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Abstract For continuous decision spaces, nonlinear programs (NLPs) can be efficiently
solved via sequential quadratic programming (SQP) and, more generally, sequential convex
programming (SCP). These algorithms linearize only the nonlinear equality constraints and
keep the outer convex structure of the problem intact, such as (conic) inequality constraints
or convex objective terms.The aim of the presented sequential mixed-integer quadratic pro-
gramming (MIQP) algorithm for mixed-integer nonlinear problems (MINLPs) is to extend
the SQP/SCP methodology to MINLPs and leverage the availability of efficient MIQP
solvers. The algorithm employs a three-step method in each iterate: First, the MINLP is
linearized at a given iterate (“linearization point”). Second, an MIQP with its feasible set re-
stricted to a specific region around the current linearization point is formulated and solved.
Third, the integer variables obtained from the MIQP solution are fixed, and only an NLP in
the continuous variables is solved. The outcome of the third step is compared to previous
iterates, and the best iterate so far is used as a linearization point in the next iterate. Cru-
cially, the objective values and derivatives from all previous iterates are used to formulate
the polyhedral region in the second step. The linear inequalities that define the region build
on concepts from generalized Benders’ decomposition (GBD) for MINLPs. Although the
presented MINLP algorithm is a heuristic method without any global optimality guarantee,
it converges to the exact integer solution when applied to convex MINLP with a linear outer

∗ The authors contributed equally
A. Ghezzi
Department of Microsystems Engineering (IMTEK) University of Freiburg, Germany
E-mail: andrea.ghezzi@imtek.uni-freiburg.de
Corresponding author

W. Van Roy
Department of Mechanical Engineering, KU Leuven, Belgium
E-mail: wim.vanroy@kuleuven.be

S. Sager
Institute of Mathematical Optimization, Otto-von-Guericke Universität Magdeburg, Germany
E-mail: sager@ovgu.de

M. Diehl
Department of Microsystems Engineering (IMTEK) and Department of Mathematics, University of Freiburg,
Germany
E-mail: moritz.diehl@imtek.uni-freiburg.de



2 Andrea Ghezzi∗, Wim Van Roy∗, Sebastian Sager, Moritz Diehl

structure. The conducted numerical experiments demonstrate that the proposed algorithm
is competitive with other open-source solvers for MINLP. Finally, we utilize the proposed
algorithm to solve two mixed-integer optimal control problems (MIOCPs) transcribed into
MINLPs via direct methods. By approximately solving such problems we aim to demon-
strate that the presented algorithm can effectively deal with nonlinear equality constraints, a
major hurdle for generic MINLP solvers.

Keywords Mixed-integer nonlinear programming (MINLP) · sequential mixed-integer
quadratic programming · generalized Benders’ decomposition · outer approximation ·
optimal control
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1 Introduction

The class of mixed-integer nonlinear programs (MINLPs) comprises problems characterized
by continuous and discrete variables coupled with nonlinear relationships in the objective
or constraints. Hence, MINLPs represent a powerful optimization paradigm that offers a
natural way to formulate a wide range of problems and applications. The intersection of
nonlinearity and discrete variables poses unique challenges for the numerical solution of
such problems, which are characterized by NP-hard complexity [25, 34]. For unbounded
support, they are even undecidable, meaning that not every unbounded MINLP problem can
be solved.

Several excellent surveys and books cover algorithms for solving MINLPs [6], [50, §21].
Here, we provide only a high-level picture of the field and focus on the literature directly
connected to the algorithm we propose.

We can divide the existing algorithms into two families. The first consists of branch-and-
bound-type algorithms, such as nonlinear branch-and-bound [18, 28] and spatial branch-
and-bound [51]. The second family relies on the creation of cutting planes to iteratively
tighten the integer search space, as in the generalized Benders’ decomposition (GBD) [26],
outer approximation [21] and its quadratic version [23], and extended supporting cutting
planes [55, 35]. A combination of both families includes LP/NLP-based branch-and-bound
[45] and branch-and-check [52]. Branch-and-bound-based methods are appealing because
they leverage the existence of reliable, efficient, and open-source nonlinear solvers such
as IPOPT [54] and WORHP [15]. In contrast, the second family of methods additionally
requires efficient mixed-integer linear (quadratic) solvers such as the open-source CBC [24],
SCIP [2], Highs [31], as well as the commercial CPLEX [32], Gurobi [29], and Mosek [44].
Moreover, there also exist solvers that directly implement MINLP-specific algorithms, such
as the open-source Bonmin [8], Couenne [5], SHOT [40], and the commercial Antigone
[43], Baron [49], Knitro [17], and Gurobi. Regarding sequential programming algorithms
for mixed integer programs, the literature provides only a few suggestions [22]. Therein, the
presented algorithm resembles a standard trust-region sequential quadratic programming
(SQP) for continuous decision spaces. The algorithm can be applied to nonconvex MINLPs
and also to MINLPs where the integer variable cannot be relaxed. However, the authors do
not provide a proof of convergence to the global minimizer, even for convex MINLPs. The
Mittelmann benchmarks webpage [41] gives an up-to-date overview of the current solvers
and their performance.
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Most generic MINLP solvers focus on solving convex MINLPs, often providing only
heuristics for nonconvex ones. Some solvers, such as those based on outer approximation,
may fail, particularly with problems containing numerous nonlinear equality constraints. A
practical example where these constraints arise is in the solution of mixed-integer optimal
control problems (MIOCPs) via direct methods, such as direct collocation [53] or direct
multiple shooting [7]. In such cases, equality constraints enforce continuity of the underlying
dynamics equations at every grid node.

For the solution of MIOCPs, an important class of methods known as combinatorial
integral approximation (CIA) [48] employs an error-controlled decomposition approach. In
practice, the MIOCP is discretized to obtain an MINLP, which is then approximately solved
by computing an integer approximation. This approximation minimizes the distance from
the relaxed solution of the MINLP using a dedicated norm. An open-source implementa-
tion of this approach, named pycombina [12], has been developed and demonstrated too be
effective in various engineering applications [13, 47]. This method is capable of handling
generic dwell time constraints [56] and provides fast approximate solutions, with the main
computational challenge lying in the nonlinear optimization rather than combinatorial as-
pects. The method relies on the similarity of the relaxed solution with the optimal one. This
is a drawback when dealing with coarse discretization grids or long uptimes, as shown in
[14, 1]. To address this, [14] proposes a new distance function for the second step, based on
a quadratic programming approximation around the relaxed MINLP solution. This approach
often enhances the quality of the MIOCP solution in terms of both objective and constraint
satisfaction.

Another class of methods for approximately solving MIOCP is switching time optimiza-
tion (STO). This approach relies on an initial sequence of states that can be applied to the
system, with switch times optimized. During the iterations, the sequence is adjusted either
by inserting additional elements [37, 4] or by removing unnecessary sequences [1]. Also
this approach is a heuristic and relies on the initial sequence provided to the solver.

In this work, we introduce an algorithm for solving MINLPs, which draws inspiration
from [14] and classical MINLP methods based on outer approximation. Traditionally, such
methods are not well-suited for MINLPs with nonlinear equality constraints. Our algorithm
leverages the cuts generated by GBD to construct a Benders-region, which is integrated into
the algorithm, similarly to the Voronoi-region constraint proposed in [27]. We demonstrate
that the algorithm converges to the global optimal solution for convex MINLPs, while pro-
viding a valid heuristic for nonconvex ones.

1.1 Contribution and outline

In the remainder of this section, we outline some preliminary definitions and notions uti-
lized throughout the rest of the paper. In Section 2, we introduce the new algorithm, which
comprises a three-step method with alternating nonlinear program (NLP) and mixed-integer
program (MIP) steps, efficiently combining cutting planes based on GBD and outer approx-
imation. Subsequently, we describe in detail all its constituent components. Furthermore,
assuming convexity, we prove that the algorithm converges to the global optimum or with a
certificate of infeasibility for the given MINLP. Finally, we conclude the section by illustrat-
ing the behavior of the proposed algorithm with a simple tutorial example. In Section 3, we
propose an extension for treating nonconvex MINLPs by introducing heuristics to modify
the generated cutting planes. We demonstrate that these introduced heuristics do not com-
promise convergence to the global minimizer in the case of convex MINLPs. Additionally,



4 Andrea Ghezzi∗, Wim Van Roy∗, Sebastian Sager, Moritz Diehl

for MINLPs where the integer variables enter affinely, making the relaxed integer feasible
set convex, we prove that the proposed algorithm terminates with either a feasible solution
or a certificate of infeasibility. In Section 4, we compare the proposed algorithm against
SHOT and Bonmin, two established MINLP solvers, using a selected but large subset of
generic MINLPs from the MINLPLib [16] containing at least one integer and one continu-
ous variable. This comparison reveals that the presented algorithm converges to a solution
with a lower objective value for many instances compared to SHOT and Bonmin. Regard-
ing computation time, the proposed algorithm requires more computation time than SHOT
but less than Bonmin. Finally, we present the results obtained with the proposed algorithm
in two cases of optimal control for switched systems: a textbook example of a small, non-
linear, and unstable system, and a complex nonlinear energy system for building control.
For these examples, a comparison against SHOT was not possible. However, we compare
again against Bonmin and the specialized algorithm CIA. In both examples, the proposed
algorithm outperforms Bonmin in terms of speed while yielding either the same or a lower
objective solution. Compared to CIA, the proposed algorithm also achieves a solution with
a lower objective, although, as expected, the computation time is higher. The gap between
solution quality and computation time for the complex example is dramatic. While the pro-
posed algorithm achieves significantly better solutions compared to CIA, the computation
times that might be impractical for real-world control applications.

Alongside the methods and numerical examples, we provide an open-source implemen-
tation1 in Python based on CasADi [3]. Users have the flexibility to choose from various
solvers interfaced by CasADi, to solve both the NLPs and the MIPs, enabling an implemen-
tation free from reliance on commercial solvers. In addition to the new algorithm presented
in this paper, the software package includes a comprehensive range of other existing algo-
rithms, such as GBD, (quadratic) outer approximation, feasibility pumps, and the ability
to use seamlessly MINLP solvers already interfaced by CasADi, such as Bonmin. Further
details are available in the README file of the repository.

1.2 Notation

We denote with Z[a,b] the set of integer numbers in the interval [a,b] with a,b ∈ Z and
a < b. For a vector-valued function f : Rn→ Rm we extend the gradient notation such that

∇ f (z)≡
(

∂ f
∂ z (z)

)⊤
. We define the linearization of a function f at (x̄, ȳ) as a Taylor series of

first order fL(x,y; x̄, ȳ) := f (x̄, ȳ)+ ∂ f
∂ (x,y) (x̄, ȳ)

(
x− x̄
y− ȳ

)
. The term convex MINLP refers to a

MINLP that is convex with respect to both the the continuous optimization variables and the
relaxed integer variables.

1.3 Mixed-Integer Nonlinear Problem formulations

In this paper, we consider the generic MINLP as

1 https://github.com/minlp-toolbox/minlp-algorithms

https://github.com/minlp-toolbox/minlp-algorithms
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PMINLP :

min
x ∈ X ,y ∈ Y

f (x,y)

s.t. g(x,y)≤ 0,

h(x,y) = 0.

(1)

We can express (1) more compactly as:

min
y ∈ Y

J(y), (2)

where
J(y) := min

x ∈ X
f (x,y)

s.t. g(x,y)≤ 0,

h(x,y) = 0.

(3)

In the remainder of the work, in slight abuse of notation, we use J(y) to denote either an
optimization problem, a function, or a specific objective value. The intended usage should
be clear from the context. Additionally, we denote the subgradient of the possibly nonsmooth
function J : Y →R as ∇J. The computation of the subgradient ∇J is detailed in Section 2.2.
The proofs in this work rely on the following assumptions regarding problem (1).

Assumption 1. We assume that

1. Y = Ȳ ∩Zny , where both X ⊂ Rnx and Ȳ ⊂ Rny are closed convex polyhedral sets.
2. Functions f : Rnx ×Rny →R, g : Rnx ×Rny →Rng and h : Rnx ×Rny →Rnh are at least

once continuously differentiable.
3. The integer set Y is finite.

Assumption 2 (Convexity). Function h is affine, and functions g1, . . . ,gng and f are convex
on X× Ȳ .

Definition 1. We define the feasible set of the integer variables as

F := {y ∈ Y | ∃x ∈ X ,g(x,y)≤ 0,h(x,y) = 0}.

Similarly, we define the feasible set of the relaxed integer variables as

F̄ := {y ∈ Ȳ | ∃x ∈ X ,g(x,y)≤ 0,h(x,y) = 0}.

In the following, we only require Assumption 1 to hold unless specified otherwise.

1.4 The MILP/MIQP approximation

We outline the process of deriving a MILP/MIQP approximation of problem (2), which
constitutes a key component of the proposed algorithm. Let us denote the linearizations of
functions f ,g,h at (x̄, ȳ) as fL(· ; x̄, ȳ),gL(· ; x̄, ȳ), and hL(· ; x̄, ȳ), respectively. The resulting
quadratic programming based approximation of J is defined as
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JQP(y; x̄, ȳ,B) := min
x ∈ X

fL(x,y; x̄, ȳ)+
1
2

(
x− x̄
y− ȳ

)⊤
B
(

x− x̄
y− ȳ

)
s.t. gL(x,y; x̄, ȳ)≤ 0,

hL(x,y; x̄, ȳ) = 0,

(4)

where B is a positive semidefinite Hessian approximation.

Remark 1 In many discretized optimal control problems, the cost function f in (1) takes the
form of a nonlinear least squares function:

f (x,y) :=
1
2
∥ f1(x,y)∥2

2 + f2(x,y), (5)

where f1 : Rnx+ny →Rn1 and f2 : Rnx+ny →R are differentiable functions, and ∥·∥2 denotes
the L2 norm. In this case, the Gauss-Newton Hessian approximation is commonly used,
defined as

B := ∇ f1(x̄, ȳ)∇ f1(x̄, ȳ)⊤,

and when using this choice of B, problem (4) coincides with the Gauss-Newton MIQP pre-
sented in [14].

2 Sequential Benders MIQP algorithm

The algorithm proposed in this work leverages various approximations of the function J(y)
based on the first and second derivatives of the problem functions. Initially, we utilize a
quadratic programming-based approximation of J, denoted as JQP. This approximation is
expected to perform effectively within a defined region B around the current linearization
point, determined by the best-visited point thus far, denoted as (xb,yb). Additionally, along-
side JQP, we construct a lower bound function JLB that aggregates first-order information
from all visited points so far, similar to the GBD [26]. These two functions, JQP and JLB,
serve as the foundation for constructing the two master problems responsible for address-
ing the combinatorial nature of (2). Finally, we construct an auxiliary problem to assess the
quality of the approximated solutions for the original MINLP (2). This evaluation is crucial
for updating the linearization point and guiding the search for an optimal solution.

Moving forward, we first present the complete algorithm, outlining its main features.
Following this overview, we delve into the constituent components, namely the auxiliary
problem, the master problems, and the termination condition.

2.1 The S-B-MIQP algorithm

Algorithm 1 presents the Sequential Benders MIQP (S-B-MIQP) algorithm. Here, we con-
sider Assumption 2 about convexity to hold; thus, line 16 is omitted and we assume D̃k :=
Dk. We address the nonconvex case in Section 3.

In Algorithm 1, the letter k, primarily used for subscripts, denotes the iteration index,
where k ∈ Z. Algorithm 1 begins with an integer point y0 ∈ Y provided by the user, along
with a lower bound, LB, obtained by solving (2) under integer relaxation. Also, the value V̄
is user-defined and corresponds to a large number, with V̄ <UB. Following initialization, we



A Sequential Benders-based MIQP Algorithm 7

enter a cycle that terminates only when the lower bound becomes greater or equal than the
upper bound, UB. This termination condition is common for mixed-integer programming
algorithms.

The first half of the cycle involves evaluating the quality of the integer solution yk and
solving for the continuous variable x. In each iteration, the upper bound is updated by com-
paring the current UB with J(yk), the objective value of the NLP obtained by fixing the
integer variable of the MINLP (2) to yk. This NLP with the fixed integer variable is denoted
as PNLP, and its solution xk provides the optimized continuous variable. The zero and first-
order information of its objective are used to construct the Benders region Bk. Note that
PNLP might be infeasible for some yk. Therefore, we anticipate a feasibility problem PFNLP,
whose solution is used to construct specific cutting planes aiming to steer the integer solu-
tion back to the feasible set. We refer to PNLP and PFNLP as auxiliary problems. The index
sets, T and S, store the index of feasible and infeasible iterates, respectively.

The second half of Algorithm 1 focuses on computing new integer solutions and lower
bounds. The integer solutions are computed in the master problems PTR−MIQP and PLB−MILP,
which are an MIQP and an MILP, respectively. The idea is to approach the minimizer
of PMINLP (2) by solving MIQPs, as done in SQP for continuous problems. Moreover, in
the context of mixed-integer programming, solving MIQPs as master problems rather than
MILPs has shown to be beneficial for the outer approximation algorithm [23]. Nowadays,
we can also leverage the existence of highly efficient MIQP solvers, where the runtime gap
between MILP and MIQP has been dramatically reduced.

On the contrary, solving exclusively MIQPs as master problems does not guarantee the
convergence to a global minimizer even under convexity Assumption 2. For this reason,
we anticipate a fallback strategy based on the solution of a MILP obtained by discarding
the Hessian term of PTR−MIQP and reformulating it in an epigraph form. The objective of
PLB−MILP provides a lower bound on the objective of (2). In summary, we solve PTR−MIQP
to quickly attain integer solutions yk that produce low objectives of PNLP. As soon as the
solution of PTR−MIQP stagnates, we start solving PLB−MILP to obtain a lower bound for the
current best solution and a new integer solution to evaluate in the next iterate.

In the next subsections, we present PNLP, PFNLP, PBR−MIQP, PLB−MILP, b(k) and Dk.
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Algorithm 1 Sequential Benders MIQP (S-B-MIQP)

1: Initialize: y0 ∈ Y , B0← Y , k← 0, S−1← /0, T−1← /0, UB =+∞, LB =−∞, V0← V̄
2: LB←miny∈Ȳ J(y) ▷ LB given by the objective of MINLP relaxation

3: b(k)← 0
4: while UB > LB do:
5: Solve PNLP(yk)
6: if PNLP(yk) is feasible then
7: Store solution (k,xk,yk,J(yk),∇J(yk)) in Dk and Tk← Tk−1∪{k}
8: if J(yk)< UB then: ▷ Update the best solution

9: UB← J(yk)
10: end if
11: else
12: Solve PFNLP(yk,yb(k)) and obtain ȳk
13: Store solution (k,xk,yk, ȳk,Jf(ȳk;yk),∇J(ȳk)) in Dk and Sk← Sk−1∪{k}
14: end if
15: Compute b(k) according to (15)
16: Modify gradients in Dk, obtain D̃k
17: Compute Benders region Bk based on D̃k according to (17)
18: if Vk ≤ UB then:
19: Solve PBR−MIQP with JQP(y;xb(k),yb(k),Bb(k)) and Bk, store solution ỹ
20: Vk+1←VMIQP
21: end if
22: if Vk > UB or PBR−MIQP is infeasible then:
23: Solve PLB−MILP with JLB(y;Tk,Sk,D̃k), obtain solution ỹ and VMILP
24: if PLB−MILP is infeasible then
25: LB←+∞

26: else
27: if VMILP > LB then
28: LB←VMILP
29: end if
30: end if
31: end if
32: yk+1← ỹ
33: b(k+1)← b(k)
34: k← k+1
35: end while

2.2 Auxiliary problem

The auxiliary problem PNLP is an NLP obtained by fixing the integer variables of the original
MINLP (1). Hence, given any fixed integer vector ỹ ∈ Y , the auxiliary NLP and its optimal
value J(ỹ) are
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PNLP(ỹ) :

J(ỹ) := min
x ∈ X

f (x, ỹ) (6a)

s.t. g(x, ỹ)≤ 0, (6b)

h(x, ỹ) = 0. (6c)

Note that for some ỹ ∈ Y , PNLP(ỹ) might be infeasible, in this case we set J(ỹ) = +∞.

Assumption 3. A constraint qualification holds at the solution x⋆ of PNLP(ỹ) for all ỹ ∈ Y .

Assuming x⋆ ∈ X to be a feasible and optimal solution of PNLP(ỹ) and Assumption 3 holds,
it is possible to compute the subgradient ∇J at ỹ ∈ Y from the Karush-Kuhn-Tucker (KKT)
conditions of the following problem

min
x ∈ X ,y ∈ Y

f (x,y)

s.t. g(x,y)≤ 0,

h(x,y) = 0,

y− ỹ = 0,

(7)

that are given by

∇x f (x⋆, ỹ)+∇xg(x⋆, ỹ)λ +∇xh(x⋆, ỹ)µ = 0,
∇y f (x⋆, ỹ)+∇yg(x⋆, ỹ)λ +∇yh(x⋆, ỹ)µ =−µỹ,

g(x⋆, ỹ) ≤ 0,
h(x⋆, ỹ) = 0,
λ ≥ 0,
λigi(x⋆, ỹ) = 0, i = 1, . . . ,ng

(8)

with λ ∈ Rng ,µ ∈ Rnh being the Lagrangian multipliers of the constraints associated with
functions g,h, respectively, and µỹ ∈Rny is the multiplier associated to the constraint y− ỹ=
0. Finally, the subgradient function J at ỹ with respect to the integer variable y ∈ Y is given
by

∇J(ỹ) :=−µỹ. (9)

Remark 2 We use the term “subgradient” because the function J is potentially nonsmooth.
Moreover, since we solve (6) with an interior point solver, the computed subgradient ∇J(ỹ)
might be an approximation of the true one. In practice, this approximation has not posed
significant issues.

2.2.1 Feasibility of the auxiliary problem

For some ŷ∈Y , the problem PNLP which we aim to solve might be infeasible. In this specific
situation, we solve a feasibility problem to find the closest point to ŷ that lies on the boundary
of F̄. The sought point is obtained by solving the following NLP
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PFNLP(ŷ,yb) :
ȳ(ŷ,yb) := arg min

y ∈ Ȳ
Jf(y; ŷ)

s.t. ∥yb− y∥2
2 ≤ ∥yb− ŷ∥2

2 , if yb given,
(10)

with Jf being
Jf(y; ŷ) := min

x ∈ X
∥y− ŷ∥2

2

s.t. g(x,y)≤ 0,

h(x,y) = 0.

(11)

The constraint in (10) is enforced only if a feasible (best) solution yb ∈ F is available.
This constraint narrows the feasible set Ȳ by requiring that ȳ lies within a ball of radius
∥yb− ŷ∥2 around the best point yb. This requirement is particularly helpful in case of a
disconnected feasible set F̄, but it does not introduce further complexity in case of a convex
feasible set F̄ (cf. Lemma 1).

Note that the above problems have a bi-level structure but can be written as one mini-
mization problem in the joint space of X × Ȳ . Here, we are only interested in the minimizer
of problem (10) which is used to construct the following infeasibility cut:

(ŷ− ȳ)⊤(y− ȳ)≤ 0. (12)

This constraint can be interpreted as the hyperplane on a convex set going through ȳ with a
normal vector ŷ− ȳ. Note that, similarly to J, also Jf can denote either an optimization prob-
lem, a function, or a specific objective value. The usage should be clear from the context.

Lemma 1 Under Assumption 1, if PNLP(ŷ) is infeasible, and if ȳ solves PFNLP(ŷ,yb), then
y = ŷ is infeasible in the constraint (12).

Proof. For y = ŷ, we have (ŷ− ȳ)⊤(ŷ− ȳ) = ∥ŷ− ȳ∥2
2 > 0, thus ŷ violates (12). Conversely,

if PNLP(ŷ) is feasible, the solution of PFNLP(ŷ,yb) is ȳ = ŷ, and (12) holds with equality.

Lemma 2 Under Assumption 2, if PNLP(ŷ) is infeasible, and if ȳ solves PFNLP(ŷ,yb), then
all y ∈ F̄ are feasible in the constraint (12).

Proof. The point ȳ is a boundary point of F̄, since ŷ /∈ F̄ and ȳ = argminy∈F̄ ∥y− ŷ∥2
2. Based

on the separating hyperplane theorem [9], there exists a separating hyperplane given by

∃ a,α : a⊤ŷ > α and a⊤y≤ α,∀y ∈ F̄ (13)

with a being normal to the set F̄, such that

a⊤y≤ a⊤ȳ, ∀y ∈ F̄. (14)

Since by definition ȳ is the closest point to ŷ and ȳ ∈ F̄, then a = (ŷ− ȳ) defines the normal
vector to the set F̄. Substituting this into (14) leads to:

(ŷ− ȳ)⊤(y− ȳ)≤ 0, ∀y ∈ F̄.

Based on Lemma 2, we can conclude that the constraint (12) is inactive for the best
found solution yb, if the problem is convex.
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2.3 The lower bound function

Let us define the lower bound function JLB introduced earlier. Consider a collection of points
for which first-order information of J is available in terms of evaluation tuples (i,xi,yi,J(yi),
∇J(yi)). We collect them in a dataset

Dk := ((0,x0,y0,J(y0),∇J(y0)), . . . ,(k,xk,yk,J(yk),∇J(yk))) .

If, at the k-th iteration, we have successfully solved PNLP with J(yk), then we store k
in the index set Tk, which collects the indices of feasible iterates. Otherwise, if we have
solved the feasibility problem PFNLP(yk,yb(k)), we store its solution ȳk by extending the
corresponding tuple, and we store k in the index set Sk. The following set expression holds:
Tk ∪Sk = Z[0,k]. Moreover, at the k-th iteration, we identify the index corresponding to the
best solution found as

b(k) :=

arg min
i∈Tk

J(yi), if Tk ̸= /0,

arg min
i∈Sk

Jf(ȳi;yi), otherwise.
(15)

Clearly, b(k) ≤ k. With the above definition of b(k), we can not only keep track of the
feasible point with the minimum objective, but also of the least infeasible point.

The lower bound function JLB is defined on these index sets as follows

JLB(y;Tk,Sk,Dk) := min
η

η

s.t. η ≥ J(yi)+∇J(yi)
⊤(y− yi), i ∈ Tk,

(y j− ȳ j)
⊤(y− ȳ j)≤ 0, j ∈ Sk.

(16)

The term ∇J(yi) is a subgradient of the potentially nonsmooth function J, and its computa-
tion has been discussed in Section 2.2.

2.4 Benders region computation and MIQP

As stated in Algorithm 1, problem PBR−MIQP depends on the convex polyhedron Bk, referred
to “Benders region”. It is defined as

Bk :={y ∈ Rny | JLB(y;Tk,Sk,Dk)≤ J̄k}, (17)

where J̄k is determined by
J̄k := αJ(yb(k))+(1−α)LB, (18)

where α ∈ [0,1). The interval is open on the right ensuring that the current best point is
always excluded from (17). The computation of this reduced right-hand-side term follows
an idea from [36]. It has the property to exclude all the visited points including the best
point yb(k) from the current region Bk, unless the lower-bound value is equal to the current
best point. As the lower bound LB is not updated during each iteration, this constraint might
make PBR−MIQP infeasible. When this happens, we trigger the if-condition of line 22 and
solve a different master problem, named PLB−MILP, which is presented in the next section.

Finally, the Benders-region MIQP PBR−MIQP comprises the quadratic approximation of
PMINLP as presented in (4), computed around the current best point (xb(k),yb(k)) with the
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Hessian approximation Bb(k), the additional constraints created by the Benders region (17),
and the infeasibility cuts (12). Hence, we state

PBR−MIQP :

min
x ∈ X ,y ∈ Y

fL(x,y;xb(k),yb(k))+
1
2

(
x− xb(k)
y− yb(k)

)⊤
Bb(k)

(
x− xb(k)
y− yb(k)

)
s.t. gL(x,y;xb(k),yb(k))≤ 0,

hL(x,y;xb(k),yb(k)) = 0,

J(yi)+∇J(yi)
⊤(y− yi)≤ J̄k, i ∈ Tk,

(yi− ȳi)
⊤(y− ȳi)≤ 0, i ∈ Sk.

(19)

We denote the objective value of (19) as VMIQP. Eventually, in the case no feasible solu-
tion has been found yet, i.e., Tk = /0, the functions fL,gL,hL are obtained by linearizing at
the current least infeasible point (xb(k),yb(k)), where b(k) is computed according to (15).

2.5 Termination certificates

As previously mentioned, problem PBR−MIQP might be infeasible since the Benders region
might be an empty set. In this case, we do not know whether the current best solution is
an optimal solution for PMINLP, even in the case the latter is convex (under Assumption 2),
because the solution of PBR−MIQP does not provide a lower bound of PMINLP. Therefore, we
introduce a strategy to verify whether the current best solution is optimal or other solutions
exist.

The strategy consists of solving an MILP with a structure similar to the main problem
of the GBD algorithm [26]. In our case, we additionally include in the constraints the linear
approximation of the original MINLP (1) around the best solution found. This can be seen
as a mix between GBD and outer approximation [23]. At the k-th iteration of Algorithm 1,
PLB−MILP can be formulated as a MILP in the full variable space as follows

PLB−MILP :

min
η∈R, x∈X , y∈Y

η (20a)

s.t. η ≥ fL(x,y;xb(k),yb(k)), (20b)

0≥ gL(x,y;xb(k),yb(k)), if b(k) ∈ Tk, (20c)

0 = hL(x,y;xb(k),yb(k)), if b(k) ∈ Tk, , (20d)

η ≥ J(yi)+∇J(yi)
⊤(y− yi), i ∈ Tk, (20e)

0≥ (yi− ȳi)
⊤(y− ȳi), i ∈ Sk. (20f)

Differently from (19) the outer approximation constraints are only imposed for the
current best solution, which corresponds to the linearization point, but only if the pair
(xb(k),yb(k)) is feasible, i.e., b(k) ∈ Tk.

Problem (20) entails all the visited integer solutions. Specifically, for each feasible vis-
ited solution yi we construct a linear approximator in the integer space of the nonlinear
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function J : Y 7→ R, cf., (3). Thus, by minimizing the slack variable η , we aim to find the
minimum of the epigraph of the function obtained by the intersection of all the epigraphs of
linear models.

2.6 Algorithm properties

In the following we state a few properties of Algorithm 1, using the following well-known
results.

Lemma 3 A differentiable function f : X → R is convex if and only if X is a convex set and
f (z)≥ f (x)+∇ f (x)⊤(z− x) holds for all x,z ∈ X.

Proof. Given in [9, §3.1.3].

Lemma 4 If Assumptions 1, 2, and 3 hold, then PLB−MILP has the same minimizer as
PMINLP, given all feasible integer points are visited, Y = {yk ∈ Tk | k→ ∞}.

Proof. Proved in [38, §13.1] for GBD, here the only difference is that the master problem
PLB−MILP includes the linearization of constraints about (xb(k),yb(k)). Since functions f ,g,h
are differentiable and convex, the first order Taylor series fL,gL,hL provide lower bounds
for the corresponding functions (cf. Lemma 3). Hence, the feasible set of PLB−MILP is still
an overapproximation of the feasible set of PMINLP that contains the global minimum. Note
that the feasible set of PLB−MILP is tighter compared to the one of the master problem in
GBD.

Theorem 1 If Assumptions 1, 2, and 3 hold, Algorithm 1 converges in a finite number of
iterations to the global optimal solution of MINLP or with a certificate of infeasibility.

Proof. First we need to demonstrate that no integer assignment is repeated by Algorithm 1.
The finiteness of Algorithm 1 follows from the finiteness of the set Y .

An integer assignment yk can make PNLP with J(yk) feasible or infeasible. If PNLP(yk)
is infeasible, we solve PFNLP(yk,yb(k)) and we add the constraint

(yk− ȳk)
⊤(y− ȳk)≤ 0,

in the next master problems PBR−MIQP and PLB−MILP, so as to exclude yk from their feasible
region (cf. Lemma 1).

If PNLP is feasible and the objective is not equal to LB, yk will be excluded in the
PBR−MIQP by the Benders region constraint. Hence, solving PBR−MIQP would either result
in a new integer solution ỹ or in a certificate of infeasibility. For the latter case, we would
then solve PLB−MILP, for which yk is feasible and provides a new linearization point for a
supporting hyperplane that approximates from below the solution of PMINLP (cf. Lemma 3).
If PNLP is feasible and the objective is equal to LB, the optimal value is also reached and
Algorithm 1 terminates.

Algorithm 1 always terminates at the global optimal solution of PMINLP or with a cer-
tificate of infeasibility for PMINLP.

Let (x⋆,y⋆) be the global optimal solution of PMINLP with objective f ⋆, hence PNLP is
feasible for J(y⋆) and UB = J(y⋆) = f (x⋆,y⋆). Assume that when solving PLB−MILP, we ob-
tain a solution (η⋆, x̃,y⋆) for which constraints (20c), (20d), (20f) are satisfied. Conversely,
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we regard the remaining constraints of PLB−MILP

η ≥ f (x⋆,y⋆)+∇ f (x⋆,y⋆)⊤
(

x̃− x⋆

y⋆− y⋆

)
(21)

η ≥ J(yi)+∇J(yi)
⊤(y⋆− yi), i ∈ Tk. (22)

From the first equation, we know that no valid descent direction exists along x at x⋆ (cf.
Assumption 3), therefore

∇ f (x⋆,y⋆)⊤
(

x̃− x⋆

0

)
≥ 0.

Additionally, the right hand side of Eq. (22) consists of lower bounds for the solution of
PMINLP and J(yi)> UB for all i ∈ Tk, it follows

LB = η ≥ f (x⋆,y⋆)+∇ f (x⋆,y⋆)⊤
(

x̃− x⋆

0

)
≥ UB,

thus Algorithm 1 terminates.
Assume that Algorithm 1 terminates at a point (x′,y′) which is not the global optimum,

hence UB = J(y′)> J(y⋆), and the solution of PLB−MILP is η ′ = LB. To attain termination,
we need LB ≥ UB, it follows that LB = η ′ ≥ UB > J(y⋆), which contradicts Lemma 3. In
fact, the problem PLB−MILP is an underapproximator of PMINLP, thus the optimal solution
(x⋆,y⋆) must be feasible for PLB−MILP and yield a η⋆ < η ′.

Algorithm 1 classifies PMINLP as infeasible when every y ∈ Y has proved to make PNLP
infeasible. Algorithm 1 never updates UB, then UB =+∞. Moreover, once every y ∈ Y has
been tested, the infeasibility cutting planes make PLB−MILP infeasible as well. Therefore,
Algorithm 1 terminates since we have LB = UB =+∞.

2.7 Tutorial example for S-B-MIQP

We illustrate the behavior of Algorithm 1 for a MINLP where we can have an effective
graphical representation. The example is taken from [27]. Consider the following convex
MINLP

min
x∈R,

(y1,y2)∈Z2

(y1−4.1)2 +(y2−4.0)2 +λx (23a)

s.t. y2
1 + y2

2− r2− x≤ 0, (23b)

−x≤ 0, (23c)

where r = 3 and λ = 1000. The term λx in (23a) can be seen as a penalization of the
violation of some quadratic constraint y2

1 + y2
2 − r2 ≤ 0. The shape of the cost function

and the global minimizer of (23) are represented in Figure 1. The global minimizer can
be found graphically and corresponds to (x,y1,y2,x) = (0,2,2). Note that x is determined
by x = max(0,y2

1 + y2
2 − r2). Given a linearization point (x̄, ȳ1, ȳ2), one can compute the

MILP/MIQP approximation as explained in Section 1.4. Since the original cost is convex
and quadratic, one can choose B as the exact Hessian of (23a). The quadratic constraint
(23b) is linearized to fit the MILP/MIQP approximation as follows

−ȳ2
1− ȳ2

2 +2y1ȳ1 +2y2ȳ2− x≤ r2. (24)
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Fig. 1: Level lines of the cost function of problem (23). The red asterisk denotes the global
minimizer.

Table 1: Iterations of Algorithm 1 for problem (23)

k LB UB b(k) yk J(yk) Vk

0 7.44 7016.81 0 (0, 4) 7016.81 -
1 7.44 7016.81 0 (4, 3) 16001.01 1.01
2 7.44 4005.21 2 (3, 2) 4005.21 5.21
3 8.41 8.41 3 (2, 2) 8.41 8.41

Also, for the MILP/MIQP approximation x is implicitly defined as x = max(0,−ȳ2
1− ȳ2

2 +
2y1ȳ1 +2y2ȳ2− r2). For this reason, in the following, we focus only on the values of y1,y2.
By a slight abuse of notation, we stack y1,y2 in the vector yk as yk := (y1,y2) where the
subscript k denotes the iteration number of Algorithm 1.

We apply Algorithm 1 to solve (23), with hyper-parameter α = 0.9 for the reduced right-
hand-side (18). Table 1 reports the results of each iteration, and Figure 2 gives a graphical
interpretation.

The problem is initialized with y0 = (0,4), and the lower bound computed via MINLP
relaxation is LB = 7.44. In the first iteration, the initial point y0 is evaluated by solving
PNLP(y0). Since the problem is feasible, its objective value updates the initial upper bound,
UB = 7016.81. Then, we compute the Benders region B0 and we solve PBR−MIQP with
JQP(y;x0,y0,B0) . Since PBR−MIQP is feasible, we store its objective in V1 and its solution in
y1, hence V1 = 1.01 and y1 = (4,3). The next two iterations of Algorithm 1, i.e., k = 1,2 has
a similar structure to the first iteration. We move our focus to the fourth iteration where y3 =
(2,2), and the associated PNLP(y3) objective is 8.41, then UB is updated. Also, the Benders
region B3 is computed, and its intersection with the integer feasible set is empty. Therefore,
we switch to the solution of the associated PLB−MILP, whose minimizer is y2 = (2,2), and
the objective is VMILP = 8.41. The lower bound LB is updated and, finally, the termination
condition of Algorithm 1 is met since UB = LB.

Note that the sequential nature of Algorithm 1 is meaningful only thanks to the update of
the Benders region based on the information gathered at each iteration. Without this update,
Algorithm 1 would cycle eternally between the first two integer solutions.
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Fig. 2: Representation of algorithm iterations. The level lines correspond to either PBR−MIQP
or PLB−MILP, according to the iteration. The darkened areas describe the regions excluded
by the Benders regions Bk.

3 Extension to the nonconvex case

Under the convexity Assumption 2, Theorem 1 guarantees final termination of Algorithm 1.
However, when we deal with nonconvex MINLPs (1), for which we only require Assump-
tion 1 and 3 to hold, the termination condition of Algorithm 1 might be triggered in wrong
situations. Due to nonconvexities, the cutting planes based on JLB are not guaranteed to be
lower bounds for the global optimum or for the current best solution.

We delineate two premature termination scenarios. The first scenario occurs when the
solution of PLB−MILP yields a new point (xk,yk) with a value exceeding the current UB.
This situation is inherently ambiguous because we halt the algorithm due to a newfound
minimizer that we acknowledge to be inferior to the best point found during the algorithm’s
iterations. The second scenario arises from infeasible cutting planes, causing PLB−MILP to
become infeasible. Here, we set LB to +∞, triggering Algorithm 1 termination. This second
scenario is particularly misleading as it encroaches upon the condition LB =+∞, typically
reserved for detecting infeasibility in the original problem PMINLP.

We illustrate the first situation of premature termination with the following example.
Consider the nonlinear integer program

min
y ∈ Z[−4,4]

(
y2−5

)2
+4y. (25)

For simplicity, we run Algorithm 1 with zero Hessian B = 0 in PBR−MIQP, resulting in an
MILP. As shown in Figure 3, at the last iteration, the new Benders region B3 is empty.
Hence, we attempt to solve PLB−MILP. Note that for the latter problem, the cutting planes
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are not lower bounds of the current best solution yb(3) = −3. The solution of PLB−MILP is
y = 2, which has a value greater than UB, triggering the termination of Algorithm 1.

The second scenario is illustrated in Figure 4, where F̄ is nonconvex, yb ∈ F̄ is the best
solution found, and ŷ is the infeasible solution that Algorithm 1 has computed lastly. In the
attempt to create an infeasibility cut as (12) for PFNLP(ŷ,yb), we cut a portion of the feasible
set that includes yb. This makes LB = ∞, triggering the termination of Algorithm 1.
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Fig. 3: Iterations of Algorithm 1 for Problem (25) with LB equal to the global minimum
and α = 0.5, starting from y0 =−3. In blue, the cost function; in orange, the linear models;
the red star is the current best point, and the orange dot the solution computed at the given
iteration. The shaded dark areas correspond to the area excluded from the feasible set by the
given Benders region. The first plot depicts the initial condition of Algorithm 1, and the last
plot illustrates its termination, highlighting the first scenario of premature termination.

In what follows, we introduce a strategy to address these situations of early termination
and enforce Algorithm 1 to not discard the current best solution. First, we present a proce-
dure to correct the gradient of the linear models, then we show a way to enlarge the Benders
region.

3.1 Gradient correction

During the computation of JLB at the k-th iteration of Algorithm 1, it might happen that
the cutting planes exclude the current best solution yb(k), eventually resulting in an early
termination. To prevent this situation, we correct the gradients used in JLB to ensure that the
resulting linearizations are lower bounds for the best point as follows

J(yi)+∇J(yi)
⊤(y− yi)≤ J(yb(k)), for all i ∈ Tk. (26)
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Fig. 4: Termination condition triggered by infeasibility cuts. The relaxed integer feasible set
F̄ corresponds to the interior of the solid black line, yb ∈ F is the current best and feasible
solution, ŷ ∈ Zny is infeasible, and ȳ is the solution of (10). The infeasibility cut in ȳ makes
yb infeasible and triggers the termination condition.

But, if for y = yb(k), the inequality does not hold for some index i, we have

J(yi)+∇J(yi)
⊤(yb(k)− yi)> J(yb(k)). (27)

To address this issue, we focus on modifying the gradient of the linear model ∇J and define
the set of “admissible” gradients G(i,k) such that

G(i,k) := {g̃ | J(yi)+ g̃⊤(yb(k)− yi)≤ J(yb(k))}. (28)

Among the elements of this set, we choose the gradient that allows for the minimal cor-
rection in a weighted Euclidean norm, with a symmetric positive definite weight matrix W .
Thus, the corrected gradient is defined as

gcorr
(i,k) := arg min

g ∈G(i,k)

1
2
∥g−∇J(yi)∥2

W (29)

Lemma 5 Problem (29) can be solved analytically. With the shorthands ∆y(i,k) = yb(k)− yi
and r(i,k) = J(yb(k))− J(yi)−∇J(yi)∆y(i,k) it results in

gcorr
(i,k) = ∇J(yi)+


0 if r(i,k) ≥ 0,

r(i,k)
∆y⊤

(i,k)W
−1∆y(i,k)

W−1
∆y(i,k) if r(i,k) < 0. (30)

Proof. Let us write problem (29) in the following form

min
∆g

1
2
∥∆g∥2

W

s.t. ∆g⊤∆y− r = 0,
(31)
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where ∆g = g−∇J(yk), ∆y = yb(k)− yk, and r = J(yb(k))− J(yk)−∇J(yk)∆yk. The La-
grangian function of the problem is given by

L(∆g,λ ) =
1
2
∥∆g∥2

W +(∆g⊤∆y− r)λ , (32)

and its gradient
∇L(∆g,λ ) =W∆g+λ∆y. (33)

The KKT system of the regarded optimization problem is given by{
W∆g+λ∆y = 0,
∆g⊤∆y = r.

(34)

By substitution, we can find

∆g =

W−1∆yk ·
J(yb(k))−J(yk)−∇J(yk)∆yk

∆y⊤k W−1∆yk
if J(yb(k))− J(yk)−∇J(yk)∆yk < 0,

0 else.
(35)

When the best point does not change in the current k-th iteration, we only need to check
if the new point yk verifies inequality (26). If necessary, we correct its gradient. However,
when yk is the new best point, we must verify if inequality (26) holds for all points yi, i∈Tk∪
Sk stored in Dk and correct the problematic gradients. We denote by Dcorr

k the “corrected”
dataset at iterate k, which contains the corrected gradients gcorr

(i,k) instead of the true gradients
∇J(yi).

Lemma 6 Under Assumption 2, the corrected gradients equal the original ones, i.e., Dcorr
k =

Dk.

Proof. This directly follows from Lemma 3, since J is a convex function with convex do-
main Y . Hence, it holds J(yi)+∇J(yi)

⊤(y j− yi)≤ J(y j), for any yi,y j ∈ Y .

3.2 Region expansion via gradient amplification

When the gradient correction is computed in a nonconvex situation, we find the minimum
correction that ensures that the best point found is lower bounded by every cut, which poten-
tially makes such point the only one feasible for PLB−MILP. The gradient correction resolves
the ambiguous termination described at the beginning of this section, but it can dramatically
limit Algorithm 1 from further exploring the integer solution space. Therefore, we would
like to create lower bounds for the current best point in a way that does not sacrifice conver-
gence to the global optimum for convex MINLPs. For this purpose, we introduce a constant
value ρ ≥ 1, which amplifies all the gradients of the available linear model as follows:

gampl
(i,k,ρ) := ρgcorr

(i,k). (36)

The amplification factor ρ is a hyper-parameter of Algorithm 1, which could, for example,
be chosen offline and kept fixed at runtime. More elaborate strategies to choose ρ separately
per inequality and iteration index are also possible but are beyond our interest in this work.
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We denote by D
ampl
k the dataset where the corrected and amplified gradients replace the

original gradients. This set is used as the modified dataset in line 16 of Algorithm 1, i.e., the
final version of Algorithm 1 sets D̃k :=D

ampl
k .

At the end of this section, we demonstrate that incorporating gradient correction and
amplification does not compromise the properties of Algorithm 1, namely, its finiteness and
convergence to a global minimum under Assumption 2.

In Figure 5 we illustrate how the combination of gradient correction and gradient am-
plification can solve a deadlock situation caused by nonconvexity.
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Fig. 5: We consider the same problem depicted in Figure 3 and same settings for Algorithm
(1), i.e., hyper-parameter α = 0.5. Here, we overcome the deadlock via the gradient correc-
tion and amplification, choosing ρ = 5. The orange dotted lines depict the linear models with
the original gradient, the orange solid lines depict the linear models with gradient amplifica-
tion. The linear models with gradient corrections are depicted with green lines. Specifically,
the dotted lines are attained with the gradient correction only, and the solid lines with gradi-
ent correction and amplification.

3.3 Correction of the infeasibility cuts

As shown in Figure 4, the infeasibility cuts may cause early termination of Algorithm 1 by
excluding the current feasible and best solution. To prevent this situation, we introduce a
way to correct these cutting planes. We modify inequality (12) by introducing a correction
offset σ ≥ 0 as follows

(ŷ− ȳ)⊤(y− ȳ)−σ ≤ 0. (37)
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If a feasible solution yb(k) has been found by Algorithm 1, i.e., Tk ̸= /0, it is possible to
compute σ as

σ := (ŷk− ȳk)
⊤(yb(k)− ȳk). (38)

We emphasize that we compute this correction exclusively when Algorithm 1 has found
at least one feasible solution yb ∈ F. In case no feasible solution is found, we enforce the
infeasibility cuts as defined in (12). Figure 6 illustrates the correction of the infeasibility cut
for the scenario depicted earlier in Figure 4.

Fig. 6: Correction of the infeasibility cut of Figure 4 such that yb remains feasible. The
corrected line is depicted solid blue, while the original cut is dashed blue.

3.4 Properties of the introduced techniques

Lemma 7 If the integer set Y is finite (Assumption 1), Algorithm 1 enhanced with gradient
correction and amplification procedure for the Benders cuts, and correction for the infeasi-
bility cuts, stops within a finite number of iterations.

Proof. The introduced corrections maintain the property to exclude at least the respective
visited points. Thus, visited points are not repeated and the finiteness of Algorithm 1 follows
from Theorem 1.

Theorem 2 Under Assumption 2, Algorithm 1 enhanced with the gradient correction and
amplification procedure for the Benders cuts, and correction for the the infeasibility cuts,
stops at the global optimal solution (xb(k),yb(k)) of problem (1) within a finite number of
iterations.

Proof. It follows from the combination of Theorem 1, Lemma 6 and Lemma 8.

Finally, we aim to present an additional result for a class of MINLPs larger than the
convex one.

Assumption 4. We assume that the set F̄ is convex.
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Assumption 4 includes MINLPs that have nonconvexities in the space of continuous
variables but are convex in the space of integer variables. A practical example of such case
is a nonlinear control system where the discrete controls enters affinely in the dynamics.

Lemma 8 Under Assumption 4, the correction offset for the infeasibility cuts is σ = 0.

Proof. Similarly to Lemma 2. Since F̄ is a convex set, ȳk belongs to the boundary of F̄ while
yk /∈ F̄, it is possible to define a separating hyperplane such that the halfspace {y | a⊤y ≤
a⊤ȳk} contains F̄. The vector a is defined as a := (ŷk − ȳk). In addition, since yb(k) ∈ F̄,
inequality (12) holds for y = yb(k).

Theorem 3 If Assumptions 1, 3 and 4 hold, then Algorithm 1 terminates with a feasible
solution or with a certificate of infeasibility.

Proof. The theorem is trivial if Algorithm 1 is initialized with a feasible solution. In the
other case, b(k) /∈ Tk, the constraint set for PBR−MIQP is given by:

Ck = {y∈Y |(yi− ȳi)
⊤(y− ȳi)≤ 0, ∀k ∈ {0, . . . ,k}}

Note that Lemma 2 holds also under Assumption 3 only, since the infeasibility cuts oper-
ate exclusively in the integer space. Given that the set Y has finite cardinality, and for each
(yi, ȳi) ∈ {0, . . . ,k}, Lemma 2 holds, thus F ⊆ Ck. Every visited infeasible point yi is ex-
cluded from Ck, therefore Algorithm 1 either terminates with a yk ∈ F, or with a certificate
of infeasibility since F = /0.

4 Numerical results

In this section, we illustrate the performance of Algorithm 1 via numerical experiments.
First, we compare the proposed algorithm against two open-source solvers, Bonmin [8] and
SHOT [40, 39], respectively, on a large number of MINLPs selected from the MINLPLib
[16]. Secondly, we consider two instances of optimal control for a nonlinear system with
binary control input. The first one is a textbook example contained in [46, §8.17], while the
second one is a real-world complexity study case of a climate system for a building from
[13]. Unfortunately, solving the two optimal control problems with SHOT has not been
possible due to the lack of interface with CasADi. An attempt to write such interface is left
for future work. All the presented results are obtained on a computer with a 12th-generation
Intel Core i7-12800H processor and 32 GB of memory.

4.1 MINLPLib instances

This section compares Algorithm 1 with two existing solvers, SHOT v1.1[40, 39] and Bon-
min v1.8 [8], on a subset of instances from MINLPLib [16], according to the following set
of requirements:

1. Mixed-integer and mixed-boolean variables with nonlinear constraints and/or objectives.
The problem should be formulated as a minimization problem.

2. Mix of convex and nonconvex instances with a known globally optimal objective.
3. The instances should have a nl-file representation.
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Based on these criteria, 116 convex instances and 158 nonconvex instances were se-
lected. Algorithm 1 is developed in Python using CasADi [3]. Besides the default stopping
criterion, a heuristic stopping criterion is used. The heuristic stopping criterion is equivalent
to setting the lower-bound equal to VMIQP, the objective value of PBR−MIQP, and it is given
by

UB≥VMIQP. (39)

All solvers are configured to use the same NLP-solver, Ipopt 3.14 [54] with ma27 [30] to
have a fair comparison. Both SHOT and Algorithm 1 use Gurobi 10.0.2 [29], and all solvers
are configured to use one thread. For each problem, a solver time of a maximum of 300
seconds of computation time is allowed. The primal and integer tolerances are set to 10−6

and an absolute and relative tolerance of 10−2. To avoid accounting for the inefficiency of
the Python language, only the time spent in the NLP and MIQP/MILP solvers is considered.
The algorithms are compared based on an objective ratio computed for every instance by

robj =
V −min(Vmin−1,0)

Vmin−min(Vmin−1,0)
, (40)

where V is the objective value of the instance computed with one given algorithm, and Vmin
is the objective value of the global optimum reported in the MINLPLib dataset. The adopted
objective ratio allows the objective value to be negative or close to zero without issues in the
comparison. This objective ratio is equal to the relative tolerance. A time ratio is computed
for problems solved to the objective ratio below 1.01. The time ratio is the ratio of the
computation time to the computation time of the fastest solver for this problem.

For the set of convex problems, Algorithm 1 finds a solution for 111 problems, while
SHOT and Bonmin find 113 and 85, respectively. SHOT outperforms the other solvers also
in the quality of the solutions, where it achieves an optimal solution faster and for more
problems than the other solvers, as given in Figure 7. The results for the set of nonconvex
problems are given in Figure 8. For this set of problems, Algorithm 1 finds a solution for 156
problems compared to 89 and 113 for SHOT and Bonmin, respectively. For 52 instances,
it finds the optimal solution within the given time compared to 30 and 71 for SHOT and
Bonmin, respectively. For nonconvex problems, Algorithm 1 is able to find a good solution
for more instances than the other solvers but can not find the optimal solution for some of
the instances. This is in line with the proofs from Section 3.

4.2 MIOC of an unstable nonlinear system

Consider a reference tracking task for a nonlinear unstable system with discrete control
input. The dynamic is described by the ordinary differential equation (ODE)

ẋ(t) = x3(t)−u(t), t ∈ [t0, tf] (41)

where the state is denoted by x(t)∈R and the control by u(t)∈ {0,1}. The control is subject
to a minimum dwell time constraint of 0.1s. The aim is to track the state reference xref = 0.7,
starting from the initial state x̄0 = 0.9. By means of the multiple shooting approach for direct
optimal control [7], we discretize the ODE over a fixed grid N = 30 shooting nodes such that
t0 < t1 < ... < tN = tf adopting a 4th order explicit Runge-Kutta integrator and a sampling
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Fig. 7: Comparison of Algorithm 1 with two termination criteria against Bonmin and SHOT.
Both figures share the same legend and y-axis. For this set of problems, SHOT outperforms
the other solvers, but Algorithm 1 with termination criterion (39) attains very similar per-
formance. The performance measured using the obtained objective value is almost equal for
both termination criteria.
Left: Objective ratio for all solved problems, note that the green line is overlapped by the
red line. Right: Time performance for the problems solved to optimality.
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Both figures share the same legend and y-axis. For this set of problems, Algorithm 1 with
termination criterion (39) outperforms the other solvers on most problems. Only Bonmin
achieves the optimal solution for some of the test problems.
Left: Objective ratio for all solved problems. Right: Time performance for the problems
solved to optimality.
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time ts = 0.05s. The resulting discretized optimal control problem is

min
x0,u0,...,uN−1,xN

N

∑
k=0

(xk− xref)
2

s.t. x0 = x̄0,

xk+1 = FRK(xk,uk), k = 0, . . . ,N−1,

uk ∈ U k = 0, . . . ,N−1,

(42)

where U := {u∈ {0,1}N−1 | uk ≥ uk−1−uk−2, k = 0, . . . ,N−1} imposes a minimum uptime
for the control inputs of two consecutive time steps. The required previous values u−1,u−2
are set to zero. It is possible to obtain a globally optimal solution of the MINLP (42) in a
few seconds via a clever enumeration of all 230 ≈ 109 possibilities.

We have solved problem (42) with different algorithms. The results are listed in Ta-
ble 2, and Figure 9 depicts the globally optimal state and control trajectories of (42). The
solvers share the same integer tolerances and MIP gap. Gurobi is used as an MIQP/MILP
solver within S-B-MIQP and is constrained to run on a single thread to have a fair runtime
comparison. Bonmin runs with its default nonlinear branch-and-bound routine. We did not
implement a tailored branch-and-bound to globally solve the problem since we have no-
ticed that both S-B-MIQP and Bonmin achieve the global optimum reported in [46, §8.17].
Therefore, the computation time shown for the global optimum is equivalent to the one re-
ported for Bonmin. Algorithm 1, S-B-MIQP, is evaluated for two different initial guesses.
The “good” guess is obtained by solving the first MIQP around the relaxed NLP solution
with a MIP gap of 10−4 (default Gurobi setting), while for the “bad” guess, the MIP gap
is 0.3. In all the successive iterations of S-B-MIQP the MIP gap is set to 10−4. The “bad”
guess is added to demonstrate that Algorithm 1 can converge to a valid solution without
heavily relying on integer relaxation of MINLP. Overall, we can see that for this simple
problem, the specialized algorithm CIA performs really well, yielding a solution very close
to the global optimum in only 0.21 seconds. As an implementation note, the CIA problem
has been solved with the tailored branch-and-bound solver pycombina [12]. Algorithm 1,
which is a general purpose algorithm for solving MINLPs, computes a solution equal to the
global optimum with a runtime of about 3 to 5 times higher than CIA, but about one order
of magnitude faster than Bonmin.

Algorithm Objective Runtime [s]

Global minimum 0.1765 11.35∗

Bonmin 0.1765 11.35
CIA [13] 0.1771 0.21
S-B-MIQP bad guess 0.1765 1.09
S-B-MIQP good guess 0.1765 0.64

Table 2: Comparison of different algorithms for the solution of (42).
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Fig. 9: Optimal state and control trajectories of (42).

4.3 MIOC of a renewable energy system

To assess the performance of Algorithm 1 on an example of real-world complexity, we con-
sider an extended version of the solar-thermal-climate-system described in [13] and physi-
cally installed at Karlsruhe University of Applied Sciences. The system provides cooling
for the building’s main hall by means of thermal machines driven by solar-thermal en-
ergy. Specifically, the system consists of an absorption cooling machine (ACM) and a heat
pump (HP). The first machine can be used in absorption cooling (AC) mode, during which
the solar thermal heat drives the machine (bac = 1), or in free cooling (FC) (bfc = 1), where
the cooling tower installed on the roof of the building can directly cool down the medium
at ambient temperature. The second machine is a regular HP that has been installed more
recently to provide flexibility and extra cooling power. When it is switched on (bhp = 1), it
immediately provides cooling energy since the machine is connected to the low-temperature
storage and driven by electric energy. The electric energy required to drive the system is ei-
ther bought from the grid or supplied by on-site PV panels. A schematic of the current plant
is contained in [27]. Experimental operations and numerical case studies have been carried
out on this system in [10, 11, 13, 14, 27].

The system dynamics are modeled via a set of ODEs with ξ ∈ R19 differential states,
µ ∈ R6 continuous controls and ν ∈ {0,1}3 binary controls. The system state includes the
temperature of the flat plate and vacuum tube solar collectors, Tfpsc and Tvtsc respectively,
four temperature levels in the stratified high-temperature storage, Tht,i, i = 1,2,3,4, the tem-
perature of the low-temperature storage Tlt, and the temperature inside the primary and sec-
ondary solar circuit, Tpsc and Tssc, respectively. The continuous controls regulate the electric
power absorbed from the grid, velocity and pressure of the pumps in the solar circuit, and
the input/output flow rate of the high-temperature storage. As described above, there are
three binary controls that decide the switching on/off of the different machines. The system
is subject to several ambient conditions, represented as time-varying parameters in the NLP.
These are the ambient temperature, the solar irradiance on the solar collectors, the power
generated by the local PV panels, the price of electric energy, and the desired cooling load
profile.
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It is now possible to formulate a MIOCP that aims to provide the specified cooling
power while operating the system safely and energy-efficiently. Via a direct approach, we
discretize the MIOCP using Gauss-Radau collocation of order 3. The time horizon is 24
hours long and divided by a non-uniform grid with time steps of 15 minutes from 6 a.m.
to 8 p.m. (UTC+2) and 30 minutes for the rest of the day, for a total of N = 83 steps.
To guarantee feasibility of the MIOCP we have introduced ns = 24 slack variables that are
linearly and quadratically penalized in the cost function. Hence, the total number of variables
is N · (19 ·d +6+3+ns) = 7470 of which 3 ·N = 249 are binaries.

By a stage-wise concatenation of the variables, we define the vector of continuous and
binary decision variables as x and y, respectively. Thus, the resulting MINLP can be stated
compactly as

min
x∈Rnx ,

y∈{0,1}ny

∥ f1(x,y)∥2 + f2(x,y)

s.t. g(x,y)≤ 0,

h(x,y) = 0,

(43)

where the cost function is the sum of a quadratic term, aiming to minimize constraint viola-
tion and achieve smooth actuation of the mixing valves, and a nonlinear one, defined by f2,
which incorporates the electricity cost for operating the system. The special structure of the
cost function allows for positive semidefinite Hessians for the MIQPs via the Gauss-Newton
approximation [42].

The MIOCP has been implemented in CasADi via its Python interface, the NLPs are
solved with IPOPT [54] using HSL MA57 [30] as the internal linear solver, whereas the
MIPs are solved via Gurobi v10.0.2 [29]. The integral gap for all MIPs is set to 15%, and
the computation time limit is set to 900 seconds.

We consider PBR−MIQP infeasible if no feasible solution is found within this time limit,
meaning that the integral gap of the feasible solution might be larger than 15%. Conversely,
we consider PLB−MILP infeasible if, within the prescribed time limit, Gurobi cannot find a
solution with an integral gap within 15%. In this case, Algorithm 1 terminates returning the
best solution found.

Moreover, we use the feature solution pool of Gurobi with a maximum number of 3
solutions, meaning that Gurobi returns at most the three best solutions found during the
solution of the MIQP/MILP. Naturally, we have to solve the corresponding PNLP for each
integral solution. By means of the solution pool, we obtain multiple cuts per MIP solved,
making Algorithm 1 more efficient. The two hyper-parameters of Algorithm 1, α (18) and
ρ (36) have been set to 0.2 and 1.5, respectively.

Figure 10 depicts Algorithm 1 performance in solving (43). In the top plot, we show the
behavior of the objective of PNLP, PBR−MIQP, and PLB−MILP for every iteration of Algorithm
1. We achieve the lowest objective of PNLP for J(y16), and after iteration sixteen we con-
tinue solving PBR−MIQP but the corresponding PNLP objective given by J is always greater
than the current UB. At iteration 28, Algorithm 1 starts solving the related PLB−MILP, until
termination. Note that the termination of Algorithm 1 happens at iteration 128 because the
corresponding PLB−MILP cannot yield a solution with an integral gap lower than 15%. In the
bottom plot of Figure 10, we depict the cumulative runtime of Algorithm 1, detailing the
wall time of every problem solved in each iteration. Up to iteration 28, the most expensive
component is the solution of PBR−MIQP. However, after this point, the solution of PLB−MILP
becomes nearly as time-consuming as PNLP. Nonetheless, the solution time of the former
gradually increases with each iterations due to the additional inequalities. Finally, although
there are few occasions where we solve the feasibility problem PFNLP, they are in general
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expensive. We attribute this to the inability of IPOPT to detect infeasibility early. Indeed,
before transitioning to the feasibility problem PFNLP, a considerable amount of time is spent
attempting to solve the related PNLP.

Figure 11 depicts the optimal trajectory for a selected subset of the state and for binary
controls obtained by solving (43) with Algorithm 1. The solution depicts an almost optimal
operation of the system, indeed the temperature bounds and predictions of the external pa-
rameters over the horizon have been exploited by the optimizer. However, since constraints
are imposed in a soft way, the solution exhibits a small violation of the upper bound of the
low-temperature storage. Note that the free-cooling mode is never active, meaning that the
system never dissipates heat into the environment.

Table 3 presents the computation results obtained using different methods. We report
the solution of the continuous relaxation, whose objective serves as a lower bound for the
mixed-integer problem. Despite the problem’s considerable size and nonlinearity, IPOPT
takes only 9 seconds to solve it. For Bonmin we indicate “N/A” because it fails to compute
even a feasible mixed-integer solution. The error encountered with Bonmin indicates that
the LP relaxation is either infeasible or too computationally expensive. Further investigation
reveals that Bonmin can actually solve a lower dimensional version of (43) with a horizon
length set to N = 20. Hence, we believe that when the complexity of the MINLP grows, the
nonlinear branch-and-bound method implemented by Bonmin performs poorly.

For the CIA algorithm, we quickly obtain a solution but the corresponding objective
is fairly high, underlying a quite suboptimal operating strategy for the machine. However,
at the current stage, CIA is the only method that can be adopted for devising a real-time
controller in a receding horizon fashion.

When we enhance the CIA algorithm with a Gauss-Newton MIQP (GN-MIQP), as pre-
sented in [14], the computation time increases, but the reduction in the objective is dramatic
compared to the standard CIA algorithm. The GN-MIQP approach has been implemented
by constructing the GN-MIQP around the solution of the relaxed NLP. The GN-MIQP prob-
lem has been solved to a integrality gap of 5%. Finally, the sequence of integers computed
by GN-MIQP has been fixed in the MINLP (43), and the resulting NLP has been solved.

Regarding S-B-MIQP, the computation time is higher than GN-MIQP because of the
sequential nature of the algorithm. Moreover, in this case, the termination of Algorithm 1 is
related to the inability of the LB-MILP problem to compute a solution with the prescribed
integrality gap within the given time limit. As shown in the top plot of Figure 10, the lower
bound increases very slowly during the iterations. So, without the additional termination
criterion, we would likely have had to wait much longer to obtain a tight lower bound for
the incumbent solution. Despite the longer computation time, we could further improve the
solution compared to the GN-MIQP approach. Note that only in nine iterations, i.e., eight
MIQPs solved, the objective drops to 2375.84, and in sixteen iterations, we achieve the best
incumbent solution with objective 2063.18, which is a 27% improvement with respect to
objective obtained after only one iteration. In this case one iteration of Algorithm 1 corre-
sponds to the GN-MIQP algorithm [14].

To conclude, with this example we aimed to show that Algorithm 1 can be applied out-
of-the-box to a large and complex MINLP with satisfactory results. The computation time
is prohibitive for real-time control applications, but Algorithm 1 can be used to compute a
well performing solution offline. Also, the user can truncate the iterations early and expect
to attain a better solution compared to a single iteration.
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Fig. 10: Top: Objective value of the problems (43) solved during the iterations of Algorithm
1 and upper/lower bounds. The inset shows the results for the first 27 iterations. Bottom:
Cumulative wall time for the problems and in gray the sum of all components.

Algorithm Objective Runtime (hh:mm:ss)

Relaxed NLP 1526.01 00:00:09
Bonmin N/A N/A
CIA [13] 5875.35 00:01:43
GN-MIQP [14] 2825.11 01:06:14
S-B-MIQP 2063.18 13:42:34

Table 3: Comparison of different algorithms for the solution of (43).

5 Conclusion and outlook

We presented a novel algorithm for solving mixed-integer nonlinear programming prob-
lems. We showed that the algorithm combines cutting planes based on generalized Benders’
decomposition and outer approximation in an efficient way and converges to the global
optimum or with a certificate of infeasibility for convex MINLPs. We proposed an exten-
sion for treating nonconvex MINLPs employing a heuristic to modify the generated cutting
planes. The extension does not alter the results for convex MINLPs while it makes the al-
gorithm directly applicable to nonconvex problems. The algorithm was compared to SHOT
and Bonmin for a large subset of generic MINLPs from the MINLPLib, resulting in lower



30 Andrea Ghezzi∗, Wim Van Roy∗, Sebastian Sager, Moritz Diehl

0

50

100

T
em

p
.

(°
C

) Tfpsc

Tvtsc

50

75

100

T
em

p
.

(°
C

) Tht,1

Tht,4

10

20

T
em

p
.

(°
C

) Tlt,1

0.0

0.5

1.0

S
ta

tu
s
{0

,
1
} bacm

bfc

bhp

19−04 19−07 19−10 19−13 19−16 19−19 19−22 20−01 20−04

Daytime (dd-hh)

10

20

30

T
em

p
.

(°
C

)

Tamb

Q̇lc

0.0

0.5

1.0

Ir
ra

d
.

(k
W

/
m
²)

Ifpsc

Ivtsc

2.5

5.0

7.5
L

oa
d

(k
W

)
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objective values for many instances. Finally, we presented the results obtained with the pro-
posed algorithm in two cases of optimal control for switched systems. Unfortunately, for
these problems we could not compare the results against SHOT due to the lack of a working
interface between CasADi and SHOT.

The software package, developed to implement the proposed algorithm, is coded in
Python and relies on CasADi for modelling the optimization problems and interfacing with
required solvers. Additionally, it includes implementations of various methods found in the
literature. This comprehensive inclusion enables users to evaluate and compare the perfor-
mance of different methods for their specific MINLP. On the implementation level, a wel-
come addition would be an interface between SHOT and CasADi, possibly using AMPL-file
generation from CasADi. In general, having an efficient generation of AMPL-file for optimal
control problems (OCPs) treated via direct approaches within CasADi, it would make possi-
ble to have a prompt interface to every AMPL-compatible solver. An effort in this direction
has been carried out in TACO [33], to make MUSCOD-II [19], a multiple shooting code for
optimal control, compatible with AMPL syntax.

Overall, the proposed algorithm shows promising solution quality and computation time
results. This performance might be further improved by heuristics and other cutting strate-
gies. One way could be by adding second-order approximation cutting planes. Another di-
rection to improve the heuristic for nonconvex problems is by including a branch-and-bound
strategy when nonconvexities are detected. Another strategy to improve the computational
efficiency of the proposed algorithm is employing a branch-and-check strategy [52] where
the solution from the MIQP-step can be reused between the different iterations. Future work
also includes the extension of the proposed algorithm to Model Predictive Control.
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