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Abstract

In this paper we focus on nonconvex optimization problems with expectation constraints. To
address the challenges posed by possibly nonconvex constraints and the stochastic nature of the
problem, we propose a two-phase stochastic momentum-based algorithm TStoM. The first phase
of TStoM aims to minimize the infeasibility measure searching for a nearly feasible point in the
expectation sense. This point is used to initialize the second phase. In each iteration of the
second phase, we perform a proximal stochastic gradient step to update the primal variable, while
the dual update relies on stochastic constraint function values calculated in a moving average
way. Under certain conditions, TStoM can find a stochastic ϵ-stationary point with a sample
complexity in order O(ϵ−6). Furthermore, under a nonsingularity condition we show that the
sample complexity is in order O(ϵ−5) to reach a stochastic ϵ-KKT point. At this point the
expected error of approximate constraint values is bounded by O(I−1/5) with I being the number
of samples generated during the algorithmic process. Numerical experiments are conducted to
demonstrate the efficiency and effectiveness of TStoM.
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1 Introduction

In this paper, we consider the nonconvex constrained optimization problem

min
x∈X

{f0(x) := f(x) + h(x) s.t. c(x) = 0},

with f(x) = Eξ[F (x; ξ)], c(x) = Eξ[C(x; ξ)] ,
(1.1)

where X ⊆ Rn is a closed convex set, ξ is a random variable in the probability space Ξ and inde-
pendent of x, and Eξ refers to the expectation taken with respect to ξ. Here F : Rn × Ξ → R and
C : Rn × Ξ → Rm are continuously differentiable with respect to x but possibly nonconvex, and
h : Rn → R is a proper lower-semicontinuous and convex function. We assume that the feasible set of
(1.1) is nonempty. Although only equality constraints appear in formulation (1.1), it actually covers
more general problems. For problems with inequality constraints, we can simply introduce auxiliary
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variables and reformulate the problem into form (1.1). Problem (1.1) arises in many application
fields, including risk averse machine learning [19,27], Neyman-Pearson classification [25,26], the fair-
ness constrained problems [12, 22], physics-informed neural networks [18] and churn rate constrained
problems [14].

Extensive research efforts have been dedicated to investigating numerical algorithms for stochastic
optimization with functional constraints. In the context of general convex stochastic optimization
with deterministic constraints, the exact information of constraints is accessible while only stochastic
oracles of the objective function are available. Xu et al. [32] introduce a single-loop primal-dual
stochastic gradient method by leveraging the linearized augmented Lagrangian (AL) function and
investigate the convergence rate of the algorithm. Bollapragada et al. [4] consider problems with
linear deterministic constraints and propose a double-loop augmented Lagrangian method (ALM)
with an adaptive sampling strategy incorporated to control the accuracy of stochastic gradients. For
nonconvex stochastic optimization with deterministic constraints, Berahas et al. [3] propose a line-
search stochastic sequential quadratic programming (SQP) algorithm with adaptive Lipschitz constant
estimates and analyze the algorithm’s global convergence properties. Na et al. [23] present an active-
set stochastic SQP algorithm for problems with both equality and inequality constraints. They utilize
a differentiable exact AL function as the merit function and establish almost sure global convergence.
For the same class of problems, Na et al. [24] develop a fully online stochastic SQP method and analyze
the iteration complexity required to achieve ϵ-stationarity. Curtis et al. [9] propose a stochastic SQP
algorithm that incorporates an adaptive strategy to update merit parameters. Under a strong linear
independence constraint qualification (LICQ) condition, they prove the worst-case iteration complexity
bound.

Penalty methods have also been studied for nonconvex stochastic optimization with deterministic
constraints. Wang et al. [31] introduce a penalty method that minimizes an exact penalty function at
each iteration using only stochastic first-order or zeroth-order information. The worst-case complexity
in terms of calls to first- and zeroth-order oracles to find an ϵ-stochastic critical point is investigated. In
the work by Jin and Wang [17], a class of constrained optimization problems with objective functions
composed of two expectation functions is studied. Under a nonsingularity condition, the proposed
stochastic nested primal-dual algorithm can find an ϵ-stationary point after O(ϵ−4) iterations with
a sample complexity bounded by O(ϵ−6). If the algorithm starts from a feasible point, the iteration
and sample complexities are reduced to O(ϵ−3) and O(ϵ−5), respectively. Shi et al. [30] investigate
linearized ALM based on momentum [10] and analyze its global convergence properties. Besides,
the sample complexity of the algorithm, which generates an ϵ-stationary point and an ϵ-KKT point
under a mean-squared smoothness condition and a constraint qualification condition, is bounded
by O(ϵ−5). When the initial point is nearly feasible, the complexities can also be reduced, to the
order of O(ϵ−4). Another two related work focuses on feasible methods for inequality constrained
problems. In [6] the proposed proximal point method transforms the original problem into a sequence
of convex subproblems by introducing quadratic terms to objective function and to constraints, with
each subproblem solved by a constraint extrapolation (ConEx) approach. Then an inexact proximal
point method is presented for inequality constrained stochastic optimization. Under a strong feasibility
condition, the iteration complexity of ConEx to achieve an approximate KKT point is established. The
subsequent work [7] introduces a proximal gradient method, which incorporates increasing constraint
level parameters for each subproblem and is extended to solve programs in stochastic settings.

Addressing problems involving stochasticity in functional constraints like (1.1) is particularly chal-
lenging. For convex programs, Yan et al. [34] provide a primal-dual stochastic gradient method and
adopts an adaptive scheme to update the primal and dual variables. Convergence rates in terms of ob-
jective error and constraint violation are investigated. Zhang et al. [35] present a stochastic augmented
Lagrangian-type algorithm that achieves O(K−1/2) expected convergence rates for both objective re-
duction and constraint violation, with K representing the number of iterations. A similar result is
obtained using the proximal method of multipliers proposed in [36]. Regarding nonconvex programs,
inexact quadratically regularized constrained methods, proposed by Ma et al. [22], aim for inequality
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constrained optimization whose objective and constraint functions are weakly convex. These methods
are feasible in the way that they transform the initial problem into a sequence of strongly convex
subproblems by adding quadratic terms to objective and to constraints as well. Under a uniform
Slater’s condition the complexities for finding a nearly ϵ-stationary point are investigated. The afore-
mentioned work [6] also analyzes the complexity of finding an approximate KKT point for expectation
constrained optimization merely with inequality constraints in fully-stochastic case. Jin and Wang [16]
introduce a stochastic primal-dual (SPD) method for a class of nonconvex optimization with a large
number of inequality constraints. To ease the computational burden caused by simultaneously eval-
uating all the constraints at a single point, SPD randomly selects a small number of constraints at
each iteration to construct a stochastic approximation to the linearized AL function. When the initial
point is nearly feasible, the iteration and sample complexities can be further reduced. Another two
works that are closely related to ours are [20] and [1]. Li et al. [20] employ the standard inexact ALM
framework and propose stochastic inexact ALMs (Stoc-iALM), which incorporate subroutines using
momentum-based variance-reduced proximal stochastic gradient approaches. They establish an sam-
ple complexity in order O(ϵ−5) to find an ϵ-KKT point. It is noteworthy that their method involves
a double-loop structure with intricate subproblems. Alacaoglu and Wright [1] consider single-loop
momentum-based algorithms for smooth equality constrained optimization. In particular, under a
nonsingularity condition (refer to Assumption 4.1 below), [1] establishes the Õ(ϵ−5)-sample complex-
ity to find a point satisfying ϵ-approximate first-order conditions (refer to the stochastic ϵ-KKT point
defined below).

1.1 Contributions

In this paper, we propose a two-phase stochastic momentum-based algorithm, TStoM, for nonconvex
expectation-constrained optimization. The first phase involves applying a stochastic momentum-
based approach to solve the infeasibility minimization problem, pursuing a nearly feasible point (in
expectation sense) which initializes the next phase. In the second phase we adopt a single-loop
approach trying to reduce the criticality measure. To update primal variables we compute stochastic
gradients of the linearized augmented Lagrangian function based on momentum. This enables us to
construct much simpler subproblems, facilitating the optimization process. For the dual update, we
utilize a moving average strategy to obtain stochastic approximations of constraint function values.
This strategy helps us effectively estimate the constraints and incorporate them into the optimization
process. Under certain conditions, the sample complexity to find a stochastic ϵ-stationary point is
bounded by O(ϵ−6). By assuming a nonsingularity condition, we show that the sample complexity of
the algorithm to reach a stochastic ϵ-KKT point is in order O(ϵ−5). At this point the expected error of
the approximate constraint value is in order O(I−1/5) with I representing the number of samples. We
also conduct numerical experiments on solving three instances: MIMO transmit signal design with
imperfect channel state information, the multi-class Neyman-Pearson classification problem, and a
chance constrained program. Numerical results demonstrate promising performances of the proposed
algorithm.

1.2 Notation and preliminaries

Without any specification, ∥·∥ denotes the Euclidean norm. The distance betweenX,Y ⊆ Rn is defined
as d(X,Y ) = infx∈X,y∈Y ∥x − y∥. We define ∇c(x) = (∇c1(x),∇c2(x), . . . ,∇cm(x)), ∇C(x; ξ) =
(∇C1(x; ξ),∇C2(x; ξ), . . . ,∇Cm(x; ξ)) and [k] = {1, . . . , k} for a positive integer k. E[·] refers to the
full expectation taken with respect to all random variables generated during an algorithmic process.
The subgradient set of h at x is defined as ∂h(x) = {v ∈ Rn | h(y) ≥ h(x) + ⟨v, y− x⟩,∀y ∈ Rn}. The
normal cone to X at x̄ ∈ X is given by NX(x̄) = {v | ⟨v, x− x̄⟩ ≤ 0, ∀x ∈ X}.

In general, finding a global or even a local minimizer of nonconvex constrained optimization is
NP-hard. Therefore, our primary focus is to pursue a more trackable point, a KKT point. A point
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x∗ ∈ X is called a KKT point of (1.1), if there exists λ∗ ∈ Rm, such that

d(∇f(x∗) + ∂h(x∗)−∇c(x∗)λ∗,−NX(x∗)) = 0 and c(x∗) = 0.

However, in the course of an algorithmic process, it is inevitable that the iteration might be stuck
around an infeasible stationary point which is a solution to the problem:

min
x∈X

1

2
∥c(x)∥2. (1.2)

We next give definitions of approximate solutions of problem (1.1).

Definition 1.1. Given ϵ > 0, we call x ∈ X an ϵ-KKT point of (1.1), if there exists λ ∈ Rm such
that

d(∇f(x) + ∂h(x)−∇c(x)λ,−NX(x)) ≤ ϵ and ∥c(x)∥ ≤ ϵ. (1.3)

A point x ∈ X is called an ϵ-stationary point of (1.1), if there exists λ ∈ Rm, such that

d(∇f(x) + ∂h(x)−∇c(x)λ,−NX(x)) ≤ ϵ and d(∇c(x)c(x),−NX(x)) ≤ ϵ. (1.4)

We call x ∈ X a stochastic ϵ-KKT point (resp. stochastic ϵ-stationary point) of (1.1), if (1.3) (resp.
(1.4)) holds in expectation.

Next, we lay out assumptions that are utilized throughout the rest of this paper.

Assumption 1.1. The set X is closed and convex. The objective function value of (1.1) over X is
lower bounded by C∗. And there exist M,G > 0 such that ∥C(x; ξ)∥ ≤M for all ξ ∈ Ξ,

∥∇f(x)∥ ≤ G and ∥v∥ ≤ G, ∀v ∈ ∂h(x), x ∈ X. (1.5)

Assumption 1.2. F (·; ξ) and C(·; ξ) are differentiable over X almost surely for any ξ ∈ Ξ, and there
exist σf , σc > 0 such that for any x ∈ X,

Eξ[∇F (x; ξ)] = ∇f(x), Eξ[∥∇F (x; ξ)−∇f(x)∥2] ≤ σ2
f ,

Eξ[∇C(x; ξ)] = ∇c(x), Eξ[∥∇C(x; ξ)−∇c(x)∥2] ≤ σ2
c ,

Eξ[C(x; ξ)] = c(x), Eξ[∥C(x; ξ)− c(x)∥2] ≤ σ2
c .

Assumption 1.3. For any x, y ∈ X, there exists L > 0 such that

Eξ[∥∇F (x; ξ)−∇F (y; ξ)∥2] ≤ L2∥x− y∥2, Eξ[∥∇C(x; ξ)−∇C(y; ξ)∥2] ≤ L2∥x− y∥2,

and Eξ[∥C(x; ξ)−C(y; ξ)∥2] ≤ G2∥x− y∥2.

It is worthy to note that Assumption 1.3 also refers to the mean-squared smoothness assumption,
which is widely used in works on stochastic approximation methods, such as [2, 20, 30]. By Jensen’s
inequality, Assumption 1.3 implies that

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∥∇c(x)−∇c(y)∥ ≤ L∥x− y∥ and ∥c(x)− c(y)∥ ≤ G∥x− y∥, (1.6)

which indicates that ∥∇c(x)∥ ≤ G. And it follows from Assumption 1.1 and Assumption 1.2 that

∥c(x)∥ ≤M, Eξ[∥∇C(x; ξ)∥2] ≤ G2
c := 2G2 + 2σ2

c . (1.7)

In addition, with ξ1 and ξ2 being independent, Assumptions 1.1-1.3 imply that for any x, y ∈ X,

Eξ1,ξ2

[
∥∇C(x; ξ1)C(x; ξ2)−∇C(y; ξ1)C(y; ξ2)∥2

]
= Eξ1,ξ2

[
∥(∇C(x; ξ1)−∇C(y; ξ1))C(x; ξ2) +∇C(y; ξ1)(C(x; ξ2)−C(y; ξ2))∥2

]
4



≤ 2Eξ1

[
∥∇C(x; ξ1)−∇C(y; ξ1)∥2

]
Eξ2

[
∥C(x; ξ2)∥2

]
+ 2Eξ1

[
∥∇C(y; ξ1)∥2

]
Eξ2

[
∥C(x; ξ2)−C(y; ξ2)∥2

]
≤ L2

0∥x− y∥2, where L0 :=
√
2(L2M2 +G2

cG
2). (1.8)

Similarly, we can derive

Eξ1,ξ2 [∥∇C(x; ξ1)C(x; ξ2)−∇c(x)c(x)∥2] ≤ σ2
J := 2σ2

c (M
2 +G2

c). (1.9)

Unlike (1.7), the uniform boundedness of ∇C(x; ξ) for all ξ ∈ Ξ is assumed in [1]. Besides, [1] requires
the objective function be upper bounded, which is not assumed in this paper.

1.3 Outline

The remainder of this paper is outlined as follows. In section 2, we present details of a two-phase
stochastic momentum-based algorithm for (1.1). In section 3, we give the auxiliary lemmas and in
section 4 we conduct a complexity analysis of the proposed algorithm towards approximate solutions.
In section 5, we report numerical experimental results on solving three test examples. Finally, we
draw conclusions.

2 A two-phase stochastic momentum-based algorithm for (1.1)

As studied in previous works [16, 17, 30], the (near) feasibility of the initial point can induce lower
sample complexities of algorithms for nonconvex constrained optimization under certain conditions.
Motivated by this, we introduce a two-phase stochastic approximation algorithm TStoM for solving
(1.1), presented in Algorithm 2.1. The first phase is a feasibility pursuing phase, which aims for a
nearly feasible point. By using this point as an initial guess, we delve into the second phase for an
approximate solution of (1.1).

Our main strategy in Phase I of TStoM is to apply a stochastic gradient approach to minimize the
infeasibility measure, i.e. solving (1.2). More specifically, given z1 ∈ X, we randomly generate i.i.d.
samples ς11 , ς

1
2 from Ξ and compute W 1 = ∇C(z1; ς11 )C(z1; ς12 ). Then for any t ≥ 1, we update zt+1

and compute stochastic gradient W t+1 based on momentum technique through

zt+1 = argmin
z∈X

{⟨W t, z − zt⟩+ V

2
∥z − zt∥2}, (2.1)

W t+1 = vt+1 + (1− γt)(W
t − ut+1) (2.2)

with V > 0, γt ∈ (0, 1), vt+1 = ∇C(zt+1; ςt+1
1 )C(zt+1; ςt+1

2 ) and ut+1 = ∇C(zt; ςt+1
1 )C(zt; ςt+1

2 ),
where ςt+1

1 , ςt+1
2 are i.i.d. samples from Ξ. After T iterations, we randomly choose an iterate from

zt+1, t ∈ [T ] as the output of Phase I and set it as the initial point for Phase II.
The aim of Phase II is to pursue an approximate solution of (1.1). To proceed, let us first

recall the augmented Lagrangian function associated with (1.1). It can be expressed as Lβ(x, λ) =

f(x)− λTc(x) + β
2 ∥c(x)∥

2 + h(x), where β > 0 is a penalty parameter and λ ∈ Rm. We define

ψβ(x, λ) := −λTc(x) + β

2
∥c(x)∥2 and Dβ(x, λ) = f(x) + ψβ(x, λ)

for simplicity. Due to the stochastic nature of problem (1.1), the exact function information of f and
c are difficult to obtain. We thus generate i.i.d. samples ξ, ζ1, ζ2 from Ξ and define

Gβ(x, λ; ξ, ζ) := ∇F (x; ξ) + Ḡβ(x, λ; ζ), (2.3)
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where Ḡβ(x, λ; ζ) = −∇C(x; ζ1)λ+β∇C(x; ζ1)C(x; ζ2) with ζ := (ζ1, ζ2). Obviously, Ḡβ(x, λ; ξ, ζ) and
Gβ(x, λ; ξ, ζ) are unbiased estimates of ∇xψβ(x, λ) and ∇xDβ(x, λ), respectively. We then compute
an approximate gradient dk through

dk =


1

|M|
∑

j∈M
Gβk

(x1, λ1; ξ1j , ζ
1
j ), k = 1,

Gβk
(xk, λk; ξk, ζk) + (1− αk−1)(d

k−1 − Gβk−1
(xk−1, λk−1; ξk, ζk)), k ≥ 2,

(2.4)

where αk−1 ∈ (0, 1), ζ1j := (ζ1j,1, ζ
1
j,2), ζ

k := (ζk1 , ζ
k
2 ) and ξ

1
j , ζ

1
j,1, ζ

1
j,2, j ∈ M, ξk, ζk1 , ζ

k
2 , k ≥ 2, are i.i.d

samples generated from Ξ. For ease of notation, we denote ξ1 := {ξ1j , j ∈ M}, ζ1 := {(ζ1j,1, ζ1j,2), j ∈
M}. Then the primal iterate is updated through

xk+1 = argmin
x∈X

{⟨dk, x⟩+ 1

2ηk
∥x− xk∥2 + h(x)}, (2.5)

where ηk > 0. Note that in the work for deterministic constrained stochastic optimization like
[16, 17, 30], the dual variable is updated by λk+1 = λk − ρkc(x

k+1), where ρk ∈ (0, βk], while the
work for optimization with expectation constraints such as [1] applies λk+1 = λk − ρkC(xk+1; ζ)
based on a randomly generated sample ζ. Different from previous work, we adopt a moving average
way to approximate c(xk+1) based on which we compute λk+1 through

λk+1 = λk − ρky
k+1, where yk+1 = (1− τk)y

k + τkC(xk+1; θk), k ≥ 1, (2.6)

with y1 = C(x1; θ0), and θk, k ≥ 0 being randomly and independently chosen from Ξ. Since yk+1 is a
weighted average of the previous constraint value estimate yk and newly updated stochastic constraint
function value, it is expected to have a lower variance compared to C(xk+1; θk). In particular, we will
show that E[∥yR+1 − c(xR+1)∥2] = O(K−2/5), as demonstrated in Proposition 4.1.

Algorithm 2.1 Two-phase Stochastic Momentum-based algorithm (TStoM)

Input: Initial point z1 and dual point λ1 = 0, positive integers T and K, parameters γt ∈ (0, 1) for
t ∈ [T ], V > 0, and βk > 0, ηk > 0, ρk ∈ (0, βk], αk ∈ (0, 1), τk ∈ (0, 1) for k ∈ [K].

Output: xR+1 where R ∈ [K] is uniformly chosen at random.
Phase I

1: Generate i.i.d. samples ς11 , ς
1
2 from Ξ and compute W 1 = ∇C(z1; ς11 )C(z1; ς12 ).

2: for t = 1, . . . , T do
3: Compute zt+1 through (2.1).
4: Compute W t+1 through (2.2).
5: end for
6: Set x1 = zR0+1 with R0 selected from [T ] uniformly at random.

Phase II

1: for k = 1, . . . ,K do
2: Compute dk through (2.4).
3: Compute xk+1 through (2.5).
4: Compute λk+1 through (2.6).
5: end for

3 Auxiliary lemmas

In this section, we will present auxiliary lemmas which are useful for the forthcoming sample com-
plexity analysis of TStoM.

Lemma 3.1. Under Assumption 1.1, it holds that ∥yk∥ ≤M for any k ≥ 1.
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Proof. We show the result by induction. The result holds obviously for k = 1. Assume ∥yk∥ ≤ M ,
then it derives from Assumption 1.1 and (2.6) that ∥yk+1∥ = ∥(1− τk)y

k + τkC(xk+1; θk)∥ ≤M .

Lemma 3.2. Under Assumption 1.1, it holds that for any k ∈ [K], ∥λk+1 − λk∥ ≤ ρkM and ∥λk∥ ≤
M

∑k−1
t=1 ρt.

Proof. Firstly, it follows from Lemma 3.1 that, ∥λk+1 − λk∥ = ρk∥yk+1∥ ≤ ρkM. It further yields

∥λk∥ ≤M
∑k−1

t=1 ρt by ∥λk∥ = ∥λk − λ1∥ ≤
∑k−1

t=1 ∥λt+1 − λt∥.

Lemma 3.3. Suppose that Assumptions 1.1-1.3 hold. Then for any k ≥ 1, we have

E[∥∇xDβk
(xk+1, λk)−∇xDβk

(xk, λk)∥2] ≤ L2
βk
E[∥xk+1 − xk∥2], (3.1)

E[∥Gβk
(xk+1, λk; ξk+1, ζk+1)− Gβk

(xk, λk; ξk+1, ζk+1)∥2] ≤ L2
βk
E[∥xk+1 − xk∥2], (3.2)

E[∥Gβk
(xk, λk; ξk, ζk)−∇xDβk

(xk, λk)∥2] ≤ σ2
βk
, (3.3)

where Lβk
:= βkL̃ with L̃ := max{

√
2(G2 +ML),

√
2L0} + β−1

k (L +
√
2ML

∑k−1
t=1 ρt), and σβk

:=

σf +
√
2(σcM

∑k−1
t=1 ρt + βkσJ).

Proof. It follows from the definition of ψβ(x, λ), (1.6)-(1.7) and Lemma 3.2 that

E[∥∇xψβk
(xk+1, λk)−∇xψβk

(xk, λk)∥]
= E[∥∇c(xk+1)[(βkc(x

k+1)− λk)− (βkc(x
k)− λk)] + (∇c(xk+1)−∇c(xk))(βkc(x

k)− λk)∥]
≤ E[βk∥c(xk+1)− c(xk)∥∥∇c(xk+1)∥+ L∥xk+1 − xk∥∥βkc(xk)− λk∥]

≤ (βkG
2 + βkML+ML

k−1∑
t=1

ρt)E[∥xk+1 − xk∥],

which further indicates

E[∥∇xDβk
(xk+1, λk)−∇xDβk

(xk, λk)∥2]
≤ E[∥∇f(xk+1)−∇f(xk)∥2] + 2E[∥∇f(xk+1)−∇f(xk)∥∥∇xψβk

(xk+1, λk)−∇xψβk
(xk, λk)∥]

+ E[∥∇xψβk
(xk+1, λk)−∇xψβk

(xk, λk)∥2]

≤ (L+
√
2(βkG

2 + βkML+ML

k−1∑
t=1

ρt))
2E[∥xk+1 − xk∥2] ≤ L2

βk
E[∥xk+1 − xk∥2].

Hence, (3.1) is derived. From (1.8), Assumption 1.3 and Lemma 3.2, we can obtain

Eζk+1 [∥Ḡβk
(xk+1, λk; ζk+1)− Ḡβk

(xk, λk; ζk+1)∥]
≤ Eζk+1 [βk∥∇C(xk+1; ζk+1

1 )C(xk+1; ζk+1
2 )−∇C(xk; ζk+1

1 )C(xk; ζk+1
2 )∥+ ∥λk∥∥∇C(xk; ζk+1

1 )

−∇C(xk+1; ζk+1
1 )∥] ≤ (βkL0 +ML

k−1∑
t=1

ρt)∥xk+1 − xk∥,

which implies from Assumption 1.3 and Jensen’s inequality that

Eξk+1,ζk+1 [∥Gβk
(xk+1, λk; ξk+1, ζk+1)− Gβk

(xk, λk; ξk+1, ζk+1)∥2]
≤ Eξk+1 [∥∇F (xk+1; ξk+1)−∇F (xk; ξk+1)∥2] + Eζk+1 [∥Ḡβk

(xk+1, λk; ζk+1)− Ḡβk
(xk, λk; ζk+1)∥2]

+ 2Eξk+1,ζk+1 [∥∇F (xk+1; ξk+1)−∇F (xk; ξk+1)∥∥Ḡβk
(xk+1, λk; ζk+1)− Ḡβk

(xk, λk; ζk+1)∥]

≤ (L+
√
2(βkL0 +ML

k−1∑
t=1

ρt))
2∥xk+1 − xk∥2.
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It then yields (3.2) by taking full expectation on above inequality. Note that due to (1.9), Assumption
1.2 and Lemma 3.2,

Eζk [∥Ḡβk
(xk, λk; ζk)−∇xψβk

(xk, λk)∥2]
= Eζk [∥ − ∇C(xk; ζk1 )λ

k +∇c(xk)λk + βk∇C(xk; ζk1 )C(xk; ζk2 )− βk∇c(xk)c(xk)∥2]
≤ 2Eζk [∥λk∥2∥∇C(xk; ζk1 )−∇c(xk)∥2] + 2β2

kEζk [∥∇C(xk; ζk1 )C(xk; ζk2 )−∇c(xk)c(xk)∥2]

≤ 2(σcM

k−1∑
t=1

ρt)
2 + 2β2

kσ
2
J , k ≥ 2.

Then it derives from the independence of ξk and ζk that

Eξk,ζk [∥Gβk
(xk, λk; ξk, ζk)−∇xDβk

(xk, λk)∥2]
= Eξk [∥∇F (xk; ξk)−∇f(xk)∥2] + Eζk [∥Ḡβk

(xk, λk; ζk)−∇xψβk
(xk, λk)∥2]

+ 2Eξk,ζk [⟨∇F (xk; ξk)−∇f(xk), Ḡβk
(xk, λk; ζk)−∇xψβk

(xk, λk)⟩]

≤ σ2
f + 2(σcM

k−1∑
t=1

ρt)
2 + 2β2

kσ
2
J .

By taking full expectation on above inequality, we establish (3.3) for k ≥ 2. It is straightforward to
derive (3.3) for k = 1, since

E[∥Gβ1
(x1, λ1; ξ1, ζ1)−∇xDβ1

(x1, λ1)∥2] ≤
σ2
β1

|M|
. (3.4)

The proof is completed.

In the following, we denote the error of dk by εk := dk −∇xDβk
(xk, λk).

Lemma 3.4. Let Assumptions 1.1-1.3 be satisfied. Then it holds that for any k ∈ [K],

E[d2(∇xDβk
(xk+1, λk+1) + ∂h(xk+1),−NX(xk+1))]

≤ 4(ρkMG)2 + 4(L2
βk

+
1

η2k
)E[∥xk+1 − xk∥2] + 4E[∥εk∥]2.

Proof. By the definition of Dβ(x, λ) and Lemma 3.2, we have

E[∥∇xDβk
(xk+1, λk+1)−∇xDβk

(xk+1, λk)∥2] ≤ E[∥λk+1 − λk∥2∥∇c(xk+1)∥2] ≤ (ρkMG)2.

Then by optimality conditions for (2.5), i.e. d(dk + ∂h(xk+1) + 1
ηk
(xk+1 − xk),−NX(xk+1)) = 0, it

indicates from Jensen’s inequality and (3.1) that

E[d2(∇xDβk
(xk+1, λk+1) + ∂h(xk+1),−NX(xk+1))]

≤ E[∥∇xDβk
(xk+1, λk+1)− dk − 1

ηk
(xk+1 − xk)∥2]

= E[∥∇xDβk
(xk+1, λk+1)−∇xDβk

(xk+1, λk) +∇xDβk
(xk+1, λk)−∇xDβk

(xk, λk)

+∇xDβk
(xk, λk)− dk − 1

ηk
(xk+1 − xk)∥2]

≤ 4(ρkMG)2 + 4L2
βk
E[∥xk+1 − xk∥2] + 4E[∥εk∥2] + 4

η2k
E[∥xk+1 − xk∥2],

which completes the proof.
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Lemma 3.5. Assume that Assumptions 1.1-1.3 be satisfied, then for any k ∈ [K],

(
1

2ηk
− Lβk

2
)E[∥xk+1 − xk∥2]

≤ E[Lβk
(xk, λk)− Lβk+1

(xk+1, λk+1) +
βk+1 − βk

2
M2 +

ηk
2
∥εk∥2 + ρkM

2].

(3.5)

Proof. Lemma 3.2 together with (1.7) implies that

E[Lβk
(xk+1, λk)] = E[Lβk

(xk+1, λk+1)− (λk − λk+1)Tc(xk+1)] ≥ E[Lβk
(xk+1, λk+1)− ρkM

2]. (3.6)

According to optimality conditions for (2.5), there exists a vector s ∈ ∂h(xk+1) such that

⟨dk + s+
1

ηk
(xk+1 − xk), x− xk+1⟩ ≥ 0, ∀x ∈ X.

Then by the convexity of h and setting x = xk, we have

E[h(xk+1)− h(xk)] ≤ E[⟨s, xk+1 − xk⟩] ≤ −E[⟨dk +
1

ηk
(xk+1 − xk), xk+1 − xk⟩].

It thus together with

E[Dβk
(xk+1, λk)] ≤ E[Dβk

(xk, λk) + ⟨∇xDβk
(xk, λk), xk+1 − xk⟩+ Lβk

2
∥xk+1 − xk∥2]

indicates from Young’s inequality and εk = dk −∇xDβk
(xk, λk) that

E[Lβk
(xk+1, λk)] ≤ E[Lβk

(xk, λk) + ⟨∇xDβk
(xk, λk)− dk, xk+1 − xk⟩+ (

Lβk

2
− 1

ηk
)∥xk+1 − xk∥2]

≤ E[Lβk
(xk, λk) +

ηk
2
∥εk∥2 + (

Lβk

2
− 1

2ηk
)∥xk+1 − xk∥2].

Together with (3.6), we obtain

E[Lβk
(xk+1, λk+1)− Lβk

(xk, λk)] ≤ ηk
2
E[∥εk∥2] + (

Lβk

2
− 1

2ηk
)E[∥xk+1 − xk∥2] + ρkM

2. (3.7)

Due to Lβk+1
(x, λ) = Lβk

(x, λ) + βk+1−βk

2 ∥c(x)∥2, it holds that

E[Lβk
(xk+1, λk+1)− Lβk

(xk, λk)] = E[Lβk+1
(xk+1, λk+1)− Lβk

(xk, λk)− βk+1 − βk
2

∥c(xk+1)∥2].

Substituting the above equality into (3.7) and rearranging the terms, we derive the conclusion.

The lemma below provides a recursive bound on εk.

Lemma 3.6. Under Assumptions 1.1-1.3, the following relation holds for any k ∈ [K],

E[∥εk+1∥2] ≤ (1− αk)
2E[∥εk∥2] + 2α2

kσ
2
βk+1

+ 4(1− αk)
2L2

βk
E[∥xk+1 − xk∥2]

+ 8(1− αk)
2(βk+1 − βk)

2M2G2
c + 8(1− αk)

2ρ2kM
2G2

c . (3.8)

Proof. By the definition of εk we know that

εk+1 = (1− αk)(d
k − Gβk

(xk, λk; ξk+1, ζk+1))−∇xDβk+1
(xk+1, λk+1) + Gβk+1

(xk+1, λk+1; ξk+1, ζk+1)

= (1− αk)(∇xDβk
(xk, λk)− Gβk

(xk, λk; ξk+1, ζk+1)) + (1− αk)ε
k
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+ Gβk+1
(xk+1, λk+1; ξk+1, ζk+1)−∇xDβk+1

(xk+1, λk+1).

By squaring both sides of above equality and taking expectation with respect to ξk+1 and ζk+1, we
obtain

Eξk+1,ζk+1 [∥εk+1∥2] = (1− αk)
2∥εk∥2 + Eξk+1,ζk+1 [∥Gβk+1

(xk+1, λk+1; ξk+1, ζk+1)−∇xDβk+1
(xk+1, λk+1)

+ (1− αk)(∇xDβk
(xk, λk)− Gβk

(xk, λk; ξk+1, ζk+1))∥2]

= (1− αk)
2∥εk∥2 + Eξk+1,ζk+1 [∥αkAk+1 + (1− αk)(Bk+1 − Ck+1)∥2],

where the first equality is derived from the relations

Eξk+1,ζk+1 [⟨Gβk+1
(xk+1, λk+1; ξk+1, ζk+1)−∇xDβk+1

(xk+1, λk+1), εk⟩] = 0,

Eξk+1,ζk+1 [⟨Gβk
(xk, λk; ξk+1, ζk+1)−∇xDβk

(xk, λk), εk⟩] = 0,

and the second equality uses the notations

Ak+1 := Gβk+1
(xk+1, λk+1; ξk+1, ζk+1)−∇xDβk+1

(xk+1, λk+1),

Bk+1 := Gβk+1
(xk+1, λk+1; ξk+1, ζk+1)− Gβk

(xk, λk; ξk+1, ζk+1),

Ck+1 := ∇xDβk+1
(xk+1, λk+1)−∇xDβk

(xk, λk).

It is easy to check from (3.2)-(3.3) and Eξk+1,ζk+1 [Bk+1] = Ck+1 that

Eξk+1,ζk+1 [∥εk+1∥2] ≤ (1− αk)
2∥εk∥2 + Eξk+1,ζk+1 [2α2

k∥Ak+1∥2 + 2(1− αk)
2∥Bk+1 − Ck+1∥2]

= (1− αk)
2∥εk∥2 + Eξk+1,ζk+1 [2α2

k∥Ak+1∥2 + 2(1− αk)
2∥Bk+1∥2 − 2(1− αk)

2∥Ck+1∥2]

≤ (1− αk)
2∥εk∥2 + Eξk+1,ζk+1 [2α2

k∥Ak+1∥2 + 2(1− αk)
2∥Bk+1∥2]

≤ (1− αk)
2∥εk∥2 + 2α2

kσ
2
βk+1

+ 4(1− αk)
2Eξk+1,ζk+1 [∥Gβk

(xk+1, λk; ξk+1, ζk+1)− Gβk
(xk, λk; ξk+1, ζk+1)∥2]

+ 4(1− αk)
2Eξk+1,ζk+1 [∥Gβk+1

(xk+1, λk+1; ξk+1, ζk+1)− Gβk
(xk+1, λk; ξk+1, ζk+1)∥2]

≤ (1− αk)
2∥εk∥2 + 2α2

kσ
2
βk+1

+ 4(1− αk)
2L2

βk
∥xk+1 − xk∥2

+ 4(1− αk)
2Eζk+1 [∥Ḡβk+1

(xk+1, λk+1; ζk+1)− Ḡβk
(xk+1, λk; ζk+1)∥2].

For the last term of the above inequality, it can be derived from (1.7), Assumption 1.1, Lemma 3.2
and the independence of ζk+1

1 and ζk+1
2 that

Eζk+1 [∥Ḡβk+1
(xk+1, λk+1; ζk+1)− Ḡβk

(xk+1, λk; ζk+1)∥2]

≤ 2Eζk+1 [∥Ḡβk+1
(xk+1, λk+1; ζk+1)− Ḡβk

(xk+1, λk+1; ζk+1)∥2]

+ 2Eζk+1 [∥Ḡβk
(xk+1, λk+1; ζk+1)− Ḡβk

(xk+1, λk; ζk+1)∥2]

≤ 2(βk+1 − βk)
2Eζk+1 [∥∇C(xk+1; ζk+1

1 )∥2∥C(xk+1; ζk+1
2 )∥2]

+ 2Eζk+1 [∥λk+1 − λk∥2∥∇C(xk+1; ζk+1
1 )∥2] ≤ 2(βk+1 − βk)

2M2G2
c + 2ρ2kM

2G2
c .

Then the conclusion can be derived by taking full expectation.
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4 Sample complexity analysis

In this section, we analyze sample complexities of TStoM to find approximate solutions. We assume
that parameters used in TStoM satisfy

ηkLβk
<

1

2
,

4η2kL
2
βk

1− ηkLβk

≤ αk < 1,
4η2kL

2
βk

1− ηkLβk

≤ τ2k < 1. (4.1)

Lemma 4.1. Suppose that Assumptions 1.1-1.3 hold, then it gives that for any k ∈ [K],

1

K

K∑
k=1

αkE[∥εk∥2] ≤
σ2
β1

K|M|
+

2
∑K

k=1 α
2
kσ

2
βk+1

K
+

8M2G2
c

K

K∑
k=1

(βk+1 − βk)
2 +

8M2G2
c

K

K∑
k=1

ρ2k

+
2

K

K∑
k=1

αk(1− αk)
2

ηk
E[Lβk

(xk, λk)− Lβk+1
(xk+1, λk+1) +

βk+1 − βk
2

M2 + ρkM
2].

Proof. Substituting (3.5) into (3.8) leads to

E[∥εk+1∥2] ≤ (1− αk)
2E[∥εk∥2] + 2α2

kσ
2
βk+1

+ 8(βk+1 − βk)
2M2G2

c + 8ρ2kM
2G2

c

+ 4(1− αk)
2L2

βk
E[∥xk+1 − xk∥2]

≤ (1− αk)
2E[∥εk∥2] + 2α2

kσ
2
βk+1

+ 8(βk+1 − βk)
2M2G2

c + 8ρ2kM
2G2

c

+
8(1− αk)

2ηkL
2
βk

1− ηkLβk

E[Lβk
(xk, λk)− Lβk+1

(xk+1, λk+1) +
βk+1 − βk

2
M2 +

ηk
2
∥εk∥2 + ρkM

2]

≤ (1− αk)
2E[∥εk∥2] + 2α2

kσ
2
βk+1

+ 8(βk+1 − βk)
2M2G2

c + 8ρ2kM
2G2

c

+
2αk(1− αk)

2

ηk
E[Lβk

(xk, λk)− Lβk+1
(xk+1, λk+1) +

βk+1 − βk
2

M2 +
ηk
2
∥εk∥2 + ρkM

2]

= (1− αk)
2(1 + αk)E[∥εk∥2] + 2α2

kσ
2
βk+1

+ 8(βk+1 − βk)
2M2G2

c + 8ρ2kM
2G2

c

+
2αk(1− αk)

2

ηk
E[Lβk

(xk, λk)− Lβk+1
(xk+1, λk+1) +

βk+1 − βk
2

M2 + ρkM
2]

≤ (1− αk)E[∥εk∥2] + 2α2
kσ

2
βk+1

+ 8(βk+1 − βk)
2M2G2

c + 8ρ2kM
2G2

c

+
2αk(1− αk)

2

ηk
E[Lβk

(xk, λk)− Lβk+1
(xk+1, λk+1) +

βk+1 − βk
2

M2 + ρkM
2],

where the third inequality follows from (4.1) and the last inequality comes from αk ∈ (0, 1). Summing

the above inequality over k = 1, . . . ,K and using E[∥ε1∥2] ≤ σ2
β1

|M| by (3.4), we derive

K∑
k=1

αkE[∥εk∥2] ≤
σ2
β1

|M|
+ 2

K∑
k=1

α2
kσ

2
βk+1

+ 8M2G2
c

K∑
k=1

(βk+1 − βk)
2 + 8M2G2

c

K∑
k=1

ρ2k

+ 2

K∑
k=1

αk(1− αk)
2

ηk
E[Lβk

(xk, λk)− Lβk+1
(xk+1, λk+1) +

βk+1 − βk
2

M2 + ρkM
2].

(4.2)

The desired result is then obtained by dividing the inequality in (4.2) by K.

Lemma 4.2. Under Assumptions 1.1-1.3 and (4.1), set ρk ≡ ρ
K and positive parameters βk ≡ β1, ηk ≡

η1, αk ≡ α1, k ≥ 1, then it holds that with λ̄k+1 := λk+1 − βkc(x
k+1), k ∈ [K],

E[d2(∇f(xR+1) + ∂h(xR+1)−∇c(xR+1)λ̄R+1,−NX(xR+1))] ≤ 4(ρMG)2

K2
+

14σ2
β1

α1K|M|
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+
28

∑K
k=1 α1σ

2
β1

K
+

112M2G2
cρ

2

α1K2
+

20 + 28(1− α1)
2

η1K
(Lβ1

(x1, λ1)− C∗ + 2M2ρ). (4.3)

Proof. To begin with, we provide an upper bound for the stationarity measure as represented in (1.4).
It follows from Lemma 3.4 that

1

K

K∑
k=1

E[d2(∇xDβk
(xk+1, λk+1) + ∂h(xk+1),−NX(xk+1))]

≤ 4(ρMG)2

K2
+

4

K

K∑
k=1

(L2
βk

+
1

η2k
)E[∥xk+1 − xk∥2] + 4

K

K∑
k=1

E[∥εk∥2]. (4.4)

For the second item in R.H.S. of (4.4), it is easy to attain from Lemma 3.5 and βk ≡ β1 that

1

K

K∑
k=1

(L2
βk

+
1

η2k
)E[∥xk+1 − xk∥2]

≤ 1

K

K∑
k=1

2(1 + η2kL
2
βk
)

ηk(1− ηkLβk
)
E[Lβk

(xk, λk)− Lβk+1
(xk+1, λk+1) +

ηk
2
∥εk∥2 + ρkM

2]

≤ 5

η1K

K∑
k=1

E[Lβk
(xk, λk)− Lβk+1

(xk+1, λk+1) + ρkM
2] +

5

2K

K∑
k=1

E[∥εk∥]2, (4.5)

where the second inequality comes from ηk ≡ η1 for all k ∈ [K], together with 1+v2

1−v < 5
2 for v ∈ (0, 12 )

and (4.1). Note that

K∑
k=1

E[Lβk
(xk, λk)− Lβk+1

(xk+1, λk+1)] = Lβ1(x
1, λ1)− E[LβK+1

(xK+1, λK+1)]

= Lβ1
(x1, λ1)− E[f(xK+1) + h(xK+1)− (λK+1)Tc(xK+1) +

βK+1

2
∥c(xK+1)∥2]

≤ Lβ1
(x1, λ1)− C∗ +M2

K∑
k=1

ρk = Lβ1
(x1, λ1)− C∗ +M2ρ. (4.6)

Substituting (4.6) into (4.5) we can obtain

1

K

K∑
k=1

(L2
βk

+
1

η2k
)E[∥xk+1 − xk∥2] ≤ 5

η1K
(Lβ1(x

1, λ1)− C∗ + 2M2ρ) +
5

2K

K∑
k=1

E[∥εk∥2]. (4.7)

For the last term of (4.4), by Lemma 4.1, (4.6), αk ≡ α1, βk ≡ β1 and ρk ≡ ρ
K , we have

1

K

K∑
k=1

E[∥εk∥2] ≤
σ2
β1

α1K|M|
+

2
∑K

k=1 α1σ
2
β1

K
+

8M2G2
cρ

2

α1K2
+

2(1− α1)
2

η1K
(Lβ1(x

1, λ1)− C∗ + 2M2ρ).

(4.8)

Then, plugging (4.7) into (4.4), we obtain

E[d2(∇f(xR+1) + ∂h(xR+1)−∇c(xR+1)λ̄R+1,−NX(xR+1))]

=
1

K

K∑
k=1

E[d2(∇xDβk
(xk+1, λk+1) + ∂h(xk+1),−NX(xk+1))]
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≤ 4(ρMG)2

K2
+

20

η1K
(Lβ1

(x1, λ1)− C∗ + 2M2ρ) +
14

K

K∑
k=1

E[∥εk∥2],

which yields the conclusion by (4.8).

Lemma 4.3. Suppose that the conditions in Lemma 4.2 are satisfied, then it holds that

E[d2(∇c(xR+1)c(xR+1),−NX(xR+1))] ≤ 4

β2
1

(4(ρMG)2

K2
+

14σ2
β1

α1K|M|
+

28
∑K

k=1 α1σ
2
β1

K

+
112M2G2

cρ
2

α1K2
+

20 + 28(1− α1)
2

η1K
(Lβ1

(x1, λ1)− C∗ + 2M2ρ) + (2 +M2ρ2)G2
)
.

Proof. It is apparent that there exists sk+1 ∈ ∂h(xk+1) such that

d(∇f(xk+1) + sk+1 −∇c(xk+1)λ̄k+1,−NX(xk+1))

= d(∇f(xk+1) + ∂h(xk+1)−∇c(xk+1)λ̄k+1,−NX(xk+1)). (4.9)

For any k ≥ 1, it follows from (1.5)-(1.6), Lemma 3.2 and λ̄k+1 := λk+1 − βkc(x
k+1) that

E[d2(∇c(xk+1)c(xk+1),−NX(xk+1))] =
1

β2
k

E[d2(βk∇c(xk+1)c(xk+1),−NX(xk+1))]

≤ 4

β2
k

E[d2(∇f(xk+1) + sk+1 −∇c(xk+1)λ̄k+1,−NX(xk+1)) + ∥∇f(xk+1)∥2 + ∥sk+1∥2

+ ∥λk+1∥2∥∇c(xk+1)∥2]

≤ 4

β2
1

E[d2(∇f(xk+1) + ∂h(xk+1)−∇c(xk+1)λ̄k+1,−NX(xk+1)) + (2 + (M

k∑
t=1

ρt)
2)G2].

Hence, from Lemma 4.2 and

E[d2(∇c(xR+1)c(xR+1),−NX(xR+1))] =
1

K

K∑
k=1

E[d2(∇c(xk+1)c(xk+1),−NX(xk+1))],

we derive the conclusion.

4.1 Towards a stochastic ϵ-stationary point

We will establish the sample complexity of TStoM to locate a stochastic ϵ-stationary point of (1.1).
Following (4.1) we set

βk = β0K
υ, ηk =

η

Lβk
K2ι

, αk =
4αη2

K2ι(K2ι − η)
, ∀k ∈ [K], (4.10)

where β0, υ, ι > 0, η ∈ (0,
√
17−1
8 ) and α ∈ [1, 1−η

4η2 ) are constants independent of K. With |M| = K1/3,

σβk
= O(βk) and Lβk

= O(βk), the upper bounds given in Lemmas 4.2 and 4.3 are in order

O(K−2 +K4ι+2υ− 4
3 +K2υ−4ι +K4ι−2 +K2ι+2υ−1),

O(K−2v,K−2v(K−2 +K4ι+2υ− 4
3 +K2υ−4ι +K4ι−2 +K2ι+2υ−1)),

respectively. Then to derive the lowest possible complexity order, we can determine υ, ι by solving

min
υ,ι>0

max{4ι+ 2υ − 4

3
, 2υ − 4ι, 2υ + 2ι− 1,−2υ}. (4.11)

It is easy to verify that its optimal value is reached at υ = ι = 1
6 . We thus obtain the complexity

result to find a stochastic ϵ-stationary point.
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Theorem 4.1. Suppose that Assumptions 1.1-1.3 hold, and βk = K1/6, ρk ≡ ρ
K , ηk ≡ η

Lβk
K1/3 ,

|M| = K1/3, αk ≡ 4αη2

K1/3(K1/3−η)
, k ∈ [K] with ρ ∈ (0,K7/6], η ∈ (0,

√
17−1
8 ), α ∈ [1, 1−η

4η2 ) being

constants independent of K, then

E[d2(∇f(xR+1) + ∂h(xR+1)−∇c(xR+1)λ̄R+1,−NX(xR+1))] = O(K−1/3), (4.12)

E[d2(∇c(xR+1)c(xR+1),−NX(xR+1))] = O(K−1/3). (4.13)

Consequently, to find a stochastic ϵ-stationary point of (1.1) the sample complexity of TStoM with
T = 0 is in order O(ϵ−6).

Proof. Under the assumed parameter settings and letting v = ι = 1
6 , it is straightforward to obtain

from Lemmas 4.2 and 4.3 that (4.12) and (4.13) hold. To attain a stochastic ϵ-stationary point of
(1.1), K should be in order O(ϵ−6). Given that four samples are generated per iteration, the total
number of samples used in TStoM with T = 0 is bounded by O(ϵ−6).

4.2 Towards a stochastic ϵ-KKT point

In this subsection, we will establish the sample complexity of TStoM to find a stochastic ϵ-KKT
point of (1.1). As can be seen from Lemmas 4.2 and 4.3, the term Lβ1

(x1, λ1), or more specifically
β1∥c(x1)∥2 has a direct impact on the upper bound of criticality measure. In order to further reduce
the sample complexity characterized in (4.11), we must take into account mitigating the impact of
possibly large values of β1. The ideal case is to reduce β1∥c(x1)∥2 to the order O(1), which can be
realized when the initial point is sufficiently close to the feasible region. This inspires us to search in
Phase I of TStoM for an approximate feasible point to initialize Phase II. To proceed, we impose the
following assumption.

Assumption 4.1. There exists ν > 0 such that ν∥c(x)∥ ≤ d(∇c(x)c(x),−NX(x)) for any x ∈ X.

Assumption 4.1 requires a nonsingularity condition on the Jacobian of constraint functions. The
necessity of such conditions has been revealed in [20, 28] to pursue an approximate KKT point
of nonconvex constrained optimization problems. The definition of uniform regularity presented
in [5] bears a resemblance to Assumption 4.1. Unlike our work, [6] and [3] require the MFCQ
condition and strong LICQ condition, respectively. According to [21], the relationship between
the MFCQ condition and Assumption 4.1 is not clearly defined in terms of strength or weakness.
Besides, Assumption 4.1 can be implied by assuming a strong LICQ condition. More specifically,
suppose that X := {x | rj(x) ≤ 0, j = 1, . . . , p}, where rj : Rn → R are convex and contin-
uously differentiable. For every x ∈ X, let I(x) := {j | rj(x) = 0}, then the normal cone of
X at x is given by NX(x) = {

∑
j∈I(x) δj∇rj(x) : δj ≥ 0}. Without loss of generality, we define

J(x) := [∇c1(x), . . . ,∇cm(x),∇r1(x), . . . ,∇rq(x)] with I(x) = {1, . . . , q}, q ≤ p. By assuming that
singular values of J(x) over X are uniformly lower bounded by ν > 0, we can infer that

d(∇c(x)c(x),−NX(x)) =
∥∥∥∑m

i=1
ci(x)∇ci(x) +

∑q

j=1
δj∇rj(x)

∥∥∥ = ∥J(x)cδ(x)∥ ≥ ν∥c(x)∥,

where cδ(x)
T := [c(x)T, δT] and δ ∈ Rq.

Let us first look at Phase I of TStoM. Under Assumptions 1.1-1.3, we know that ∥∇c(u)c(u) −
∇c(v)c(v)∥ ≤ (G2 +ML)∥u − v∥, ∀u, v ∈ X. Therefore, the gradient function of (1.2), denoted by
g(x) := ∇c(x)c(x), is (G2 +ML)-Lipschitz continuous over X. Define

PV (z, d) = V (z − z+), where z+ = argmin
x∈X

{⟨d, x⟩+ V

2
∥x− z∥2}.

Let {W t, t ∈ [T +1]} be generated by Phase I of TStoM. As the approach in Phase I is a momentum-
based variance-reduced stochastic gradient method targeted at a least square problem over a convex
set, inspired by [33] we obtain the following lemma.
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Lemma 4.4. Suppose that Assumptions 1.1-1.3 hold, V = 4(G2 +ML)T 1/3, γt = 3[(t+ 1)1/3 − (t+
2)1/3], t ∈ [T ], and T = ⌈K3/10⌉, then

E[∥PV (z
R0 , gR0)∥2] = O(K−1/5),E[∥WR0 − gR0∥2] = O(K−1/5),E[∥PV (z

R0 ,WR0)∥2] = O(K−1/5),

where gR0 is an abbreviation for g(zR0).

Proof. Under the parameter settings of this lemma, by using Theorem 2.5 in [33] and definition of
PV (·, ·) we obtain E[∥PV (z

R0 , gR0)∥2] = O(T−2/3) = O(K−1/5). Besides, by (2.34) in [33], we can
derive E[∥WR0 − gR0∥2] = O(V/T ) = O(K−1/5). Then due to ∥PV (z

R0 ,WR0) − P(zR0 , gR0)∥ ≤
∥WR0 − gR0∥ indicated by Proposition 1 in [13], we attain E[∥PV (z

R0 ,WR0)∥2] = O(K−1/5).

The lemma below ensures that Phase I can find an approximately feasible point of (1.1).

Lemma 4.5. Under Assumptions 1.1-4.1 and same parameter settings as Lemma 4.4, Phase I of
TStoM returns a point x1 satisfying E[∥c(x1)∥2] = O(K−1/5).

Proof. Due to the independence of ς1 and ς2, we can infer that the stochastic gradient of (1.2) satisfies
E[∇C(x; ς1)C(x; ς2)] = ∇c(x)c(x). By Lemma 4.4, we can derive

E[∥gR0+1 − gR0∥2] ≤ (G2 +ML)2E[∥zR0+1 − zR0∥2] = (G2 +ML)2

V 2
E[∥PV (z

R0 ,WR0)∥2],

which is bounded by O(K−2/5). Then from the optimality condition for (2.1), i.e. d(W t + V (zt+1 −
zt),−NX(zt+1)) = 0, together with V (zt+1 − zt) = −PV (z

t,W t) and Lemma 4.4 it follows that

E[d2(∇c(zR0+1)c(zR0+1),−NX(zR0+1))] = E[d2(gR0+1,−NX(zR0+1))]

≤ E[∥gR0+1 − gR0 + gR0 − (WR0 + V (zR0+1 − zR0))∥2]
≤ 3E[∥gR0+1 − gR0∥2] + 3E[∥WR0 − gR0∥2] + 3E[∥V (zR0+1 − zR0)∥2] = O(K−1/5).

Hence, under Assumption 4.1 and letting x1 := zR0+1 we obtain E[∥c(x1)∥2] = O(K−1/5).

Based on above analysis, we arrive at the following theorem, which characterizes the sample
complexity of TStoM to reach a stochastic ϵ-KKT point of (1.1).

Theorem 4.2. Under Assumptions 1.1-4.1 and conditions of Lemma 4.4, suppose that |M| = K3/5,

βk = K1/5, ρk ≡ ρ
K , ηk ≡ η

Lβk
K2/5 , αk ≡ 4αη2

K2/5(K2/5−η)
, ∀k ∈ [K] with ρ ∈ (0,K6/5], η ∈ (0,

√
17−1
8 )

and α ∈ [1, 1−η
4η2 ) being constants independent of K. Then it holds that

E[d2(∇f(xR+1) + ∂h(xR+1)−∇c(xR+1)λ̄R+1,−NX(xR+1))] = O(K−2/5), (4.14)

E[∥c(xR+1)∥2] = O(K−2/5). (4.15)

Consequently, the sample complexity of TStoM to reach a stochastic ϵ-KKT point of (1.1) is in order
O(ϵ−5).

Proof. As demonstrated in Lemma 4.5, Phase I returns a point x1 such that E[∥c(x1)∥2] = O(K−1/5).
By the setting of βk, we obtain β1∥c(x1)∥2 = O(1). Then it is straightforward to derive (4.14)
by substituting the above parameter settings into (4.3). To prove (4.15), recall that there exists
sk+1 ∈ ∂h(xk+1) such that (4.9) holds, then it follows from Assumption 4.1, (1.5)-(1.6), and Lemma
3.2 that

E[∥c(xR+1)∥2] = 1

K

K∑
k=1

E[∥c(xk+1)∥2] ≤ 1

K

K∑
k=1

( 1

ν2β2
k

E[d2(βk∇c(xk+1)c(xk+1),−NX(xk+1))]
)
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≤ 4

ν2β2
1K

K∑
k=1

E[d2(∇f(xk+1) + sk+1 +∇c(xk+1)(βkc(x
k+1)− λk+1),−NX(xk+1))

+ ∥∇f(xk+1)∥2 + ∥sk+1∥2 + ∥λk+1∥2∥∇c(xk+1)∥2]

≤ 4

ν2β2
1

(
E[d2(∇f(xR+1) + ∂h(xR+1)−∇c(xR+1)λ̄R+1,−NX(xR+1))] + (2 +M2ρ2)G2

)
,

which is in order O(K−2/5).
To attain a stochastic ϵ-KKT point of (1.1), K should be in order O(ϵ−5). Then in analogy to

Theorem 4.1, the number of samples in Phase II is in order O(ϵ−3+ ϵ−5) = O(ϵ−5). Meanwhile, since
Phase I requires at most two samples per iteration and due to T = ⌈K3/10⌉, we can conclude that the
total number of samples is in order O(ϵ−5).

As a byproduct, the moving average way to approximate c(x) as in (2.6) ensures an explicit bound
on the expected error of yR+1, which however is not provided in [1].

Proposition 4.1. Suppose same conditions as Theorem 4.2 hold and set τk ≡ 2τη
K1/5(K2/5−η)1/2

, k ∈ [K]

with η ∈ (0,
√
17−1
8 ), τ ∈ [1,

√
1−η
2η ). Then we have E

[
∥yR+1 − c(xR+1)∥

]
= O(K−1/5), which is in

order O(I−1/5) with I being the number of samples generated during iteration of TStoM.

Proof. Denote µk+1 := yk+1 − c(xk+1). By (2.6), we obtain

µk+1 = (1− τk)(y
k − c(xk)) + τk(C(xk+1; θk)− c(xk+1)) + (1− τk)(c(x

k)− c(xk+1))

= (1− τk)µ
k + τk(pk + ek), (4.16)

where pk := C(xk+1; θk)− c(xk+1), ek := 1−τk
τk

(c(xk)− c(xk+1)). Then squaring both sides of (4.16)

and taking expectation with respect to θk leads to

Eθk [∥µk+1∥2] = Eθk [∥(1− τk)µ
k + τk(ek + pk)∥2]

= Eθk [∥(1− τk)µ
k + τkek∥2] + τ2kEθk [∥pk∥2] + 2τkEθk [⟨(1− τk)µ

k + τkek, pk⟩]
≤ (1− τk)∥µk∥2 + τkEθk [∥ek∥2] + τ2kEθk [∥pk∥2]

≤ (1− τk)∥µk∥2 + (1− τk)
2G2

τk
Eθk [∥xk+1 − xk∥2] + τ2kσ

2
c ,

where the first inequality follows from the convexity of ∥·∥2 and Eθk [pk] = 0 and the second inequality
is derived from (1.6) and Assumption 1.2. Then by taking full expectation on both sides of the above
inequality, summing it over k = 1, . . . ,K and applying E

[
∥µ1∥2

]
≤ σ2

c , we obtain

K∑
k=1

τk+1E
[
∥µk+1∥2

]
≤

K∑
k=1

τkE
[
∥µk∥2

]
+ E

[
∥µK+1∥2

]
≤

K∑
k=1

G2(1− τk)
2

τk
E[∥xk+1 − xk∥2] + (1 +

K∑
k=1

τ2k )σ
2
c .

It further implies from (3.5), (4.1) and βk+1 ≡ β1 that

K∑
k=1

τk+1E
[
∥µk+1∥2

]
≤ G2

K∑
k=1

2ηk(1− τk)
2

τk(1− ηkLβk
)
E[Lβk

(xk, λk)− Lβk+1
(xk+1, λk+1) +

ηk
2
∥εk∥2 + ρkM

2] + (1 +

K∑
k=1

τ2k )σ
2
c

≤
K∑

k=1

G2τk
2ηkL2

βk

E[Lβk
(xk, λk)− Lβk+1

(xk+1, λk+1) +
ηk
2
∥εk∥2 + ρkM

2] + (1 +

K∑
k=1

τ2k )σ
2
c ,
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where the second inequality uses the nonnegativeness of the first term by (3.5). Due to τk+1 ≡ τ1
together with (4.6) and (4.8) we have

E
[
∥yR+1 − c(xR+1)∥2

]
=

1

K

K∑
k=1

E
[
∥µk+1∥2

]
≤ G2

4L2
β1
K

K∑
k=1

E[∥εk∥2] +
(1 +

∑K
k=1 τ

2
k )σ

2
c

τ1K

+
G2

2η1L2
β1
K

K∑
k=1

E[Lβk
(xk, λk)− Lβk+1

(xk+1, λk+1) + ρkM
2]

≤
G2σ2

β1

4α1L2
β1
K|M|

+
G2

∑K
k=1 α1σ

2
β1

2L2
β1
K

+
2G2M2G2

cρ
2

α1L2
β1
K2

+
(1 +

∑K
k=1 τ

2
k )σ

2
c

τ1K

+
(1 + (1− α1)

2)G2

2η1L2
β1
K

(Lβ1(x
1, λ1)− C∗ + 2M2ρ) = O(K− 2

5 ),

which is in order O(I−2/5). The proof is completed.

5 Experimental results

5.1 MIMO Transmit Signal Design with Imperfect CSI

For the MIMO transmit signal design problem with imperfect channel state information (CSI), as
discussed in [11], the base station is equipped with n antennas and its MIMO signal, based on estimated

CSI ĥi ∈ Cn, i = 1, 2, . . . , k, simultaneously transmits k data streams to k users. For each i, there
is an error between the true CSI hi and the estimated CSI, which is defined as ei. To enhance the
average MIMO transmission performance, this problem aims for minimizing the total power while
enabling each user’s expected rate not below a preset threshold. Mathematically, it is formalized as

min
0⪯Pi∈Rn×n

f(P ) :=

k∑
i=1

Tr(Pi) s.t. E[Gi(P ;E)] ≥ ri, i = 1, 2, . . . , k,

where Gi(P ;E) := log(1 +
hH
i Pihi∑

j ̸=i h
H
i Pjhi+σ2

i
), i ∈ [k], P = {Pi, i ∈ [k]}, E = {ei, i ∈ [k]}. For user i, Pi

denotes the covariance matrix of the transmit signal, σ2
i is the variance of the thermal noise, while ri

represents the expected rate. In numerical tests, we set k = 4, n = 8, ri = 0.1 and σi = 0.1.
We first compare the performance of our proposed TStoM and SPD [16] on this problem. We

set the maximum number of samples to 1.2 × 104 and αk = 0.6, τk = 0.3 for TStoM, then adopt
identical settings for the remaining parameters in both algorithms to compare the numerical effects
of these two algorithms starting from a nearly feasible initial point. From Figure 1 we can see that
TStoM by introducing momentum, not only reduces the objective function value more rapidly than
SPD but also arrives at a lower constraint violation level. This indicates that the momentum indeed
brings benefit to the algorithm’s performances. Next, we modify the parameters αk and τk to 0.85
and 0.5, respectively, while ensuring that the remaining parameters of both algorithms maintain their
consistency. We then compare the two algorithms starting from a randomly infeasible point within
2× 104 sample passes, as shown in Figure 2. In addition, under the same parameter settings we also
demonstrate the numerical performance of TStoM-P2, which merely implements Phase II of TStoM,
in Figure 2. It can be observed that TStoM outperforms the other two in terms of both objective
value reduction and constraint violation. This further proves the necessity and effectiveness of finding
an initial feasible point.

5.2 Multi-class Neyman-Pearson Classification Problems

We now focus on the multi-class Neyman-Pearson classification problem [21], whose goal is to learn
K models xk, k ∈ [K] given a set of training data with K classes, and predict the class of a data point
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Figure 1: Comparison of TStoM and SPD starting from an feasible initial point

Figure 2: Comparison of TStoM, TStoM-P2 and SPD starting from a randomly infeasible initial point

ξ by choosing the model that maximizes xTk ξ. It aims to minimize the loss related to a specific class
while controlling the loss values of the other classes, taking the form

min
xk∈X

f1(x) =
1

|J1|
∑
p>1

∑
ξ∈J1

l(xT1 ξ − xTp ξ)

s.t. fk(x) =
1

|Jk|
∑
p ̸=k

∑
ξ∈Jk

l(xTk ξ − xTp ξ) ≤ γk, k = 2, . . . ,K,

where X = {xk ∈ Rn : ∥xk∥ ≤ λ, k ∈ [K]} and l(z) = 1/(1 + ez) is the loss function, Jk ⊆ Rn for
k = 1, 2, . . . ,K are sets of training data characterized by K classes. We utilize two datasets from
LibSVM [8]: covtype (K = 7) and mnist (K = 10). We set γk = K − 1, k = 2, . . . ,K, and λ = 0.3.

We evaluate the performances of TStoM compared with SLQPM [1], ICPPC [6] and Stoc-iALM
[20]. As can be observed from Figure 3, TStoM shows superior performance on the dataset covtype,
demonstrating a more rapid decrease in the objective function value and a lower level of constraint
violation within the same sample numbers. For the dataset mnist, TStoM and Stoc-iALM perform
similarly in reducing the objective function, but TStoM stands out in reducing constraint violation,
as shown in Figure 4.

5.3 Chance Constrained Program

The chance constrained program is generally given by

min
x∈C⊆Rn

E[F (x; ξ)] s.t. P {Gi(x; ξ) ≤ 0, i = 1, . . . ,m} ≥ 1− γ,
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Figure 3: Comparison of TStoM, SLQPM, Stoc-iALM and ICPPC on the covtype dataset

Figure 4: Comparison of TStoM, SLQPM, Stoc-iALM and ICPPC on the mnist dataset

where γ > 0 is a probability bound. With G(x; ξ) := max1≤i≤m{Gi(x; ξ)}, the chance constraint
is reformulated as E[1[0,∞)(G(x; ξ))] ≤ γ. Nevertheless, since the characteristic function 1[0,∞)(·)
is discontinuous, we introduce a smoothing function ϕ : R → R and transform the constraint into
E[ϕ(G(x; ξ))]− γ ≤ 0. We test the norm optimization problem [15] with slight modifications:

min
x∈Rn

+

−E[ηTx] + λ∥x∥2 s.t. P
{ n∑

j=1

ξ2ijx
2
j ≤ u2, i ∈ [m]

}
≥ 1− γ,

where components of η are i.i.d. random variables with both mean value and variance equal to 1,
while ξij , i ∈ [m] and j ∈ [n] are i.i.d. standard normal random variables, λ > 0 is a regularization
parameter. We employ the smoothing function ϕ(y) := (1+ exp(−y/s))−1 with parameter s > 0 [29].

In Figure 5 we report the numerical comparison results between TStoM, ICPPC, Stoc-iALM,
SLQPM and SPD. For all five algorithms, the maximum number of samples are set as 1.5 × 104,
and m = 8, n = 3. It can be observed from Figure 5 that TStoM prevails over the other four in
terms of reducing the objective function. With regard to the constraint violation, TStoM exhibits
slightly superior performance compared to SPD and SLQPM, outperforming the other two algorithms.
Furthermore, while SLQPM excels in KKT residuals, its constraint violation falls short compared to
TStoM, and it also performs weakly in objective function reduction. In summary, TStoM demonstrates
a more balanced and comprehensivly comparative performance in solving the test problem. Moreover,
the comparison between TStoM and SPD further highlights the crucial role that momentum plays.
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Figure 5: Comparison of TStoM, ICPPC, SPD, SLQPM and Stoc-iALM

6 Conclusion

We study in this paper a two-phase stochastic momentum-based algorithm for nonconvex constrained
optimization problems whose objective and constraint functions are in expectation forms. The first
phase of algorithm plays as a feasibility search phase, aiming to find an approximately feasible point
to initialize the second phase. In the second phase of the algorithm, we incorporate a momentum
step to compute the stochastic gradient and construct a stochastic approximation to the linearized
augmented Lagrangian function to update the primal variable. The dual update relies on stochastic
constraint function values computed through a moving-average scheme. Under certain conditions, we
analyze the sample complexities of the proposed algorithm to find a stochastic ϵ-stationary point and
a stochastic ϵ-KKT point. We verify the effectiveness of our proposed approach through evaluating
its performance in three numerical experiments.
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