in Truong
et al. (2020a) also to consider partial base support of items; Vieira et al. (2021), who address a shoe
packing problem that involves packing shoes into boxes and loading these boxes into three-dimensional
open-dimension containers, proposing integer programming models; and Truong et al. (2021), who talked
the three-dimensional problem, developing a genetic algorithm that determines the packing sequence and
the orientation of items, while using a greedy heuristic to determine the placement of items. In a recent
paper, Iori et al. (2021) proposed an extensive review of cutting and packing problems, focusing mainly
on orthogonal cutting and packing problems of items with two dimensions. They reviewed papers on strip
packing, bin packing, knapsack, orthogonal packing, cutting stock problems, and their relevant variants,
discussing the main heuristics and exact methods already proposed in the literature.

The main contributions presented in this paper are: (i) the proposition of a constraint programming
(CP) model for the 3D-ODRPP based on a position-free modeling approach with logic operators; and,
(ii) several experiments with two general-purpose CP solvers and one general-purpose mixed-integer linear
programming (MILP) solver on four sets of benchmark instances to evaluate the computational performance
of the proposed approach. We consider as a benchmark the linear version of the MIP models of Junqueira

2



& Morabito (2017) (a grid-position model) and Huang & Hwang (2018) (a position-free model), which are
the current exact state-of-the-art model-based approaches for the 3D-ODRPP. The linearization technique
proposed in Huang & Hwang (2018) is used to write the objective function of the grid-position approach
of Junqueira & Morabito (2017) to have exact benchmark approaches only. Our approach is the first CP
model for the 3D-ODRPP in the literature. Besides that, its results are very competitive in different sets
of problem instances in terms of reaching optimality and providing improved feasible solutions quickly. In
addition, we develop an exact algorithm for the 3D-ODRPP based on the proposed CP model as a feasibility
checker program.

The remainder of the paper is structured as follows. For the sake of completeness, we briefly describe the
benchmark MIP models of Junqueira & Morabito (2017) and Huang & Hwang (2018) in Section 2. In Section
3, we present the proposed CP model for the 3D-ODRPP. The computational experiments performed to
evaluate the proposed approach are reported in Section 4, which considers four sets of benchmark instances
from the literature. We present final remarks and possible paths for future research in Section 5.

2. Benchmark MIP models

We briefly describe the MIP models of Junqueira & Morabito (2017) and Huang & Hwang (2018) in
Sections 2.1 and 2.2, respectively – the notation of each model is limited to its section. For a detailed
description of these formulations, we refer to the original works, especially to Huang & Hwang (2018)
concerning the linearization technique for the nonlinear objective function to minimize the container volume
XY Z.

We next recall the notation of the 3D-ODRPP to be used when presenting the models with the addition
of lower and upper bounds on the container dimensions:

n number of boxes to be packed;
I = {1, . . . , n} set of boxes to be packed;
li, wi, hi length (x-axis), width (y-axis), and height (z-axis) of box i ∈ I, respectively;
X, X lower and upper bounds on the container dimension in the x-axis, respectively;
Y , Y lower and upper bounds on the container dimension in the y-axis, respectively;
Z, Z lower and upper bounds on the container dimension in the z-axis, respectively;
X, Y , Z variables representing the container dimensions in the x-axis, y-axis, and z-axis, respectively.

We notice that (i) one can estimate these lower and upper bounds on the container dimensions from
techniques that exploit the input data (Lin et al., 2017) or even define them according to a managerial
decision (Junqueira & Morabito, 2017); and (ii) variables X, Y , and Z are common to the MIP benchmark
formulations and the proposed CP model. Without loss of optimality, we assume that the input data only
have positive integers. Note that the accuracy of measuring equipment in practical environments is limited
and that there is always the possibility of scaling decimal numbers to integers.

2.1. Formulation of Junqueira & Morabito (2017)

As a grid-position approach, this formulation aggregates the n boxes to be packed into m ≤ n box types
when the boxes share identical sizes. Each box type j ∈ {1, . . . ,m} has a length lj , width wj , height hj ,
and number bj of copies to be packed, such that n =

∑m
j=1 bj . The container is geometrically represented

as a grid of points. At first, let us assume a unitary discretization of the container, that is, we define sets
Xc = {0, 1, . . . , X}, Y c = {0, 1, . . . , Y }, and Zc = {0, 1, . . . , Z}. In addition, let J = {1, . . . , 6m} be a
set representing the six different orientations of the box types – see Figure 2 for an illustration of the six
orientations to pack a box orthogonally into the container. For instance, the orientations of the first box
type are j = 1, . . . , 6, and the last box type are j = 6m− 5, . . . , 6m. By abuse of notation, let us assume li,
wi, and hi be the length, width, and height of a box type in its orientation i ∈ J . Finally, we define the sets
of allocation points for each box type i ∈ J as Xc

i = {x ∈ Xc | x + li ≤ X}, Y c
i = {y ∈ Y c | y + wi ≤ Y },

and Zc
i = {z ∈ Zc | z + hi ≤ Z}. The main decision of the formulation concerns the allocation variables,

which are defined in what follows:

3



λixyz binary variable which equals (1) if box type i ∈ J is packed at point (x, y, z), with x ∈ Xc
i , y ∈ Y c

i ,
and z ∈ Zc

i , and (0) otherwise.

A grid-position model based on Junqueira & Morabito (2017) is given by Model (1).

Min XY Z, (1a)

s.t.
∑
i∈J

∑
{x∈Xc

i ,

x′−li+1≤x≤x′}

∑
{y∈Y c

i ,

y′−wi+1≤y≤y′}

∑
{z∈Zc

i ,

z′−hi+1≤z≤z′}

λixyz ≤ 1, x′ ∈ Xc, y′ ∈ Y c, z′ ∈ Zc, (1b)

6j∑
i=6j−5

∑
x∈Xc

i

∑
y∈Y c

i

∑
z∈Zc

i

λixyz = bj , j ∈ {1, . . . ,m}, (1c)

(x+ li) · λixyz ≤ X, i ∈ J, x ∈ Xc
i , y ∈ Y c

i , z ∈ Zc
i , (1d)

(y + wi) · λixyz ≤ Y, i ∈ J, x ∈ Xc
i , y ∈ Y c

i , z ∈ Zc
i , (1e)

(z + hi) · λixyz ≤ Z, i ∈ J, x ∈ Xc
i , y ∈ Y c

i , z ∈ Zc
i , (1f)

λixyz ∈ {0, 1}, i ∈ J, x ∈ Xc
i , y ∈ Y c

i , z ∈ Zc
i , (1g)

X,Y, Z ≥ 0. (1h)

The objective function (1a) minimizes the volume of the container. Constraints (1b) guarantee the
non-overlap of the packed boxes by ensuring each point (x′, y′, z′) of the geometric representation of the
container is occupied by at most one box, already considering the six possible orientations of each box type.
Constraints (1c) enforce all copies bj of box type j ∈ {1, . . . ,m} to be packed; note that the first summation
in the left-hand side of the constraints considers the six possible orientations of the corresponding box type.
Constraints (1d), (1e), and (1f) enforce the packed boxes to lie entirely within the container in the x-axis,
y-axis, and z-axis, respectively. Constraints (1g) and (1h) define the domain of the variables.

We highlight that Junqueira & Morabito (2017) considered the sets of normal points (Herz, 1972;
Christofides & Whitlock, 1977) instead of a complete unitary discretization for representing the container,
seeking for a smaller number of variables and constraints, which tends to be useful in the context of general-
purpose solvers. To do that, one should replace sets Xc, Y c, and Zc by the corresponding sets of normal
points, defined in Section 3.1.

2.2. Formulation of Huang & Hwang (2018)

As a position-free approach, this formulation considers the boxes to be different from each other even
when they share identical sizes. Beyond the container variables, the formulation relies on fifteen types of
decision variables, which are defined in what follows:

(xi, yi, zi) variables representing the left-front-bottom corner of item i ∈ I;
Lxi,Lxy,Lxz binary variables indicating whether the length of box i ∈ I is parallel to the x-axis,

y-axis or z-axis, respectively:
Wxi,Wxy,Wxz binary variables indicating whether the width of box i ∈ I is parallel to the x-axis,

y-axis or z-axis, respectively:
Hxi,Hxy,Hxz binary variables indicating whether the height of box i ∈ I is parallel to the x-axis,

y-axis or z-axis, respectively:
αij , βij , δij binary variables indicating the relative positions of two boxes i, j ∈ I, i < j, where:

(αij , βij , δij) = (0, 0, 1) if box i is to the left of box j,
(αij , βij , δij) = (0, 1, 0) if box i is to the right of box j,
(αij , βij , δij) = (1, 0, 0) if box i is behind box j,
(αij , βij , δij) = (0, 1, 1) if box i is in front of box j,
(αij , βij , δij) = (1, 0, 1) if box i is below box j,
(αij , βij , δij) = (1, 1, 0) if box i is above box j.

4



A position-free model based on Huang & Hwang (2018) is given by Model (2).

Min XY Z, (2a)

s.t. xi + liLxi + wiWxi + hiHxi ≤ xj +M(αij + βij + 1− δij), i, j ∈ I, i < j, (2b)

xj + ljLxj + wjWxj + hjHxj ≤ xi +M(αij + 1− βij + δij), i, j ∈ I, i < j, (2c)

yi + liLyi + wiWyi + hiHyi ≤ yj +M(1− αij + βij + δij), i, j ∈ I, i < j, (2d)

yj + ljLyj + wjWyj + hjHyj ≤ yi +M(αij + 2− βij − δij), i, j ∈ I, i < j, (2e)

zi + liLyi + wiWzi + hiHzi ≤ zj +M(2− αij + βij − δij), i, j ∈ I, i < j, (2f)

zj + ljLyj + wjWzj + hjHzj ≤ zi +M(2− αij − βij + δij), i, j ∈ I, i < j, (2g)

1 ≤ αij + βij + δij ≤ 2, i, j ∈ I, i < j, (2h)

xi + liLxi + wiWxi + hiHxi ≤ X, i ∈ I, (2i)

yi + liLyi + wiWyi + hiHyi ≤ Y, i ∈ I, (2j)

zi + liLyi + wiWzi + hiHzi ≤ Z, i ∈ I, (2k)

Lxi + Lyi + Lzi = 1, i ∈ I, (2l)

Wxi +Wyi +Wzi = 1, i ∈ I, (2m)

Hxi +Hyi +Hzi = 1, i ∈ I, (2n)

Lxi +Wxi +Hxi = 1, i ∈ I, (2o)

Lyi +Wyi +Hyi = 1, i ∈ I, (2p)

Lzi +Wzi +Hzi = 1, i ∈ I, (2q)

Z ≤ Y ≤ X, (2r)

xi, yi, zi ≥ 0, i ∈ I, (2s)

Lxi,Lyi,Lyi,Wxi,Wyi,Wzi,Hxi,Hyi,Hzi ∈ {0, 1}, i ∈ I, (2t)

αij , βij , δij ∈ {0, 1}, i, j ∈ I, i < j, (2u)

0 ≤ X ≤ X̄, 0 ≤ Y ≤ Ȳ , 0 ≤ Z ≤ Z̄. (2v)

The objective function (2a) minimizes the container volume. Constraints (2b) to (2h) guarantee the
non-overlap of any pair of boxes i, j ∈ I, i < j. Constraints (2i), (2j), and (2k) enforce that each box i ∈ I
lies entirely within the container in the x-axis, y-axis, and z-axis, respectively. Constraints (2l) ensure that
the length of box i ∈ I is parallel to one of the x-axis, y-axis, and z-axis, respectively. Similarly, we have
constraints (2m) and (2n) for the width and height of box i ∈ I, respectively. Constraints (2o) ensure that
only one of the length, width, and height of box i ∈ I is parallel to the x-axis, respectively. Similarly, we
have constraints (2p) and (2q) models for the y-axis and z-axis, respectively. Valid inequalities (2r) impose
that the dimension of the container in the x-axis (resp., z-axis) is the largest (resp., smallest) among all (Lin
et al., 2017); these inequalities do not cause the loss of optimality, since the boxes are free to be rotated.
Constraints (2s) to (2v) define the variables domain.

We highlight that Huang & Hwang (2018) improved Model (2) by exploring the dependencies among
constraints (2l) to (2q). They replaced these six sets of constraints with five sets and reduced their corre-
sponding nine sets of binary variables into four sets. In particular, variables Lxi, Lyi, Lzi, Wxi, and Hxi can
be replaced in the formulation by expressions written in terms of variables Wyi, Wzi, Hyi, and Hzi, i ∈ I.
Notice that Models (1) and (2) are nonlinear due to the product of variables in their objective functions.
However, Huang & Hwang (2018) proposed a linear equivalent set of expressions to objective function (2a)
based on an improved special ordered set of type 1 (SOS1) formulation. More details are given by the
authors in the original paper.

5



3. A constraint programming model for the 3D-ODRPP

The proposed CP model for the 3D-ODRPP relies on the position-free modeling approach with logic
operators. Nevertheless, the model can be seen as intermediate between the position-free and grid-position
approaches since we can exploit the benefits of both approaches, as discussed in Section 3.1. There are four
families of decision variables in the proposed model. They are defined in what follows:

X, Y , Z variables representing the container’s dimensions in the x-axis, y-axis, and z-axis,
respectively;

xi, yi, zi variables representing the allocation point of box i ∈ I;
dxi , d

y
i , d

z
i variables representing the dimensions of box i ∈ I in the x-axis, y-axis, z-axis,

respectively;
ri = {1, . . . , 6} variable that assumes one of the six possible rotations of box i ∈ I.

A box is free to be rotated in a solution to the 3D-ODRPP if its walls are parallel to the container’s
walls. If a box i ∈ I were not free to be rotated, then dxi = li, d

y
i = wi, and dzi = hi (i.e., ri = 1) would

be the single scheme. However, each box i ∈ I can be rotated in six ways to be packed into the container,
as depicted in Fig. 2. For instance, one can see in the figure that ri = 5 means that dxi = hi, d

y
i = li, and

dzi = wi.

li

hi

wi
•

li

wi

hi

•
wi

hi
li•

wi

li

hi

•
hi

wi

li•
hi

li

wi
•

x

yz

ri = 1 ri = 2 ri = 3

ri = 4 ri = 5 ri = 6

Figure 2: Relations of variable ri and the dimensions of box i ∈ I according to the input data.

The proposed CP model for the 3D-ODRPP is given by Model (3).

Min XY Z, (3a)

s.t. xi + dxi ≤ X, i ∈ I, (3b)

yi + dyi ≤ Y, i ∈ I, (3c)

zi + dzi ≤ Z, i ∈ I, (3d)

xi + dxi ≤ xj ∨ xj + dxj ≤ xi ∨ yi + dyi ≤ yj

∨ yj + dyj ≤ yi ∨ zi + dzi ≤ zj ∨ zj + dzj ≤ zi, i, j ∈ I, i < j, (3e)

ri = 1 =⇒ dxi = li ∧ dyi = wi ∧ dzi = hi, i ∈ I, (3f)

ri = 2 =⇒ dxi = li ∧ dyi = hi ∧ dzi = wi, i ∈ I, (3g)

ri = 3 =⇒ dxi = wi ∧ dyi = li ∧ dzi = hi, i ∈ I, (3h)

ri = 4 =⇒ dxi = wi ∧ dyi = hi ∧ dzi = li, i ∈ I, (3i)

ri = 5 =⇒ dxi = hi ∧ dyi = li ∧ dzi = wi, i ∈ I, (3j)

6



ri = 6 =⇒ dxi = hi ∧ dyi = wi ∧ dzi = li, i ∈ I, (3k)

X,Y, Z ∈ Z+, (3l)

xi, yi, zi ∈ Z+, i ∈ I, (3m)

dxi , d
y
i , d

z
i ∈ Z+, i ∈ I, (3n)

ri ∈ {1, 2, 3, 4, 5, 6}, i ∈ I. (3o)

The objective function (3a) minimizes the volume of the container. Constraints (3b) ensure the con-
tainment condition in the x-axis, i.e., each box i ∈ I must be entirely within the length of the container.
Similarly, constraints (3c) and (3d) ensure the containment condition in the y-axis and z-axis, respectively.
Constraints (3e) guarantee the non-overlap between any pair of boxes i, j ∈ I, i < j. They are “or con-
straints” that require the fulfillment of at least one out of six conditions: box i is to the left/right of (x-axis),
in front of/behind (y-axis), or below/above (z-axis) box j. Using logic operators, constraints (3f) to (3k)
are responsible for linking the value of variables dxi , d

y
i , and dzi according to the rotation ri of box i ∈ I and

the input data. Constraints (3l), (3m), (3n), and (3o) define the domain of the variables. Notice that Model
(3) is nonlinear due to the objective function (3a) and constraints (3e) to (3k).

3.1. Enhancing the constraint programming model

In what follows, we use valid inequalities and techniques to reduce, without loss of optimality, the feasible
solution space seeking to improve the performance of the proposed model in the context of a general-purpose
CP solver. Valid inequality (4a) imposes that the sum of the volume of the boxes is a lower bound for the
volume of the container (Tsai et al., 2015). Valid inequalities (4b) impose that the dimension of the container
in the x-axis (resp. z-axis) is the largest (resp. smallest) among all (Lin et al., 2017); these inequalities are
valid since boxes are free to be rotated. Expressions (4c), (4d), and (4e) are “and constraints” that forbid
some schemes in the rotation ri of a box i ∈ I when this box shares the same size in two dimensions. For
instance, these expressions enforce that ri = 1 if box i ∈ I has li = wi = hi.

XY Z ≥
∑
i∈I

liwihi, (4a)

X ≥ Y ≥ Z, (4b)

ri ̸= 3 ∧ ri ̸= 4 ∧ ri ̸= 6, i ∈ I, li = wi, (4c)

ri ̸= 4 ∧ ri ̸= 5 ∧ ri ̸= 6, i ∈ I, li = hi, (4d)

ri ̸= 2 ∧ ri ̸= 5 ∧ ri ̸= 6, i ∈ I, wi = hi. (4e)

We highlight that, although Model (3) relies on a position-free modeling approach, we can exploit
techniques developed for the grid-position modeling approach, given that the CP paradigm explores the
domain of the variables during the search. Similarly to Junqueira & Morabito (2017), we consider the
allocation point of a box i ∈ I to be left-front-bottom corner according to the sets of normal points. Since
each box can be rotated, let di be a 3n-array that receives the values of li, wi, and hi, ∀i ∈ I. Let XN , Y N ,
and ZN be the set of normal patterns in the x-axis, y-axis, and z-axis, respectively, as defined in expressions
(5a), (5b), and (5c) (Herz, 1972; Christofides & Whitlock, 1977).

XN =

{
px | px =

3n∑
i=1

diτi, 0 ≤ px ≤ X − min
i=1,...,3n

{di}, τi ∈ {0, 1}, i = 1, . . . , 3n

}
, (5a)

Y N =

{
py | py =

3n∑
i=1

diτi, 0 ≤ py ≤ Y − min
i=1,...,3n

{di}, τi ∈ {0, 1}, i = 1, . . . , 3n

}
, (5b)

ZN =

{
pz | pz =

3n∑
i=1

diτi, 0 ≤ pz ≤ Z − min
i=1,...,3n

{di}, τi ∈ {0, 1}, i = 1, . . . , 3n

}
. (5c)

7



Note that the domain of an allocation point (xi, yi, zi) of each box i ∈ I can be reduced to those points in
the set of the normal patterns. Thus, without loss of optimality, expression (3m) is replaced with expression
(6a).

xi ∈ XN , yi ∈ Y N , zi ∈ ZN , i ∈ I. (6a)

Similarly, we can use the set of normal points to reduce the domain of the variables X, Y , and Z
representing the container’s dimensions. However, since these dimensions are not allocation points but sizes,
we need to adjust these sets, as defined in expressions (7a) to (7c). These adjusted sets could be seen as the
set of useful numbers (Cunha et al., 2020). Thus, expression (3l) is replaced with expressions (7a) to (7c).

X ∈ {px + di | px ∈ XN , X ≤ px + di ≤ X, i = 1, . . . , 3n}, (7a)

Y ∈ {py + di | py ∈ Y N , Y ≤ py + di ≤ Y , i = 1, . . . , 3n}, (7b)

Z ∈ {pz + di | pz ∈ ZN , H ≤ pz + di ≤ Z, i = 1, . . . , 3n}. (7c)

More details on grids of points, including discussions on the optimality and a dynamic programming
algorithm to calculate the normal patterns, can be found in Cunha et al. (2020). It is important to mention
that a more refined grid could result in the loss of the optimal solution for 3D-ODRPP, e.g., by using the
grid of reduced raster points as discussed by Junqueira & Queiroz (2022).

4. Computational experiments

We consider experiments to evaluate the computational performance of the proposed CP model. The
proposed and benchmark approaches were coded in C++. We used IBM CPLEX Optimization Studio
v.22.1 as a MILP and CP solver and LocalSolver as an alternative and heuristic solver. All experiments
were conducted on a PC with Intel Xeon X5660 2.8 GHz, 96 GB of RAM, under Ubuntu 22.04 LTS as
operating system. Each run of the solver was limited to 3,600 seconds unless stated otherwise. We use the
letters “tl” in the next tables to indicate when this time limit was reached for a given instance or class of
instances.

4.1. Solution approaches and problem instances

We refer to Model (3) with the enhancements discussed in Section 3.1 as Exact-CPM if solved by CPLEX
and Heuri-CPM if solved by LocalSolver. We considered as a benchmark the linear version of the MIP models
of Junqueira & Morabito (2017) and Huang & Hwang (2018), which are denoted by Grid-ILP and PosF-
ILP, respectively. These benchmark models were solved with the aim of CPLEX. As mentioned before, we
extended the linearization technique proposed in Huang & Hwang (2018) for the objective function to the
grid-position approach of Junqueira & Morabito (2017).

We report information on the five sets of instances used in the experiments in Table 2, which makes 156
problem instances in total. We consider the same problem instances of Tsai et al. (2015) and Junqueira
& Morabito (2017) in Section 4.2. In Sections 4.3 and 4.4, we consider the problem instances of Huang &
Hwang (2018) and Egeblad & Pisinger (2009) (ep3 instances), respectively. The lower and upper bounds on
the container dimensions were taken from the supplementary material of Huang & Hwang (2018) concerning
instance sets #A and #C, and the definitions of Junqueira & Morabito (2017) concerning instance set #B.
The ep3 instances were initially generated for the three-dimensional knapsack problem; thus, we neglected
the information on the boxes’ profit. For sets #D1 and #D2, we define the lower bounds on the container
dimensions as min

i∈I
{li;wi;hi} (i.e., the smallest dimension among all the boxes). These sets #D1 and #D2

differ concerning the upper bounds on the container dimensions. For set #D1, we use the original dimension
of the knapsack on the instance multiplied by a factor of 4. For set #D2, we assume a container with
identical upper bounds X = Y = Z, where X = ⌈ 3

√
1.35

∑
i∈I liwihi⌉.

8



Table 2: Sets of benchmark instances.

Sets Number of instances Source Number of boxes (n) Number of box types (m)

#A 10 instances Tsai et al. (2015) 4 to 9 4 to 6
#B 16 instances Junqueira & Morabito (2017) 9 to 32 5 to 10
#C 10 instances Huang & Hwang (2018) 6 to 16 6 to 16
#D1 and #D2 60+60 instances Egeblad & Pisinger (2009) 20 to 60 5 to 60

It is important to mention that we have implemented and tested other versions of the CP model to
3D-ODRPP. None outperformed the model presented in Section 3. In the first version, we iterate over
the container dimensions X, Y , and Z by performing a search over the sets of normal patterns. To each
container (X,Y, Z), we invoke the CP model in Section 3, without its objective function, to check the
packing feasibility (i.e., whether it is possible to pack all items inside the given container of dimensions
(X,Y, Z)). The second version considers solving a relaxed two-dimensional problem before checking the
packing feasibility (Nascimento et al., 2021). This relaxation consists of checking whether all items can be
arranged inside the given container, satisfying the following constraints: (i) for each line perpendicular to
the xy-plane and crossing the normal point (s, t), the sum of the heights of those items intersecting such
a line must be less than or equal to the container height Z; (ii) similarly, we require, for each line that is
perpendicular to the xz- and yz-planes and crossing the normal points (s, u) and (t, u), respectively, the sum
of the widths and lengths of those items intersecting such lines must be less than or equal to the container
width Y and length X. If there is no solution for this relaxation, there is no need to check the packing
feasibility, and consequently, we avoid unnecessary calls to the latter. In the third version, we include this
relaxation in the CP model of Section 3. All these versions required at least twice the computing time
required to solve the CP model as proposed in Section 3.

4.2. Results of the instance sets #A and #B

We report the results considering the instance set #A in Table 3. We report the name of the instance,
the number of box types (m), and the number of boxes (n). In this set, boxes can be aggregated into box
types when they share the same dimensions. Then, we provide input data aggregated into box types only to
Grid-ILP as it is the only approach that uses this strategy. For each of the four approaches, we report the
number of variables (vars), number of constraints (cons), value of the container dimensions (X,Y, Z), value
of the container volume (XY Z), value of the lower bound (lb), optimality gap in percentage (gap[%]), and
computing time in seconds (time[s]). For each instance, we set the gap as 100 · (XY Z − lb)/XY Z, where
lb is the best lower bound found among the four approaches; thus, if the gap is equal to zero and the time
limit is reached, then an optimal solution has been obtained, but its optimality has not been proven within
the time limit. We highlight that the linear objective function considered in Grid-ILP and PosF-ILP uses
logarithmic functions that, even not losing optimality, affect the values of the primal and dual solutions,
resulting in artificially smaller optimality gaps. For instance, an optimality gap of 2.50% obtained by the
solver with Grid-ILP or PosF-ILP at the end of the search means e2.50 = 12.18%, while a gap of 1.50%
means indeed e1.50 = 4.48%. To guarantee a fair comparison with Exact-CPM and Heuri-CPM, we adjust
the value of the gaps of Grid-ILP and PosF-ILP with the exponential function. In addition, the entry “*”
in the gap columns means the approach requires excessive memory (an out-of-memory error). Moreover, if
it is equal to 100.00, then the solver with the approach failed to obtain a feasible solution within the time
limit. For each instance, we bold the approach(es) with the best optimality gap and computing time.

Concerning the results in Table 3, for the instance set #A, the solver with Grid-ILP obtains optimal
solutions for 2 out of 10 instances, while with PosF-ILP this happens for 10 instances, with Exact-CPM it
is for 8 instances, and with Heuri-CPM it is for none of the instances. The time limit is reached by the
solver with Grid-ILP in 4 instances, with PosF-ILP in none of the instances, with Exact-CPM in 2 instances,
and with Heuri-CPM in all instances. We notice that the solver with Grid-ILP runs out of memory in 4
instances and fails to obtain a feasible solution within the time limit in 4 instances. The best computing
time among the four approaches is reached by the solver with PosF-ILP in 3 instances and with Exact-CPM

9



Table 3: Results for the instance set #A from Tsai et al. (2015).

Instance m n Approach vars cons (X,Y, Z) XY Z lb gap[%] time[s]

T01 4 4 Grid-ILP 292,386 681,763 (*,*,*) * * 100.00 tl
PosF-ILP 144 104 (28,26,6) 4,368 4368 0.00 1.32
Exact-CPM 31 45 (28,26,6) 4,368 4368 0.00 0.17
Heuri-CPM 31 45 (40,19,6) 4,560 3616 4.21 tl

T02 5 5 Grid-ILP 1,014,077 2,542,500 (*,*,*) * * 100.00 tl
PosF-ILP 188 145 (37,16,8) 4,736 4736 0.00 2.53
Exact-CPM 38 58 (37,16,8) 4,736 4736 0.00 0.97
Heuri-CPM 38 58 (37,16,8) 4,736 3829 0.00 tl

T03 6 6 Grid-ILP 4,290,237 10,617,781 (*,*,*) * * 100.00 tl
PosF-ILP 264 195 (42,13,10) 5,460 5460 0.00 7.43
Exact-CPM 45 72 (42,13,10) 5,460 5460 0.00 7.16
Heuri-CPM 45 72 (42,13,10) 5,460 4629 0.00 tl

T04 6 7 Grid-ILP 1,265,857 3,904,579 (*,*,*) * * 100.00 tl
PosF-ILP 287 249 (31,18,12) 6,696 6696 0.00 80.06
Exact-CPM 52 87 (31,18,12) 6,696 6696 0.00 370.39
Heuri-CPM 52 87 (31,18,12) 6,696 5829 0.00 tl

T05 4 8 Grid-ILP 15,374 34,699 (9,8,5) 360 360 0.00 25.15
PosF-ILP 178 306 (9,8,5) 360 360 0.00 15.50
Exact-CPM 59 127 (9,8,5) 360 360 0.00 0.02
Heuri-CPM 59 127 (9,8,5) 360 294 0.00 tl

T06 4 9 Grid-ILP 20,985 47,283 (10,8,6) 480 480 0.00 100.40
PosF-ILP 216 379 (12,8,5) 480 480 0.00 165.73
Exact-CPM 66 147 (12,8,5) 480 480 0.00 0.70
Heuri-CPM 66 147 (10,8,6) 480 358 0.00 tl

T07 4 4 Grid-ILP * * (*,*,*) * * * *
PosF-ILP 269 108 (127,57,30) 217,170 217170 0.00 0.38
Exact-CPM 31 45 (127,57,30) 217,170 217170 0.00 0.16
Heuri-CPM 31 45 (72,57,55) 225,720 186131 3.79 tl

T08 5 5 Grid-ILP * * (*,*,*) * * * *
PosF-ILP 421 150 (102,95,30) 290,700 290700 0.00 11.53
Exact-CPM 38 58 (102,95,30) 290,700 290700 0.00 7.15
Heuri-CPM 38 58 (102,95,30) 290,700 254756 0.00 tl

T09 5 6 Grid-ILP * * (*,*,*) * * * *
PosF-ILP 494 198 (92,81,50) 372,600 372600 0.00 318.50
Exact-CPM 45 72 (92,81,50) 372,600 335958 0.00 tl
Heuri-CPM 45 72 (90,85,50) 382,500 335956 2.59 tl

T10 6 7 Grid-ILP * * (*,*,*) * * * *
PosF-ILP 588 255 (101,89,50) 449,450 449450 0.00 1,218.54
Exact-CPM 52 87 (101,89,50) 449,450 422789 0.00 tl
Heuri-CPM 52 87 (169,56,50) 473,200 422788 5.02 tl

Note: (i) gap[%] equals “*” means the solver with the approach runs out of memory, (ii) gap[%] equals 100.00 means the solver with
the approach fails to obtain a feasible solution within the time limit; and, (iii) gap[%] equals zero and the time limit reached means

an optimal solution is found but its optimality is not proven within the time limit.

in 7 instances. Finally, the number of variables and constraints of Exact-CPM and Heuri-CPM are the
smallest ones, followed by PosF-ILP, and lastly by Grid-ILP.

We report the results considering the instance set #B in Table 4. In these results, we observe that the
number of proven optimal solutions of the solver with Grid-ILP is for 6 out of 16 instances, with PosF-ILP
it is for only 1 instance, with Exact-CPM it is for 4 instances, and with Heuri-CPM it happens for none
of the instances. The time limit is reached by the solver with Grid-ILP in 10 instances, with PosF-ILP in
15 instances, with Exact-CPM in 12 instances, and with Heuri-CPM in all 16 instances. The solver with
Grid-ILP fails to obtain a feasible solution within the time limit in 3 instances and with PosF-ILP in 6
instances. In general, the solver with Grid-ILP has the best computing times, followed by Exact-CPM and
lastly by PosF-ILP and Heuri-CPM. Similar to the previous section, the number of variables and constraints
of Exact-CPM and Heuri-CPM are the smallest ones, followed by PosF-ILP, and lastly by Grid-ILP.

In summary, Exact-CPM is very competitive with Grid-ILP and PosF-ILP in the instance sets #A
and #B in terms of optimal solutions and computing time. As mentioned, Exact-CPM can be seen as an
intermediary model because it exploits the advantages of the position-free and grid-position approaches. For
instance, its number of variables and constraints is small as a function of the number of boxes (n), like in a

10



Table 4: Results for the instance set #B from Junqueira & Morabito (2017).

Instance m n Approach vars cons (X,Y, Z) XY Z lb gap[%] time[s]

J01 5 9 Grid-ILP 3,054 7,875 (10,10,7) 700 700 0.00 19.56
PosF-ILP 207 378 (10,10,7) 700 630 0.00 tl
Exact-CPM 66 131 (10,10,7) 700 700 0.00 118.04
Heuri-CPM 66 131 (10,10,7) 700 625 0.00 tl

J02 10 10 Grid-ILP 7,410 18,754 (10,10,7) 700 700 0.00 48.43
PosF-ILP 241 458 (10,10,7) 700 630 0.00 tl
Exact-CPM 73 150 (10,10,7) 700 630 0.00 tl
Heuri-CPM 73 150 (10,10,7) 700 625 0.00 tl

J03 5 9 Grid-ILP 14,973 46,953 (20,20,18) 7,200 4994 30.15 tl
PosF-ILP 232 381 (19,18,16) 5,472 5029 8.09 tl
Exact-CPM 66 120 (19,18,16) 5,472 4998 8.09 tl
Heuri-CPM 66 120 (19,19,16) 5,776 4994 12.93 tl

J04 10 12 Grid-ILP 43,335 126,248 (20,20,20) 8,000 4990 36.41 tl
PosF-ILP 345 645 (20,20,15) 6,000 4990 15.22 tl
Exact-CPM 87 180 (20,20,13) 5,200 5087 2.17 tl
Heuri-CPM 87 180 (20,18,15) 5,400 4990 5.80 tl

J05 5 7 Grid-ILP 4,071 13,096 (30,25,25) 18,750 18750 0.00 910.23
PosF-ILP 199 248 (29,27,24) 18,792 16128 0.22 tl
Exact-CPM 52 88 (30,25,25) 18,750 18750 0.00 1,374.27
Heuri-CPM 52 88 (30,27,24) 19,440 16027 3.55 tl

J06 10 11 Grid-ILP 14,982 37,488 (30,27,24) 19,440 17052 12.28 tl
PosF-ILP 326 552 (30,28,24) 20,160 16767 15.42 tl
Exact-CPM 80 169 (30,27,24) 19,440 16759 12.28 tl
Heuri-CPM 80 169 (30,27,24) 19,440 16751 12.28 tl

J07 5 9 Grid-ILP 6,993 21,606 (50,47,34) 79,900 74060 7.31 tl
PosF-ILP 302 387 (46,43,43) 85,054 72192 12.93 tl
Exact-CPM 66 120 (47,43,38) 76,798 72183 3.57 tl
Heuri-CPM 66 120 (46,43,43) 85,054 72171 12.93 tl

J08 10 12 Grid-ILP 7,356 18,854 (50,45,37) 83,250 77658 6.72 tl
PosF-ILP 414 651 (*,*,*) * * 100.00 tl
Exact-CPM 87 190 (50,45,37) 83,250 77458 6.72 tl
Heuri-CPM 87 190 (50,45,37) 83,250 76694 6.72 tl

J09 5 7 Grid-ILP 3,504 9,108 (96,90,84) 725,760 725760 0.00 1,292.42
PosF-ILP 345 253 (96,90,84) 725,760 725760 0.00 352.39
Exact-CPM 52 96 (96,90,84) 725,760 725760 0.00 0.66
Heuri-CPM 52 96 (96,96,84) 774,144 589599 6.25 tl

J10 10 10 Grid-ILP 13,176 35,368 (96,94,76) 685,824 611464 10.84 tl
PosF-ILP 439 470 (99,94,73) 679,338 611464 9.98 tl
Exact-CPM 73 143 (96,94,73) 658,752 611510 7.17 tl
Heuri-CPM 73 143 (96,94,73) 658,752 611464 7.17 tl

J11 5 25 Grid-ILP 14,937 39,581 (10,9,7) 630 630 0.00 201.51
PosF-ILP 1,117 2,620 (*,*,*) * * 100.00 tl
Exact-CPM 178 555 (10,9,7) 630 630 0.00 3,196.08
Heuri-CPM 178 555 (10,9,8) 720 608 12.50 tl

J12 10 28 Grid-ILP 31,845 81,572 (10,9,7) 630 630 0.00 941.44
PosF-ILP 1,374 3,269 (*,*,*) * * 100.00 tl
Exact-CPM 199 667 (10,10,7) 700 630 10.00 tl
Heuri-CPM 199 667 (10,10,8) 800 615 21.25 tl

J13 5 30 Grid-ILP 86,919 258,600 (20,20,18) 7,200 4854 32.50 tl
PosF-ILP 1,584 3,743 (*,*,*) * * 100.00 tl
Exact-CPM 213 714 (20,19,16) 6,080 4860 20.07 tl
Heuri-CPM 213 714 (19,18,17) 5,814 4854 16.41 tl

J14 10 32 Grid-ILP 165,045 470,198 (*,*,*) * * 100.00 tl
PosF-ILP 1,786 4,248 (*,*,*) * * 100.00 tl
Exact-CPM 227 799 (20,17,17) 5,780 4860 15.92 tl
Heuri-CPM 227 799 (19,18,17) 5,814 4855 16.41 tl

J15 5 31 Grid-ILP 166,218 514,002 (*,*,*) * * 100.00 tl
PosF-ILP 1,707 3,992 (*,*,*) * * 100.00 tl
Exact-CPM 220 747 (30,29,24) 20,880 16461 21.16 tl
Heuri-CPM 220 747 (29,26,26) 19,604 16457 16.03 tl

J16 10 28 Grid-ILP 349,209 1,009,855 (*,*,*) * * 100.00 tl
PosF-ILP 1,426 3,272 (*,*,*) * * 100.00 tl
Exact-CPM 199 642 (29,28,24) 19,488 16020 17.80 tl
Heuri-CPM 199 642 (27,26,26) 18,252 16018 12.23 tl

Note: (i) gap[%] equals “*” means the solver with the approach runs out of memory, (ii) gap[%] equals 100.00 means the solver with
the approach fails to obtain a feasible solution within the time limit; and, (iii) gap[%] equals zero and the time limit reached means

an optimal solution is found but its optimality is not proven within the time limit.
11



position-free approach. Still, it also uses a grid to define (the domain of) its variables, like in a grid-position
fashion. In addition, we note that a major difference concerning instance sets #A and #B is how tight the
lower and upper bounds are on the container dimensions. In this sense, at first, we could say the instance
set #A is easier to solve than the set #B because of the value of parameters m and n. However, those lower
and upper bounds are tighter in the instance set #B than in the set #A concerning the container dimensions
(X,Y, Z) in an optimal solution. Therefore, Grid-ILP seems to be very dependent on these bounds given its
weak and good performance in instance sets #A and #B, respectively, while PosF-ILP is more dependent
on the number of boxes (n). As far as Heuri-CPM is concerned, optimal and near-optimal solutions are
found by LocalSolver; however, it failed to provide optimality within the time limit. In Fig. 3, we present
two solutions for problem instances of set #B.

(a) a solution of (X,Y, Z) = (10, 9, 7) to instance J11. (b) a solution of (X,Y, Z) = (27, 26, 26) to instance J16.

Figure 3: Solutions for instances J11 and J16: (a) optimal solution provided for the first time to J11, obtained with Exact-CPM;
(b) new best know solution provided for J16, obtained with Heuri-CPM.

4.3. Results of the instance set #C

In this section, we evaluate the performance of the approaches, with different values for the time limit, in
reaching satisfactory feasible solutions quickly and/or proven optimal solutions. The solver with Grid-ILP
runs out of memory in all these experiments; thus, we report results only to PosF-ILP, Exact-CPM, and
Heuri-CPM. Again, these results show the dependence of Grid-ILP concerning the bounds on the container
dimensions.

All results considering the instance set #C are given in Table 5. The instance set #C consists of 10
problem instances proposed in Huang & Hwang (2018): the first five instances are from an online desktop
computer retailer in Taiwan, and the last five have some dimensions originally proposed with rational
numbers (we scaled these instances up to get integers numbers). We report results considering the time
limits tl = 60, 600, 3600 seconds. The solver with PosF-ILP and Exact-CPM obtains optimal solutions for
instances H01, H02, and H03 in up to 60 seconds, while for instances H04 and H06, this happens in up to 600
seconds. Concerning instances H05, H07, H08, H09, and H10, the solver performance with Exact-CPM is
superior to PosF-ILP regarding the quality of the feasible solutions and/or the computing time. For instance,
the solution optimality to instance H08 is proven by the solver with Exact-CPM in up to 60 seconds, while
it takes more than 600 seconds with PosF-ILP. We note the gap of the solver with Exact-CPM with tl= 60
and tl= 3600 seconds is smaller than that with PosF-ILP. This indicates the solver with Exact-CPM can

12



find satisfactory feasible solutions quickly. Again, the solver with Heuri-CPM has not proven the optimality
in all instances.

13



Table 5: Results for the instance set #C from Huang & Hwang (2018).

Instance m n Approach
tl = 60 s tl = 600 s tl = 3600 s

(X,Y, Z) XY Z lb gap[%] (X, Y, Z) XY Z lb gap[%] (X, Y, Z) XY Z lb gap[%]

H01 8 9 PosF-ILP (92,53,36) 175,536 175,536 0.00 - - - - - - - -
Exact-CPM (92,53,36) 175,536 175,536 0.00 - - - - - - - -
Heuri-CPM (65,62,54) 217,620 149,084 19.34 (92,57,36) 188,784 149,084 7.02 (96,53,36) 183,168 149,084 4.17

H02 6 10 PosF-ILP (87,53,48) 221,328 221,328 0.00 - - - - - - - -
Exact-CPM (87,53,48) 221,328 221,328 0.00 - - - - - - - -
Heuri-CPM (81,57,54) 249,318 197,248 11.23 (87,53,52) 239,772 197,248 7.69 (87,53,52) 239,772 197,248 7.69

H03 7 11 PosF-ILP (135,52,34) 238,680 238,680 0.00 - - - - - - - -
Exact-CPM (135,52,34) 238,680 238,680 0.00 - - - - - - - -
Heuri-CPM (86,86,51) 377,196 232,172 36.72 (86,86,51) 377,196 232,172 36.72 (88,81,34) 242,352 232,172 1.52

H04 11 12 PosF-ILP (98,58,57) 323,988 270,724 16.44 (87,64,53) 295,104 295,104 0.00 - - - -
Exact-CPM (87,64,53) 295,104 258,259 8.26 (87,64,53) 295,104 295,104 0.00 - - - -
Heuri-CPM (86,86,53) 391,988 258,258 30.94 (92,91,41) 343,252 258,258 14.03 (107,53,53) 300,563 258,258 1.82

H05 16 16 PosF-ILP (139,64,64) 569,344 354,058 37.81 (116,78,57) 515,736 354,058 31.35 (87,84,58) 423,864 372,765 12.06
Exact-CPM (122,60,57) 417,240 354,060 15.14 (87,69,67) 402,201 354,060 11.97 (87,69,67) 402,201 354,060 7.32
Heuri-CPM (131,66,57) 492,822 354,058 28.16 (185,59,41) 447,515 354,058 20.88 (126,65,54) 442,260 354,058 15.71

H06 6 6 PosF-ILP (180,94,94) 1,590,480 1,509,605 5.08 (180,94,94) 1,590,480 1,590,480 0.00 - - - -
Exact-CPM (180,94,94) 1,590,480 1,312,501 5.08 (180,94,94) 1,590,480 1,590,480 0.00 - - - -
Heuri-CPM (180,180,65) 2,106,000 1,312,500 28.32 (205,90,90) 1,660,500 1,312,500 4.22 (180,94,94) 1,590,480 1,312,500 0.00

H07 7 7 PosF-ILP (480,135,105) 6,804,000 5,407,700 20.52 (480,135,105) 6,804,000 5,407,700 14.19 (331,190,100) 6,289,000 5,409,185 13.99
Exact-CPM (212,170,162) 5,838,480 5,407,701 7.38 (212,170,162) 5,838,480 5,838,480 0.00 - - - -
Heuri-CPM (350,165,120) 6,930,000 5,407,700 21.97 (280,180,120) 6,048,000 5,407,700 3.46 (280,180,120) 6,048,000 5,407,700 3.46

H08 8 8 PosF-ILP (245,245,197) 11,824,925 9,160,923 13.20 (315,245,135) 10,418,625 9,855,179 1.48 (315,245,133) 10,264,275 10,264,275 0.00
Exact-CPM (315,245,133) 10,264,275 10,264,275 0.00 - - - - - - - -
Heuri-CPM (565,245,91) 12,596,675 8,985,375 18.52 (350,245,133) 11,404,750 8,985,375 10.00 (320,245,133) 10,427,200 8,985,375 1.56

H09 9 9 PosF-ILP (305,260,215) 17,049,500 13,972,200 18.05 (310,240,216) 16,070,400 13,972,200 13.06 (435,201,180) 15,738,300 14,204,071 9.75
Exact-CPM (375,215,190) 15,318,750 13,972,200 8.79 (375,215,188) 15,157,500 13,972,200 7.82 (375,215,188) 15,157,500 13,972,200 6.29
Heuri-CPM (325,290,180) 16,965,000 13,972,200 17.64 (305,285,190) 16,515,750 13,972,200 15.40 (405,260,150) 15,795,000 13,972,200 10.07

H10 10 10 PosF-ILP (1297,694,643) 578,775,874 404,642,700 30.09 (2100,630,387) 512,001,000 404,642,700 20.97 (945,770,665) 483,887,250 404,642,700 16.38
Exact-CPM (1470,735,420) 453,789,000 404,642,701 10.83 (1218,855,420) 437,383,800 404,642,701 7.49 (1218,855,420) 437,383,800 404,642,701 7.49
Heuri-CPM (1295,945,420) 513,985,500 404,642,700 21.27 (1575,743,420) 491,494,500 404,642,700 17.67 (1890,638,385) 464,240,700 404,642,700 12.84

Note: symbol “-” means the experiment with the current time limit was not performed since the optimality was proven by the solver with the approach in a previous experiment with a smaller
time limit.

14



4.4. Results of the instance sets #D1 and #D2

In this section, we analyze the performance of the approaches considering problem instances with larger
numbers of boxes (n), for the case they can be aggregated or not into a small number of box types (m).
In addition, we consider instances with containers of identical upper bounds seeking solutions of cubic-alike
containers, which tend to be helpful for future packing operations. For the instance sets #D1 and #D2,
we use the 60 instances ep3 proposed in Egeblad & Pisinger (2009), disregarding the box profit as this is
irrelevant for the 3D-ODRPP. The results of these instances are reported in Tables 6 and 7, respectively.
Each table entry has an average value for 10 instances, except columns “w/o solution” with the number
of instances without a feasible solution. Again, the solver with Grid-ILP runs out of memory in all these
experiments and fails to obtain a feasible solution, and with PosF-ILP in 82 out of 120 instances. Thus, we
report results only to Exact-CPM and Heuri-CPM. The solvers reach the limit time of 3600 seconds with
Exact-CPM and Heuri-CPM in all instances.

The analysis of the results in Tables 6 and 7 shows that the performance of Heuri-CPM is superior to
Exact-CPM on average. In particular, the solver with Exact-CPM fails to obtain a feasible solution within
the time limit in 36 out of 60 instances of the set #D2. We highlight that the gap of the solver with Exact-
CPM grows faster than with Heuri-CPM as the number of boxes n also grows. Finally, considering only the
38 problem instances that the solvers found feasible solutions for PosF-ILP, Exact-CPM and Heuri-CPM
in Table 6, the ratio of the average container volume with Exact-CPM or Heuri-CPM in comparison to
PosF-ILP is less than 36.00%, that is, the container volume of the solutions of the solvers with Exact-CPM
and Heuri-CPM is less than the half with PosF-ILP on average.

15



Table 6: Results for the instance set #D from Egeblad & Pisinger (2009).

Exact-CPM Heuri-CPM

n m X Y Z XY Z gap[%] lb time[s] w/o solution X Y Z XY Z gap[%] lb time[s] w/o solution

20 5 218.50 185.10 117.10 5,323,116.50 14.10 4,525,939.90 tl 0 211.00 158.80 134.10 5,280,795.10 14.29 4,525,938.40 tl 0
20 243.60 185.30 98.30 5,142,433.40 15.25 4,383,201.40 tl 0 201.90 158.40 133.90 5,264,297.80 16.74 4,383,198.60 tl 0

40 5 304.80 266.90 135.20 11,422,796.00 20.82 9,051,878.40 tl 0 250.60 211.30 176.60 10,908,652.40 17.02 9,051,876.80 tl 0
40 306.80 248.40 120.60 10,734,512.00 21.30 8,517,201.40 tl 0 245.10 204.10 165.20 10,222,773.40 16.68 8,517,200.60 tl 0

60 5 317.50 275.30 188.90 18,294,041.90 25.65 13,577,816.90 tl 0 279.90 239.80 205.00 16,204,252.20 16.21 13,577,815.20 tl 0
60 342.20 287.70 145.90 16,511,589.70 25.57 12,331,860.00 tl 0 259.70 241.60 191.60 15,078,034.30 18.21 12,331,856.40 tl 0

Table 7: Results for the instance set #E by adapting from Egeblad & Pisinger (2009).

Exact-CPM Heuri-CPM

n m X Y Z XY Z gap[%] lb time[s] w/o solution X Y Z XY Z gap[%] lb time[s] w/o solution

20 5 180.33 178.33 177.00 6,228,329.67 52.60 4,927,192.33 tl 4 170.80 168.40 164.60 5,563,894.60 11.44 4,525,938.40 tl 0
20 157.63 156.00 153.75 4,996,721.75 35.97 3,900,232.00 tl 2 165.20 163.40 162.40 5,512,871.20 20.49 4,383,198.60 tl 0

40 5 132.00 132.00 131.00 2,282,544.00 85.17 1,692,331.00 tl 8 213.00 211.20 209.00 11,261,853.60 19.62 9,051,876.80 tl 0
40 136.50 136.00 135.00 2,876,932.00 69.99 2,126,812.00 tl 6 205.40 205.00 203.80 10,765,141.60 20.88 8,517,200.60 tl 0

60 5 * * * * 100.00 * tl 10 244.80 244.20 241.00 17,160,484.80 20.88 13,577,815.20 tl 0
60 201.50 201.50 191.50 11,522,419.00 69.45 9,024,153.00 tl 6 231.80 231.60 229.80 15,537,273.60 20.63 12,331,856.40 tl 0

16



5. Concluding remarks

We address the three-dimensional open-dimension rectangular packing problem (3D-ODRPP). The prob-
lem gains relevance in the design of shipping containers of minimal volume, which is common in the man-
ufacturing, shipping, and warehouse industries (Junqueira & Morabito, 2017). Besides that, this activity is
going to play an important role in Industry 4.0 given the general concern in optimizing material usage and
reducing waste.

The literature has presented mainly mixed-integer programming formulations and their linearization
techniques for the 3D-ODRPP. We instead propose a simple but effective constraint programming (CP)
model based on a position-free modeling approach with logic operators. Since the CP paradigm exploits the
domain of the variables during the search, we also use techniques of the grid-position approach to reduce
the domain of the variables. Using two general-purpose optimization solvers, the results show our approach
is able to find optimal or near-optimal solutions quickly for the benchmark instances of the literature,
outperforming benchmark approaches in multiple instances. Considering all the 36 instances used in previous
related works, our approach Exact-CPM and Heuri-CPM obtains an optimal solution for 22 and 9 instances,
with an overall average gap of 4.06% and 6.58%, respectively, both presenting a feasible solution for all
instances. We observe that Grid-ILP and PosF-ILP are not able to solve 21 and 7 instances within the
given time limit, while their average gaps (considering only the instances they obtain a feasible solution) are
9.08% and 3.93%, respectively. Concerning the 120 larger instances based on the ep3 instances, our approach
Exact-CPM and Heuri-CPM obtains a feasible solution for 84 and 120 instances, respectively, while Grid-
ILP and PosF-ILP obtain a feasible solution for 0 and 38 instances. Thus, our approach outperforms the
literature models.

A path for future research is to extend the enhancements of the proposed CP model to consider more
recent developments about the grid of points such as extending the sets of reduced raster points or meet-in-
the-middle points and still obtaining an optimal solution. The challenge is to adapt these techniques without
losing the optimality; notice that these techniques were initially proposed for problems with containers
of fixed dimensions (Queiroz et al., 2015). Another path is the development of heuristic and/or exact
algorithms for the problem considering the presence of packing-related constraints, like vertical stability
and load balancing (Nascimento et al., 2021). Finally, one could investigate the relationship between the
3D-ODRPP and the variable-sized bin packing problem in the context of distribution center operations that
seek to select pre-existing boxes of minimal volume capable of enfolding the items of a customer order placed
via e-commerce.

Disclosure statement

No potential conflict of interest was reported by the authors.

Acknowledgment

The authors thank the financial support of the São Paulo Research Foundation (FAPESP-Brazil) [grant
numbers 2016/01860-1 and 2022/05803-3]; the National Council for Scientific and Technological Development
(CNPq-Brazil) [grants numbers 405702/2021-3, 405369/2021-2, and 311185/2020-7]; and the State of Goiás
Research Foundation (FAPEG-Brazil). The research was carried out using the computational resources of
the Center for Mathematical Sciences Applied to Industry (CeMEAI), funded by FAPESP-Brazil [grant
number 2013/07375-0].

References

Beasley, J. E. (1985). An exact two-dimensional non-guillotine cutting tree search procedure. Operations Research, 33 , 49–64.
doi:10.1287/opre.33.1.49.

Chen, C., Lee, S., & Shen, Q. (1995). An analytical model for the container loading problem. European Journal of Operational
Research, 80 , 68–76. doi:10.1016/0377-2217(94)00002-T.

17

http://dx.doi.org/10.1287/opre.33.1.49
http://dx.doi.org/10.1016/0377-2217(94)00002-T


Christofides, N., & Whitlock, C. (1977). An Algorithm for Two-Dimensional Cutting Problems. Operations Research, 25 ,
30–44. doi:10.1287/opre.25.1.30.

Cunha, J. G. A., De Lima, V. L., & De Queiroz, T. A. (2020). Grids for cutting and packing problems: a study in the 2d
knapsack problem. 4OR - A Quarterly Journal of Operations Research, 18 , 293–339. doi:10.1007/s10288-019-00419-9.

Egeblad, J., & Pisinger, D. (2009). Heuristic approaches for the two- and three-dimensional knapsack packing problem.
Computers & Operations Research, 36 , 1026–1049. doi:10.1016/j.cor.2007.12.004.

Herz, J. C. (1972). Recursive Computational Procedure for Two-dimensional Stock Cutting. IBM Journal of Research and
Development , 16 , 462–469. doi:10.1147/rd.165.0462.

Huang, Y.-H., & Hwang, F. J. (2018). Global optimization for the three-dimensional open-dimension rectangular packing
problem. Engineering Optimization, 50 , 1789–1809. doi:10.1080/0305215X.2017.1411484.

Iori, M., de Lima, V. L., Martello, S., Miyazawa, F. K., & Monaci, M. (2021). Exact solution techniques for two-dimensional
cutting and packing. European Journal of Operational Research, 289 , 399–415. doi:https://doi.org/10.1016/j.ejor.
2020.06.050.

Junqueira, L., & Morabito, R. (2017). On solving three-dimensional open-dimension rectangular packing problems. Engineering
Optimization, 49 , 733–745. doi:10.1080/0305215X.2016.1208010.

Junqueira, L., & Queiroz, T. A. (2022). The static stability of support factor-based rectangular packings: an assessment by
regression analysis. International Transactions in Operational Research, 29 , 574–599. doi:https://doi.org/10.1111/itor.
12750.

Lin, M.-H., Tsai, J.-F., & Chang, S.-C. (2017). A superior linearization method for signomial discrete functions in solving three-
dimensional open-dimension rectangular packing problems. Engineering Optimization, 49 , 746–761. doi:10.1080/0305215X.
2016.1211403.

Mundim, L. R., Andretta, M., & de Queiroz, T. A. (2017). A biased random key genetic algorithm for open dimension nesting
problems using no-fit raster. Expert Systems with Applications, 81 , 358–371. doi:https://doi.org/10.1016/j.eswa.2017.
03.059.

Nascimento, O. X., Queiroz, T. A., & Junqueira, L. (2021). Practical constraints in the container loading problem: Compre-
hensive formulations and exact algorithm. Computers & Operations Research, 128 , 105186. doi:https://doi.org/10.1016/
j.cor.2020.105186.

Queiroz, T. A., Miyazawa, F. K., & Wakabayashi, Y. (2015). On the l-approach for generating unconstrained two-dimensional
non-guillotine cutting patterns. 4OR - A Quarterly Journal of Operations Research, 13 , 199–219. doi:https://doi.org/
10.1007/s10288-014-0274-3.

Truong, C., Amodeo, L., Yalaoui, F., Hautefaye, J., & Birebent, S. (2020a). A product arrangement optimization method
to reduce packaging environmental impacts. IOP Conference Series: Earth and Environmental Science, 463 , 012164.
doi:10.1088/1755-1315/463/1/012164.

Truong, C.-T.-T., Amodeo, L., & Yalaoui, F. (2020b). A mathematical model for three-dimensional open dimension packing
problem with product stability constraints. In B. Dorronsoro, P. Ruiz, J. C. de la Torre, D. Urda, & E.-G. Talbi (Eds.),
Optimization and Learning (pp. 241–254). Cham: Springer International Publishing.

Truong, C. T. T., Amodeo, L., & Yalaoui, F. (2021). A genetic algorithm for the three-dimensional open dimension packing
problem. In B. Dorronsoro, L. Amodeo, M. Pavone, & P. Ruiz (Eds.), Optimization and Learning (pp. 203–215). Cham:
Springer International Publishing.

Tsai, J.-F., Wang, P.-C., & Lin, M.-H. (2015). A global optimization approach for solving three-dimensional open dimension
rectangular packing problems. Optimization, 64 , 2601–2618. doi:10.1080/02331934.2013.877906.

Vieira, M. V. C., Ferreira, F., Duque, J. C. M., & Almeida, R. M. P. (2021). On the packing process in a shoe manufacturer.
Journal of the Operational Research Society, 72 , 853–864. doi:10.1080/01605682.2019.1700765.

Wäscher, G., Haußner, H., & Schumann, H. (2007). An improved typology of cutting and packing problems. European Journal
of Operational Research, 183 , 1109–1130. doi:10.1016/j.ejor.2005.12.047.

18

http://dx.doi.org/10.1287/opre.25.1.30
http://dx.doi.org/10.1007/s10288-019-00419-9
http://dx.doi.org/10.1016/j.cor.2007.12.004
http://dx.doi.org/10.1147/rd.165.0462
http://dx.doi.org/10.1080/0305215X.2017.1411484
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2020.06.050
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2020.06.050
http://dx.doi.org/10.1080/0305215X.2016.1208010
http://dx.doi.org/https://doi.org/10.1111/itor.12750
http://dx.doi.org/https://doi.org/10.1111/itor.12750
http://dx.doi.org/10.1080/0305215X.2016.1211403
http://dx.doi.org/10.1080/0305215X.2016.1211403
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2017.03.059
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2017.03.059
http://dx.doi.org/https://doi.org/10.1016/j.cor.2020.105186
http://dx.doi.org/https://doi.org/10.1016/j.cor.2020.105186
http://dx.doi.org/https://doi.org/10.1007/s10288-014-0274-3
http://dx.doi.org/https://doi.org/10.1007/s10288-014-0274-3
http://dx.doi.org/10.1088/1755-1315/463/1/012164
http://dx.doi.org/10.1080/02331934.2013.877906
http://dx.doi.org/10.1080/01605682.2019.1700765
http://dx.doi.org/10.1016/j.ejor.2005.12.047

	Introduction
	Benchmark MIP models
	Formulation of Junqueira & Morabito (2017)
	Formulation of Huang & Hwang (2018)

	A constraint programming model for the 3D-ODRPP
	Enhancing the constraint programming model

	Computational experiments
	Solution approaches and problem instances
	Results of the instance sets #A and #B
	Results of the instance set #C
	Results of the instance sets #D1 and #D2

	Concluding remarks

