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Abstract

To explore convex optimization on Hadamard spaces, we consider an it-
eration in the style of a subgradient algorithm. Traditionally, such methods
assume that the underlying spaces are manifolds and that the objectives are
geodesically convex: the methods are described using tangent spaces and ex-
ponential maps. By contrast, our iteration applies in a general Hadamard
space, is framed in the underlying space itself, and relies instead on horo-
spherical convexity of the objective level sets. For this restricted class of
objectives, we prove a complexity result of the usual form. Notably, the
complexity does not depend on a lower bound on the space curvature. We
illustrate our subgradient algorithm on the minimal enclosing ball problem in
Hadamard spaces.
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1 Introduction

We consider optimization problems posed in a geodesic metric spaceM. Specifically,
we consider first-order algorithms for minimizing an objective function f : M→ R
over a set X ⊂ M. In non-Euclidean spaces M, such algorithms are more sub-
tle than their Euclidean counterparts. In particular, the literature on subgradient
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methods in Riemannian manifoldsM generally assumes that f is geodesically con-
vex, and in contrast with the classical Euclidean case, frames algorithms using local
linearization, relying on the tangent space to M at each iterate. For a thorough
exposition, see [10].

This standard approach to subgradient methods on manifolds, originating with
[15], thus has two related disadvantages: the technicalities inherent in local lineariza-
tion, and the resulting intuitive and formal challenge in extensions to more general
spaces. Optimization in general Hadamard spaces has fascinating applications, in-
cluding phylogenetic trees [8] and robotics [1]. Subgradient methods are an inviting
possibility in such settings: existing algorithms all rely on proximal techniques [4],
which despite their elegant theory, are only rarely implementable.

Motivated both by conceptual simplicity and by generality, therefore, our cur-
rent development explores an alternative approach to understanding subgradient
methods. The iteration we propose makes no reference to tangent spaces or expo-
nential maps, relying instead on a notion of convexity in Hadamard spaces distinct
from geodesic convexity. This idea — horospherical convexity — has its roots in
hyperbolic geometry [9, 24].

We first diverge from the standard approach to Riemannian subgradient methods
in considering objectives that are quasiconvex rather than convex: in other words, we
consider objectives that may not be convex, but have convex lower level sets. In the
Euclidean case, this generalization originated with [20]. The generalization aside,
our principal aim here is to focus on the geometry of level sets. Our objectives are
continuous, and typically coercive, so the level sets we consider are usually compact,
with nonempty interior.

In Euclidean space, the fact that geodesic and horospherical convexity coincide
is the central tool of convex analysis: the supporting hyperplane theorem. By
contrast, in the case of hyperbolic space, for compact sets with nonempty inte-
rior, horospherical convexity entails a certain level of curvature in the boundary,
and is a strictly stronger property than geodesic convexity. The forward implica-
tion follows from [18, Theorem 4.2], for example. Conversely, in the Poincaré disk,
where geodesics are segments of circles intersecting the unit circle orthogonally and
horospheres are circles tangent to the unit circle, the upper half-disk of radius 1

2
is

geodesically convex but not horospherically convex, not being contained in any horo-
sphere passing through zero. Nonetheless, applications in Hadamard spaces often
involve sets that are both geodesically and horospherically convex, such as inter-
sections of metric balls. Several recent works have noted the potential applications
of horospherical ideas for non-Euclidean convex optimization, both in theory [6,18]
and practice [14]. However, the subgradient method that we present here appears
new.

Complexity analysis for standard projected subgradient methods on Hadamard
manifolds originated with the seminal work [26], which shows in particular that the
mean excess objective value over n iterations behaves like O( 1√

n
), just as in the
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Euclidean version. Interestingly, the hidden constant deteriorates as the curvature
becomes more negative, as subsequent analysis [13, Theorem 8] shows that it must,
at least for general geodesically convex objectives.

Our second and principal point of divergence from [26] and other standard non-
Euclidean subgradient developments lies in our avoidance of any reference to tangent
spaces and exponential maps. Rather than situating the algorithm in a manifold,
our subgradient-style method makes sense in any Hadamard space. Our complex-
ity analysis is geometrically appealing: like the algorithm itself, it makes no use of
tangent spaces, and as we have noted, applies to objectives that may be nonconvex
but have horospherically convex level sets. Strikingly, unlike [26], our complexity
result and proof involves no lower curvature bound: the lower bound on complex-
ity in [13, Theorem 8] does not apply, because we only consider objectives with
horospherically convex level sets.

To summarize our contributions, we present a new horospherical approach to
subgradient methods that we believe is geometrically illuminating. Our algorithm
is framed in a general Hadamard space, and relies on no tangent constructions.
The algorithm does not apply to every geodesically convex objective, but its range
of application is still rich. Furthermore, our complexity result involves no lower
curvature bound, so even applies in spaces with infinite negative curvature and
bifurcating geodesics, such as the tree spaces and cubical complexes of [1, 8]. We
apply our horospherical subgradient algorithm in particular to the minimal enclosing
ball problem. In Euclidean space, and more generally in Hadamard manifolds,
our algorithm amounts to the approach of [2, 12], but algorithms for the minimal
enclosing ball problem in a general Hadamard space were not previously available.
We present a small computational illustration in a CAT(0) complex.

2 Examples

In a Hadamard space (M, d), many interesting optimization problems involve simple
combinations of distance functions. To ground our discussion, we consider two
representative examples.

Example 2.1 (Circumcenters) Any nonempty finite set A ⊂ M has a unique
circumcenter [11, Proposition II.2.7], which is the unique minimizer x̄ of the function
f : M→ R defined by

f(x) = max
a∈A

d(x, a) (x ∈M).

The value f(x̄) is called the circumradius. Other names for this optimization prob-
lem include the smallest or minimal enclosing ball problem, and the 1-center problem.
For a survey, see [2].
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Example 2.2 (Intersecting balls) Consider any nonempty finite set A ⊂ M.
Given a radius ρa ≥ 0 for each point a ∈ A, the corresponding balls Bρa(a) have
nonempty intersection if and only if the function f : M→ R defined by

f(x) = max
a∈A
{d(x, a)− ρa} (x ∈M).

has nonpositive minimum value.

Both examples involve minimizing an objective function belonging to the follow-
ing broad class.

Definition 2.3 A function f : M → R is a distance envelope if there exists a
compact topological parameter space Ψ, and continuous functions

a : Ψ→M, β : Ψ→ R+, γ : Ψ→ R,

such that

(2.4) f(x) = max
ψ∈Ψ
{β(ψ)d

(
x, a(ψ)

)
+ γ(ψ)} (x ∈M).

The points a(ψ) are the centers.

3 Horoballs

The subgradient-style method we develop, rather than using the local idea of the
tangent space, instead relies on global constructions fundamental in CAT(0) geom-
etry, namely horoballs. We consider a Hadamard space (M, d) with the geodesic
extension property : in other words, for any geodesic segment [x, y] in X, there exists
a ray r : R+ →M (by which we always mean a unit-speed geodesic ray) such that
r(0) = x and r(t) = y for some t ≥ 0. Following standard terminology [11], to any
ray r we associate the Busemann function br : M→ R defined by

br(x) = lim
t→∞

(d
(
x, r(t)

)
− t) (x ∈M).

Busemann functions are 1-Lipschitz and convex, and their lower level sets are
called horoballs. Following standard terminology in hyperbolic geometry [16, Def-
inition 4.5], we call a closed set F ⊂ M horospherically convex if every boundary
point x of F has a supporting ray, by which we mean a ray r satisfying r(0) = x and

F ⊂ {z ∈M : br(z) ≤ 0}.

In that case we describe the right-hand side as a supporting horoball for F at x.
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Example 3.1 (The Euclidean case) Consider the spaceM = Rn with Euclidean
distance. Given any ray r(t) = x − tu (for t ≥ 0), for a point x ∈ M and a unit
vector u ∈ Rn, the corresponding Busemann function is given by

br(z) = 〈u, z − x〉 (z ∈M).

Thus horoballs in Rn are halfspaces. The ray r supports a closed convex set F ⊂ Rn

at x if and only if u lies in the normal cone NF (x), in which case the halfspace
{z : 〈u, z − x〉 ≤ 0} is a supporting horoball for F at x. In particular, all closed
convex sets F are horospherically convex.

Definition 3.2 A function f : M → R is horospherically polyhedral if there exist
rays ri : R+ →M, for i = 1, 2, . . . ,m, such that

(3.3) f(x) = max
i=1,...,m

{βibri(x) + γi} (x ∈M).

4 The oracles

The iteration that we propose relies on two computational resources, described next.
The first is standard.

Assumption 4.1 (Projection oracle) The feasible region X ⊂ M is nonempty,
closed, bounded, and geodesically convex. For any input x ∈ M, the projection
oracle outputs the nearest point in X, denoted Proj(x).

The nearest point always exists and is unique [11, Proposition II.2.4]. The simplest
example of the projection oracle is when the feasible region X is just a metric ball
Bρ(a) for some radius ρ ≥ 0 and some center a ∈ M. In that case, the projection
Proj(x) equals x whenever d(x, a) ≤ ρ, and otherwise is the unique point on the
geodesic segment [a, x] at a distance ρ from a.

The second assumption is less standard.

Assumption 4.2 (Support oracle) The objective function f : M → R is Lips-
chitz, with horospherically convex lower level sets

fx = {z ∈M : f(z) ≤ f(x)} (x ∈M).

For any input x ∈ M and any step length ε > 0, the support oracle either responds
that x minimizes f , or it outputs a point xε on a supporting ray for fx at x such
that d(x, xε) = ε.

We illustrate the support oracle with some examples. The first shows that, in the
classical case of convex optimization in Euclidean space, the support oracle coincides
with the standard version.
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Example 4.3 (The Euclidean case) Consider a continuous convex function
f : Rn → R, and any point x ∈ M that does not minimize f . Then valid out-
puts of the support oracle are those points of the form

xε = x− ε

|g|
g for g ∈ ∂f(x).

To see this, we recall Example 3.1, and use the standard relationship between the
normal cone to the level set and the subdifferential, Nfx(x) = R+∂f(x).

Example 4.4 (Distance envelopes) In Definition 2.3, consider the distance en-
velope f given by equation (2.4). Given any point x ∈M, fix any parameter value
ψ attaining this maximum. If β(ψ) = 0, then x minimizes f . On the other hand,
if β(ψ) > 0, then any ray r : R+ →M satisfying r(0) = x and passing through the
center a(ψ) supports the level set fx, because any point z ∈ fx satisfies

β(ψ)d
(
z, a(ψ)

)
+ γ(ψ) ≤ f(z) ≤ f(x) = β(ψ)d

(
x, a(ψ)

)
+ γ(ψ)

and hence
d
(
z, a(ψ)

)
≤ d

(
x, a(ψ)

)
,

so
br(z) = inf

t≥0
{d
(
z, r(t)

)
− t} ≤ d

(
z, a(ψ)

)
− d
(
x, a(ψ)

)
≤ 0.

The support oracle can therefore output the point xε = r(ε). In summary, for a
distance envelope, to implement the support oracle we simply move a distance ε
along a ray towards a center attaining the envelope’s value.

Example 4.5 (Horospherically polyhedral functions) In Definition 3.2, con-
sider the distance envelope f given by equation (3.3). Given any point x ∈ M, fix
any index i attaining this maximum. If βi = 0, then x minimizes f . On the other
hand, suppose βi > 0. There exists a unique ray r : R+ →M asymptotic to ri and
satisfying r(0) = x, by [11, Proposition II.8.2]. We claim that this ray supports the
level set fx at x. Note that the corresponding Busemann function br differs from the
Busemann function bri only by a constant [11, Exercises II.8.23]. Any point z ∈ fx
satisfies

βibri(z) + γi ≤ f(z) ≤ f(x) = βibri(x) + γi,

so bri(z) ≤ bri(x), and hence br(z) ≤ br(x) = 0. The support oracle can therefore
output the point xε = r(ε).

Discussion

The availability of the support oracle is, of course, a strong assumption. As we
discussed in the introduction, geodesic and horospherical convexity are distinct no-
tions. Thus the level sets of a geodesically convex objective function f may not be

6



horospherically convex, and even if they are, traditional subgradients may not corre-
spond to the requisite supporting horoballs. Using standard Riemannian notation,
the traditional oracle returns a vector g in the tangent space Tx(M) satisfying the
inequality

f(z) ≥ f(x) + 〈g,Exp−1
x (z)〉x (z ∈M),

which ensures that the level set Lx is contained in the set

{z ∈M : 〈g,Exp−1
x (z)〉x ≤ 0}.

This set contains the point x, but it may not correspond to any supporting horoball.
On the other hand, the support oracle is appealing geometrically, since it avoids

any reference to tangent spaces and exponential maps. Furthermore, it relies only
on convexity properties of the level sets of the objective f , rather than on convexity
of f itself. The applicability of the subgradient method to Euclidean quasiconvex
minimization was developed by [20].

5 A subgradient-style method

In a Hadamard space (M, d), suppose that Assumptions 4.1 and 4.2 hold, and
consider the optimization problem

inf
x∈X

f(x).

Algorithm 5.1 (Projected subgradient iteration)
Choose a fixed step length ε > 0.
Repeatedly update the current iterate x ∈ X as follows.

• Call the support oracle in Assumption 4.2 at the point x.

• If the support oracle recognizes that x attains minM f , stop.

• Else, update x← xε.

• Call the projection oracle in Assumption 4.1 at the point x.

• Update x← Proj(x).

Example 5.2 (Circumcenters and intersecting balls) We return to Exam-
ples 2.1 and 2.2. Given an arbitrary point a0 ∈ M, if the radius ρ > 0 is large
enough, then both the circumcenter and intersecting problems are equivalent to
minimizing their respective objectives f over the ball X = Bρ(a0). Projecting onto
the ball X is easy, so we can implement the subgradient iteration simply: we simply
need to compute (and possibly extend) geodesics between iterates and points in A
or a0.
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6 Complexity analysis

The projected subgradient iteration that we have described is applicable in any
Hadamard space with the geodesic extension property. We make no use of tangent
spaces, and the curvature of the space may be unbounded below. In addition to
Hadamard manifolds, the result applies in spaces like CAT(0) cubical complexes,
which are not manifolds, and have infinite negative curvature.

In addition to Assumptions 4.1 and 4.2, we collect up the remaining assumptions.

Assumption 6.1

• The Hadamard space (M, d) has the geodesic extension property.

• The diameter of the feasible region X ⊂M is bounded above by D > 0.

• The objective function f : M→ R is globally Lipschitz, with constant L > 0.

• The optimal value f ∗ = infX f is attained at some point x∗ ∈ X.

Under all of our assumptions, we prove that the iterates x1, x2, . . . generated by
the subgradient method with a suitable step length, ensures a complexity estimate
of the usual kind:

min
i=1,...,n

f(xi) = min
X

f + O
( 1√

n

)
.

The complexity estimate depends only on the constants L and D, and not on any
lower bound on the curvature.

Theorem 6.2 Consider the optimization problem infX f , and suppose that Assump-
tions 4.1, 4.2, and 6.1 hold. For any integer n > 0, consider Algorithm 5.1 with step
length ε = D√

n
. After n iterations, the average of the function values at the iterates

exceeds minX f by a quantity no larger than

LD√
n
.

Proof Beginning with any current iterate x ∈ X, one iteration of Algorithm 5.1,
outputs a point xε on a supporting ray r : R+ →M for fx at x such that d(x, xε) = ε.
We denote the corresponding Busemann function br simply by b. Since x∗ minimizes
f , we know f(x∗) ≤ f(x), and hence b(x∗) ≤ 0. We have xε = r(ε), and more
generally, for t ≥ 0, we denote the point r(t) by xt.

For any value t ≥ ε we have

xε =
(

1− ε

t

)
x+

ε

t
xt.
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Since M is a Hadamard space, nonpositive curvature implies

d2(x∗, xε) ≤
(

1− ε

t

)
d2(x∗, x) +

ε

t
d2(x∗, xt)−

ε

t

(
1− ε

t

)
d2(x, xt)

so

d2(x∗, xε)−
(

1− ε

t

)
d2(x∗, x)− ε2 ≤ ε

t
(d2(x∗, xt)− t2)

= ε(d(x∗, xt)− t)
(1

t
d(x∗, xt) + 1

)
.

As t→ +∞, we know d(x∗, xt)− t→ b(x∗) by definition, and hence 1
t
d(x∗, xt)→ 1,

from which we deduce

d2(x∗, xε)− d2(x∗, x)− ε2 ≤ 2εb(x∗).

There exists a unique ray originating at x∗ and asymptotic to the ray r. Extend
this ray to a point x̃ ∈M satisfying d(x∗, x̃) = 1− b(x∗), giving a ray r̃ : R+ →M
asymptotic to r satisfying r̃(0) = x̃ and r̃

(
1 − b(x∗)

)
= x∗. The corresponding

Busemann function b̃ satisfies

b̃(x∗) = b̃(r̃
(
1− b(x∗)

)
) = b(x∗)− 1,

and it differs from the Busemann function b only by a constant, so b̃ = b − 1. For
all t < 1 we have

b
(
r̃(t)

)
= b̃

(
r̃(t)

)
+ 1 = 1− t > 0.

Since the ray r supports the level set fx at x, we know b(z) ≤ 0 for all points z ∈ fx.
Hence we have r̃(t) 6∈ fx, or equivalently, f

(
r̃(t)

)
> f(x). By continuity, the point

x̂ = r̃(1) satisfies f(x̂) ≥ f(x). Since d(x∗, x̂) = −b(x∗), the Lipschitz condition
ensures

f(x)− f(x∗) ≤ f(x̂)− f(x∗) ≤ − Lb(x∗).
To summarize, we have proved

d2(xε, x
∗)− d2(x, x∗) ≤ ε2 − 2ε

L
(f(x)− f ∗).

Since x∗ ∈ X and the projection ProjX is nonexpansive, we deduce

2

L
(f(x)− f ∗) ≤ 1

ε

(
d2(x, x∗)− d2(xnew, x

∗)
)

+ ε.

Now suppose we initialize the algorithm at a point x1 ∈ X, and apply the
update n times, generating the points x1, x2, x3, . . . , xn, xn+1 ∈ X. Summing the
corresponding inequalities shows

2

L

( 1

n

n∑
i=1

f(xi)− f ∗
)
≤ D2

nε
+ ε.
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We deduce
1

n

n∑
i=1

f(xi) ≤ f ∗ +
LD√
n
,

as required. 2

7 Computing circumcenters in Hadamard space

We conclude by returning to the circumcenter problem, Example 2.1). The problem
has a long history dating back to Sylvester (1857) [25], and remains fundamental
in computational geometry. A simple Euclidean algorithm, with complexity O( 1√

n
)

appeared in [12], and can be interpreted as the subgradient method [21]. The Eu-
clidean algorithm was extended to Riemannian manifolds in [2], and we shall see that
a constant-step-length version in fact extends further to arbitrary Hadamard spaces,
where it can be interpreted as the horospherical subgradient method, Algorithm 5.1.

This extension is motivated in part by an interesting class of optimization prob-
lems in Hadamard space that arises from averaging finite sets in the BHV space
of phylogenetic trees introduced in [8]. CAT(0) cubical complexes, of which the
BHV space is an example, are Hadamard spaces with curvature unbounded below:
in particular, they are not manifolds. In addition to BHV space, CAT(0) cubical
complexes have also proved useful models in robotics, as surveyed recently in [1].
Crucially from an algorithmic perspective, geodesics in CAT(0) cubical complexes
are efficiently computable [17, 23].

Consider the problem of averaging a given nonempty finite set A in a Hadamard
spaceM. Standard notions of average include the Fréchet mean and medians, which
are minimizers of the functions∑

a∈A

d2(x, a) and
∑
a∈A

d(x, a) (x ∈M)

respectively. Such points can be approximated via a sequence of geodesic computa-
tions in a splitting proximal point algorithm. The convergence of the algorithm is
proved in [5], and illustrated on real data in BHV space in [3]. While [5] states no
complexity result, the algorithm and its convergence proof are based on a Euclidean
version [7], whose complexity, like that of Algorithm 5.1, is O( 1√

n
).

The horospherical subgradient method that we have described here opens an
alternative possibility for averaging a finite set A. Instead of medians or the Fréchet
mean, we might instead approximate the circumcenter, by minimizing the objective
function f : M→ R defined, as in Example 2.1:

(7.1) f(x) = max
a∈A

d(x, a) (x ∈M).
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As we shall see, implementing the horospherical subgradient method to minimize
the objective function f is straightforward.

One curiosity suggesting the circumcenter as an alternative averaging technique
in CAT(0) cubical complexes is the stickiness to which the Fréchet mean is prone:
for a short exposition, see [22]. Consider for example the simplest BHV space, the
tripod consisting of three legs : copies of R+ glued together at zero. Three points,
one on each leg at distances a, b, c > 0 from zero, have mean at zero if and only if

(7.2) a+ b > c, b+ c > a, c+ a > b.

The point zero is sticky because the corresponding set of vectors (a, b, c) has nonempty
interior. More precisely, we can identify each vector (a, b, c) ∈ R3

++ with a probabil-
ity measure on the tripod supported on the three corresponding points, with equal
weights: this set of measures inherits the topology of R3, and any measure in the
resulting space that satisfies the inequalities (7.2) sticks to zero, in the terminology
of [19]. The median in this example behaves even more simply: the unique median
is zero for all values a, b, c. Notice, in contrast, that zero is a circumcenter if and
only if the maximum component of the vector (a, b, c) is not unique. Since the set
of such vectors has measure zero, the point zero is not sticky as a circumcenter.

To compute the circumcenter using the horospherical subgradient method, we
choose an arbitrary point ā ∈ A, define the radius ρ = f(ā), and consider the feasible
region X = Bρ(ā). Notice A ⊂ X. Since all points x 6∈ X satisfy f(x) ≥ d(x, ā) > ρ,
minimizing f over the whole space M is equivalent to minimizing f over X. The
set X satisfies Assumption 4.1, and the projection oracle is simple:

Proj(x) =

{
x (x ∈ X)
d(x,a)
ρ
x+ (1− d(x,a)

ρ
)ā) (x 6∈ X).

As we shall see, in fact the subgradient algorithm only calls the projection oracle
for inputs x ∈ X, so the projection plays no role.

The objective function f is 1-Lipschitz. By Example 4.4, its level sets are horo-
spherically convex, and given any input point x ∈ M and step length ε > 0, the
support oracle chooses a point a ∈ A attaining maxA d(x, ·) = f(x), and then out-
puts the point xε on the ray originating at x and passing through a, at a distance ε
from x. Thus Assumption 4.2 holds. Furthermore, providing ε ≤ f(x), the point xε
is a convex combination of x and a.

We assume that the Hadamard spaceM has the geodesic extension property, as
holds in particular for BHV space. We define the constant D = 2ρ. Assumption 6.1
then holds.

Now consider Algorithm 5.1 with step length ε = D√
n

and number of iterations

n ≥ 16. Notice ε ≤ ρ
2
. If any point x ∈ M satisfied f(x) < ε, then we deduce the

contradiction

d(ā, a) ≤ d(ā, x) + d(x, a) < ε+ ε ≤ ρ = f(ā) for all a ∈ A.
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We therefore have f(x) ≥ ε for all x ∈ M. Consequently, for any iterate x in the
feasible region X, the output xε of the support oracle also lies in X. By induction,
the projection oracle thus plays no role, as we claimed.

We can summarize the algorithm, in terms of the function (7.1), as follows.
While the approach is similar to the Euclidean algorithm of [12] and its Rieman-
nian extension [2], we do not know of any previous algorithm for circumcenters in
arbitrary Hadamard spaces.

Algorithm 7.3 (Subgradient iteration for circumcenter)
input: nonempty finite A ⊂M, number of iterations n ≥ 16
choose x ∈ A % current center
xbest = x % best center so far
ρ = 0
for a ∈ A \ {x} do
ρ = max{ρ, d(a, x)} % radius of current ball enclosing A

end for
fbest = ρ % best radius so far
ε = 2ρ√

n
% step length

for iteration = 1, 2, . . . , n do
γ = 0
for a ∈ A do
δ = d(a, x)
if δ > γ then
γ = δ % radius of current enclosing ball. . .
â = a % . . . and furthest point in A

end if
end for
if γ < fbest then
fbest = γ % update best radius . . .
xbest = x % . . . and best center

end if
λ = ε

γ

x = (1− λ)x+ λâ % move towards furthest point
end for
return xbest

If the set A has cardinality k, then the initial for loop requires k − 1 distance cal-
culations, and then each of the n iterations requires k more distance computations,
one of which results in the calculation of a convex combination of two points. The
diameter µ of the set A satisfies µ ≥ ρ, so the feasible region X has diameter no
larger than 2µ. Theorem 6.2 now implies the following complexity result.
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Corollary 7.4 (Complexity of circumcenters) Consider any Hadamard space
M with the geodesic extension property, and any subset A ⊂M of cardinality k > 0
and diameter µ. Fix any integer n ≥ 16. Then Algorithm 7.3 terminates after
computing k(n + 1) − 1 distances and n convex combinations in M, and returns
a point whose distance from every point in A exceeds the circumradius of A by no
more than 2µ√

n
.

Example: circumcenter of three points in an orthant space

To illustrate Algorithm 5 on a polyhedral complex analogous to the tree spaces
of [8], we consider the geodesic space consisting of five Euclidean quadrants glued
together along their edges to form a cycle. This orthant space M is a well-known
example of a Hadamard space: it can be modeled isometrically as the subsetM′ of
the space R3 consisting of the union of the quadrants

R+×R−×{0}, R−×R−×{0}, R−×R+×{0}, {0}×R+×R+, R+×{0}×R+,

with the intrinsic metric induced by Euclidean distance [1, Figure 9].
Computing geodesics in this orthant space M is easy. Given any two points

x, y ∈ M, after a cyclic permutation of the quadrants, we can suppose that the
corresponding points x′ and y′ in the model both lie in the plane R×R× {0}. In
the model, the geodesic [x′, y′] is just the Euclidean line segment [x′, y′] in the plane
R×R×{0}, unless that line segment intersects the open quadrant R++×R++×{0},
in which case the geodesic consists of the union of the two geodesics [x′, 0] and [0, y′].

In the model M′, consider the set A consisting of the three points

(0, 0,
√

5) , (1,−2, 0) , (−2, 1, 0).

The circumcenter of A is the point (0, 0, 0). To see this, consider the objective func-
tion f(x) = maxA d(x, ·) (for x ∈ M′) whose unique minimizer is the circumcenter
(p, q, r) of A. By symmetry, the point (q, p, r) also lies in M′, and the value of f
there is identical, so in fact (q, p, r) = (p, q, r), and hence p = q. Consequently the
circumcenter of A must lie on the set

{(0, 0, t) : t ≥ 0} ∪ {(t, t, 0) : t ≤ 0}.
A quick calculation shows that f is minimized on this set at the point (0, 0, 0).

The performance of Algorithm 7.3 is shown in Figure 1. The plot clearly shows
the O( 1√

n
) behavior relative to the number of iterations n. For comparison, in this

example the set A has diameter
√

10 + 4
√

5 < 5, so an upper bound on the error
in approximating the circumradius, by Corollary 7.4, is 10√

n
.
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Figure 1: Algorithm 7.3 applied to the circumcenter and circumradius σ of three
points in a Hadamard space of five orthants. For number of iterations N =
101, 102, . . . , 108, the plot shows the minimum value of log10(f(·) − σ) over the N
iterates.
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