
A Proximal-Gradient Method for Constrained Optimization ∗1

YUTONG DAI , XIAOYI QU , AND DANIEL P. ROBINSON†2

Abstract. We present a new algorithm for solving optimization problems with objective func-3
tions that are the sum of a smooth function and a (potentially) nonsmooth regularization function,4
and nonlinear equality constraints. The algorithm may be viewed as an extension of the well-known5
proximal-gradient method that is applicable when constraints are not present. To account for non-6
linear equality constraints, we combine a decomposition procedure for computing trial steps with an7
exact merit function for determining trial step acceptance. Under common assumptions, we show8
that both the proximal parameter and merit function parameter eventually remain fixed, and then9
prove a worst-case complexity result for the maximum number of iterations before an iterate satisfy-10
ing approximate first-order optimality conditions for a given tolerance is computed. Our preliminary11
numerical results indicate that our approach has great promise, especially in terms of returning ap-12
proximate solutions that are structured (e.g., sparse solutions when a one-norm regularizer is used).13

Key words. nonlinear optimization, nonconvex optimization, worst-case iteration complexity,14
regularization methods, sequential quadratic programming, sequential quadratic optimization15

AMS subject classifications. 49M37, 65K05, 65K10, 65Y20, 68Q25, 90C30, 90C6016

1. Introduction. In this paper we consider the problem17

(1.1) min
x∈Rn

f(x) + r(x) subject to (s.t.) c(x) = 0,18

where f : Rn → R is continuously differentiable, r : Rn → R is convex (possibly non-19

differentiable) and nonnegative valued, and c : Rn → Rm is continuously differentiable20

withm ≤ n. The optimization problem (1.1) has applications in model predictive con-21

trol [2], image processing [35], nonsmooth optimization on a Steifel manifold [34], and22

low rank matrix completion [6]. In addition, optimization problems such as sparse23

approximation, empirical risk minimization, and neural network modeling with mixed24

activations can be reformulated as (1.1); see [37] for additional details.25

When the regularizer r is not present, the algorithms most commonly employed26

to solve problem (1.1) are penalty methods [9, 11, 12, 15, 28, 32, 36] and sequential27

quadratic optimization (SQO) methods [1, 19, 20, 22, 23, 24, 29, 31]. Penalty methods28

is to solve problem (1.1) by minimizing a sequence of unconstrained optimization29

subproblems defined in terms of f , a measure of constraint violation, and various30

parameters (e.g., Lagrange multiplier estimates and penalty parameters). After each31

minimization subproblem in the sequence is solved, the parameters are updated in32

a manner that allows for convergence guarantees. Since computing each subproblem33

minimizer may be expensive, and the number of subproblems solved may be nontrivial,34

penalty methods often require a significant amount of computation (e.g., numbers of35

iterations, function/derivative evaluations, and linear systems solved), which may be36

prohibitive. On the other hand, during each iteration of a line search SQO method,37

the main expense is the computation of a search direction, which is achieved by38

solving a single linear system of equations. Equivalently, the search direction is the39

minimizer of a certain quadratic approximation of f subject to a linearization of40

the constraints. SQO methods are generally viewed as the state-of-the-art because41

∗This work is supported by the U.S. Office of Naval Research under Award Number N00014-21-
1-2532 and by the U.S. National Science Foundation, Division of Mathematical Sciences, Computa-
tional Mathematics Program under Award Number DMS–2012243.

†All authors are from the Department of Industrial and Systems Engineering, Lehigh University,
Bethlehem, PA, USA; E-mail: yud319@lehigh.edu, xiq322@lehigh.edu, daniel.p.robinson@lehigh.edu

1

This manuscript is for review purposes only.

mailto:yud319@lehigh.edu
mailto:xiq322@lehigh.edu
mailto:daniel.p.robinson@lehigh.edu

of their remarkable practical performance. The superior performance of line search42

SQO methods over penalty methods can be attributed to two main sources. First,43

line search SQO methods solve a sequence of linear systems rather than a sequence44

of general optimization subproblems. Second, the search directions for SQO methods45

are designed to find a solution of problem (1.1) (again, when r is not present), whereas46

penalty methods indirectly aim to find a solution of problem (1.1) (again, when r is47

not present) by adjusting its parameters after minimizing each subproblem.48

When the constraint c(x) = 0 is not present in problem (1.1), the algorithms most49

commonly employed are variants of the proximal-gradient (PG) method [4, 5, 7, 8,50

25, 26]. Each iterate of a basic PG method is the minimizer of a subproblem (i.e., the51

PG subproblem) formed by replacing f in (2.1) by the sum of its first-order Taylor52

expansion (expanded at the current point) and a simple quadratic-regularization term.53

For some commonly used regularizers, the PG subproblem has a closed-form solution,54

which is an attractive feature of such methods. Moreover, since the regularizer r is55

explicitly used in the definition of the PG subproblem (i.e., it is not approximated), the56

solutions generated by a PG method inherit the structure induced by the regularizer57

(e.g., if r(x) = ∥x∥1, then a PG method can produce sparse solution estimates). This58

structure preserving property is an important feature of PG methods when used to59

solve problem (1.1) (again, when the constraint c(x) = 0 is not present).60

The work in this paper is motivated by both SQO methods for solving (1.1) when61

r is not present, and the structure preserving property of PG methods for solving (1.1)62

when the constraint c(x) = 0 is not present. In particular, we design and analyze a63

method for solving problem (1.1) based on subproblems that linearize the constraints64

(like SQO methods) and explicitly use the regularizer (like PG methods).65

1.1. Literature review. We are aware of four papers, namely [14, 17, 27, 37],66

that present algorithms for minimizing regularized optimization functions subject to67

nonlinear constraints. The algorithms in [14, 37] are penalty methods built upon68

the popular augmented Lagrangian function. Therefore, both approaches have a69

penalty parameter and a vector of Lagrange multiplier estimates that balance the70

objective and constraint functions, and must be updated throughout the optimization71

procedure. We note that [14] can solve regularized optimization problems with both72

equality and inequality constraints, whereas the algorithm in [37] can only handle73

special classes of regularized optimization problems with constraints. The algorithms74

presented in [17, 27] are of the SQO variety. In [17], subgradient information of75

the nonsmooth function is used to formulate a sequence of min-max subproblems.76

Since the regularizer is approximated in each subproblem, the structure preserving77

property of the iterates is lost. In contrast, [27] relies on a smoothing technique78

that approximates the nonsmooth term in the objective function and, thereafter,79

sequentially solves a convex quadratic problem with linear constraints. Unfortunately,80

in general, the smoothing technique ruins the structure of the composite optimization81

problem, and consequently the structure preserving property is lost.82

1.2. Contributions. Our contributions relate to the proposal and analysis of a83

new algorithm for solving problem (1.1), as we summarize next.84

• We propose a PG-based algorithm for solving problem (1.1) that uses sub-85

problems with linearized constraints (like SQO methods) and explicit regu-86

larization (like PG methods). The method that results from this combina-87

tion avoids the previously discussed challenges and weaknesses of augmented88

Lagrangian approaches, and provides solution estimates that are structure89

preserving. During each iteration, we compute a trial step as the sum of two90

2

This manuscript is for review purposes only.

orthogonal directions called the normal and tangential steps. First, the nor-91

mal step is computed from a trust region subproblem designed to reduce the92

constraint violation. Second, the tangential step is computed from a linearly93

constrained convex optimization subproblem with objective function reminis-94

cent of PG methods (i.e., r appears explicitly and a proximal term is used).95

Overall, the tangential step aims to reduce the objective function while main-96

taining the predicted progress in reducing infeasibility achieved by the normal97

step. The quality of the trial step, defined as the sum of the normal and tan-98

gential steps, is then determined by an ℓ2 merit function that uses a merit99

parameter to weight the objective function relative to the two-norm of the100

constraint violation. The merit parameter and PG parameter (i.e., the weight101

on the proximal term) are reduced as the iterations proceed, if necessary, to102

promote convergence of the iterates to a solution of problem (1.1).103

• Under minimal assumptions, we prove that a measure of first-order optimality104

for a feasibility problem converges to zero. Under additional commonly used105

assumptions, we prove that the merit parameter and PG parameter both106

remain uniformly bounded away from zero. These results allow us to then107

prove that our algorithm generates a sequence of iterates such that any limit108

point is a KKT point (see Theorem 3.17). Moreover, we provide a worst-109

case complexity result for the maximum number of iterations before a certain110

criticality measure will be less than a given tolerance (see Theorem 3.15).111

• We present numerical experiments that verify our theoretical convergence112

results, and illustrate that our algorithm is capable of returning solutions113

that preserve the structure related to r. Specifically, we confirm that our114

method returns sparse solution estimates when r is chosen as the ℓ1-norm115

function, which is known to be a sparsity-inducing regularizer.116

1.3. Notation and assumptions. We use R to denote the set of real numbers117

(i.e., scalars), R≥0 (resp., R>0) to denote the set of nonnegative (resp., positive) real118

numbers, Rn to denote the set of n-dimensional real vectors, and Rm×n to denote119

the set of m-by-n-dimensional real matrices. The set of natural numbers is denoted120

as N := {0, 1, 2, . . . }. Given a matrix M ∈ Rm×n, we let σmin(M) (resp., σmax(M))121

denote the smallest (resp., largest) singular value of M . For v ∈ Rn, we let ∥v∥2 :=122 √∑n
i=1 v

2
i denote its two norm. For a nonempty compact set R ⊂ Rn, we let ∥R∥2 :=123

max{∥s∥2 : s ∈ R} denote its largest element measured in the two-norm.124

The following assumption is used throughout the paper.125

Assumption 1.1. Let X ⊂ Rn be an open convex set that contains the iterates126

{xk} ⊂ Rn and trial steps {xk + sk} ⊂ Rn generated by Algorithm 2.1. The function127

f : Rn → R is continuously differentiable and bounded below over X and its gradient128

function ∇f : Rn → Rn is Lipschitz continuous and bounded over X . Similarly,129

the function c : Rn → Rm is continuously differentiable and bounded over X and its130

Jacobian ∇c(x)T is Lipschitz continuous and bounded over X . Finally, the function131

r : Rn → R≥0 is convex and its subdifferential ∂r : Rn → Rn is bounded over X .132

Under Assumption 1.1, there exist constants (finf, κ∇f , κ∂r, κc, κ∇c, Lg, LJ) ∈133

R × R>0 × R>0 × R>0 × R>0 × R>0 × R>0 such that for all x ∈ X one has134

(1.2)
f(x) ≥ finf, ∥∇f(x)∥2 ≤ κ∇f , ∥∂r(x)∥2 ≤ κ∂r,

∥c(x)∥2 ≤ κc, ∥∇c(x)T ∥2 ≤ κ∇c,
135

3

This manuscript is for review purposes only.

and for all (x, x) ∈ X × X one has136

(1.3) ∥∇f(x)−∇f(x)∥2 ≤ Lg∥x− x∥2 and ∥∇c(x)T −∇c(x)T ∥2 ≤ LJ∥x− x∥2.137

For convenience, we define g(x) := ∇f(x) and J(x) := ∇c(x)T . We append a138

natural number as a subscript for a quantity to denote its value during an iteration139

of an algorithm; i.e., we let fk := f(xk), gk := g(xk), ck := c(xk), and Jk := J(xk).140

1.4. Organization. In Section 2, we propose our algorithm for solving prob-141

lem (1.1), and its convergence properties are presented in Section 3. In Section 4, we142

discuss our numerical tests. Final conclusions are provided in Section 5.143

2. Algorithm. The algorithm that we propose for solving problem (1.1) is for-144

mally stated as Algorithm 2.1. Given the kth iterate xk, the kth PG parameter αk,145

and constant κv ∈ R>0, we compute a step vk that aims to reduce the constraint146

infeasibility at xk as an approximate solution to the following problem:147

(2.1) min
v∈Rn

mk(v) s.t. ∥v∥2 ≤ κvαk∥JT
k ck∥2, with mk(v) :=

1
2∥ck + Jkv∥22.148

The PG parameter αk is used to define the trust-region constraint so that {vk} → 0149

if {αk} → 0. We consider a vector vk to be an adequate approximate solution to150

subproblem (2.1) if, for some κv ∈ R>0, it satisfies the following conditions:151

vk ∈ Range(JT
k),(2.2a)152

∥vk∥2 ≤ κvαk∥JT
k ck∥2, and(2.2b)153

∥ck + Jkvk∥2 ≤ ∥ck + Jkv
c
k∥2(2.2c)154

where vck is the Cauchy point given by155

(2.3) vck := −βc
kJ

T
k ck with βc

k := argmin
β∈R

mk(−βJT
k ck) s.t. 0 ≤ β ≤ κvαk.156

In other words, the Cauchy point vck minimizes mk(v) along the direction −∇mk(0) =157

−JT
k ck and within {v : ∥v∥2 ≤ κvαk∥JT

k ck∥2}. It is known (see [10]) that vck satisfies158

(2.4) mk(0)−mk(v
c
k) ≥ 1

2∥J
T
k ck∥22 min

{
1

1+∥JT
k Jk∥2

, κvαk

}
.159

We note that the conditions (2.2) are well-posed since they are satisfied by vk = vck.160

Next, we compute a direction uk that maintains the level of linearized infeasibility161

achieved by vk while also reducing a model of the objective function. Specifically, we162

compute uk as the unique solution to the strongly convex subproblem163

(2.5)

uk := arg min
u∈Rn

gTk (vk + u) + 1
2αk
∥vk + u∥22 + r(xk + vk + u) s.t. Jku = 0.

= arg min
u∈Rn

(gk + 1
αk

vk)
Tu+ 1

2αk
∥u∥22 + r(xk + vk + u) s.t. Jku = 0

= arg min
u∈Rn

gTk u+ 1
2αk
∥u∥22 + r(xk + vk + u) s.t. Jku = 0

164

where we used the fact that every u feasible for (2.5) satisfies vTk u = 0 since vk ∈165

Range(JT
k) (see (2.2a)). The trial step sk is then defined as166

(2.6) sk := vk + uk.167

4

This manuscript is for review purposes only.

We adopt the ℓ2 merit function, which for parameter τ ∈ R>0 is defined as

Φτ (x) := τ
(
f(x) + r(x)

)
+ ∥c(x)∥2.

During the kth iteration, we want to choose τk such that τk ≤ τk−1 and sk is a direction
of sufficient descent for the merit function Φτk(·) at xk. To define an appropriate value
for τk, let us define the model of the merit function given by

qk(s, τ) := τ
(
fk + gTk s+

1
2αk
∥s∥22 + r(xk + s)

)
+ ∥ck + Jks∥2,

as well as the change in the model168

(2.7)
∆qk(s, τ) := qk(0)− qk(s)

= −τ
(
gTk s+

1
2αk
∥s∥22 + r(xk + s)− rk

)
+ ∥ck∥2 − ∥ck + Jks∥2.

169

Then, with parameters σc ∈ (0, 1) and σu ∈ (0, 1
2], we set σ̄u := σu + 1

2 ∈ (12 , 1] and170

τk,trial ←

∞ if gTk sk +
σ̄u∥sk∥2

2

αk
+ r(xk + sk)− rk ≤ 0,

(1−σc)(∥ck∥2−∥ck+Jkvk∥2)

gT
k sk+

σ̄u∥sk∥2
2

αk
+r(xk+sk)−rk

otherwise,171

and then set, with ϵτ ∈ (0, 1), the kth merit parameter value as172

(2.8) τk ←

{
τk−1 if τk−1 ≤ τk,trial,

min{(1− ϵτ)τk−1, τk,trial} otherwise.
173

This update ensures that if the merit parameter is decreased during the kth iteration,174

it is decreased by at least a fraction of its previous value. Moreover, the value for175

τk,trial ensures that ∆qk(sk, τk) is an upper bound for quantities related to measures176

of criticality for problem (1.1) (see Lemma 3.4). Moreover, Lemma 3.4 shows that177

−∆qk(sk, τk) is an upper bound for the directional derivative of Φτk(·) at xk in the178

direction sk (this result holds regardless of the value of the merit parameter).179

The kth iteration is completed by checking whether the merit function achieves180

sufficient decrease in Line 19, and then defining the next iterate and proximal pa-181

rameter. Specifically, if sufficient decrease is observed in the merit function, then the182

trial step sk is accepted (i.e., xk+1 ← xk + sk) and the proximal parameter value is183

unchanged (i.e., αk+1 ← αk); otherwise, the trial step is rejected (i.e., xk+1 ← xk)184

and the proximal parameter value is decreased (i.e., αk+1 ← ξαk for some ξ ∈ (0, 1)).185

This updating scheme motivates the definition of the following index set:186

(2.9) S := {k : xk+1 = xk + sk},187

which contains the indices of the successful iterations associated with Algorithm 2.1.188

3. Analysis. In this section, we prove convergence results for Algorithm 2.1.189

Our first result shows that the normal step vk is zero if and only if JT
k ck is zero.190

Lemma 3.1. For all k ∈ N, it holds that vk = 0 if and only if JT
k ck = 0.191

Proof. If JT
k ck = 0, it follows from (2.2b) that vk = 0. To prove the reverse192

implication, suppose that vk = 0. Then it follows from (2.2c) that mk(vk) ≤ mk(v
c
k),193

which combined with (2.4) and vk = 0 shows that 0 = mk(0) −mk(vk) ≥ mk(0) −194

mk(v
c
k) ≥ 1

2∥J
T
k ck∥22 min

{
1

1+∥JT
k Jk∥2

, κvαk

}
. Since αk > 0 for all k ∈ N and κv ∈195

R>0, it follows that J
T
k ck = 0, completing the proof.196

5

This manuscript is for review purposes only.

Algorithm 2.1 A proximal-gradient algorithm for problem (1.1).

1: input: x0 ∈ Rn, α0 ∈ R>0, and τ−1 ∈ R>0.
2: constants: κv ∈ R>0, {σc, ϵτ , ξ, η, } ⊂ (0, 1), and σu ∈ (0, 1/2].
3: for k = 0, 1, 2, . . . do
4: if JT

k ck ̸= 0 then
5: Compute vk as an approximate solution to (2.1) satisfying (2.2).
6: else
7: Set vk ← 0.
8: if ck ̸= 0 then
9: return xk (infeasible stationary point)

10: end if
11: end if
12: Compute uk as the unique solution to (2.5).
13: Set sk ← vk + uk.
14: if sk = 0 then
15: return xk (first-order KKT point)
16: end if
17: Compute τk using (2.8).
18: Compute ∆qk(sk, τk) using (2.7).
19: if Φτk(xk + sk) ≤ Φτk(xk)− η∆qk(sk, τk) then
20: Set xk+1 ← xk + sk and αk+1 ← αk.
21: else
22: Set xk+1 ← xk and αk+1 ← ξαk.
23: end if
24: end for

Concerning the computation of the tangential step uk, it follows from the opti-197

mality conditions for the convex optimization problem (2.5) that uk and the resulting198

sk = vk + uk satisfy, for some gr,k ∈ ∂r(xk + sk) and yk ∈ Rm, the equalities199

(3.1) gk + 1
αk

uk + gr,k − JT
k yk = 0 and Jkuk = 0.200

Multiplying the first equality by uT
k and using the second equality, it follows that201

(3.2) (gk + gr,k)
Tuk + 1

αk
∥uk∥22 = 0.202

These equations related to the tangential step uk will be useful in the analysis.203

3.1. Finite termination. In this section we justify the finite termination con-204

ditions in Algorithm 2.1 given in line 9 and line 15. In particular, we show that if205

Algorithm 2.1 terminates in line 9 then xk is an infeasible stationary point, and if206

termination occurs in line 15 then xk is a first-order KKT point for problem (1.1).207

Theorem 3.2. The following finite termination results hold for Algorithm 2.1.208

(i) If termination occurs in line 9 then xk is an infeasible stationary point, i.e.,209

xk satisfies ck ̸= 0 and JT
k ck = 0.210

(ii) If termination occurs in line 15 then xk is a first-order KKT point for (1.1).211

Proof. To prove part (i), suppose that termination occurs in line 9 so that ck ̸= 0212

and vk = 0. It follows from vk = 0 and Lemma 3.1 that JT
k ck = 0, as claimed.213

To prove part (ii), suppose that termination occurs in line 15 so that sk = 0. Since214

by construction vTk uk = 0, it also follows that vk = uk = 0. It follows from vk = 0215

6

This manuscript is for review purposes only.

and Lemma 3.1 that JT
k ck = 0. Since termination must not have occurred in line 9,216

we also know that ck = 0. It follows from vk = uk = 0 and (3.1) that there exists217

gr,k ∈ ∂r(xk + sk) ≡ ∂r(xk) and yk ∈ Rm so that gk + gr,k − JT
k yk = 0. Combining218

this equality with ck = 0 shows that xk is a first-order KKT point for problem (1.1).219

Theorem 3.2 shows that if Algorithm 2.1 finitely terminates, then the vector xk220

returned has favorable properties. Admittedly, although finite termination in line 9221

is not ideal, the existence of infeasible stationary points is something that every algo-222

rithm must contend with unless an appropriate constraint qualification is assumed.223

3.2. Non-finite termination. In this section, we study the convergence prop-224

erties of Algorithm 2.1 when finite termination does not occur. Therefore, given how225

Algorithm 2.1 is constructed, we know in this section that, for all k ∈ N, it holds that226

227

(3.3) (i) sk ̸= 0 and (ii) JT
k ck = 0 if and only if ck = 0.228

Our first goal is to prove a bound on the directional derivative of Φτ (·) at xk229

in the direction sk. Given the Lipschitz constants Lg and LJ in Assumption 1.1, it230

follows for all t ∈ R>0 from [13, equation (19)] that231

(3.4)
f(xk + tsk) ≤ fk + tgTk sk +

Lg

2 t2∥sk∥22 and

∥c(xk + tsk)∥2 ≤ ∥ck + tJksk∥2 + LJ

2 t2∥sk∥22.
232

The next result gives an upper bound on the quantity DΦτ
(xk, sk), which we use to233

denote the directional derivative of Φτ (·) at xk in the direction sk.234

Lemma 3.3. The directional derivative of the merit function satisfies

DΦτ
(xk, sk) ≤ τ

(
gTk sk + r(xk + sk)− rk

)
+ ∥ck + Jksk∥2 − ∥ck∥2.

Proof. For all t ∈ R>0, it follows from (3.4) and the triangle inequality that235

∥c(xk + tsk)∥2 − ∥ck∥2 ≤ ∥ck + tJksk∥2 − ∥ck∥2 + LJ

2 t2∥sk∥22236

≤ t∥ck + Jksk∥2 + (1− t)∥ck∥2 − ∥ck∥2 + LJ

2 t2∥sk∥22237

= t∥ck + Jksk∥2 − t∥ck∥2 + LJ

2 t2∥sk∥22.238

On the other hand, it follows from [3, Theorem 2.25] that Dr(xk, sk) ≤ r(xk + sk)−239

r(xk). The conclusion follows from this result, the previous displayed equation after240

dividing by t and taking the limit t↘ 0, and the fact that f is differentiable.241

Combining the previous lemma with how the merit parameter τk is defined, allows242

us to prove that the change in the model qk(sk, τk) is an upper bound for quantities243

used in our ultimate convergence result.244

Lemma 3.4. The choice of τk in (2.8) ensures that the direction sk satisfies245

∆qk(sk, τk) ≥ σuτk
αk
∥sk∥22 + σc

(
∥ck∥2 − ∥ck + Jkvk∥2

)
> 0 and246

DΦτk
(xk, sk) ≤ −σuτk

αk
∥sk∥22 − σc

(
∥ck∥2 − ∥ck + Jkvk∥2

)
< 0.247

Proof. The first result follows from (2.8), definition of τk,trial, and Jksk = Jkvk248

(recall that Jkuk = 0 because of the constraint in (2.5)). The second result follows249

from Lemma 3.3, 1
αk
∥sk∥22 ≥ 0, and the first result of this lemma.250

7

This manuscript is for review purposes only.

We now give a sufficient condition for a successful iteration (see (2.9)) to occur.251

Lemma 3.5. If (1− η)∆qk(sk, τk) ≥ 1
2 (−

τk
αk

+ τkLg + LJ)∥sk∥22, then k ∈ S.252

Proof. It follows from (3.4), (2.7), and the assumed inequality in this lemma that253

ϕτk(xk + sk)− ϕτk(xk)254

= τk
(
f(xk + sk) + r(xk + sk)

)
+ ∥c(xk + sk)∥2 − τk

(
fk + rk

)
− ∥ck∥2.255

≤ τkg
T
k sk + τk

(
r(xk + sk)− rk

)
+ ∥ck + Jksk∥2 − ∥ck∥2 + 1

2 (τkLg + LJ)∥sk∥22256

= −∆qk(sk, τk)− τk
2αk
∥sk∥22 + 1

2 (τkLg + LJ)∥sk∥22257

= −∆qk(sk, τk) +
1
2

(
− τk

αk
+ τkLg + LJ

)
∥sk∥22 ≤ −η∆qk(sk, τk).258

Therefore, it follows from Line 19 of Algorithm 2.1 that k ∈ S, as claimed.259

The following result gives a bound on the decrease in linearized feasibility achieved260

by sk that is similar to that achieved by the Cauchy point in (2.4).261

Lemma 3.6. The step sk = vk + uk satisfies

∥ck∥2 − ∥ck + Jksk∥2 = ∥ck∥2 − ∥ck + Jkvk∥2 ≥ 1
2κc
∥JT

k ck∥22 min
{

1
1+κ2

∇c
, κvαk

}
.

Proof. From (1.2), (2.4), (2.2c), and the constraint in (2.5), we have262

1
2∥J

T
k ck∥22 min

{
1

1+κ2
∇c

, κvαk

}
≤ 1

2∥J
T
k ck∥22 min

{
1

1+∥JT
k Jk∥2

, κvαk

}
≤ mk(0)−mk(v

c
k) =

1
2

(
∥ck∥22 − ∥ck + Jkv

c
k∥22

)
= 1

2

(
∥ck∥2 + ∥ck + Jkv

c
k∥2

)(
∥ck∥2 − ∥ck + Jkv

c
k∥2

)
≤ ∥ck∥2

(
∥ck∥2 − ∥ck + Jkv

c
k∥2

)
≤ κc

(
∥ck∥2 − ∥ck + Jkvk∥2

)
= κc

(
∥ck∥2 − ∥ck + Jksk∥2

)
,

263

from which the desired result follows.264

We now begin investigating quantities related to the merit parameter. The fol-265

lowing result bounds the denominator in the definition of τk,trial.266

Lemma 3.7. For all k ∈ N, it follows that

gTk sk +
σ̄u∥sk∥2

2

αk
+ r(xk + sk)− rk ≤ (κ∇f + κ∂r)∥vk∥2 + σ̄u∥vk∥2

2

αk
.

Proof. With gr,k defined as in (3.1), it follows from convexity of r that rk ≥267

r(xk + sk) + gTr,k(−sk). Combining this inequality with sk = vk + uk, v
T
k uk = 0,268

σ̄u ∈ (12 , 1], (3.2), the Cauchy-Schwartz inequality, and (1.2) it follows that269

gTk sk +
σ̄u∥sk∥2

2

αk
+ r(xk + sk)− rk270

≤ (gk + gr,k)
T sk +

σ̄u∥sk∥2
2

αk
271

= (gk + gr,k)
T vk +

σ̄u∥vk∥2
2

αk
+ (gk + gr,k)

Tuk +
σ̄u∥uk∥2

2

αk
272

≤ (gk + gr,k)
T vk +

σ̄u∥vk∥2
2

αk
+ (gk + gr,k)

Tuk +
∥uk∥2

2

αk
273

≤ ∥gk + gr,k∥2∥vk∥2 + σ̄u∥vk∥2
2

αk
274

8

This manuscript is for review purposes only.

≤ (κ∇f + κ∂r)∥vk∥2 + σ̄u∥vk∥2
2

αk
,275

which completes the proof.276

We next show that the merit sequence is positive and monotonically decreasing.277

Lemma 3.8. For all k ≥ 1, it holds that 0 < τk ≤ τk−1.278

Proof. It is clear from τ0 > 0 and the update (2.8) that {τk} is monotonically279

decreasing, and therefore all that remains is to prove that τk > 0 for all k ∈ N. It280

follows from Lemma 3.7 and the definition of τk,trial that τk,trial =∞ if vk = 0, and so281

for such k we have τk ← τk−1. Therefore, for the remainder we only need to consider282

k ∈ N such that vk ̸= 0. For such k ∈ N, we know from Lemma 3.1 that JT
k ck ̸= 0.283

The result τk > 0 follows from this observation, (2.8), αk > 0, and Lemma 3.6.284

The first part of the next lemma shows that the merit parameter never needs to285

be decreased for iterations k ∈ N such that JT
k ck = 0. On the other hand, for all286

k ∈ N such that JT
k ck ̸= 0, the second part of the result gives a lower bound on how287

small the previous merit parameter could have been.288

Lemma 3.9. The following merit parameter update holds for each k ∈ N \ {0}.289

(i) If JT
k ck = 0, then τk,trial =∞ and τk ← τk−1.290

(ii) There exists a constant ϵτ > 0 such that, for all k ∈ N satisfying JT
k ck ̸= 0291

and τk < τk−1, it holds that τk−1 ≥ ϵτ∥JT
k ck∥2.292

Proof. For part (i), it follows from JT
k ck = 0 and Lemma 3.1 that vk = 0. This293

fact, Lemma 3.7, and the definition of τk,trial show that τk,trial =∞, so that τk ← τk−1.294

For part (ii), it follows from (2.8), Lemma 3.6, Lemma 3.7, the trust-region con-295

straint in problem (2.1), and (1.2) that if τk < τk−1, then296

(3.5)

τk−1 >
(1− σc)(∥ck∥2 − ∥ck + Jkvk∥2)
gTk sk +

σ̄u∥sk∥2
2

αk
+ r(xk + sk)− rk

≥
(1−σc)
2κc
∥JT

k ck∥22 min{ 1
1+κ2

∇c
, κvαk}

(κ∇f + κ∂r)∥vk∥2 + σ̄u∥vk∥2
2

αk

≥
(1− σc)∥JT

k ck∥22 min{ 1
1+κ2

∇c
, κvαk}

2κc(κ∇f + κ∂r)κvαk∥JT
k ck∥2 + σ̄uκ

2
vα

2
k∥J

T
k ck∥2

2

αk

=
(1− σc)∥JT

k ck∥2 min{ 1
1+κ2

∇c
, κvαk}

2κc(κ∇f + κ∂r)κvαk + σ̄uκ2
vαk∥JT

k ck∥2

≥
(1− σc)∥JT

k ck∥2 min{ 1
1+κ2

∇c
, κvαk}

2κc(κ∇f + κ∂r)κvαk + σ̄uκ2
vαkκ∇cκc

.

297

It follows from (3.5) and the fact that {αk} is monotonically nonincreasing that298

τk−1 ≥

(1−σc)∥JT

k ck∥2

2κc(κ∇f+κ∂r)+σ̄uκvκ∇cκc
if κvαk ≤ 1/(1 + κ2

∇c),
(1−σc)∥JT

k ck∥2

2κc(1+κ2
∇c)(κ∇f+κ∂r)κvα0+σ̄uκ2

vα0κ∇cκc
otherwise,

299

which completes the proof.300

We now prove our first key convergence result. In particular, we prove that301

there must exist a subsequence of the set of successful iterations over which {JT
k ck}302

9

This manuscript is for review purposes only.

converges to zero. This conclusion is relevant to our setting because, under a suitable303

constraint qualification, if x is a local minimizer of 1
2∥c(x)∥

2
2, then J(x)T c(x) = 0.304

Theorem 3.10. Let Assumption 1.1 hold. Then, there exists a subsequence of305

the iterations K ⊆ N such that limk∈K JT
k ck = 0.306

Proof. For a proof by contradiction, suppose that there exists a k1 ∈ N and ϵ > 0307

such that ∥JT
k ck∥2 ≥ ϵ for all k ≥ k1. Then, it follows from Lemma 3.9 and τ0 ∈ R>0308

that there exits τ̄1 > 0 such that, for all k ∈ N, it holds that τk ≥ τ̄1. Moreover, since309

{τk} is monotonically nonincreasing and when τk < τk−1 the reduction is by at least310

a constant factor (see (2.8)), we know that there exists k2 ≥ k1 and τ̄2 ≥ τ̄1 such311

that τk = τ̄2 for all k ≥ k2. Combining this with ∆qk(sk, τk) > 0 (see Lemma 3.4)312

and Lemma 3.5 it follows that for all k ≥ k2 such that αk ≤ τ̄2/(τ̄2Lg + LJ) it must313

also hold that k ∈ S. Since αk+1 < αk only when k /∈ S, it follows that there must314

exist ᾱ ∈ R>0 and k3 ≥ k2 such that αk = ᾱ for all k ≥ k3. To summarize, we have315

proved that for all k ≥ k3 it holds that αk = ᾱ, τk = τ̄2, and k ∈ S. It now follows316

from line 19 of Algorithm 2.1 that Φτ̄2(xk+1) ≤ Φτ̄2(xk)− η∆qk(sk, τ̄2) for all k ≥ k3.317

Summing over all k ≥ k3 and using (1.2) and Lemma 3.4 we have318

Φτ̄2(xk3
)− τ̄2finf ≥

∑
k≥k3

(
Φτ̄2(xk)− Φτ̄2(xk+1)

)
319

≥ η
∑
k≥k3

∆qk(sk, τ̄2)320

≥ η
∑
k≥k3

σuτk
αk
∥sk∥22 + σc

(
∥ck∥2 − ∥ck + Jkvk∥2

)
321

> ησc

∑
k≥k3

(
∥ck∥2 − ∥ck + Jkvk∥2

)
.322

Since the summation of nonnegative terms is finite, we know that

lim
k→∞

(
∥ck∥2 − ∥ck + Jkvk∥2

)
= 0.

This fact, Lemma 3.6, and αk = ᾱ for all k ≥ k3 imply that limk→∞ JT
k ck = 0, which323

contradicts our earlier assumption that ∥JT
k ck∥2 ≥ ϵ for all k ≥ k1.324

The remainder of the analysis considers two settings that are characterized by325

whether a certain constraint qualification holds or not.326

3.2.1. Strong LICQ. In this section we make the following assumption, which327

is closely related to the linear independence constraint qualification (LICQ).328

Assumption 3.1. The smallest singular values of {Jk} are uniformly bounded329

away from zero, i.e., there exists σmin > 0 such that, for all k ∈ N, σmin(Jk) ≥ σmin.330

We can now prove a nontrival bound on the improvement in linearized infeasibility331

achieved by the trial step sk relative to the actual infeasibility. This result is critical332

when we prove a uniform lower bound on the sequence of merit parameters.333

Lemma 3.11. If JT
k ck ̸= 0, then sk satisfies ∥ck + Jksk∥2 ≤ ρk∥ck∥2 where334

ρk :=

√
max

{
1− κvαkσ2

min, 1− σ2
min/κ

2
∇c

}
∈ [0, 1).335

10

This manuscript is for review purposes only.

Proof. It follows from [30, Section 4.1] that the Cauchy step vck in (2.3) satisfies336

(3.6) vck = −βc
kJ

T
k ck with βc

k = min

{
∥JT

k ck∥22
∥JkJT

k ck∥22
, κvαk

}
.337

We now consider two cases.338

Case 1: ∥JT
k ck∥22 ≤ κvαk∥JkJT

k ck∥22. In this case, the minimum in (3.6) is the first339

term, and JkJ
T
k ck ̸= 0 since JT

k ck ̸= 0 . These facts, the inequality that defines this340

case, the Cauchy-Schwartz inequality, definition of mk(0), and Assumption 3.1 give341

mk(v
c
k) = mk(0)− 1

2
∥JT

k ck∥4
2

∥JkJT
k ck∥2

2
≤ 1

2∥ck∥
2
2 − 1

2
∥JT

k ck∥2
2

κ2
∇c

(3.7)342

≤ 1
2∥ck∥

2
2 − 1

2
σ2
min(Jk)

κ2
∇c
∥ck∥22 ≤ 1

2

(
1− σ2

min

κ2
∇c

)
∥ck∥22.(3.8)343

Case 2: ∥JT
k ck∥22 > κvαk∥JkJT

k ck∥22. In this case, the minimum in (3.6) is the second344

term. This fact, the previous inequality, definition of mk(0), and Assumption 3.1 give345

mk(v
c
k) = mk(0)− κvαk∥JT

k ck∥22 + 1
2κ

2
vα

2
k∥JkJT

k ck∥22346

≤ mk(0)− κvαk∥JT
k ck∥22 + 1

2κvαk∥JT
k ck∥22347

= mk(0)− 1
2κvαk∥JT

k ck∥22 ≤ 1
2

(
1− κvαkσ

2
min

)
∥ck∥22.348

By combining the final result for the two cases, we find that mk(v
c
k) ≤ 1

2ρ
2
k∥ck∥22.

Multiplying both sides of this inequality by two, taking the square root, and us-
ing (2.2c) and the fact that ck + Jksk = ck + Jkvk since Jkuk = 0, it follows that

∥ck + Jksk∥2 = ∥ck + Jkvk∥2 ≤ ∥ck + Jkv
c
k∥2 ≤ ρk∥ck∥2,

which completes the proof.349

We may now prove that {τk} is bounded away from zero.350

Lemma 3.12. For all k ∈ N, it holds that τk,trial ≥ τmin,trial with351

τmin,trial :=352

min

{
(1− σc)κvσ

2
min

2κvκ∇c (κ∇f + κ∂r + σ̄uκcκvκ∇c)
,

(1− σc)(σmin/κ∇c)
2

2κvκ∇c (κ∇f + κ∂r + σ̄uκcκvκ∇c)α0

}
,353

which when combined with (3.9) gives τk ≥ τmin := min{τ0, (1− ϵτ)τmin,trial}.354

Proof. We first prove a lower bound on τk,trial. Since it follows that τk,trial = ∞355

for all k ∈ N satisfying JT
k ck = 0 (see Lemma 3.9(i)), we may assume without loss356

of generality that each k ∈ N satisfies JT
k ck ̸= 0. Next, we see from Lemma 3.7, the357

trust-region constraint, and (1.2) that358

gTk sk +
σ̄u∥sk∥2

2

αk
+ r(xk + sk)− rk359

≤ (κ∇f + κ∂r)∥vk∥2 + σ̄u∥vk∥2
2

αk
360

= (κ∇f + κ∂r)κvαk∥JT
k ck∥2 + σ̄uκ

2
vαk∥JT

k ck∥22361

≤ (κ∇f + κ∂r)κvαkκ∇c∥ck∥2 + σ̄uκ
2
vαkκ

2
∇c∥ck∥22362

≤ (κ∇f + κ∂r)κvαkκ∇c∥ck∥2 + σ̄uκcκ
2
vαkκ

2
∇c∥ck∥2363

= κvκ∇c (κ∇f + κ∂r + σ̄uκcκvκ∇c)αk∥ck∥2 for all k ∈ N.364

11

This manuscript is for review purposes only.

On the other hand, we may use Lemma 3.11 to obtain365

∥ck∥2 − ∥ck + Jkvk∥2 ≥ ∥ck∥2 − ρk∥ck∥2 = (1− ρk)∥ck∥2 for all k ∈ N.366

Using the above two bounds and the definition of τk,trial, it follows that367

τk,trial ≥
(1− σc)(1− ρk)∥ck∥2

κvκ∇c (κ∇f + κ∂r + σ̄uκcκvκ∇c)αk∥ck∥2
368

=
(1− σc)(1− ρk)

κvκ∇c (κ∇f + κ∂r + σ̄uκcκvκ∇c)αk
for all k ∈ N.369

Next, notice that it follows from the definition of ρk that370

1− ρk =
1−ρ2

k

1+ρk
≥ 1−max{1−κvαkσ

2
min,1−σ2

min/κ
2
∇c}

2371

=
1−

(
1−min{κvαkσ

2
min, σ

2
min/κ

2
∇c}

)
2372

=
min{κvαkσ

2
min, σ

2
min/κ

2
∇c}

2 for all k ∈ N.373

Combining this result with the previous displayed equation shows that

τk,trial ≥
(1− σc)min{κvαkσ

2
min, (σmin/κ∇c)

2}
2κvκ∇c (κ∇f + κ∂r + σ̄uκcκvκ∇c)αk

for all k ∈ N.

It follows from this inequality and the fact that αk ≤ α0 for all k ∈ N that

τk,trial ≥

(1−σc)κvσ

2
min

2κvκ∇c(κ∇f+κ∂r+σ̄uκcκvκ∇c)
if κvαkσ

2
min ≤ (σmin/κ∇c)

2,
(1−σc)(σmin/κ∇c)

2

2κvκ∇c(κ∇f+κ∂r+σ̄uκcκvκ∇c)α0
otherwise,

for all k ∈ N, which proves our first result.374

The second result, namely the positive lower bound on {τk}, follows from the first375

result, τ0 ∈ R>0, and (2.8), which completes the proof.376

The positive lower bound on {τk} lets us prove a positive lower bound on {αk}.377

Lemma 3.13. If αk ≤ τmin/(τminLg + LJ), then k ∈ S. Therefore,378

(3.9) αk ≥ αmin := min{α0, ξτmin/(τminLg + LJ)} > 0 for all k ∈ N,379

and a bound on the number of unsuccessful iterations is given by380

(3.10) |{k : xk /∈ S}| ≤ max

0,

log

(
τmin

α0(τminLg+LJ)

)
log(ξ)

 .381

Proof. Suppose that k ∈ N satisfies αk ≤ τmin/(τminLg+LJ). Then it follows from
the definition of αmin, Lemma 3.12, and the fact that τ/(τLg+LJ) is a monotonically
increasing function on the nonnegative real line as a function of τ that

αk ≤ τmin/(τminLg + LJ) ≤ τk/(τkLg + LJ),

which after rearrangement shows that −τk/αk + τkLg + LJ ≤ 0. It follows from this
inequality, Lemma 3.4, and η ∈ (0, 1) that

(1− η)∆qk(sk, τk) > 0 ≥ 1
2 (−

τk
αk

+ τkLg + LJ)∥sk∥22,
12

This manuscript is for review purposes only.

which together with Lemma 3.5 shows that k ∈ S, as claimed. We know from the382

result we just proved and the update strategy for {αk} that the bound in (3.9) holds.383

Finally, the first result we proved in this lemma and the updating strategy for {αk}384

shows that the maximum number of unsuccessful iterations is the smallest nonnegative385

integer nu such that ξnuα0 ≤ τmin/(τminLg + LJ), which gives the final result.386

Our worst-case complexity result uses the KKT-residual measure387

(3.11) χk := max{∥gk + gr,k − JT
k yk∥2, ∥ck∥2},388

where we remind the reader that gr,k is given in (3.1). In proving our complexity
result, it will be convenient to define the shifted merit function

ϕ̄τ (x) := τ
(
f(x)− finf + r(x)

)
+ ∥c(x)∥2,

where finf is defined in Assumption 1.2. We stress that the (typically) unknown389

value finf is never used in the algorithm statement or its implementation, only in our390

analysis. The following results pertain to the shifted merit function.391

Lemma 3.14. The following properties hold for the shifted merit function ϕ̄τ :392

(i) For all {x, y} ⊂ Rn and τ ∈ R>0, it holds that ϕ̄τ (x)− ϕ̄τ (y) = ϕτ (x)−ϕτ (y).393

(ii) For all x ∈ Rn and 0 < τ2 ≤ τ1, it holds that ϕ̄τ2(x) ≤ ϕ̄τ1(x).394

(iii) The sequence {ϕ̄τk(xk)} is monotonically decreasing.395

Proof. For part (i), it follows from the definitions of ϕ̄τ and ϕτ that396

ϕ̄τ (x)− ϕ̄τ (y) = τ
(
f(x)− finf + r(x)

)
+ ∥c(x)∥2 − τ

(
f(y)− finf + r(y)

)
− ∥c(y)∥2397

= τ
(
f(x) + r(x)

)
+ ∥c(x)∥2 − τ

(
f(y) + r(y)

)
− ∥c(y)∥2398

= ϕτ (x)− ϕτ (y),399

which proves part (i). For (ii), the definition of finf and nonnegativity of r imply that

ϕ̄τ2(x) = τ2
(
f(x)− finf + r(x)

)
+ ∥c(x)∥2 ≤ τ1

(
f(x)− finf + r(x)

)
+ ∥c(x)∥2 = ϕ̄τ1(x),

which proves (ii). Finally, for each k ∈ N, it follows from Lemma 3.8, parts (i) and
(ii) of the current lemma, and how xk+1 is updated in Algorithm 2.1 that

ϕ̄τk(xk)− ϕ̄τk+1
(xk+1) ≥ ϕ̄τk(xk)− ϕ̄τk(xk+1) = ϕτk(xk)− ϕτk(xk+1) ≥ 0,

which completes the proof of this theorem.400

We may now state our worst-case complexity result for Algorithm 2.1.401

Theorem 3.15. Suppose that Assumption 1.1 and Assumption 3.1 hold, and let402

ϵ ∈ R>0 be given. If {k1, k2} ⊂ N are two iterations with k1 < k2 such that k ∈ S and403

χk > ϵ for all iterations k1 ≤ k < k2, then it follows that404

(3.12) k2 − k1 ≤

⌊
τ0
(
f(x0)− finf + r(x0)

)
+ ∥c(x0)∥2

κΦϵ2

⌋
405

with κΦ := ηmin{σuτminαmin,
σcσ

2
min

2κc(1+κ2
∇c)

,
σcσ

2
minκvαmin

2κc
}. Moreover, the maximum406

number of iterations before χk ≤ ϵ for some iteration k ∈ N is407

(3.13)max

0,

log

(
τmin

α0(τminLg+LJ)

)
log(ξ)

+ 1

⌊
τ0
(
f(x0)− finf + r(x0)

)
+ ∥c(x0)∥2

κΦϵ2

⌋
.408

13

This manuscript is for review purposes only.

Proof. Let {k1, k2} ⊂ N be as described in the theorem statement. Then, it409

follows from Lemma 3.8, Lemma 3.14(i–ii), Line 19 of Algorithm 2.1, Lemma 3.4,410

Lemma 3.12, and (3.9) that the following inequalities hold for all k1 ≤ k < k2:411

ϕ̄τk(xk)− ϕ̄τk+1
(xk+1) ≥ ϕ̄τk(xk)− ϕ̄τk(xk+1)412

= Φτk(xk)− Φτk(xk+1)413

≥ η∆qk(sk, τk)414

≥ η σuτk
αk
∥sk∥22 + ησc

(
∥ck∥2 − ∥ck + Jkvk∥2

)
415

≥ ησuτminαmin

(∥sk∥2

αk

)2
+ ησc

(
∥ck∥2 − ∥ck + Jkvk∥2

)
.416

Combining this inequality with sk = vk + uk and vTk uk = 0 for all k ∈ N, Lemma 3.6,417

Lemma 3.13, (3.1), and Assumption 3.1 it follows, for all k1 ≤ k < k2, that418

ϕ̄τk(xk)− ϕ̄τk+1
(xk+1)419

≥ ησuτminαmin

(∥uk∥2

αk

)2
+ ησc

1
2κc
∥JT

k ck∥22 min{(1/(1 + κ2
∇c), κvαmin}420

≥ ησuτminαmin∥gk + gr,k − JT
k yk∥22 + ησc

σ2
min

2κc
∥ck∥22 min{(1/(1 + κ2

∇c), κvαmin}421

≥ κΦχ
2
k,422

where κΦ is defined in the theorem statement. Using this inequality, Lemma 3.14(iii),423

and nonnegativity of ϕ̄τ for all τ ∈ R>0, we find that424

ϕ̄τ0(x0) ≥ ϕ̄τk1
(xk1

) ≥ ϕ̄τk1
(xk1

)− ϕ̄τk2
(xk2

)425

≥
k2−1∑
k=k1

(
ϕ̄τk(xk)− ϕ̄τk+1

(xk+1)
)
≥

k2−1∑
k=k1

κΦχ
2
k,426

which may then be combined with the fact that χk > ϵ for all iterations k1 ≤ k ≤ k2
(see the assumptions of the current theorem) to conclude that

ϕ̄τ0(x0) ≥ (k2 − k1)κΦϵ
2,

from which (3.12) follows.427

The final result in the theorem, namely the claimed upper bound on the maximum428

iterations before χk ≤ ϵ, follows from what we just proved and the fact that maximum429

number of unsuccessful iterations is bounded as in (3.10).430

Before proving a result concerning convergence to a KKT point, we need to prove431

that the Lagrange multiplier estimates generated by subproblem (2.5) are bounded.432

Lemma 3.16. The Lagrange multiplier estimate sequence {yk} is bounded.433

Proof. Note from (3.2) and the Cauchy-Schwarz and triangle inequalities that

1
αk
∥uk∥22 = −(gk + gr,k)

Tuk ≤ ∥gk + grk∥2∥uk∥2 ≤ (∥gk∥2 + ∥grk∥2)∥uk∥2,

which when combined with (1.2) shows that434

(3.14) 1
αk
∥uk∥2 ≤ κ∇f + κ∂r.435

Also observe that it follows from (3.1) and Assumption 3.1 that436

(3.15) JT
k yk = gk + 1

αk
uk + gr,k ⇐⇒ yk = (JkJ

T
k)−1Jk

(
gk + 1

αk
uk + gr,k

)
.437

14

This manuscript is for review purposes only.

Combining (3.15), Assumption 3.1, the triangle inequality, and (3.14) it follows that438

∥yk∥2 ≤ 1
σmin
∥gk + 1

αk
uk + gr,k∥2439

≤ 1
σmin

(
κ∇f + κ∂r +

1
αk
∥uk∥2

)
440

≤ 2
σmin

(
κ∇f + κ∂r

)
.441

Since this result holds for arbitrary k ∈ N, we have proved the result.442

We can now prove that limit points of the primal sequence are KKT points.443

Theorem 3.17. Let Assumption 1.1 and Assumption 3.1 hold. Any limit point x∗444

of the sequence {xk} is a first-order KKT point for problem (1.1), i.e., c(x∗) = 0 and445

there exist vectors y∗ ∈ Rm and gr,∗ ∈ ∂r(x∗) such that g(x∗) + gr,∗ − J(x∗)
T y∗ = 0.446

Proof. Let x∗ be a limit point of {xk}, i.e., there exists K1 so that {xk}k∈K1
→ x∗.447

Theorem 3.15 allows us to conclude that there exists a subsequence K2 ⊆ K1 so that448

(3.16) 0 = lim
k∈K2

χk = lim
k∈K2

max{∥gk + gr,k − JT
k yk∥2, ∥c(xk)∥2}.449

Lemma 3.16 allows us to assert the existence of a vector y∗ ∈ Rm and subsequence
K3 ⊆ K2 such that {yk}k∈K3

= y∗. It follows from this limit, {xk}k∈K3
→ x∗,

continuity of g and J , and (3.16) that

lim
k∈K3

gr,k = lim
k∈K3

(−gk + JT
k yk) = −g(x∗) + J(x∗)

T y∗ =: gr,∗.

Finally, combining this equality with {xk}k∈K3 → x∗, continuity of c, and (3.16) it450

follows that g(x∗) + gr,∗ − J(x∗)
T y∗ = 0 and c(x∗) = 0, which completes the proof.451

3.2.2. Strong LICQ fails. In this section we prove properties of the iterate452

sequence {xk} in Algorithm 2.1 when the strong LICQ assumption used in the previous453

section (see Assumption 3.1) does not hold. In such a setting, we should expect to454

prove weaker results since, for example, Lagrange multipliers may not even exist.455

Our main theorem of this section uses the quantity456

(3.17) χ̄k := max{∥gk + gr,k − JT
k yk∥2, ∥JT

k ck∥2},457

which is related to the quanity χk used in the previous section (see (3.11)).458

Theorem 3.18. Let Assumption 1.1 hold. One of the following two cases occurs.459

(i) There exists τ̄min > 0 such that τk ≥ τ̄min for all k ∈ N. In this case, it also460

follows that αk ≥ ᾱmin := min{α0, ξτ̄min/(τ̄minLg + LJ)} for all k ∈ N and,461

for a given ϵ > 0, the maximum number of iterations before χ̄k ≤ ϵ is462 max

0,

log

(
τ̄min

α0(τ̄minLg+LJ)

)
log(ξ)

+ 1

⌊
τ0
(
f(x0)− finf + r(x0)

)
+ ∥c(x0)∥2

κ̄Φϵ2

⌋
463

where κ̄Φ := ηmin{σuτ̄minᾱmin,
σc

2κc(1+κ2
∇c)

, σcκvᾱmin

2κc
}.464

(ii) The merit parameter values converge to zero, i.e., limk→∞ τk = 0. In this465

case, there exists a subsequence K ⊆ N such that limk∈K ∥JT
k ck∥2 = 0.466

Proof. Let us start by considering part (i), in which case we know that there467

exists τ̄min > 0 such that τk ≥ τ̄min for all k ∈ N. Using this lower bound on {τk},468

15

This manuscript is for review purposes only.

the proof of Lemma 3.13 still holds (with τmin replaced by τ̄min), so that both (3.9)469

and (3.10) hold (with τmin replaced by τ̄min), thus proving the first claim on ᾱmin.470

Using (3.9) and (3.10) (with τmin replaced by τ̄min), the proof of Theorem 3.15 holds471

almost exactly as written. In particular, the proof holds as written until the middle472

of the second displayed equation, where we have (now with τmin and αmin replace by473

τ̄min and ᾱmin, respectively) that474

ϕ̄τk(xk)− ϕ̄τk+1
(xk+1)475

≥ ησuτ̄minᾱmin∥gk + gr,k − JT
k yk∥22 + ησc

1
2κc
∥JT

k ck∥22 min{(1/(1 + κ2
∇c), κvᾱmin}.476

If we now use the definitions of κ̄Φ and χ̄k we find that

ϕ̄τk(xk)− ϕ̄τk+1
(xk+1) ≥ κ̄Φχ̄

2
k.

The remainder of the proof of Theorem 3.15 now follows exactly as written but with477

χ̄k and κ̄Φ in place of χk and κΦ, respectively. This completes the proof of part (i).478

Part (ii) follows from Theorem 3.10.479

A discussion on Theorem 3.18(i) is of interest. In particular, the result in Theo-480

rem 3.18(i) is of the same form as the result Theorem 3.15, with the only difference481

being the values of the constants (τmin, αmin, κΦ) versus (τ̄min, ᾱmin, κ̄Φ). A conse-482

quence of Assumption 3.1 used in Section 3.2.1 is that we have an explicit definition483

for τmin (see Lemma 3.12), which implies an explicit lower bound on αmin and κΦ484

(see Lemma 3.13 and Theorem 3.15). On the other hand, no explicit lower bound on485

τ̄min is possible (in general) when Assumption 3.1 does not hold (in fact, it is even486

possible that {τk} → 0), and therefore the values for the constants (τ̄min, ᾱmin, κ̄Φ) in487

Theorem 3.18(i) will depend on the particular value of τ̄min for that given problem. In488

this respect, the complexity result of Theorem 3.15 is stronger than Theorem 3.18(i),489

which is not surprising since Theorem 3.15 is proved under Assumption 3.1.490

4. Numerical Results. In this section, we present results of numerical ex-491

periments performed with our Python implementation of Algorithm 2.1. The test492

problems are formulated with an ℓ1 regularizer, which is a common choice in many493

applications since it is known to induce sparse solutions. The goal of our numerical494

tests is to validate the overall performance of our method using standard optimization495

metrics and to evaluate its ability to correctly identify the zero-nonzero structure of496

a solution. For comparison purposes, we use the solver Bazinga [14], which is a safe-497

guarded augmented Lagrangian method. The details concerning the test problems,498

our implementation, and the test results are given in the remainder of this section.499

4.1. Test problems. We considered a special instance of an ℓ1-regularized ob-500

jective function with equality constraints that can be written in the form501

(4.1) min
x∈Rn,a∈Rm

f(x) + λ∥a∥1 s.t. c(x) + a = 0502

for some chosen regularization parameter λ ∈ R>0. The functions f and c were chosen503

as a subset of the CUTEst [18] test problems, and we used PyCUTEst [16] to evaluate504

these functions in our Python code. Our initial test problems were chosen as the505

subset of CUTEst problems that satisfied the following properties: (i) the objective506

function was non-constant; (ii) the problem had at least one equality constraint, no507

inequality constraints, and no bound constraints on variables; and (iii) the number508

of equality constraints and variables satisfied 1 ≤ m < n ≤ 1000. The restriction509

16

This manuscript is for review purposes only.

m < n rules out problems that essentially reduce to finding a feasible point for the510

constraints, while the restriction n < 1000 is used to keep the computational cost to a511

manageable level. As for the choice of λ, one can show that if x is a first-order KKT512

point with Lagrange multiplier vector y to the problem513

(4.2) min
x∈Rn

f(x) s.t. c(x) = 0,514

then (x, 0) is a first-order KKT point to problem (4.1) with Lagrange multiplier y as515

long as λ ≥ ∥y∥∞. Therefore, in our tests, we set λ = ∥y∥∞+10 where y is computed516

by solving problem (4.2) using IPOPT [33]. Since problems MSS1, MSS2, and CHAIN517

were not successfully solved by IPOPT, they were removed from the initial test set,518

thus resulting in the final set of 46 test problems found in Table A.1–Table A.2.519

Although the problem formulation 4.1 is somewhat contrived, this particular formu-520

lation allows us to better evaluate the structure identifying properties of the iterates521

produced by Algorithm 2.1 and Bazinga.522

4.2. Implementation details. The parameter and input values used are pre-523

sented in Table 4.1 (no fine-tuning was performed). As for the starting point (x0, a0)524

for problem (4.1), the vector x0 is set to the default value supplied by CUTEst and525

the vector a0 is set as −c(x0) so that the initial point (x0, a0) is feasible.526

Table 4.1
Parameters and inputs used by Algorithm 2.1, with x0 set to the value supplied by CUTEst.

α0 τ−1 κv σc ϵτ ξ η σu

10 1 1000 0.1 0.1 0.5 10−4 0.1

To approximately solve the trust-region subproblem (2.1), as needed in Line 5 of
Algorithm 2.1, we used a Newton-like method. In particular, assuming for now that Jk
had full row-rank, we first computed the minimizer of mk(v) over all v ∈ Range(JT

k).
Using the relationship v = JT

k w, this problem may be written as

min
w∈Rm

1
2∥ck∥

2
2 + wTJkJ

T
k ck + 1

2w
TJkJ

T
k JkJ

T
k w.

It follows from the first-order optimality conditions and the full rank assumption on
Jk that the unique solution, call it wn, satisfies

JkJ
T
k JkJ

T
k wn = −JkJT

k ck ⇐⇒ JkJ
T
k wn = −ck.

After solving this linear system for wn, we have that vn = JT
k wn. Next, we project527

this Newton step vn onto the trust-region constraint by defining528

vn := min{∥vn∥2, κvαk∥JT
k ck∥2}

vn
∥vn∥2

.529

Also accounting for the possibility that Jk may be rank deficient, we define vk as

vk ←

{
vck if Jk does not have full rank or mk(v

c
k) < mk(vn)

vn otherwise,

which by construction ensures that vk satisfies conditions (2.2a)-(2.2c), as needed.530

17

This manuscript is for review purposes only.

Next, to solve subproblem (2.5) (as needed in Line 12 of Algorithm 2.1) we exploit531

the structure of the ℓ1-norm. By introducing variables (p, q) ∈ Rn
≥0 × Rn

≥0 and using532

e to denote the vector of all ones, we can consider the equivalent problem533

(4.3)
min
u,p,q

gTk u+ 1
2αk
∥u∥22 + λeT (p+ q)

s.t. Jku = 0, xk + vk + u = p− q, p ≥ 0, q ≥ 0,
534

which is a convex quadratic program (QP). To solve subproblem (4.3) we use the535

primal active-set QP solver in the state-of-the-art software Gurobi version 11.0.0 [21].536

Note that only a subset of the optimization variables receive ℓ1 regularization in the537

test problem formulation (see (4.1)). This setting is handled using the above scheme538

by introducing p and q variables only for those variables appearing in the ℓ1 norm.539

Algorithm 2.1 was terminated when one of the following conditions was satisfied.540

• Approximate KKT point. Algorithm 2.1 was terminated during the kth541

iteration with xk considered an approximate KKT point if ∥ck∥2 ≤ 10−6 and542

∥gk + gr,k − JT
k yk∥2 ≤ 10−6, as motivated by (3.11) and Theorem 3.15.543

• Approximate infeasible stationary point. Algorithm 2.1 was terminated544

during the kth iteration with xk considered an approximate infeasible station-545

ary point if ∥ck∥2 ≥ 10−2 and ∥JT
k ck∥2 ≤ 10−12.546

• Gurobi error. Algorithm 2.1 was terminated during the kth iteration if the547

Gurobi solver failed to solve subproblem (4.3) using its default tolerances.548

• Maximum iterations. Algorithm 2.1 was terminated if 1000 iterations was549

completed without terminating for any of the previous reasons.550

For comparison purposes, we solve the same test problems using the Bazinga551

method. Bazinga is a safeguarded augmented Lagrangian framework that uses an in-552

ner subproblem solver called PANOC+, which is a linesearch algorithm that combines553

a forward-backward iteration and a quasi-Newton step over the forward-backward en-554

velop of the objective function; see the Bazinga paper [14] for more details.1 The555

Bazinga algorithm was terminated when one of the following conditions was satisfied.556

• Approximate KKT point. Bazinga was terminated if certain primal fea-557

sibility and dual stationarity measures were less than 10−6. Further details558

on the termination conditions of Bazinga can be found in [14, Section 3.3].559

• Not a number. Bazinga was terminated if a NaN occurred.560

• Maximum iterations. Bazinga was terminated if 100 iterations was com-561

pleted without terminating for any of the previous reasons. Fewer maximum562

iterations was allowed for Bazinga compared to Algorithm 2.1 because each it-563

eration of Bazinga is significantly more expensive compared to Algorithm 2.1.564

See the end of Section 4.3 and Appendix A for a discussion and table of results565

concerning computational times, respectively.566

4.3. Test results. In this subsection, we present the results of using our Algo-567

rithm 2.1 and Bazinga to solve problems of the form (4.1) with test functions chosen568

as described in Section 4.1. To see detailed results for each test problem, see Table A.1569

and Table A.2 in Appendix A. In the remainder of this section, we discuss the key570

results and observations summarized in Table 4.2.571

We begin by describing the meanings of the columns of Table 4.2, and discuss their572

corresponding values to compare the performances of Algorithm 2.1 and Bazinga.573

• Method. The name of the method.574

1The code package of Bazinga is downloaded from https://github.com/aldma/Bazinga.jl.

18

This manuscript is for review purposes only.

https://github.com/aldma/Bazinga.jl

• Feasible. The number of test problems for which the corresponding method575

terminated at a point with constraint violation no larger than 10−6. For this576

metric we see that the two methods behaved similarly, with Bazinga achieving577

approximate feasibility on one more test problem.578

• Feasible, Better Objective. To understand the meaning of this column,579

let fAlgorithm 2.1 denote the final objective value returned by Algorithm 2.1580

and fBazinga denote the final objective value returned by Bazinga. We can581

then define the relative difference in the returned objective function values as582

583

(4.4) fdiff :=
fBazinga − fAlgorithm 2.1

max(1, |min(fBazinga, fAlgorithm 2.1)|)
.584

We indicate that Algorithm 2.1 (resp., Bazinga) had a better relative objective585

value if fdiff ≥ 10−5 (resp., fdiff ≤ −10−5). Using this terminology, column586

“Feasible, Better Objective” gives the number of test problems for which both587

algorithms terminated at a point with constraint violation less than 10−6 and588

the corresponding method had a better relative objective value. For this589

metric we see that Algorithm 2.1 significantly outperforms Bazinga in terms590

of final objective function values when both algorithms return vectors that591

satisfy the constraint violation tolerance.592

• Performs Better. The number of test problems for which the corresponding593

method either (i) met the constraint violation tolerance and the other method594

did not, or (ii) both methods reached the constraint violation tolerance and595

the corresponding method had a better relative objective value (see (4.4)).596

Algorithm 2.1 significantly outperforms Bazinga on this metric.597

• a is Zero The number of test problems for which the corresponding method598

returned a = 0. Algorithm 2.1 significantly outperformed Bazinga in this599

metric, with Algorithm 2.1 (resp., Bazinga) returning a = 0 on 36 (resp.,600

13) of the test problems. We conjecture that Bazinga’s poor performance601

on this metric is due to its inner subproblem solver, which sacrifices solution602

sparsity for faster convergence of its iterates by combining proximal-gradient603

calculations with quasi-Newton ideas (see [14]). We investigated the test604

problems that Algorithm 2.1 did not return a = 0 and a Gurobi error was605

not encountered, and found that by increasing the regularization parameter,606

Algorithm 2.1 would return solutions satisfying a = 0.607

• a is Small. The number of test problems for which the corresponding method608

returned ∥a∥∞ ≤ 10−5, thus indicating that a was small (possibly equal to609

zero). When comparing this column with column “a is Zero”, we see that the610

only difference is that Algorithm 2.1 returned a small (nonzero) value for a611

on one additional test problem; the results for Bazinga were unchanged.612

• KKT Found. The number of test problems for which the corresponding613

method terminated with an approximate KKT point, as discussed in Sec-614

tion 4.2. Algorithm 2.1 computed an approximate KKT point on 33 of the 46615

test problems. Algorithm 2.1 encountered Gurobi errors (see Section 4.2) on616

test problems BT4 and HS56 that were related to large constraint violation617

values, which were caused by too large of an initial value for the merit pa-618

rameter. These failures can be avoided by decreasing the initial value for the619

merit parameter, but we did not do that for the numerical tests presented.620

Overall, we are pleased with the results of Table 4.2. We believe that they in-621

dicate that there is significant merit to our proposed algorithm, especially in terms622

19

This manuscript is for review purposes only.

Table 4.2
Algorithm 2.1 versus Bazinga on various performance metrics related to solving problem (4.1)

with test functions given in Table A.1–Table A.2; see Section 4.3 for the meaning of the columns.

Method Feasible Feasible, Performs a is a is KKT
Better Objective Better Zero Small Found

Algorithm 2.1 40 23 23 36 37 33
Bazinga 41 2 7 13 13 21

of computing structured approximate solutions. It is worth noting that we have not623

discussed computational time since comparing our Python implementation of Algo-624

rithm 2.1 with the Julia implementation of Bazinga gives an advantage to Bazinga625

(purely because of the programming language used). Even still, one can observe from626

Table A.1 and Table A.2 that Algorithm 2.1 requires less (often significantly less)627

computing time compared to Bazinga on nearly every test problem.628

5. Conclusion. We have presented one of the first proximal-gradient type meth-629

ods that can handle nonlinear equality constraints, and effectively return structured630

solutions where the structure is determined by the choice of regularization function. In631

the future, it would be interesting to address inequality constraints, establish conver-632

gence results under weaker assumptions, and accelerate convergence by incorporating633

Nesterov acceleration or subspace acceleration.634

REFERENCES635

[1] M. Anitescu, A superlinearly convergent sequential quadratically constrained quadratic pro-636
gramming algorithm for degenerate nonlinear programming, SIAM J. Optim., 12 (2002),637
pp. 949–978.638

[2] M. Annergren, A. Hansson, and B. Wahlberg, An admm algorithm for solving l-1 regu-639
larized mpc, in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), IEEE,640
2012, pp. 4486–4491.641

[3] A. Bagirov, N. Karmitsa, and M. M. Mäkelä, Introduction to Nonsmooth Optimization:642
theory, practice and software, vol. 12, Springer, 2014.643

[4] A. Beck, First-order methods in optimization, SIAM, 2017.644
[5] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse645

problems, SIAM Journal on Imaging Sciences, 2 (2009), pp. 183–202.646
[6] J.-F. Cai, E. J. Candès, and Z. Shen, A singular value thresholding algorithm for matrix647

completion, SIAM Journal on optimization, 20 (2010), pp. 1956–1982.648
[7] T. Chen, F. E. Curtis, and D. P. Robinson, A reduced-space algorithm for minimizing ℓ1-649

regularized convex functions, SIAM Journal on Optimization, 27 (2017), pp. 1583–1610.650
[8] T. Chen, F. E. Curtis, and D. P. Robinson, FaRSA for ℓ1-regularized convex optimiza-651

tion: local convergence and numerical experience, Optimization Methods and Software, 33652
(2018), pp. 396–415.653

[9] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, A globally convergent augmented Lagrangian654
algorithm for optimization with general constraints and simple bounds, SIAM J. Numer.655
Anal., 28 (1991), pp. 545–572.656

[10] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-Region Methods, Society for Industrial657
and Applied Mathematics (SIAM), Philadelphia, PA, 2000.658

[11] A. R. Conn and T. Pietrzykowski, A penalty function method converging directly to a con-659
strained optimum, SIAM J. Numer. Anal., 14 (1977), pp. 348–375.660

[12] F. E. Curtis, H. Jiang, and D. P. Robinson, An adaptive augmented lagrangian method for661
large-scale constrained optimization, Math. Program., (2013), pp. 1–45.662

[13] F. E. Curtis, D. P. Robinson, and B. Zhou, Inexact sequential quadratic optimization for663
minimizing a stochastic objective function subject to deterministic nonlinear equality con-664
straints, arXiv preprint arXiv:2107.03512, (2021).665

[14] A. De Marchi, X. Jia, C. Kanzow, and P. Mehlitz, Constrained composite optimization666
and augmented lagrangian methods, Mathematical Programming, (2023), pp. 1–34.667

20

This manuscript is for review purposes only.

[15] A. V. Fiacco and G. P. McCormick, Nonlinear Programming, Classics in Applied Mathemat-668
ics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second ed.,669
1990. Reprint of the 1968 original.670

[16] J. Fowkes, L. Roberts, and Á. Bűrmen, Pycutest: an open source python package of opti-671
mization test problems, Journal of Open Source Software, 7 (2022), p. 4377.672

[17] M. Fukushima, A successive quadratic programming method for a class of constrained nons-673
mooth optimization problems, Mathematical programming, 49 (1990), pp. 231–251.674

[18] N. I. M. Gould, D. Orban, and Ph. L. Toint, CUTEst: a constrained and unconstrained675
testing environment with safe threads, technical report, Rutherford Appleton Laboratory,676
Chilton, England, 2013, https://doi.org/10.1007/s10589-014-9687-3, http://dx.doi.org/10.677
1007/s10589-014-9687-3.678

[19] N. I. M. Gould and D. P. Robinson, A second derivative SQP method: Global convergence,679
SIAM J. Optim., 20 (2010), pp. 2023–2048.680

[20] N. I. M. Gould and D. P. Robinson, A second derivative SQP method: Local convergence681
and practical issues, SIAM J. Optim., 20 (2010), pp. 2049–2079.682

[21] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual, 2023, https://www.gurobi.683
com.684

[22] C. B. Gurwitz and M. L. Overton, Sequential quadratic programming methods based on685
approximating a projected hessian matrix, SIAM J. Sci. and Statist. Comput., 10 (1989),686
pp. 631–653.687

[23] S.-P. Han, A globally convergent method for nonlinear programming, Journal of optimization688
theory and applications, 22 (1977), pp. 297–309.689

[24] S. P. Han and O. L. Mangasarian, Exact penalty functions in nonlinear programming, Math-690
ematical programming, 17 (1979), pp. 251–269.691

[25] H. Karimi, J. Nutini, and M. Schmidt, Linear convergence of gradient and proximal-gradient692
methods under the Polyak-Lojasiewicz condition, in Joint European Conference on Machine693
Learning and Knowledge Discovery in Databases, Springer, 2016, pp. 795–811.694

[26] C.-p. Lee and S. J. Wright, Inexact successive quadratic approximation for regularized opti-695
mization, Computational Optimization and Applications, 72 (2019), pp. 641–674.696

[27] Y.-F. Liu, S. Ma, Y.-H. Dai, and S. Zhang, A smoothing sqp framework for a class of compos-697
ite l q minimization over polyhedron, Mathematical Programming, 158 (2016), pp. 467–500.698

[28] D. Q. Mayne and N. Maratos, A first-order, exact penalty function algorithm for equality699
constrained optimization problems, Mathematical Programming, 16 (1979), pp. 303–324.700

[29] J. L. Morales, J. Nocedal, and Y. Wu, A sequential quadratic programming algorithm with701
an additional equality constrained phase, IMA J. Numer. Anal., 32 (2012), pp. 553–579.702

[30] J. Nocedal and S. Wright, Numerical optimization, Springer Science & Business Media,703
2006.704

[31] M. J. Powell, A fast algorithm for nonlinearly constrained optimization calculations, in Nu-705
merical Analysis: Proceedings of the Biennial Conference Held at Dundee, June 28–July706
1, 1977, Springer, 2006, pp. 144–157.707

[32] D. P. Robinson, Primal-dual active-set methods for large-scale optimization, Submitted to708
Journal of Optimization Theory and Applications, (2013).709

[33] A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search710
algorithm for large-scale nonlinear programming, Mathematical programming, 106 (2006),711
pp. 25–57.712

[34] N. Xiao, X. Liu, and Y.-x. Yuan, A penalty-free infeasible approach for a class of nonsmooth713
optimization problems over the stiefel manifold, arXiv preprint arXiv:2103.03514, (2021).714

[35] G. Yuan and B. Ghanem, \ell 0 tv: A sparse optimization method for impulse noise image715
restoration, IEEE transactions on pattern analysis and machine intelligence, 41 (2017),716
pp. 352–364.717

[36] V. M. Zavala and M. Anitescu, Scalable nonlinear programming via exact differentiable718
penalty functions and trust-region newton methods, SIAM Journal on Optimization, 24719
(2014), pp. 528–558.720

[37] D. Zhu, L. Zhao, and S. Zhang, A first-order primal-dual method for nonconvex constrained721
optimization based on the augmented lagrangian, Mathematics of Operations Research,722
(2023).723

21

This manuscript is for review purposes only.

https://doi.org/10.1007/s10589-014-9687-3
http://dx.doi.org/10.1007/s10589-014-9687-3
http://dx.doi.org/10.1007/s10589-014-9687-3
http://dx.doi.org/10.1007/s10589-014-9687-3
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com

Appendix A. Detailed Results for the Test Problems.724

In this appendix we provide the detailed output from our Algorithm 2.1 and725

Bazinga for the test problems in Table A.1 and Table A.2. See Section 4 for details726

on the problem formulation, the test functions used, and the implementation details.727

The columns of Table A.1 and Table A.2 have the following meanings.728

• Problem. The name of the test problem. Specifically, the value in this col-729

umn gives the name of the CUTEst test problem used to obtain the objective730

function f and constraint function c in the test problem formulation (4.1).731

• Method. The name of the method used.732

• Obj. The value of the objective function in problem (4.1) at the final iterate733

returned by the solver.734

• RE. The relative error between the objective function value returned by the735

algorithm and the optimal objective function value. In particular, if we let736

(f+r) denote the objective function value returned by a solver on a particular737

problem and let (f + r)opt denote the optimal objective value for that same738

problem (as determined by the CUTEst documentation), then we define the739

relative error for that method on that problem as740

RE =
|(f + r)− (f + r)opt|
max(1, |(f + r)opt|)

.741

• ∥c(x) + a∥2. The value of ∥c(x) + a∥2 at the point returned by the solver.742

• ∥a∥∞. The value of ∥a∥∞ at the point returned by the solver.743

• Status. A three letter string that indicates the outcome when the given744

method was used to solve the given test problem. In particular, the value745

“Opt” means that the method returned a final iterate that was an approx-746

imate KKT point as described in Section 4.2. The value “Max” indicates747

that the method reached its maximum allowed number of iterations as de-748

scribed under Maximum Iterations in Section 4.2. The value “Err” only749

occurred for Algorithm 2.1 and indicates that a Gurobi error occurred as de-750

scribed under Gurobi error in Section 4.2. Finally, the value “NaN” only751

occurred for Bazinga and indicates that the data type not-a-number occurred.752

• Time. The computational time measured in seconds.753

22

This manuscript is for review purposes only.

Problem Method Obj RE ∥c(x) + a∥2 ∥a∥∞ Status Time
BT11 Alg. 2.1 8.25E-01 1.58E-07 1.01E-13 0.00E+00 Opt 1.71E+00

Bazinga 2.22E+01 2.79E+01 8.23E-07 6.62E-01 Max 3.50E+02
BT12 Alg. 2.1 6.19E+00 3.15E-10 4.26E-10 0.00E+00 Opt 2.99E-01

Bazinga 3.75E+02 5.95E+01 1.02E-07 1.24E+01 Max 3.33E+02
BT1 Alg. 2.1 -9.00E+01 8.90E+01 4.77E-13 1.00E+00 Opt 3.35E-01

Bazinga -5.54E+01 5.44E+01 3.68E-08 6.08E-01 Opt 9.37E+00
BT2 Alg. 2.1 1.02E+05 3.14E+06 2.24E-05 1.02E+04 Max 5.17E+00

Bazinga 3.26E-02 2.83E-07 8.22E-07 0.00E+00 Opt 1.24E+01
BT3 Alg. 2.1 4.09E+00 3.10E-06 4.71E-15 0.00E+00 Opt 2.58E-01

Bazinga 3.41E+01 7.33E+00 3.91E-09 5.92E-01 Max 3.39E+02
BT4 Alg. 2.1 -2.67E+31 5.87E+29 2.63E+21 1.84E+10 Err 3.24E-02

Bazinga 4.00E+01 1.88E+00 1.22E-07 2.69E+00 Max 3.26E+02
BT5 Alg. 2.1 9.62E+02 7.32E-11 4.05E-10 0.00E+00 Opt 1.31E-01

Bazinga 1.03E+03 7.60E-02 7.06E-08 3.11E+00 Max 3.26E+02
BT6 Alg. 2.1 2.77E-01 4.89E-07 1.82E-12 0.00E+00 Opt 6.57E-01

Bazinga 2.65E+01 9.45E+01 1.32E-07 1.19E+00 Max 3.42E+02
BT7 Alg. 2.1 3.96E+01 8.71E-01 2.44E-13 4.54E-01 Opt 4.60E+00

Bazinga 9.26E+02 2.02E+00 9.74E-07 2.50E-01 Opt 1.27E+02
BT8 Alg. 2.1 1.00E+00 2.61E-06 8.67E-13 2.37E-07 Max 7.83E+00

Bazinga 1.00E+00 9.86E-10 1.31E-09 0.00E+00 Opt 9.57E+00
BT9 Alg. 2.1 -1.00E+00 1.05E-11 1.63E-11 0.00E+00 Opt 1.46E-01

Bazinga 2.60E+01 2.70E+01 5.87E-07 1.24E+00 Max 3.23E+02
BYRDSPHR Alg. 2.1 -4.68E+00 7.61E-08 6.55E-09 0.00E+00 Opt 7.89E-02

Bazinga 6.27E+00 2.34E+00 2.23E-08 4.92E-01 Opt 2.06E+01
DIXCHLNG Alg. 2.1 1.59E+02 1.59E+02 1.98E-07 9.70E-01 Max 1.55E+01

Bazinga NaN NaN NaN NaN NaN 1.35E+01
ELEC Alg. 2.1 1.46E+04 2.08E-01 1.12E-06 2.97E+00 Max 2.24E+04

Bazinga 1.58E+04 1.42E-01 8.22E-08 6.45E-01 Max 3.34E+04
EXTROSNBNE Alg. 2.1 -2.00E+00 2.00E+00 1.86E-06 0.00E+00 Max 1.38E+05

Bazinga 4.11E+03 4.11E+03 3.32E-07 4.12E-01 Max 3.65E+04
GENHS28 Alg. 2.1 9.27E-01 9.27E-01 2.47E-15 0.00E+00 Opt 2.07E+00

Bazinga 9.27E-01 9.27E-01 1.01E-10 0.00E+00 Opt 9.35E+00
HS100LNP Alg. 2.1 6.81E+02 1.09E-10 2.27E-13 0.00E+00 Opt 6.93E-01

Bazinga 7.26E+02 1.16E+02 1.17E-07 1.46E+00 Max 3.36E+02
HS111LNP Alg. 2.1 -4.78E+01 1.10E-03 4.99E-10 0.00E+00 Max 1.15E+01

Bazinga -5.22E+01 9.52E-02 7.12E-08 2.60E+00 Max 4.58E+02
HS26 Alg. 2.1 1.09E+00 1.09E+00 5.12E-08 0.00E+00 Max 5.27E+00

Bazinga 1.05E-13 1.05E-13 2.93E-10 0.00E+00 Opt 9.14E+00
HS27 Alg. 2.1 4.00E-02 5.63E-10 9.48E-15 0.00E+00 Opt 3.48E-01

Bazinga 4.00E-02 1.46E-07 1.46E-07 0.00E+00 Opt 9.12E+00
HS28 Alg. 2.1 5.05E-11 5.05E-11 8.88E-16 0.00E+00 Opt 2.26E-01

Bazinga 7.95E-17 7.95E-17 8.01E-10 0.00E+00 Opt 9.05E+00
HS39 Alg. 2.1 -1.00E+00 1.05E-11 1.63E-11 0.00E+00 Opt 1.37E-01

Bazinga 2.60E+01 2.70E+01 5.87E-07 1.24E+00 Max 3.25E+02
Table A.1

Results for test problems BT11-HS39.

23

This manuscript is for review purposes only.

Problem Method Obj RE ∥c(x) + a∥2 ∥a∥∞ Status Time (s)
HS40 Alg. 2.1 -2.50E-01 1.39E-10 5.91E-11 0.00E+00 Opt 1.05E-01

Bazinga 1.43E+01 5.81E+01 9.97E-10 4.78E-01 Opt 1.25E+02
HS42 Alg. 2.1 1.39E+01 2.68E-10 3.06E-14 0.00E+00 Opt 2.68E-01

Bazinga 2.76E+01 9.90E-01 5.91E-10 1.13E+00 Opt 9.38E+01
HS46 Alg. 2.1 5.73E-10 5.73E-10 4.09E-12 0.00E+00 Opt 1.84E+00

Bazinga NaN NaN NaN NaN NaN 3.09E+02
HS47 Alg. 2.1 1.33E-05 1.33E-05 4.70E-10 0.00E+00 Max 8.48E+00

Bazinga 4.21E+01 4.21E+01 1.27E-10 1.36E+00 Opt 3.84E+01
HS48 Alg. 2.1 2.69E-11 2.69E-11 4.44E-16 0.00E+00 Opt 1.84E-01

Bazinga 2.00E-13 2.00E-13 1.59E-10 0.00E+00 Opt 9.06E+00
HS49 Alg. 2.1 2.20E-04 2.20E-04 1.81E-13 0.00E+00 Max 7.22E+00

Bazinga 2.90E+01 2.90E+01 2.02E-07 1.43E+00 Max 3.34E+02
HS50 Alg. 2.1 2.86E-11 2.86E-11 1.72E-14 0.00E+00 Opt 6.58E+00

Bazinga 4.53E+00 4.53E+00 1.66E-09 7.65E-02 Max 3.33E+02
HS51 Alg. 2.1 1.48E-11 1.48E-11 6.28E-16 0.00E+00 Opt 1.71E-01

Bazinga 1.61E-15 1.61E-15 3.17E-09 0.00E+00 Opt 9.05E+00
HS52 Alg. 2.1 5.33E+00 4.31E-12 7.69E-16 0.00E+00 Opt 1.37E+00

Bazinga 5.33E+00 6.50E-07 2.98E-07 0.00E+00 Opt 9.15E+00
HS56 Alg. 2.1 -5.81E+83 1.68E+83 4.07E+28 4.94E+27 Err 6.57E-02

Bazinga NaN NaN NaN NaN NaN 7.44E+01
HS61 Alg. 2.1 -1.44E+02 1.55E-11 2.03E-13 0.00E+00 Opt 1.75E-01

Bazinga -1.44E+02 4.29E-09 4.48E-07 0.00E+00 Opt 9.10E+00
HS6 Alg. 2.1 1.16E-10 1.16E-10 2.38E-11 0.00E+00 Opt 4.11E-01

Bazinga 4.46E-14 4.46E-14 2.49E-09 0.00E+00 Opt 1.20E+01
HS77 Alg. 2.1 2.42E-01 6.83E-09 3.16E-12 0.00E+00 Opt 5.32E-01

Bazinga NaN NaN NaN NaN NaN 1.12E+01
HS78 Alg. 2.1 1.10E+01 4.77E+00 4.73E-10 1.00E+00 Max 8.44E+00

Bazinga 5.44E+01 1.96E+01 3.93E-09 1.74E+00 Max 3.44E+02
HS79 Alg. 2.1 7.88E-02 7.11E-10 6.50E-14 0.00E+00 Opt 3.51E+00

Bazinga 2.82E+01 3.57E+02 3.74E-08 9.33E-01 Max 3.48E+02
HS7 Alg. 2.1 -1.73E+00 2.44E-10 8.18E-11 0.00E+00 Opt 1.81E+00

Bazinga -1.73E+00 2.12E-08 1.29E-07 0.00E+00 Opt 9.11E+00
HS9 Alg. 2.1 -5.00E-01 1.32E-09 1.78E-15 0.00E+00 Opt 7.98E-02

Bazinga -5.00E-01 9.02E-10 1.37E-08 0.00E+00 Opt 9.10E+00
LCH Alg. 2.1 -1.23E+02 2.77E+01 3.42E-06 9.47E+00 Max 1.84E+03

Bazinga 1.11E+00 1.26E+00 7.89E-09 3.50E-01 Max 1.07E+03
MARATOS Alg. 2.1 -1.00E+00 2.00E+00 4.71E-10 0.00E+00 Opt 6.19E-02

Bazinga 5.48E+00 4.48E+00 7.69E-11 6.10E-01 Opt 9.56E+00
MWRIGHT Alg. 2.1 2.50E+01 2.40E-01 1.09E-13 0.00E+00 Opt 6.92E-01

Bazinga 2.67E+02 7.11E+00 3.41E-07 3.02E+00 Max 3.46E+02
ORTHREGB Alg. 2.1 2.09E-12 2.09E-12 9.39E-13 0.00E+00 Opt 5.19E-01

Bazinga 3.90E+02 3.90E+02 6.22E-08 6.49E+00 Max 5.21E+02
S316-322 Alg. 2.1 3.34E+02 1.29E-06 3.31E-08 0.00E+00 Opt 6.14E-02

Bazinga 9.12E+02 1.73E+00 3.26E-07 9.80E-01 Opt 1.59E+01
SPIN2OP Alg. 2.1 1.23E-09 1.23E-09 1.22E-09 0.00E+00 Opt 6.55E+02

Bazinga 2.09E+03 2.09E+03 2.02E-08 2.09E+00 Max 4.45E+03
STREGNE Alg. 2.1 4.93E-12 4.93E-12 1.11E-15 0.00E+00 Opt 1.99E-01

Bazinga NaN NaN NaN NaN NaN 1.82E+01
Table A.2

Results for test problems HS40-STREGNE.
24

This manuscript is for review purposes only.

	Introduction
	Literature review
	Contributions
	Notation and assumptions
	Organization

	Algorithm
	Analysis
	Finite termination
	Non-finite termination
	Strong LICQ
	Strong LICQ fails

	Numerical Results
	Test problems
	Implementation details
	Test results

	Conclusion
	References
	Appendix A. Detailed Results for the Test Problems

