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Abstract

In this paper, we consider convex quadratic optimization problems

with indicators on the continuous variables. In particular, we assume that

the Hessian of the quadratic term is a Stieltjes matrix, which naturally

appears in sparse graphical inference problems and others. We describe

an explicit convex formulation for the problem by studying the Stieltjes

polyhedron arising as part of an extended formulation and exploiting the

supermodularity of a set function defined on its extreme points. Our com-

putational results confirm that the proposed convex relaxation provides

an exact optimal solution and may be an effective alternative, especially

for instances with large integrality gaps that are challenging with the

standard approaches.

1 Introduction

Given vectors a, c ∈ Rn, a Stieltjes matrix Q ∈ Rn×n (that is, Q ≻ 0 and

Qij ≤ 0 for i ̸= j), and a convex set C ⊆ R2n, consider the mixed-integer

quadratic optimization (MIQO) problem

min
x∈Rn,z∈{0,1}n

a⊤x+ c⊤z + x⊤Qx (1a)

s.t. x ◦ (e− z) = 0 (1b)

(x, z) ∈ C, (1c)
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where e is an n-dimensional vector of ones. Problem (1) with a Stieltjes ma-

trix Q arises naturally in statistical problems with graphical models, which we

discuss in §2, and others.

A fundamental step towards solving (1) effectively is designing strong convex

relaxations of the optimization problem. Several approaches have been proposed

for MIQO in the literature, by exploiting low-dimensional cases [13, 16] or low-

rank cases [4, 5, 15, 24, 25, 26]. In this paper, we turn our attention to a critical

substructure given by

XQ
def
=
{
(t,x, z) ∈ Rn+1 × {0, 1}n : t ≥ x⊤Qx, (1b)

}
·

Set XQ is the mixed-integer epigraph of a quadratic function with a Stieltjes

matrix and indicators. Atamtürk and Gómez [3] show that if a has all entries

of the same sign, problem (1) with a Stieltjes matrix Q is polynomial-time solv-

able. However, a tractable convex relaxation of (1) that guarantees optimality

under the same conditions has been missing. This paper presents such a convex

relaxation.

Outline

The rest of the paper is organized as follows. In §2, we discuss the applications

of quadratic optimization with a Stieltjes matrix and indicators. In §3, we

provide the necessary background for the paper. In §4, we convexify XQ by

exploiting an underlying polyhedral structure. In §5, we present experimental

results illustrating the computational impact of the proposed convexification.

Notation

Given any n ∈ Z+, let [n]
def
= {1, . . . , n}. We denote vectors and matrices in

bold. Moreover, 0 denotes either a vector or matrix of zeros (whose dimension is

clear from the context), e andE denote a vector and matrix of ones, respectively.

Given a set S ⊆ [n] we let eS ∈ Rn denote the indicator vector of S, i.e.,

(eS)i = 1 if i ∈ S and (eS)i = 0 otherwise. Moreover, given i ∈ S, we let

ei
def
= e{i} denote the i-th standard vector of Rn. Similarly, we let Eij be the

square matrix whose dimensions can be inferred from the context, with a 1 in

the (i, j)-th position and 0 elsewhere.

We let Sn+ denote the cone of positive semidefinite n× n matrices, and Sn++

the set of positive definite n×n matrices. Given a matrix W , we let W † denote

its pseudoinverse. A special case of the pseudoinverse that is used throughout

the paper pertains to matrices of the form W =

(
A 0

0 0

)
where A is invertible,

in which case W † =

(
A−1 0

0 0

)
. Given two matrices W1 and W2 of the

same dimension, we let W1 ◦W2 denote their Hadamard (entrywise) product.
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Given a matrix W ∈ Rn×n and set S, denote by WS ∈ RS×S the submatrix

of W induced by S. Moreover, given W ∈ Rn×n and S ⊆ [n], observe that(
W ◦ eSe⊤S

)
∈ Rn×n is the matrix that coincides withWS in the entries indexed

by S and is 0 elsewhere. To simplify the notation, given W ∈ Rn×n and S ⊆ [n],

we let

W ⋆
S

def
=
(
W ◦ eSe⊤S

)†
;

if S corresponds to the first indices of [n], then note that W ⋆
S =

(
W−1

S 0

0 0

)
·

2 MIQOs with Stieltjes matrices

Problem (1) with a Stieltjes matrix Q arises naturally in statistical problems

with graphical models, which we discuss in §2.1. Set XQ is critical to such

problems because a convex relaxation of (1) can be obtained as

min
(t,x,z)∈R2n+1

a⊤x+ c⊤z + t

s.t. (t,x, z) ∈ conv(XQ), (x, z) ∈ C,

and the relaxation is exact if C = R2n.

Understanding conv(XQ) for Stieltjes matrices can also be helpful in solving

MIQO problems with non-Stieltjes quadratic matrices. In such cases, a standard

approach in the literature is to decompose Q into simpler matrices of the form

Q = Q0 +
∑

k∈K Qk for some index set K, where Qk are “simple” matrices

and Q0 ⪰ 0 is a remainder “complicated” matrix. Then relaxations of problem

(1) can be obtained as

min
(t,x,z)∈R|K|+2n

a⊤x+ c⊤z + x⊤Q0x+
∑
k∈K

tk (2a)

s.t. (tk,x, z) ∈ conv(XQk
) ∀k ∈ K (2b)

(x, z) ∈ C. (2c)

The most prevalent relaxation in the literature to tackle (1) is the perspective

relaxation [1, 11, 12, 14], which is a special case of the approach outlined where

|K| = 1 and Q1 is a diagonal positive definite matrix. A good understanding

of relaxations of XQ allows one to extend the perspective relaxation to more

general (non-diagonal) classes of Stieltjes matrices. In fact, as we discuss in

§2.2, matrices Qk are not required to be Stieltjes to utilize the results of this

paper.

2.1 A direct application

Mixed-integer convex quadratic problems with Stieltjes matrices arise, for ex-

ample, in inference problems with Besag-York-Mollié graphical models [9]. In
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this class of graphical models, the vertex set V of graph G = (V,E) represents

latent random variables, Y , and the edge set E represents relationships between

random variables. The existence of an edge [i, j] ∈ E indicates that the random

variables i and j should have similar values. Thus, the values of the unobserved

random variables can be estimated as the optimal solution of the optimization

problem

min
x∈RV ,z∈{0,1}V

∑
i∈V

ai(yi − xi)
2 +

∑
[i,j]∈E

aij(xi − xj)
2 (3a)

s.t. (1b)− (1c), (3b)

where yi represents some noisy measurement of the value of random variable

Yi, i ∈ V , a ≥ 0 are parameters to be tuned, and the constraints incorporate

logical constraints on the estimators. We refer the reader to Han et al. [17]

for additional information on this class of combinatorial inference problems.

As mentioned in the introduction, if C = Rn × {0, 1}n or C = Rn
+ × {0, 1}n,

optimization problems with Stieltjes matrices and indicators can be solved in

polynomial time. We refer the reader to Atamtürk and Gómez [3] for the case

with a ≤ 0 and C = R+ × {0, 1}n.

2.2 Stieljes-equivalent classes

In several cases, quadratic functions with non-Stieltjes matrices can be trans-

formed into equivalent expressions with Stieltjes matrices. Specifically, given a

vector x ∈ Rn, matrix Q ∈ Rn×n and index set I ⊆ {1, . . . , n}, define

x̄ =

{
−xi if i ∈ I

xi otherwise,
and Q̄ij =

{
−Qij if |{i, j} ∩ I| = 1

Qij otherwise.

Then observe that x⊤Qx = x̄⊤Q̄x̄. Thus, since (t,x, z) ∈ XQ ⇔ (t, x̄, z) ∈
XQ̄, we find that we can convexify sets with non-Stieltjes matrices Q provided

that the transformed matrix Q̄ is Stieltjes.

Improved formulations for convexifications using Stieltjes-equivalent classes

have been presented in the literature. First, there have been notable efforts in

studying XQ where n = 2 [8, 13, 18, 27]. Naturally, any positive definite 2× 2

matrix is Stieltjes-equivalent: if Q12 ≤ 0, then Q is already Stieljes; otherwise,

after the substitution x̄1 = −x1, we recover an equivalent expression with a

Stieltjes matrix. In another line of work, Liu et al. [20] describe the closure

of the convex hull of XQ (in a polynomially-sized extended formulation) when

Q is tridiagonal. It can also be verified that tridiagonal matrices are Stieljes

equivalent.
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3 Preliminaries

In this section, we discuss some preliminary results concerning the convexifica-

tion of XQ relevant to the current paper.

Theorem 1 (Wei et al. [27]). Given any matrix Q ∈ Sn++, the closure of the

convex hull of XQ can be described in an extended formulation as

cl conv(XQ) =
{
(t,x, z) ∈ R2n+1 :∃W ∈ Rn×n such that

(
W x

x⊤ t

)
∈ Sn+1

+ ,

(z,W ) ∈ conv(PQ)
}
,

where PQ
def
=
{
(z,W ) ∈ {0, 1}n × Rn×n : W =

(
Q ◦ zz⊤)†} ·

Note that PQ is a finite set and, therefore, conv(PQ) is a polytope. Conse-

quently, we see from Theorem 1 that convexification ofXQ in a higher dimension

reduces to the convexification of a polyhedral set, allowing for the use of theory

and techniques from polyhedral theory. However, to utilize Theorem 1 effec-

tively, a major challenge must be overcome: characterizing or approximating

set conv(PQ), which has not been studied in the literature. Our goal in this

paper is to close this gap for the special case of Stieltjes polytopes, as defined

next.

Definition 1 (Stieltjes polytope). Given a Stieltjes matrix Q, the Stieltjes

polytope associated with Q is defined as

ZQ = conv
(
{(eS ,Q⋆

S)}S⊆[n]

)
· (4)

Example 1. Let n = 3, define D =

(
3 0 0
0 4 0
0 0 3

)
, q = e and Q = D − ee⊤ =(

2 −1 −1
−1 3 −1
−1 −1 2

)
. For the Stieltjes matrix Q the Stieltjes polytope ZQ is the

convex hull of the following eight points in R12:0,

0 0 0
0 0 0
0 0 0

 ,

e1,

1/2 0 0
0 0 0
0 0 0

 ,

e2,

0 0 0
0 1/3 0
0 0 0

 ,

e3,

0 0 0
0 0 0
0 0 1/2

 ,

e{1,2},

3/5 1/5 0
1/5 2/5 0
0 0 0

 ,

e{2,3},

0 0 0
0 2/5 1/5
0 1/5 3/5

 ,

e{1,3},

2/3 0 1/3
0 0 0

1/3 0 2/3

 ,

e{1,2,3},

5/3 1 4/3
1 1 1

4/3 1 5/3

 .

■
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Since describing ZQ requires finding a polyhedral description of the inverses

of submatrices of Q, we review two technical lemmas concerning matrix inver-

sion that will be used throughout the paper.

Lemma 1 (Blockwise inversion, Lu and Shiou [22]). The inverse of a non-

singular square matrix R =

(
A B

C D

)
is given by

R−1 =

(
A−1 +A−1B(D −CA−1B)−1CA−1 −A−1B(D −CA−1B)−1

(D −CA−1B)−1CA−1 (D −CA−1B)−1

)
.

We apply Lemma 1 to a special class of matrices. We summarize the relevant

results in the following corollary.

Corollary 1. The inverse of a positive definite matrix R =

(
A v

v⊤ d

)
, where

A ∈ Rn×n, v ∈ Rn and d ∈ R+ is given by

R−1 =

(
A−1 +A−1v(d− v⊤A−1v)−1v⊤A−1 −A−1v(d− v⊤A−1v)−1

(d− v⊤A−1v)−1v⊤A−1 (d− v⊤A−1v)−1

)
·

Moreover, letting u
def
=

(
−A−1v

1

)
, the identity

(
A v

v⊤ d

)†

−
(
A 0

0⊤ 0

)†

=
1

d− v⊤A−1v
uu⊤ (5)

holds.

Note that since the difference in (5) is a rank-one matrix and, therefore, it

is positive semi-definite. A recursive application of this property also wields

that if T ⊇ S, then W ⋆
T ⪰W ⋆

S . The second lemma we introduce concerns the

inverses of Stieltjes matrices in particular.

Lemma 2 (Supermodular inverses, Atamtürk and Gómez [3]). Given a matrix

Q ∈ Rn×n and a pair of indices i, j ∈ [n], define the set function θij(S)
def
=

(Q⋆
S
†
)ij as the (i, j)-th entry of matrix Q⋆

S. If Q is a Stieltjes matrix, then θij
is a non-decreasing supermodular function for all pairs of indices i, j ∈ [n].

Observe that since θij(∅) = 0 and θij is non-decreasing, Lemma 2 implies

that inverses of Stieltjes matrices are non-negative, a fact that is observed in

[23] (along with several other properties of Stieltjes matrices).

4 Facial structure of Stieltjes polytopes

In this section, we study convexifications of Stieltjes polytopes as defined in

Definition 1. Throughout, matrix Q ∈ Rn×n is assumed to be Stieltjes.
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Proposition 1. Any point (z,W ) ∈ ZQ satisfies the following properties:

1. Wij = Wji for all 1 ≤ i < j ≤ n,

2.
∑n

j=1 QijWij = zi for all i = 1, . . . , n,

3. Wij = 0 for all i, j such that Q−1
ij = 0,

4. Wij ≥ 0 for all i, j.

Proof. We first check the validity of the equalities. The first set of equalities

follows since all extreme points of ZQ have symmetric matrices. The second set

follows from [27, Proposition 6]. For the third set, from Lemma 2 (non-negative

and non-decreasing θ) it follows that extreme points satisfy 0 ≤ Wij ≤ Q−1
ij :

clearly, if Q−1
ij = 0, then Wij = 0 holds. Finally, the fourth set of inequalities

follows directly from the non-negativity of inverses of Stieltjes matrices.

It is evident from Proposition 1 that ZQ is not full-dimensional. In this

paper, we study the relaxation induced by the upper-bound constraints

P≤
Q

def
=
{
(z,W ) ∈ {0, 1}n × Rn×n : W ≤

(
Q ◦ zz⊤)†} ·

Defining Z≤
Q

def
= conv(P≤

Q ), it is easy to show that Z≤
Q is full-dimensional.

Given i, j ∈ [n] and S ⊆ [n], let θij(S) = (Q⋆
S)ij be the function introduced

in Lemma 2, and given k ∈ [n] \ S, let

ρij(k;S)
def
= θij(S ∪ {k})− θij(S).

Finally, let R(k;S) be the matrix that collects functions ρ in its entries; that is,

R(k;S)ij = ρij(k;S). Recall, from Corollary 1 and the discussion immediately

thereafter, that R is a rank-one matrix for all values of k and S. Supermodu-

larity of θij immediately leads to a class of valid inequalities.

4.1 Valid inequalities for P≤
Q

We now study the facial structure of Z≤
Q , which bounds matrix W from above.

The facets of Z≤
Q are given by the polymatroid inequalities [6], and are a direct

consequence of supermodularity of θ. For any permutation π = (π1, π2, . . . , πn)

of [n], define Sπ
0

def
= ∅ and for k ∈ [n], define set

Sπ
k

def
= {π1, π2, . . . , πk} ·

Proposition 2. For any i, j ∈ [n] and any permutation π = (π1, π2, . . . , πn) of

[n], the inequality

Wij ≤
n∑

k=1

ρij(πk;S
π
k−1)zπk

(6)

is valid for Z≤
Q .
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Proof. Inequality (6) is a polymatroid inequality, necessary to describe the

Lovász extension, which describes the concave envelope of a supermodular func-

tion [7, 21].

Observe that, given permutation π, inequalities (6) can be written compactly

(for all i, j ∈ [n]) as the matrix inequalities

W ≤
n∑

k=1

R(πk;S
π
k−1)zπk

. (7)

Example 1 (Continued). For matrix Q =

(
2 −1 −1
−1 3 −1
−1 −1 2

)
and permutation π =

(1, 2, 3), inequalities (7) reduce toW11 W12 W13

W21 W22 W23

W31 W32 W33

 ≤

1/2 0 0
0 0 0
0 0 0

 z1+

1/10 1/5 0
1/5 2/5 0
0 0 0

 z2+

16/15 4/5 4/3
4/5 3/5 1
4/3 1 5/3

 z3.■

4.2 Strength of the inequalities

We now show that inequalities (7) are indeed strong.

Proposition 3. Inequality (6) is facet-defining for conv(P≤
Q ).

Proof. In Table 1, we provide (n + n2) affinely independent points in P≤
Q such

that (6) holds at equality.

Table 1: Affinely independent points in P≤
Q satisfying (6) at equality.

# Indices z W

1 - e Q−1

2 ∀k, ℓ ∈ [n] with (k, ℓ) ̸= (i, j) and Q−1
ij ̸= 0 e Q−1 −Ekℓ

3 ∀k ∈ [n] eSπ
k

Q⋆
Sπ

k

• Point #1 belongs to PQ and, therefore, it also belongs to P≤
Q ; if z = e,

then inequality (6) reduces to Wij ≤ θij(e) = Q−1
ij , and thus the inequality is

satisfied at equality at this point.

• Points #2 correspond to n2 − 1 points which are obtained by subtracting

a non-negative quantity from the feasible point #1 and, therefore, also belong

to P≤
Q ; the inequality is tight for the same reason as point #1. Points #2 are

affinely independent from previously introduced points because they are the first

points with Wkℓ ̸= Q−1
kℓ .

• Points #3 correspond to n points belonging to PQ; therefore, they also

belong to P≤
Q ; if z = eSπ

k
, then inequality (6) reduces to Wij ≤ θij(eSπ

k
) =(

Q⋆
Sπ

k

)
ij
, and thus the inequality is satisfied at equality at this point. Finally,
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points #3 are affinely independent from others because they are the first points

with zk ̸= 1.

From Proposition 3, we see that all inequalities (6) for all combinations of

i, j ∈ [n] and all permutations π are necessary to describe Z≤
Q . We now show

that they are, along with the bound inequalities, sufficient.

Theorem 2. Inequalities (7) (for all permutations π) and bound constraints

0 ≤ z ≤ e describe conv(P≤
Q ).

Proof. We show that, for any c ∈ Rn and Σ ∈ Rn×n, the optimization problems

min
z,W

c⊤z + ⟨Σ,W ⟩ s.t. (z,W ) ∈ P≤
Q (8)

min
z,W

c⊤z + ⟨Σ,W ⟩ s.t. (7), 0 ≤ z ≤ e (9)

are equivalent; that is, either both are unbounded, or there exists an optimal

solution of (9) that is feasible for (8).

Note that if Σij > 0 for any i, j ∈ [n], then both problems are unbounded

by letting Wij → −∞. Therefore, we assume Σ ≤ 0. In this case, in optimal

solutions of (8), W will be set to its upper bound, i.e., W =
(
Q ◦ zz⊤)† holds.

By abuse of notation, let θij(z)
def
= θij(Sz), where Sz = {i ∈ [n] : zi = 1}; since((

Q ◦ zz⊤)†)
ij
= θij(z), we find that (8) is equivalent to

min
z∈{0,1}n

c⊤z +

n∑
i=1

n∑
j=1

Σijθij(z). (10)

Recalling that functions θij are supermodular (Lemma 2) and Σij ≤ 0 for all i, j,

we find that Θ(z)
def
=
∑n

i=1

∑n
j=1 Σijθij(z) is a submodular function. Therefore,

it follows that (10) is equivalent to minimization over its Lovász extension [21],

which is precisely (9).

Now consider the relaxation of (1) induced by Theorem 1, but using only

inequalities (7) and bound constraints instead of the full description of PQ:

min
x,z,W ,t

a⊤x+ c⊤z + t (11a)

s.t.

(
W x

x⊤ t

)
∈ Sn+1

+ (11b)

W ≤
n∑

k=1

R(πk;S
π
k−1)zπk

for all permutations π of [n] (11c)

(x, z) ∈ C (11d)

x ∈ Rn, z ∈ [0, 1]n, t ∈ R+, W ∈ Rn×n. (11e)
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Because constraints (11c) are a relaxation of constraints (z,W ) ∈ PQ, we find

from Theorem 1 that (11) is indeed a valid relaxation. In general, (11) can

be weak: in fact, it can be unbounded unless constraints W ≥ 0 are also

added. Nonetheless, as we now show, under the specific conditions stated in

[3] for polynomial-time solvability of (1), the relaxation (11) is exact. Given a

Stieltjes matrix Q, define the optimization

min
x∈Rn,z∈{0,1}n

x◦(e−z)=0

a⊤x+ c⊤z + x⊤Qx, (12)

which is the special case of (1) with C = R2n.

Proposition 4. If a ≤ 0 or a ≥ 0, and C = R2n, then there exists an optimal

solution of (11) that is also optimal for (12), with the same objective value.

Proof. The start of the proof follows the steps in [27, Theorem 1], which we

repeat for completeness. Constraint (11b) is equivalent to the system [2]

W ⪰ 0, t ≥ x⊤W †x, and WW †x = x.

Therefore, variable t can be easily projected out since any optimal solution

satisfies t = x⊤W †x. We can restate problem (11) as

min
x,z,W

a⊤WW †x+ c⊤z + x⊤W †x (13a)

s.t. WW †x = x, W ∈ Sn+ (13b)

(11c)− (11e). (13c)

Note that we use the equality in (13b) to rewrite a linear term in the objec-

tive. We now project out variables x: The KKT conditions associated with the

continuous variables are

WW †x = x

a⊤WW † + 2W †x+ λ⊤ (WW † − I
)
= 0,

which are satisfied by setting x∗ = − 1
2Wa and λ∗ = 0. Substituting x with

its optimal value, we find that problem (13) further simplifies to

min
z,W
⟨−1

4
aa⊤,W ⟩+ c⊤z (14a)

s.t. (11c),W ∈ Sn+,0 ≤ z ≤ e. (14b)

In the last step of the proof (which does not follow from [27]), we study the

relaxation of (14) obtained by removing constraint W ∈ Sn+. In particular, we

show that there exist optimal solutions (z̄, W̄ , t̄) of the relaxation such that:

(i) z̄ is integral; (ii) W̄ is positive semidefinite; (iii) t̄ = − 1
4a

⊤
S Q−1

S aS , where

S = {i ∈ [n] : z̄i = 1}. As a consequence, (z̄, W̄ , t̄) is also optimal for (14) and

(12), concluding the proof.

10



Observe that − 1
4aa

⊤ ≤ 0 due to the assumption that a is of the same sign.

Therefore, if W ∈ Sn+ is removed, then in optimal solutions of the relaxation,

W̄ is equal to its upper bound, i.e.,

W̄ = min
π∈Π

n∑
k=1

R(πk;S
π
k−1)zπk

, (15)

where Π is the set of all permutations of [n]. In other words, the relaxation is

equivalent to

min
0≤z≤1

min
π∈Π

{
n∑

k=1

(
⟨−1

4
aa⊤,R(πk;S

π
k−1)⟩

)
zπk

}
+ c⊤z. (16)

Recognizing (16) as a linear optimization problem over the Lovász extension

of a submodular function, we conclude that z̄ ∈ {0, 1}n in optimal solutions,

proving (i). Since optimal permutations for (15) correspond to nondecreasing

orders of z̄ [10], letting τ = ∥z̄∥0 we conclude that

W̄ =

τ∑
k=1

R(πk;Sk−1) =

τ∑
k=1

(
W ⋆

Sk
−W ⋆

Sk−1

)
= W ⋆

Sτ
,

where we defined W ⋆
S0

= 0. In particular, W̄ ∈ Sn+, proving (ii), and substi-

tuting W with its optimal value in (16) we can prove (iii).

4.3 Separation algorithm

We now discuss the separation problem: given any fixed point (z̄, W̄ ) ∈ Rn ×
Rn×n, how to find a violated inequality (6) if there exists one. Since inequal-

ity (6) is a polymatroid inequality, it follows that the most violated inequalities

correspond to permutations (π1, π2, . . . , πn) such that z̄π1 ≥ z̄π2 ≥ · · · ≥ z̄πn

[10]. In particular, since the permutation depends only on the values of z̄, we

find that most violated permutations coincide for all values of indices i, j in

(6). Therefore, using the matrix notation (7), we see that a straightforward

way to compute a violated inequality is simply to compute matrices Q⋆
Sπ

k
for all

k ∈ [n], which requires inverting O(n) matrices. A faster approach to compute

the coefficients of inequalities (7) consists of using a Cholesky decomposition.

Indeed, consider the properties of coefficient matrices {R(πk;Sk−1)}nk=1 in

inequalities (7). First, they are rank-one matrices; that is, there exists vk ∈
Rn such that R(πk;Sk−1) = vkv

⊤
k . Second, they add up to Q−1; that is,∑n

k=1 R(πk;Sk−1) =
∑n

k=1 vkv
⊤
k = Q−1. Third, the entries correspond-

ing to indices that have not appeared yet in the permutation vanish; that is,

R(πk;Sk−1)ij = 0 if max{i, j} > k, or equivalently (vk)i = 0 if i > k. If

we define a matrix V ∈ Rn×n such that its i-th column is precisely vi, these

properties are equivalent to V V ⊤ = Q−1 and V is upper triangular (where el-

ements are ordered according to the permutation π). Note that these properties

11



are similar to the ones corresponding to a Cholesky decomposition of Q−1, ex-

cept that the matrix in the Cholesky decomposition is lower triangular instead

of upper triangular. To account for this difference, it suffices to compute the

Cholesky decomposition in the reverse order of the permutation, and because

Q−1 ∈ Sn++, the Cholesky decomposition is the unique matrix satisfying the re-

quired properties, and thus indeed coincides with the coefficients in inequalities

(7). We summarize the separation algorithm in Proposition 5 below.

Proposition 5. Algorithm 1 produces up to O(n2) violated inequalities, one for

each combination of elements i, j ∈ [n], if there exists any.

Algorithm 1 Separation procedure

Input: Point z̄ ∈ Rn.

Output: Most violated inequalities.

1: Find a permutation π satisfying z̄π1 ≤ z̄π2 ≤ · · · ≤ z̄πn ▷ Sorting

2: Compute Cholesky decomposition Q−1 = V V ⊤ according to order π

3: return inequalities

W ≤
n∑

k=1

(
vπkv

⊤
πk

)
zπk

where vπi denotes the i-th column of V .

We emphasize that the order in line 1 of Algorithm 1 is non-decreasing,

instead of the natural non-increasing order that arises often with polymatroid

inequalities, since we use the reverse order of the permutation in computing the

Cholesky decomposition as we discussed in the preceding paragraph.

We now discuss the runtime of Algorithm 1. Since sorting the variables

(line 1) can be done in O(n log n), we find that the complexity of Algorithm 1 is

dominated by the cost of computing a Cholesky decomposition (line 2), which

is usually O(n3). Note that line 2 also requires inverting matrix Q, but this

operation (with cubic runtime as well) needs to be performed only once as

preprocessing. In some cases, the runtime for a general Stieltjes matrix can

be improved. For example, Lemma 1 can be called recursively to compute

the coefficients, requiring O(n) calls to a routine for matrix-vector product

and matrix-matrix subtraction: if Q is sparse, then the vectors appearing in

the computations are sparse as well, potentially improving runtimes for the

multiplications (with appropriate data structures). Finally, we point out that

the output of Algorithm 1 consists of O(n2) inequalities with up to n nonzeros

per inequalities, thus formulating the inequalities in a solver already requires

processing a cubic number of nonzeros, thus it is not possible to improve this

runtime (at least with an off-the-shelf solver).

12



5 Computational results

In this section, we describe computational experiments performed to test the

effectiveness of the proposed convexification. For the computational study, we

consider problems of the form (3), arising from the inference of sparse Besag-

York-Mollié graphical models as discussed in §2.1. Specifically, given a graph

G = (V,E), we consider problem

min
x∈RV ,z∈{0,1}V

1

σ2

∑
i∈V

(yi − xi)
2 +

∑
[i,j]∈E

(xi − xj)
2 + µ

∑
i∈V

zi (17a)

s.t.
∑
i∈V

zi ≤ k, x ◦ (e− z) = 0, (17b)

where σ, µ, k ∈ R+ are given parameters. In our experiments, we solve cardinality-

penalized problems with µ > 0 and k = |V | (modeling situations where the

density of the model is penalized) as well as cardinality-constrained problems

with µ = 0 and k < |V | (modeling situations where the sparsity is directly

specified). In either case, we solve (17) for different values of σ, a parameter

that is connected to the noise of the underlying model.

𝑋1

𝑦1

𝜎1
2

𝑋2

𝑦2

𝜎2
2

𝑋3

𝑦3

𝜎3
2

𝑋4

𝑦4

𝜎4
2

𝑋5

𝑦5

𝜎5
2

𝑋6

𝑦6

𝜎6
2

𝑋7

𝑦7

𝜎7
2

𝑋8

𝑦8

𝜎8
2

𝑋9

𝑦9

𝜎9
2

𝑑14 𝑑25 𝑑36

𝑑47 𝑑58 𝑑69

𝑑56𝑑45

𝑑23𝑑12

𝑑78 𝑑89

Figure 1: Grid graph for modeling the Besag-York-Mollié process; from [19].

The data are generated following [19] and are available online at https:

//sites.google.com/usc.edu/gomez/data. Figure 1 depicts the graph G used

to model spatial processes. Graph G is given by a two-dimensional lattice; that

is, vertices V = [n] are arranged in a grid, with edges between horizontally and

vertically adjacent vertices. We consider instances with grid sizes 10× 10, thus

resulting in instances with |V | = 100. To generate the data, we create a sparse

“true” signal {Xi}i∈V with three non-negative spikes, each spike affecting a

3 × 3 block of elements in V . Thus, the generated signal can have at most 27

non-zeros (the construction of the underlying true signal is explained in detail

in Appendix A). We then generate noisy observations as yi = |Xi+ ϵi|, where ϵi
are i.i.d. samples from a Gaussian distribution N (0, σ2). Note that since y ≥ 0,
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linear coefficients of variables x obtained by expanding the quadratic terms in

(17a) are non-positive.

In § 5.1, we describe the models tested, and in § 5.2, we report the compu-

tational experiments.

5.1 Models

We compare three reformulations or relaxations of the problem (1). The for-

mer two are commonly used perspective formulations [11, 14], while the latter is

based on the valid inequalities proposed in §4. We describe these formulations

next.

pers-c: Perspective relaxation with continuous variable z and big-M con-

straints:

min
x,z

1

σ2
∥y∥22 +

1

σ2

∑
i∈V

(
x2
i

zi
− 2yixi

)
+
∑

[i,j]∈E

(xi − xj)
2 + µ

∑
i∈V

zi (18a)

s.t.
∑
i∈V

zi ≤ k, −Mz ≤ x ≤Mz (18b)

x ∈ RV , z ∈ [0, 1]V , (18c)

where the value M is large enough so that the big-M constraints are redundant

when zi = 1. In our computations, the bounds are set to M = 10.

pers-b: Perspective reformulation pers-c with binary variables z ∈ {0, 1}V .
Using this formulation, problems are solved to optimality with branch-and-

bound, closing the gap from the perspective relaxation.

poly: Polymatroid relaxation with the equalities and lower bounds given in

Proposition 1 and the polymatroid inequalities as described in (11):

min
x,z,W ,t

1

σ2
∥y∥22 − 2

1

σ2

∑
i∈V

yixi + µ
∑
i∈V

zi + t (19a)

s.t.
∑
i∈V

zi ≤ k (19b)(
W x

x⊤ t

)
⪰ 0 (19c)

Wij = Wji for all i, j ∈ V (19d)∑
j∈V

QijWij = zi for all i ∈ V (19e)

W ≤
∑
k∈V

R(πk;S
π
k−1)zπk

for all permutations π of V (19f)

x ∈ RV , z ∈ [0, 1]V , t ∈ R+, W ∈ RV×V
+ , (19g)
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where Q is the Stieltjes matrix obtained by collecting all nonlinear terms in the

objective and inequalities (19f) are those required to describe conv(P≤
Q ). Note

that (19) is a reformulation of (1) under the conditions of Proposition 4, that

is, in the cardinality-penalized instances, and is a relaxation otherwise.

Remark 1 (Implementation of poly). As the total number of polymatroid in-

equalities is |V |!, listing all of them in (19) is impractical. Instead, we add

(19f) as cutting planes; that is, we solve the poly problem (19) by adding

polymatroid inequalities (19f) as cutting planes iteratively using the separation

procedure 1 and stopping when the difference of the objective values between

two subsequent iterations is small enough (< 10−3).

5.2 Results

The perspective formulations (pers-c, pers-b) are solved with Gurobi version

9.0.2 using a single thread. The time limit for the computations is set to one

hour; all other configurations are set to default values. The polymatroid re-

laxation (poly) is solved with Mosek version 9.3 with the default settings. All

experiments are run on a Lenovo laptop with a 1.9 GHz Intel®CoreTM i7-8650U

CPU and 16 GB main memory. For cardinality-constrained instances, we set

k = 20, and for cardinality-penalized instances, we choose µ so that the number

of non-zeros of the estimator approximately matches the number of non-zeros

of the underlying signal.

Tables 2 and 3 present results for values of σ2 ∈ {0.5, 1.0, 2.0, 5.0, 10.0} and
cardinality-penalized and cardinality-constrained instances, respectively. Each

row represents the average over five instances generated with identical parame-

ters. The gap corresponding to each model compares the lower bound produced

by the model with the best upper bound found by Gurobi with model pers-b.

For model pers-b, we also report, under the #Opt column, the number of in-

stances that can be solved to optimality before the time limit, and, under the

Gap column, we report the average optimality gap at termination. The number

of iterations for model poly is the number of cutting plane rounds required

before termination, with each iteration resulting in the addition of up to
(|V |

2

)
cuts. All times reported are in seconds.

Table 2: Experiments with cardinality-penalized instances.

pers-c pers-b poly

σ2 µ Time Gap #Opt Time Gap #Iter Time Gap

0.5 0.25 0.1 2.4% 5 2.1 0.0% 4 102.4 3 · 10−8

1.0 0.12 0.1 5.7% 1 2,998.3 1.7% 6 235.4 7 · 10−4

2.0 0.12 0.1 5.1% 2 2,937.1 0.5% 6 218.3 2 · 10−7

5.0 0.12 0.1 5.1% 1 3,021.9 0.9% 6 235.6 3 · 10−6

10.0 0.12 0.1 5.1% 2 2,990.6 0.8% 6 219.0 9 · 10−8
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Table 3: Experiments with cardinality-constrained instances.

poly pers-b poly

σ2 Time Gap #Opt Time Gap #Iter Time Gap

0.5 0.1 3.3% 5 13.1 0.0% 4 181.3 4 · 10−7

1.0 0.1 7.4% 0 3,600.0 1.5% 7 285.3 9 · 10−4

2.0 0.1 7.1% 1 3,017.3 1.3% 7 277.5 3 · 10−3

5.0 0.1 7.1% 1 2,990.3 1.4% 7 281.7 2 · 10−3

10.0 0.1 7.1% 1 2,988.9 1.3% 7 260.0 3 · 10−3

In both cases, we observe that the relaxations from the perspective relaxation

can be solved in a fraction of a second and yield gaps between 2% and 7%: the

gaps are larger for cardinality-constrained instances and for problems with larger

values of σ. Indeed, for a larger value of σ, terms x2
i /zi (crucial to the strength of

the perspective relaxation) in the objective of (18) represent a relatively smaller

portion of the objective, leading to larger gaps. When used in a branch-and-

bound algorithm, it is possible to efficiently prove optimality if σ2 = 0.5, but

most instances with larger values of σ cannot be solved within the time limit of

one hour.

For cardinality-penalized instances, model poly delivers optimal solutions

on average in about 200 seconds. The runtimes are larger than those required

to solve the perspective relaxation pers-c due to expenses associated with solv-

ing a semidefinite program with a large number of linear inequalities via cutting

planes. Nonetheless, for the more challenging instances with σ2 ≥ 1, the run-

times of poly are at least an order of magnitude less than those arising from

the branch-and-bound method to solve pers-b; for these instances, both poly

and pers-b are exact models. The runtimes of poly for cardinality-constrained

instances are similar. Although in this case, due to the additional cardinality

constraint, poly is not guaranteed to deliver exact solutions to problem (17),

the gaps proved are almost 0% and much smaller than those obtained after one

hour of branching with pers-b.
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part, by grant #2007814 from the National Science Foundation.

16



References

[1] M. S. Aktürk, A. Atamtürk, and S. Gürel. A strong conic quadratic re-
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A Construction of true signals in computational

experiments

Here we discuss how to construct the true signal {Xi}i∈V . Note that since each

node in G is uniquely determined by its coordinates 1 ≤ k, ℓ ≤ m in the m×m

grid, we let X(k,ℓ) denote the value of the signal at those coordinates.

The true signal is initially set to 0 at all its coordinates. We then repeat the

following process three times:

1. Uniformly pick coordinates 2 ≤ k, ℓ ≤ 9.

2. Generate a 9-dimensional Gaussian spike s ∼ N (0,Θ−1), where

Θ =



4 −1 0 −1 0 0 0 0 0

−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0

0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0

0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4


·

3. For all 0 ≤ j1, j2 ≤ 2, let h = 1 + 3j1 + j2 and update

X(k−1+j1,ℓ−q+j2) ← X(k−1+j1,ℓ−1+j2) + |sh| .
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