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1. Introduction. Lasserre’s hierarchy [6] is a well-established scheme for glob-
ally solving (real) polynomial optimization problems and attracts a lot of attentions
of researchers from diverse fields due to its nice theoretical properties in recent years
[3, 11]. There is also a complex variant of Lasserre’s hierarchy for globally solving
complex polynomial optimization problems [5].

A bottleneck of Lasserre’s hierarchy is its limited scalability as the size of as-
sociated semidefinite relaxations grows rapidly with relaxation orders. One way for
overcoming this is exploiting structures (sparsity, symmetry) of polynomial optimiza-
tion problems to obtain structured semidefinite relaxations of reduced sizes. We refer
the reader to the recent works [12, 18, 19] on this topic. Another practical idea is
strengthening Lasserre’s hierarchy to accelerate its convergence, for instance, using
Lagrange multiplier expressions as done in [10].

In this paper we propose to strengthen Lasserre’s hierarchy using positive semidef-
inite (PSD) optimality conditions for any real and complex polynomial optimization
problem. These PSD optimality conditions arise from the characterization of nor-
mality of shift operators which is closely related to multiplication operators. Both
operators have applications in extractions of optimal solutions when solving polyno-
mial optimization problems with Lasserre’s hierarchy [4, 5]. We establish a connection
between shift operators and multiplication operators. Further, we derive PSD condi-
tions of finite rank moment sequences via shift operators. These PSD conditions are
then employed to strengthen Lasserre’s hierarchy. In particular, for real polynomial
optimization, we present an intermediate relaxation between two successive moment
relaxations; for complex polynomial optimization, we present a two-level hierarchy
of moment relaxations which thus offers one more level of flexibility. To improve
scalability, the strengthening technique is further integrated into different sparse ver-
sions of Lasserre’s hierarchy. Diverse numerical experiments are performed. It is
shown that the strengthening technique can indeed improve the bound provided by
the usual Lasserre’s hierarchy and very likely allows to achieve global optimality at
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lower relaxation orders, especially in complex polynomial optimization.

2. Notation and preliminaries. Let N be the set of nonnegative integers. For
n ∈ N\{0}, let [n] := {1, 2, . . . , n}. For α = (αi) ∈ Nn, let |α| :=

∑n
i=1 αi. For r ∈ N,

let Nn
r := {α ∈ Nn | |α| ≤ r} and |Nn

r | stands for its cardinality. We use A ⪰ 0 to
indicate that the matrix A is positive semidefinite (PSD). Let i be the imaginary unit,
satisfying i2 = −1. Throughout the paper, let F ∈ {R,C}. Let F[x] := F[x1, . . . , xn]
be the ring of multivariate polynomials in n variables over the field F, and F[x]d
denote the subset of polynomials of degree no greater than d. A polynomial f ∈ F[x]
can be written as f =

∑
α∈Nn fαx

α with fα ∈ F and xα := xα1
1 · · ·xαn

n . For d ∈ N,
[x]d stands for the standard monomial basis of degree up to d, and [x] stands for the
standard monomial basis.

Let a denote the conjugate of a complex number a and v∗ (resp. A∗) denote
the conjugate transpose of a complex vector v (resp. a complex matrix A). We use
x = (x1, . . . , xn) to denote the conjugate of the tuple of complex variables x. We
denote by C[x,x] := C[x1, . . . , xn, x1, . . . , xn] the complex polynomial rings in x,x. A
polynomial f ∈ C[x,x] can be written as f =

∑
(β,γ)∈Nn×Nn fβ,γx

βxγ with fβ,γ ∈ C.
The conjugate of f is defined as f =

∑
(β,γ)∈Nn×Nn fβ,γx

γxβ. The polynomial f

is self-conjugate if f = f . It is clear that self-conjugate polynomials take only real
values.

2.1. The real Lasserre’s hierarchy for real polynomial optimization.
Consider the real polynomial optimization problem:

(RPOP) fmin := inf {f(x) : x ∈ K},

where f ∈ R[x] and the feasible set K is given by

(2.1) K := {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0},

for some polynomials g1, . . . , gm ∈ R[x]. By invoking Borel measures, (RPOP) admits
the following reformulation:

(2.2)

 inf
µ∈M+(K)

∫
K
f dµ

s.t.
∫
K

dµ = 1,

where M+(K) denotes the set of finite positive Borel measures on K.
Suppose that y = (yα)α∈Nn is a (pseudo-moment) sequence in R. We associate

it with a linear functional Ly : R[x] → R by

f =
∑
α

fαx
α 7−→ Ly(f) =

∑
α

fαyα.

For r ∈ N, the r-th order real moment matrix MR
r (y) is the matrix indexed by Nn

r

such that

[MR
r (y)]βγ := Ly(x

βxγ) = yβ+γ , ∀β,γ ∈ Nn
r .

The real moment matrix MR(y) indexed by Nn is defined similarly. For a polynomial
g =

∑
α gαx

α ∈ R[x], the r-th order real localizing matrix MR
r (gy) associated with g

is the matrix indexed by Nn
r such that

[MR
r (gy)]βγ := Ly(gx

βxγ) =
∑
α

gαyα+β+γ , ∀β,γ ∈ Nn
r .
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The sequence y is called a real moment sequence if it can be realized by a Borel
measure µ, i.e., yα =

∫
K
xα dµ for any α ∈ Nn, and y is said to be of finite rank if

µ is a finitely atomic measure (that is, a linear positive combination of finitely many
Dirac measures), where the rank of y is defined as the number of atoms.

Lemma 2.1 ([8], Lemma 4.2). If y is a real moment sequence of finite rank, then
MR(y) ⪰ 0 and the rank of y is equal to rankMR(y).

Let di := ⌈deg(gi)/2⌉, i = 1, . . . ,m, dmin := max{⌈deg(f)/2⌉, d1, . . . , dm}. With
r ≥ dmin, the real Lasserre’s hierarchy of moment relaxations for (RPOP) [6] is given
by

(2.3) ρr :=


inf
y

Ly(f)

s.t. MR
r (y) ⪰ 0, y0 = 1,

MR
r−di

(giy) ⪰ 0, i ∈ [m].

2.2. The complex Lasserre’s hierarchy for complex polynomial opti-
mization. Consider the complex polynomial optimization problem:

(CPOP) fmin := inf {f(x,x) : x ∈ K},

where

(2.4) K := {x ∈ Cn | gi(x,x) ≥ 0, i ∈ [m]} ,

and f, g1, . . . , gm ∈ C[x,x] are self-conjugate polynomials. By invoking Borel mea-
sures, (CPOP) also admits the following reformulation:

(2.5)

 inf
µ∈M+(K)

∫
K
f dµ

s.t.
∫
K

dµ = 1,

where M+(K) denotes the set of finite positive Borel measures on K.
Suppose that y = (yβ,γ)(β,γ)∈Nn×Nn in C is a (pseudo-moment) sequence satisfy-

ing yβ,γ = yγ,β. We associate it with a linear functional Ly : C[x,x] → C by

f =
∑
(β,γ)

fβ,γx
βxγ 7−→ Ly(f) =

∑
(β,γ)

fβ,γyβ,γ .

For r ∈ N, the r-th order complex moment matrix MC
r (y) is the matrix indexed by

Nn
r such that

[MC
r (y)]βγ := Ly(x

βxγ) = yβ,γ , ∀β,γ ∈ Nn
r .

The complex moment matrix MC(y) indexed by Nn is defined similarly. For a self-

conjugate polynomial g =
∑

(β′,γ′) gβ′,γ′xβ′
xγ′

∈ C[x,x], the r-th order complex

localizing matrix MC
r (gy) associated with g is the matrix indexed by Nn

r such that

[MC
r (gy)]βγ := Ly(gx

βxγ) =
∑

(β′,γ′)

gβ′,γ′yβ+β′,γ+γ′ , ∀β,γ ∈ Nn
r .

The sequence y is called a complex moment sequence if it can be realized by a
Borel measure µ, i.e., yβ,γ =

∫
K
xβxγ dµ for any β,γ ∈ Nn, and y is said to be of

finite rank if µ is a finitely atomic measure.
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Lemma 2.2 ([5], Theorem 5.1). If y is a complex moment sequence of finite rank,
then MC(y) ⪰ 0 and the rank of y is equal to rankMC(y).

Let d0 := max {|β|, |γ| : fβ,γ ̸= 0}, di := max {|β|, |γ| : giβ,γ ̸= 0} for i ∈ [m],

where f =
∑

(β,γ) fβ,γx
βxγ , gi =

∑
(β,γ) g

i
β,γx

βxγ . Set dmin := max {d0, d1, . . . , dm}.
With r ≥ dmin, the complex Lasserre’s hierarchy of moment relaxations for (CPOP)
[5] is given by

(2.6) τr :=


inf
y

Ly(f)

s.t. MC
r (y) ⪰ 0, y0,0 = 1

MC
r−di

(giy) ⪰ 0, i ∈ [m].

Note that (2.6) is a complex semidefinite program (SDP). To reformulate it as a real
SDP, we refer the reader to [15].

3. Multiplication operators and shift operators. In this section, we estab-
lish an interesting connection between multiplication operators and shift operators.

For p ∈ F[x]r (resp. F[x]), we write p for the coefficient vector of p such that
p = p⊺[x]r (resp. p = p⊺[x]).

Lemma 3.1 ([8], Lemma 5.2). The kernel I := {p ∈ R[x] | MR(y)p = 0} of a
moment matrix MR(y) is an ideal in R[x]. Moreover, if MR(y) ⪰ 0, then I is a real
radical ideal.

Lemma 3.2 ([7]). Let y be a complex moment sequence of finite rank. The kernel
I := {p ∈ C[x] | MC(y)p = 0} of the moment matrix MC(y) is a radical ideal in
C[x].

Suppose that y is a (real or complex) moment sequence of rank t. Let I := {p ∈
F[x] | MF(y)p = 0}. Then F[x]/I is a linear space over F of dimension t. The
multiplication operators Mi, i ∈ [n] acting on F[x]/I are defined by

Mi : F[x]/I −→ F[x]/I,(3.1)

p 7−→ xip.

Since the moment matrixMF(y) is PSD with rankMF(y) = t, it can be factorized
in the Grammian form such that

(3.2) [MF(y)]βγ = a∗βaγ , ∀β,γ ∈ Nn,

where {aα}α∈Nn ⊆ Ft. The shift operators T1, . . . , Tn : Ft → Ft are defined by

(3.3) Ti :
∑
α

pαaα 7−→
∑
α

pαaα+ei ,

where {e1, . . . , en} is the standard vector basis of Nn.
Let us define the following linear map

(3.4) θ : F[x] −→ Ft, p =
∑
α

pαx
α 7−→

∑
α

pαaα.

Lemma 3.3. The linear map θ induces an isomorphism: F[x]/I ∼= Ft.
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Proof. It is clear that θ is surjective. We remain to show that the kernel of θ is
I. First, let p =

∑
β pβx

β ∈ I. It follows from

(3.5) MF(y)p =

∑
β

a∗αaβpβ


α∈Nn

= 0

that a∗α(
∑

β pβaβ) = 0 for all aα. Since {aα}α∈Nn spans Ft, we obtain
∑

β pβaβ = 0.
This proves p ∈ ker(θ) and hence I ⊆ ker(θ). Conversely, let p ∈ F[x] such that∑

β pβaβ = 0. Then we see p ∈ I. This proves ker(θ) ⊆ I.

Theorem 3.4. Let y be a moment sequence of finite rank. Then the multiplica-
tion operator Mi is similar to the shift operator Ti for i ∈ [n]. More concretely, we
have Ti = θ ◦Mi ◦ θ−1 for i ∈ [n].

Proof. Let p =
∑

α pαx
α ∈ F[x]. We have

(3.6) Ti(θ(p)) = Ti

(∑
α

pαaα

)
=
∑
α

pαaα+ei .

On the other hand, we have

(3.7) θ(Mi(p)) = θ(xip) = θ

(∑
α

pαx
α+ei

)
=
∑
α

pαaα+ei
.

Thus, Ti(θ(p)) = θ(Mi(p)). It follows Ti ◦ θ = θ ◦Mi. As θ is invertible by Lemma
3.3, we obtain Ti = θ ◦Mi ◦ θ−1.

Corollary 3.5. Let y be a moment sequence of finite rank. Then the shift op-
erators T1, . . . , Tn are well-defined.

Proof. We need to show that Ti(
∑

α pαaα) = 0 if
∑

α pαaα = 0. The assumption∑
α pαaα = 0 implies θ(

∑
α pαx

α) = 0 and so
∑

α pαx
α ∈ I. By Theorem 3.4, we

have

Ti

(∑
α

pαaα

)
= θ ◦Mi ◦ θ−1

(∑
α

pαaα

)

= θ ◦Mi

(∑
α

pαx
α

)

= θ

(∑
α

pαx
α+ei

)

= θ

(
xi

∑
α

pαx
α

)
= 0,

where the last equality follows from the fact that I is an ideal and so xi

∑
α pαx

α ∈ I.

For the remainder of the paper, we assume a basis of Rt is given and identify the
shift operators with their representing matrices for convenience.

The real shift operators have the distinguished property of being symmetric.

Lemma 3.6. Let y be a real moment sequence of finite rank. The shift operators
Ti, i ∈ [n] are symmetric.
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Proof. Suppose that rankMR(y) = t and [MR(y)]βγ = a⊺βaγ for β,γ ∈ Nn,

where {aα}α∈Nn ⊆ Rt. Let u ∈ Rt be arbitrary and we may write

u =
∑
α

uαaα,
→
u := (uα)α.

From

u⊺Tiu =
∑
α,β

uαuβa
⊺
α(Tiaβ) =

∑
α,β

uαuβa
⊺
αaβ+ei

=
→
u

⊺
MR(xiy)

→
u,

u⊺T ⊺
i u =

∑
α,β

uαuβ(Tiaα)
⊺aβ =

∑
α,β

uαuβa
⊺
α+ei

aβ =
→
u

⊺
MR(xiy)

→
u,

we obtain u⊺(Ti − T ⊺
i )u = 0. Thus, Ti = T ⊺

i .

4. Strengthening Lasserre’s hierarchy. The study of shift operators enables
us to give the following PSD optimality conditions for the pseudo-moment sequence
y.

Theorem 4.1.
(i) Suppose that MR

r (y) ⪰ 0 for some r ∈ N. Then for any s ∈ N with s < r,

(4.1)

[
MR

s (y) MR
s (xiy)

MR
s (xiy) MR

s (x
2
iy)

]
⪰ 0, i ∈ [n].

(ii) Suppose that y is a complex moment sequence admitting a Dirac representing
measure. Then for any s ∈ N,

(4.2)

[
MC

s (y) MC
s (xiy)

MC
s (xiy) MC

s (|xi|2y)

]
⪰ 0, i ∈ [n].

Proof. (i). Assume that rankMR
r (y) = t and [MR

r (y)]βγ = a⊺βaγ for |β|, |γ| ≤ r,

where {aα}|α|≤r ⊆ Rt. Let

(4.3) A :=
[
{aα}|α|≤s, {aα+ei}|α|≤s

]
∈ Rt×2|Nn

s |.

Then one can easily see that[
MR

s (y) MR
s (xiy)

MR
s (xiy) MR

s (x
2
iy)

]
= A⊺A ⪰ 0, ∀i ∈ [n].

(ii). Since y has a Dirac representing measure, the moment matrix MC
s (y) has rank

one and the shift operators Ti, i ∈ [n] are complex numbers. It follows that

(4.4)

[
1 T i

Ti T iTi

]
⪰ 0, i ∈ [n].

Assume that MC(y) = a∗a, where a = (aα)α∈Nn ∈ CNn

. For any u = (uα)|α|≤s,v =

(vβ)|β|≤s ∈ C|Nn
s |, let u =

∑
|α|≤s uαaα, v =

∑
|β|≤s vβaβ. We have

uu =
∑
α,β

uαuβaαaβ = u∗MC
s (y)u,

uT iv =
∑
α,β

uαvβTiaαaβ =
∑
α,β

uαvβaα+ei
aβ = u∗MC

s (xiy)v,

vTiu =
∑
α,β

vαuβaα(Tiaβ) =
∑
α,β

vαuβaαaβ+ei
= v∗MC

s (xiy)u,
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and

vT iTiv =
∑
α,β

vαvβTiaα(Tiaβ) =
∑
α,β

vαvβaα+ei
aβ+ei

= v∗MC
s (|xi|2y)v,

which gives

(4.5)
[
u v

] [ I T i

Ti T iTi

] [
u
v

]
=
[
u∗ v∗] [ MC

s (y) MC
s (xiy)

MC
s (xiy) MC

s (|xi|2y)

] [
u
v

]
.

From this and (4.4), we obtain (4.2) as desired.

We say that an operator T is normal if T ∗T = TT ∗. In case that T is of finite
dimension, it is not hard to see that the normality of T is equivalent to the PSD
condition T ∗T − TT ∗ ⪰ 0, which is further equivalent to

(4.6)

[
I T ∗

T T ∗T

]
⪰ 0.

Suppose that y is a complex moment sequence such that rankMC(y) = rankMC
s (y).

In a similar manner as the proof of Theorem 4.1 (ii), we can show that the shift
operators Ti, i ∈ [n] are normal if and only if the PSD conditions (4.2) hold. It would
be interesting to ask: if y is a complex moment sequence of finite rank, do we have
that the shift operators Ti, i ∈ [n] are normal? We will explore this question in the
future work.

Using the PSD optimality conditions in Theorem 4.1, we can strengthen Lasserre’s
hierarchy of moment relaxations. In particular, for real polynomial optimization, we
consider

(4.7) ρ′r :=



inf
y

Ly(f)

s.t. y0 = 1,

MR
r−di

(giy) ⪰ 0, i ∈ [m],[
MR

r (y) MR
r (xiy)

MR
r (xiy) MR

r (x
2
iy)

]
⪰ 0, i ∈ [n].

Theorem 4.2. It holds ρr ≤ ρ′r ≤ ρr+1 ≤ fmin for any r ≥ dmin.

Proof. Since (4.7) is a strengthening of (2.3), it follows ρr ≤ ρ′r. The inequality
ρ′r ≤ ρr+1 follows from the fact that the second PSD constraints of (4.7) are implied
by MR

r+1(y) ⪰ 0 due to Theorem 4.1 (i).

By Theorem 4.2, (4.7) provides an intermediate relaxation between the r-th and
r + 1-th moment relaxations for (RPOP).

For complex polynomial optimization, we consider

(4.8) τ ′r,s :=



inf
y

Ly(f)

s.t. MC
r (y) ⪰ 0, y0,0 = 1,

MC
r−di

(giy) ⪰ 0, i ∈ [m],[
MC

s (y) MC
s (xiy)

MC
s (xiy) MC

s (|xi|2y)

]
⪰ 0, i ∈ [n].

Here s ∈ N is a tunable parameter which we call the normal order.



8 JIE WANG

Theorem 4.3. It hold τr ≤ τ ′r,s ≤ τ ′r,s+1 ≤ fmin and τ ′r,s ≤ τ ′r+1,s for any r ≥
dmin and any s ∈ N.

Proof. Since (4.8) is a strengthening of (2.6), it follows τr ≤ τ ′r. If the infimum of
(CPOP) is attained, let w be a minimizer of (CPOP) and y be the moment sequence
of the Dirac measure δw. By Theorem 4.1 (ii), y is a feasible solution of (4.8) and
Ly(f) = fmin. Thus, τ ′r ≤ fmin. If the infimum of (CPOP) is not attained, let
{w(k)}k≥1 be a minimizing sequence of (CPOP) and y(k) be the moment sequence of
the Dirac measure δw(k) , respectively. We have that every y(k) is a feasible solution
of (4.8) and limk→∞ Ly(k)(f) = fmin. Thus, τ

′
r ≤ fmin. The inequalities τ ′r,s ≤ τ ′r,s+1

and τ ′r,s ≤ τ ′r+1,s are easily obtained from the constructions.

By Theorem 4.3, (4.8) is a two-level hierarchy indexed by the relaxation order r
and the normal order s, and hence allows one more level of flexibility by playing with
the two parameters.

5. Integration with sparsity. The strengthening technique discussed in Sec-
tion 4 can be integrated into different sparse versions of Lasserre’s hierarchy to improve
scalability. We refer the reader to [9] for relevant details on different sparse versions
of Lasserre’s hierarchy.

5.1. Correlative sparsity. Consider (RPOP) (resp. (CPOP)). Suppose that
the two index sets [n] and [m] can be decomposed into {I1, . . . , Ip} and {J1, . . . , Jp},
respectively, such that 1) f = f1 + · · · + fp with fk ∈ R[xIk ] (resp. C[xIk ,xIk ])
for k ∈ [p]; 2) for all k ∈ [p] and i ∈ Jk, gi ∈ R[xIk ] (resp. C[xIk ,xIk ]), where
R[xIk ] (resp. C[xIk ,xIk ]) denotes the polynomial ring in those variables indexed by
Ik. Let M

R
r (y, Ik) (resp. M

R
r (gy, Ik)) be the submatrix obtained from MR

r (y) (resp.
MR

r (gy)) by retaining only those rows and columns indexed by β ∈ Nn
r of MR

r (y)
(resp. MR

r (gy)) with βi = 0 if i /∈ Ik. Then, we can strengthen the correlative
sparse Lasserre’s hierarchy of moment relaxations for real polynomial optimization
by considering

(5.1)



inf
y

Ly(f)

s.t. MR
r (y, Ik) ⪰ 0, k ∈ [p],

MR
r−di

(giy, Ik) ⪰ 0, i ∈ Jk, k ∈ [p],[
MR

1 (y) MR
1 (xiy)

MR
1 (xiy) MR

1 (x
2
iy)

]
⪰ 0, i ∈ [n],

y0 = 1.

Also, we can strengthen the correlative sparse Lasserre’s hierarchy of moment
relaxations for complex polynomial optimization by considering

(5.2)



inf
y

Ly(f)

s.t. MC
r (y, Ik) ⪰ 0, k ∈ [p],

MC
r−di

(giy, Ik) ⪰ 0, i ∈ Jk, k ∈ [p],[
MC

s (y, Ik) MC
s (xiy, Ik)

MC
s (xiy, Ik) MC

s (|xi|2y, Ik)

]
⪰ 0, i ∈ Ik, k ∈ [p],

y0,0 = 1.

5.2. Sign symmetry. For p ∈ R[x] and a binary vector s ∈ {0, 1}n, let [p]s ∈
R[x] be defined by [p]s(x1, . . . , xn) := p((−1)s1x1, . . . , (−1)snxn). Then p is said to



STRENGTHENING LASSERRE’S HIERARCHY 9

have the sign symmetry represented by s ∈ {0, 1}n if [p]s = p. We use S(p) ⊆ {0, 1}n
to denote all sign symmetries of p. Consider (RPOP) and let U := S(f)∩

⋂m
i=1 S(gi).

We define an equivalence relation ∼ on [x] by

(5.3) xα ∼ xβ ⇐⇒ U ⊆ S(xα+β).

For each i ∈ [m], the equivalence relation ∼ gives rise to a partition of [x]r−di
:

(5.4) [x]r−di
=

pi⊔
k=1

[x]r−di,k.

We then build the submatrix MR
r−di,k

(giy) of MR
r−di

(giy) with respect to the sign
symmetry by retaining only those rows and columns indexed by [x]r−di,k for each
k ∈ [pi]. Moreover, for each i ∈ [n], the equivalence relation ∼ gives rise to a partition
of [x]r ∪ xi[x]r: [x]r ∪ xi[x]r =

⊔qi
k=1[x]r,i,k. We build the submatrix NR

r,i,k(y) of
the second PSD matrix in (4.7) by retaining only those rows and columns indexed
by [x]r,i,k for each k ∈ [qi]. Then, we can strengthen the sign-symmetry Lasserre’s
hierarchy of moment relaxations for real polynomial optimization by considering

(5.5)


inf
y

Ly(f)

s.t. MR
r−di,k

(giy) ⪰ 0, k ∈ [pi],

NR
r,i,k(y) ⪰ 0, k ∈ [qi], i ∈ [n],

y0 = 1.

The complex case proceeds in a similar way, which we omit for conciseness.

6. Numerical experiments. The strengthened real and complex Lasserre’s hi-
erarchies have been implemented in the Julia package TSSOS1. In this section, we
evaluate their performance on diverse polynomial optimization problems using TSSOS

and Mosek 10.0 [1] is employed as an SDP solver with default settings. When pre-
senting the results, ‘LAS’ means the usual Lasserre’s hierarchy and ‘S-LAS’ means
the strengthened Lasserre’s hierarchy; the column labelled by ‘opt’ records optima of
SDPs and the column labelled by ‘time’ records running time in seconds. Moreover,
the symbol ‘-’ means that Mosek runs out of memory. All numerical experiments were
performed on a desktop computer with Intel(R) Core(TM) i9-10900 CPU@2.80GHz
and 64G RAM.

6.1. Minimizing a random real quadratic polynomial with binary vari-
ables. Let us minimize a random real quadratic polynomial with binary variables:

(6.1)

{
inf

x∈Rn
[x]⊺1Q[x]1

s.t. x2
i = 1, i = 1, . . . , n,

where Q ∈ R(n+1)×(n+1) is a random symmetric matrix whose entries are selected with
respect to the uniform probability distribution on [0, 1]. For each n ∈ {10, 20, 30, 40},
we solve three instances using LAS (r = 1, 2) and S-LAS (r = 1, s = 1), respectively.
The results are presented in Table 1. For this problem, we empirically observe that
LAS at r = 2 achieves global optimality. It can be seen from the table that the
strengthening technique significantly improves the bound provided by LAS at r = 1
while it is much cheaper than going to LAS at r = 2.

1TSSOS is freely available at https://github.com/wangjie212/TSSOS.

https://github.com/wangjie212/TSSOS
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Table 1
Minimizing a random real quadratic polynomial with binary variables.

n trial
LAS (r = 1) LAS (r = 2) S-LAS (r = 1)

opt time opt time opt time

10

1 -6.9868 0.006 -6.6118 0.04 -6.6118 0.03

2 -9.9016 0.006 -9.6732 0.04 -9.6732 0.03

3 -8.6265 0.007 -6.6963 0.04 -6.8216 0.03

20

1 -26.613 0.01 -23.407 5.95 -23.521 0.43

2 -28.474 0.01 -24.330 6.08 -26.575 0.44

3 -30.996 0.01 -27.657 5.61 -27.657 0.47

30

1 -51.429 0.08 -44.597 382 -47.817 6.29

2 -57.277 0.03 -49.871 435 -53.539 5.74

3 -49.950 0.03 -42.548 479 -46.970 5.30

40

1 -79.672 0.09 - - -74.532 43.1

2 -83.814 0.13 - - -81.274 36.9

3 -85.887 0.09 - - -79.748 41.0

6.2. The point cloud registration problem. Given two sets of 3D points
{ai}Ni=1, {bi}Ni=1 with putative correspondences ai ↔ bi, the point cloud registration
problem in computer vision is to find the best 3D rotation R and translation t to
align them while explicitly tolerating outliers. It can be formulated as the nonlinear
optimization problem:

(6.2) min
R∈SO(3),t∈R3

N∑
i=1

min

{
∥bi −Rai − t∥2

β2
i

, 1

}
,

where βi > 0 is a given threshold that determines the maximum inlier residual. By
introducing N binary variables {θi}Ni=1, (6.2) can be equivalently reformulated as a
polynomial optimization problem:

(6.3) min
R∈SO(3),t∈R3,

θi∈{−1,1}

N∑
i=1

1 + θi
2

∥bi −Rai − t∥2

β2
i

+
1− θi

2
.

Note that in (6.3), the rotation matrix R can be parametrized by its entries which we
denote by r and the constraint R ∈ SO(3) can be expressed by polynomial constraints
in r. Yang and Carlone [20] proposed a customized monomial basis for the dense
Lasserre’s hierarchy for (6.3) which is [1,x,θ, r ⊗ t,x ⊗ θ] with x := [r, t] and θ :=
{θi}Ni=1. Moreover, they also proposed a sparse Lasserre’s hierarchy for (6.3) in which
the variables are decomposed into N cliques: [x, θi], i ∈ [N ] and for the i-th clique,
the monomial basis [1,x, θi, r⊗ t,x⊗θi] is used. It was empirically shown in [20] that
the dense Lasserre’s hierarchy achieves global optimality at relaxation order r = 2
while the sparse Lasserre’s hierarchy is usually not tight at the same relaxation order.

For each N ∈ {10, 20, 30, 40}, we randomly generate three instances of (6.3) with
60% outliers. We solve each instance using the dense LAS (with the above monomial
basis) at r = 2, the sparse LAS (with the above monomial basis) at r = 2, s = 1, and
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the sparse S-LAS (with the above monomial basis) at r = 2, respectively. The results
are presented in Table 2 from which we can see that the strengthening technique
improves the bound provided by the sparse LAS while it is much cheaper than the
dense LAS.

Table 2
The point cloud registration problem.

N trial
dense LAS sparse LAS sparse S-LAS

opt time opt time opt time

10

1 6.5437 18.3 6.1294 1.32 6.2392 4.05

2 6.4687 17.8 6.2538 1.33 6.4461 4.56

3 6.3971 21.0 6.1144 1.32 6.2634 4.50

20

1 14.062 424 12.345 2.28 13.007 28.3

2 14.256 350 12.423 2.79 13.053 29.1

3 13.780 321 12.279 2.57 12.851 26.8

30

1 20.870 2461 18.670 3.47 19.696 138

2 20.263 2808 18.522 4.98 19.381 139

3 20.452 2435 18.459 3.64 19.792 136

40

1 - - 24.942 4.84 26.495 662

2 - - 24.783 4.62 26.751 630

3 - - 24.888 4.25 27.295 632

6.3. Minimizing a random complex quadratic polynomial with unit-
norm variables. Let us now minimize a random complex quadratic polynomial with
unit-norm variables:

(6.4)

{
inf

x∈Cn
[x]⋆1Q[x]1

s.t. |xi|2 = 1, i = 1, . . . , n,

where Q ∈ C(n+1)×(n+1) is a random Hermitian matrix whose entries (both real and
imaginary parts) are selected with respect to the uniform probability distribution on
[0, 1]. For each n ∈ {10, 20, 30}, we solve three instances using LAS (r = 1, 2) and
S-LAS (r = 1, s = 1), respectively. The results are presented in Table 3. For this
problem, we empirically observe that LAS at r = 2 achieves global optimality. It
is evident from the table that the strengthening technique significantly improves the
bound (indeed, achieving global optimality for n ≤ 20) provided by LAS at r = 1
while it is much cheaper than going to LAS at r = 2.

6.4. Minimizing a random complex quartic polynomial on a sphere.
Let us minimize a random complex quartic polynomial on a unit sphere:

(6.5)

{
inf

x∈Cn
[x]⋆2Q[x]2

s.t. |x1|2 + · · ·+ |xn|2 = 1,

where Q ∈ C|[x]2|×|[x]2| (|[x]2| is the cardinality of [x]2) is a random Hermitian matrix
whose entries (both real and imaginary parts) are selected with respect to the uniform
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Table 3
Minimizing a random complex quadratic polynomial with unit-norm variables.

n trial
LAS (r = 1) LAS (r = 2) S-LAS (r = 1)

opt time opt time opt time

10

1 -10.830 0.01 -10.474 1.57 -10.474 0.15

2 -14.005 0.01 -13.905 1.76 -13.905 0.15

3 -14.308 0.01 -13.751 1.71 -13.751 0.16

20

1 -39.274 0.03 -38.323 1227 -38.323 6.39

2 -44.009 0.03 -43.911 1076 -43.911 5.51

3 -43.043 0.03 -42.017 1061 -42.017 5.76

30

1 -75.249 0.14 - - -72.948 234

2 -79.995 0.13 - - -79.382 161

3 -74.888 0.12 - - -73.680 148

probability distribution on [0, 1]. For each n ∈ {5, 10, 15}, we solve three instances
using LAS (r = 2, 3) and S-LAS (r = 2, s = 1), respectively. The results are presented
in Table 4. We can see from the table that the strengthening technique significantly
improves the bound provided by LAS at both r = 2 and r = 3 while it is much cheaper
than going to LAS at r = 3.

Table 4
Minimizing a random complex quartic polynomial on a unit sphere.

n trial
LAS (r = 2) LAS (r = 3) S-LAS (r = 2)

opt time opt time opt time

5

1 -4.4125 0.04 -4.1976 2.09 -4.0517 0.06

2 -2.9632 0.04 -2.5182 1.94 -2.3767 0.05

3 -3.9058 0.04 -3.3651 1.97 -3.1354 0.05

10

1 -5.9950 3.08 - - -4.6231 4.50

2 -5.9757 2.93 - - -4.5794 4.08

3 -5.6221 3.05 - - -4.1087 4.18

15

1 -8.5265 82.3 - - -6.5370 130

2 -8.0241 87.4 - - -6.3118 121

3 -8.0791 85.7 - - -6.1881 123

6.5. Minimizing a random complex quartic polynomial with correlative
sparsity on multi-spheres. Let us minimize a random complex quartic polynomial
with correlative sparsity on multi-spheres:

(6.6)

{
inf

x∈Cn

∑l
i=1[xi]

⋆
2Qi[xi]2

s.t. ∥xi∥2 = 1, i ∈ [l],

where n = 4l + 2, xi := {x4i−3, . . . , x4i+2}, and Qi ∈ C|[xi]2|×|[xi]2| is a random
Hermitian matrix whose entries (both real and imaginary parts) are selected with
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respect to the uniform probability distribution on [0, 1]. For each l ∈ {5, 10, 50, 100},
we solve three instances using the sparse LAS (r = 2, 3) and the sparse S-LAS (r =
2, s = 1), respectively. The results are presented in Table 5. Again, we can conclude
from the table that the strengthening technique significantly improves the bound
provided by the sparse LAS at both r = 2 and r = 3 while it is much cheaper than
going to the sparse LAS at r = 3.

Table 5
Minimizing a random complex quartic polynomial on multi-spheres.

n trial
LAS (r = 2) LAS (r = 3) S-LAS (r = 2)

opt time opt time opt time

22

1 -16.561 0.48 -13.190 87.7 -12.911 0.74

2 -17.891 0.47 -14.468 89.5 -13.918 0.72

3 -18.119 0.51 -14.408 90.7 -14.094 0.71

42

1 -34.424 1.28 -27.404 122 -26.607 1.68

2 -35.052 1.30 -28.862 124 -27.896 1.81

3 -34.392 1.24 -27.796 122 -27.071 1.66

202

1 -168.10 5.15 -133.07 645 -132.14 9.81

2 -168.90 5.14 -135.14 597 -133.14 8.34

3 -166.92 4.35 -135.01 612 -132.40 8.89

402

1 -339.50 10.7 - - -268.95 23.5

2 -328.91 12.1 - - -259.32 23.5

3 -333.95 11.0 - - -264.59 21.8

6.6. Smale’s Mean Value conjecture. The following complex polynomial op-
timization problem is borrowed from [17]:

(6.7)



sup
(z,u)∈Cn+1

|u|

s.t. |H(zi)| ≥ |u|, i = 1, . . . , n,

z1 · · · zn = (−1)n

n+1 ,

|z1|2 + |z2|2 + · · ·+ |zn|2 = n
(

1
n+1

) 2
n

,

where H(y) := 1
y

∫ y

0
p(z) dz and p(z) := (n+1)(z−z1) · · · (z−zn) with p(0) = 1. This

problem is used in [17] to verify Smale’s Mean Value conjecture [13, 14] which is open
for n ≥ 4 since 1981. The optimum of (6.7) is conjectured to be n

n+1 . We refer the
reader to [17] for more details. Here we solve (6.7) with n = 4 using LAS (r = 4, 6, 8)
and S-LAS (r = 4, s = 1, 2, 3). The results are presented in Table 6, from which we
see that the strengthening technique enables us to achieve global optimality at lower
relaxation orders so that the computational cost is significantly reduced.

6.7. The Mordell inequality conjecture. Our next example concerns the
Mordell inequality conjecture due to Birch in 1958: if the numbers z1, . . . , zn ∈ C
satisfies |z1|2 + · · ·+ |zn|2 = n, then the maximum of

∏
1≤i<j≤n |zi − zj |2 is nn. This

conjecture was proved for n ≤ 4 and disproved for n ≥ 6, and so the only remaining
open case is when n = 5. The reader is referred to [17] for more details. Without
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Table 6
The results for (6.7) with n = 4.

LAS

r = 4 r = 6 r = 8

opt time opt time opt time

1.4218 0.16 0.8404 22.8 - -

S-LAS

r = 4, s = 1 r = 4, s = 2 r = 4, s = 3

opt time opt time opt time

1.4218 0.17 1.2727 0.45 0.8000 18.2

loss of generality, we may eliminate one variable and reformulate the conjecture as
the following complex polynomial optimization problem:

(6.8)

 sup
z∈Cn−1

∏
1≤i<j≤n−1 |zi − zj |2

∏n−1
i=1 |zi + z1 + . . .+ zn−1|2

s.t. |z1|2 + · · ·+ |zn−1|2 + |z1 + . . .+ zn−1|2 = n.

Here we solve (6.8) with n = 3, 4 using LAS and S-LAS. The results are presented in
Tables 7 and 8, respectively. From the tables, we see that the strengthening technique
enables us to achieve global optimality at much lower relaxation orders so that the
computational cost is significantly reduced.

Table 7
The results for (6.8) with n = 3.

LAS

r = 4 r = 6 r = 8

opt time opt time opt time

27.347 0.04 27.122 0.19 27.074 0.35

S-LAS

r = 3, s = 0 r = 3, s = 1 r = 3, s = 2

opt time opt time opt time

54.000 0.005 54.000 0.008 27.000 0.01

Table 8
The results for (6.8) with n = 4.

LAS

r = 10 r = 12 r = 14 r = 16 r = 18

opt time opt time opt time opt time opt time

343.66 8.58 326.85 50.1 292.89 212 277.64 790 - -

S-LAS

r = 6, s = 1 r = 6, s = 2 r = 6, s = 3 r = 6, s = 4 r = 6, s = 5

opt time opt time opt time opt time opt time

1638.4 0.13 1337.5 0.20 932.20 0.25 582.86 0.76 256.00 3.10

6.8. The AC-OPF problem. The AC optimal power flow (AC-OPF) is a cen-
tral problem in power systems, which aims to minimize the generation cost of an
alternating current transmission network under the physical constraints. Mathemati-
cally, it can be formulated as the following complex polynomial optimization problem:
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(6.9)



inf
{Vi}i∈N

∑
k∈G

(
c2kℜ

(
Sd
ik
+Ysh

ik
|Vik |2 +

∑
(ik,j)∈Eik

∪ER
ik

Sikj

)2
+c1kℜ

(
Sd
ik
+Ysh

ik
|Vik |2 +

∑
(ik,j)∈Eik

∪ER
ik

Sikj

)
+ c0k

)
s.t. ∠Vref = 0,

Sgl
k ≤ Sd

ik
+Ysh

ik
|Vik |2 +

∑
(ik,j)∈Eik

∪ER
ik

Sikj ≤ Sgu
k , ∀k ∈ G,

υl
i ≤ |Vi| ≤ υu

i , ∀i ∈ N,

Sij =
(
Y∗

ij − i
bc

ij

2

)
|Vi|2
|Tij |2 −Y∗

ij
ViV

∗
j

Tij
, ∀(i, j) ∈ E,

Sji =
(
Y∗

ij − i
bc

ij

2

)
|Vj |2 −Y∗

ij
V ∗
i Vj

T∗
ij

, ∀(i, j) ∈ E,

|Sij | ≤ suij , ∀(i, j) ∈ E ∪ ER,

θ∆l
ij ≤ ∠(ViV

∗
j ) ≤ θ∆u

ij , ∀(i, j) ∈ E.

For a full description on the AC-OPF problem, the reader may refer to [2] as well as
[16]. For an AC-OPF instance, we can obtain an upper bound (‘ub’) on the optimum
from a local solver. Then the optimality gap between the upper bound and the lower
bound (‘lb’) provided by SDP relaxations is defined by

gap :=
ub− lb

ub
× 100%.

For our purpose, we select instances from the AC-OPF library PGLiB [2] that exhibit
significant optimality gaps. The number appearing in each case name stands for the
number of buses, which is equal to the number of complex variables involved in (6.9).
We solve each instance using the sparse LAS and the sparse S-LAS with minimum
relaxation order [16]. The results are presented in Table 9, from which we see that
the strengthening technique substantially reduce the optimality gap in most cases.
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